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Abstract

Modern information technologies make it possible to store, analyze and
trade unprecedented amounts of detailed information about individuals. This
has led to public discussions on whether individuals� privacy should be bet-
ter protected by restricting the amount or the precision of information that is
collected by commercial institutions on its participants. We contribute to this
discussion by proposing a Bayesian approach to measure loss of privacy and ap-
plying it to the design of optimal mechanisms. Speci�cally, we de�ne the loss
of privacy associated with a mechanism as the di¤erence between the designer�s
prior and posterior beliefs about an agent�s type, where this di¤erence is cal-
culated using Kullback-Leibler divergence, and where the change in beliefs is
triggered by actions taken by the agent in the mechanism. We consider both ex-
ante (the expected di¤erence in beliefs over all type realizations cannot exceed
some threshold �) and ex-post (for every realized type, the maximal di¤erence
in beliefs cannot exceed some threshold �) measures of privacy loss. Using these
notions we study the properties of optimal privacy-constrained mechanisms and
the relation between welfare/pro�ts and privacy levels.
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1 Introduction

Modern information technologies make it possible to store, analyze and trade un-

precedented amounts of detailed information about individuals. At the same time,

the rapid growth of online markets has signi�cantly increased the participation of

individuals in decentralized pricing mechanisms that rely on personal information

provided by the participants. Consequently, the organizers of these markets are able

to gather vast amounts of data on individuals� characteristics such as their tastes

and willingness-to-pay for products and services. This data is valuable to a variety

of entities including commercial �rms as well as political institutions. If leaked to

these entities, this information may be used against the users�interests. In light of

this, there has been a growing sentiment that governments should enact laws that

regulate the ability of private entities to collect and use personal information. If the

growing concerns for maintaining privacy were to lead to regulations that impose

privacy constraints on pricing mechanisms, how would that a¤ect the design of these

mechanisms, and what is the trade-o¤ between pro�ts and privacy?

This paper takes a step towards addressing these questions by proposing a Bayesian

approach to the measurement of loss of privacy and applying this approach to the

design of optimal mechanisms that are restricted in the amount/precision of private

information that they can elicit from participants. The cornerstone of our approach

is that the designer of a mechanism already possesses some information about partic-

ipants in his mechanism in the form of a prior belief over their �types�. He updates

these beliefs as a result of the participants�interaction with the mechanism, which

releases some information about them. For example, when a consumer who faces a

menu of choices, say quantity-price pairs, selects a particular item in the menu, the

seller learns additional information about this buyer. In particular, the seller knows

the consumer is willing to pay the price he chose, and that no other quantity-price

pair is preferred. Consequently, the seller�s posterior belief about the buyer�s type

may be quite di¤erent than his prior belief. This suggests that the di¤erence between

the seller�s prior and posterior beliefs should serve as the basis for measuring the loss

of privacy associated with a particular mechanism.

Building on this observation we propose a Bayesian measure of privacy loss for

mechanisms and apply it to screening mechanisms in which there is no strategic

interaction between the participants. Speci�cally, we consider the classic Mussa-

Rosen set-up in which a monopolist faces increasing costs for producing a higher

quality (or quantity) of a product, and wishes to o¤er the optimal menu of quality-
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price pairs to consumers with private marginal rates of substitution between quality

and money. The standard solution implies that all the types that opt in e¤ectively

reveal their private types. Hence, the optimal solution entails complete loss of privacy:

The designer has a degenerate posterior belief on the type of each participant.

To study the design of mechanisms that preserve some level of privacy, we follow

the information-theoretic literature and propose to measure a mechanism�s inherent

loss of privacy as the expected relative entropy (or Kullback-Leibler Divergence) be-

tween the designer�s posterior and prior beliefs, where the expectation is taken with

respect to the prior distribution over consumer types. We then augment the standard

mechanism design problem by requiring that the privacy loss of the optimal solution

is at most �: The parameter �; which takes values between 0 (full privacy) and in�nity

(no privacy), captures the strength of the privacy requirement.

We view this ex-ante notion of privacy as a conservative departure from the stan-

dard privacy-unconstrained approach in mechanism design in the following sense: It

acknowledges that some consumers�private information may be more valuable than

others (e.g., uncovering �high valuation types�may be more pro�table than uncov-

ering �low valuation types�), and hence, allows the designer to preserve privacy in a

di¤erential manner across consumer types (so some types may release more informa-

tion than other types) as long as on average, a given level of privacy is maintained.

The privacy constraint may also be interpreted as a budget for �securing�sensitive

data, such that more precise and detailed data is more costly to secure. The ex-

ante constraint takes into account that the designer may �nd it pro�table to allocate

these costs in a di¤erential manner across consumer types. This interpretation of

the privacy constraint, and our ex-ante approach, also create an interesting link be-

tween privacy constraints and rational inattention, and we discuss this relation in

the next section. Finally, the ex-ante approach also has the merit of making the

analysis relatively tractable. Hence, adopting a well-studied measure of di¤erence

between distributions, and taking an ex-ante approach serves as a useful benchmark

with which we can compare other measures of privacy.

By imposing an exogenous privacy constraint, we take a �paternalistic�approach

to privacy in the sense that we do not explicitly model consumers�preferences over

privacy (i.e., how consumers trade-o¤ privacy, consumption and money), but rather

assume that mechanisms are required to guarantee a certain level of privacy