The Center Is Here to Help You During the Coronavirus Pandemic During this time of great societal stress, we are here to contribute our knowledge and experience to your health and wellbeing. There is a high level of interest in evidence-based integrative strategies to augment public health measures to prevent COVID-19 virus infection and associated pneumonia. Unfortunately, *integrative measures have been validated in human trials of COVID-19*. Notwithstanding, this is an opportune time to be proactive. Using available evidence, we offer the following strategies for you to consider to enhance your immune system to reduce the severity or the duration of a viral infection. Again, we stress that these are supplemental considerations to the current recommendations that emphasize regular hand washing, physical distancing, stopping non-essential travel, and getting tested if you develop symptoms. #### **RISK REDUCTION:** - Adequate sleep: Shorter sleep duration increases the risk of infectious illness. Adequate sleep also ensures the secretion of melatonin, a molecule which may play a role in reducing coronavirus virulence (see **Melatonin** below). - **Stress management**: Psychological stress disrupts immune regulation. Various mindfulness techniques such as meditation, breathing exercises, and guided imagery reduce stress. - **Zinc**: Coronaviruses appear to be susceptible to the viral inhibitory actions of zinc. Zinc may prevent coronavirus entry into cells and appears to reduce coronavirus virulence. Typical daily dosing of zinc is 15mg 30mg daily with lozenges potentially providing direct protective effects in the upper respiratory tract. - Vegetables and Fruits: Vegetables and fruits provide a repository of flavonoids that are considered a cornerstone of an anti-inflammatory diet. At least 5–7 servings of vegetables and 2–3 servings of fruits are recommended daily. Some of these foods and/or dietary supplements include: tomatoes, apples, onions, oranges, nuts, parsley, celery, berries, licorice and Chinese skullcap. - **Vitamin C**: Clinical trials have found that vitamin C shortens the frequency, duration and severity of the common cold and the incidence of pneumonia. Typical daily dosing of vitamin C ranges from 500mg to 3000mg daily with even higher doses utilized during times of acute infection. - **Melatonin**: Melatonin has been shown to be anti-inflammatory. It also reduces oxidative lung injury and inflammatory cell recruitment during viral infections. - **Curcumin**: Curcumin, a key component of turmeric, has anti-inflammatory actions and antiviral effects against a variety of similar viruses. ## DURING SYMPTOMS OF INFECTION OR POSITIVE TEST FOR THE COVID-19 VIRUS: #### To Avoid: In the absence of human clinical data, caution is warranted with the following immune activating agents due to their possible stimulation of an inflammatory response: • Sambucus nigra (Elderberry) - Polysaccharide extracts from medicinal mushrooms - Echinacea angustifolia and E. purpurea - Larch arabinogalactan - Vitamin D ### Likely Safe: There are other commonly used natural immune stimulating and antiviral agents, several of which may work to restore immune balance [homeostasis]. These are, therefore, likely safe to use both prior to, and during COVID-19 virus infection. Whether these agents mitigate the symptoms or severity of COVID-19 is unknown and, therefore, the benefit of these agents during COVID-19 infection is unknown. Recommendations include: - Allium sativum (garlic) - Quercetin - Astragalus membranaceus - Full mycelium mushroom extracts - Mentha piperita (peppermint) - Andrographis paniculata - Zinc - Vitamin A - Vitamin C The information and understanding of the COVID-19 virus infection and disease continues to change rapidly. We encourage you to make integrative recommendations carefully. It is also important to reiterate that there are no clinically evidence-based integrative prevention or treatment strategies for Covid-19 virus infection. #### **Online Education** We also want to provide a solution to school and university closures. The Center is a leader in online health education and we are offering online courses open to the public. From now until May 1, 2020, two of our online integrative health courses are completely FREE. <u>An Introduction to Contemplative Care</u>: This course explores an approach to caregiving that incorporates mindfulness practice, compassionate action, and moment-to-moment awareness of the relationships around you. The first section features mediations to help you, your friends, and family members cope with stress. Developed with the co-founders of the New York Zen Center for Contemplative Care, this course may offer just what you crave in trying times. <u>Nutrition Above the Neck</u>: There are opportunities to alleviate stress and improve mental wellbeing in the face of the coronavirus challenges. This video lecture course explores the role of nutrients in mental health. Learn practical steps you can take to reduce your anxiety through food and supplements. #### **References:** - 1. Chen, I-Y, et al. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Front Microbiol. 2019;10:50. - 2. Prather AA, et al. Behaviorally Assessed Sleep and Susceptibility to the Common Cold. Sleep. 2015;38(9):1353-9. - 3. Gorbachev AV, et al. CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. J Immunol. 2007:178:2278–2286. - 4. Romero, JM, et al. A Four-Chemokine Signature Is Associated With a T-cell-Inflamed Phenotype in Primary and Metastatic Pancreatic Cancer. Clin Cancer Res. 2020 Jan 21 [online ahead of print]. - 5. Godbout JP, Glaser R. Stress-induced Immune Dysregulation: Implications for Wound Healing, Infectious Disease and Cancer. J Neuroimmune Pharmacol. 2006;1(4):421. - 6. Iwata M, et al. Psychological Stress Activates the Inflammasome via Release of Adenosine Triphosphate and Stimulation of the Purinergic Type 2X7 Receptor. Biol Psychiatry. 2016;80(1):12. - 7. Black D and Slavich GM. Mindfulness meditation and the immune system: a systematic review of randomized controlled trials. Ann NY Acad Sci. 2016;1373(1):13. - 8. Phillips JM, et al. Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion. J Virol. 2017;91(8). - 9. Han Y-S, et al. Papain-like Protease 2 (PLP2) From Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV): Expression, Purification, Characterization, and Inhibition. Biochemistry. 2005;44(30):10349. - 10. Lim H, et al. Flavonoids Interfere with NLRP3 Inflammasome Activation. Toxicol Appl Pharmacol. 2018;355:93. - 11. Fu S, et al. Baicalin Suppresses NLRP3 Inflammasome and Nuclear Factor-Kappa B (NF-κB) Signaling During Haemophilus Parasuis Infection. Vet Res. 2016;47(1):80. - 12. Sun Y, et al. Wogonoside Protects Against Dextran Sulfate Sodium-Induced Experimental Colitis in Mice by Inhibiting NF-κB and NLRP3 Inflammasome Activation. Biochm Pharmacol. 2015;94(2):142. - 13. Zhu X, et al. Liquiritigenin Attenuates High Glucose-Induced Mesangial Matrix Accumulation, Oxidative Stress, and Inflammation by Suppression of the NF-κB and NLRP3 Inflammasome Pathways. Biomed Pharmacother. 2018;106:976. - 14. Ding T, et al. Kidney Protection Effects of Dihydroquercetin on Diabetic Nephropathy Through Suppressing ROS and NLRP3 Inflammasome. Phytomedicine. 2018(41):45. - 15. Choe J-Y, et al. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation. 2017;40(3):980. - 16. Chen H, et al. Myricetin Inhibits NLRP3 Inflammasome Activation via Reduction of ROS-dependent Ubiquitination of ASC and Promotion of ROS-independent NLRP3 Ubiquitination. Toxicol Appl Pharmacol. 2019;365:19. - 17. Yamagata K, et al. Dietary Apigenin Reduces Induction of LOX-1 and NLRP3 Expression, Leukocyte Adhesion, and Acetylated Low-Density Lipoprotein Uptake in Human Endothelial Cells Exposed to Trimethylamine-N-Oxide. J Cardiovasc Pharmacol. 2019;74(6):558. - 18. Choe J-Y, et al. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation. 2017;40(3):980. - 19. Hemila, H. Vitamin C Supplementation and Respiratory Infections: A Systematic Review. Mil Med. 2004;169(11):90. - 20. Hardeland, R. Melatonin and inflammation Story of a Double-Edged Blade. J Pineal Res. 2018;65(4):e12525. - 21. Silvestri M and Rossi GA. Melatonin: its possible role in the management of viral infections a brief review. Ital J Pediatr. 2013;39:61. - 22. Barak V, et al. The Effect of Sambucol, a Black Elderberry-Based, Natural Product, on the Production of Human Cytokines: I. Inflammatory Cytokines. Eur Cytokine Netw. 2001;12(2):290. - 23. Yang Y, et al. Protein-bound polysaccharide-K induces IL-1β via TLR2 and NLRP3 inflammasome activation. Innate Immun. 2014;20(8):857. - 24. Ma XL, et al. Immunomodulatory activity of macromolecular polysaccharide isolated from Grifola frondosa. Chin J Nat Med. 2015;13(12):906. - 25. Burger RA, et al. Echinacea-induced Cytokine Production by Human Macrophages. Int J Immunopharmacol. 1997;19(7):371. - 26. Senchina DS, et al. Human Blood Mononuclear Cell in Vitro Cytokine Response Before and After Two Different Strenuous Exercise Bouts in the Presence of Bloodroot and Echinacea Extracts. Blood Cells Mol Dis. 2009;43(3):298. - 27. Hauer J, Anderer FA. Mechanism of Stimulation of Human Natural Killer Cytotoxicity by Arabinogalactan From Larix Occidentalis. Cancer Immunol Immunother. 1993;36(4):237. - 28. Verway M, et al. Vitamin D Induces interleukin-1β Expression: Paracrine Macrophage Epithelial Signaling Controls M. Tuberculosis Infection. PLoS Pathog. 2013;9(6):e1003407. - 29. Tulk SE, et al. Vitamin D₃ Metabolites Enhance the NLRP3-dependent Secretion of IL-1β From Human THP-1 Monocytic Cells. J Cell Biochem. 2015;116(5):711. - 30. Arreola R, et al. Immunodulation and Anti-Inflammatory Effects of Garlic Compounds. J Immunol Res. 2015;2015:401630. - 31. Mlcek J, et al. Quercetin and Its Anti-Allergic Immune Response. Molecules. 2016;21(5):623. - 32. He, X, et al. Inhibitory Effect of Astragalus Polysaccharides on Lipopolysaccharide-Induced TNF-a and IL-1β Production in THP-1 Cells. Molecules. 2012; 17(3): 3155. - 33. Li H, et al. Astragaloside Inhibits IL-1β-induced Inflammatory Response in Human Osteoarthritis Chondrocytes and Ameliorates the Progression of Osteoarthritis in Mice Immunopharmacol Immunotoxicol. 2019;421(4):497. - 34. Ulbricht C, et al. An Evidence-Based Systematic Review of Elderberry and Elderflower (Sambucus Nigra) by the Natural Standard Research Collaboration. J Diet Suppl. 2014;11(1):80. - 35. Benson KF, The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. MC Complementary and Alternative Medicine. 2019;19:342. - 36. Li Y, et al. In Vitro Antiviral, Anti-Inflammatory, and Antioxidant Activities of the Ethanol Extract of Mentha piperita L. Food Sci Biotechnol. 2017;26(6):1675. - 37. Chandrasekaran CV, et al. In Vitro Comparative Evaluation of Non-Leaves and Leaves Extracts of Andrographis Paniculata on Modulation of Inflammatory Mediators. Antiinflamm Antiallergy Agents Med Chem. 2012;11(2):191. - 38. Han Y-S, et al. Papain-like Protease 2 (PLP2) From Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV): Expression, Purification, Characterization, and Inhibition. Biochemistry. 2005;44(30):10349. - 39. Farhangi MA, et al. Vitamin A Supplementation and Serum Th1- And Th2-associated Cytokine Response in Women. J Am Coll Nutr. 2013;32(4):280. - 40. Penniston KL and Tanumihardjo SA. The acute and chronic toxic effects of vitamin A. Am J Clin Nutr. 2006; 83(23):191. - 41. Choe J-Y, et al. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation. 2017;40(3):980.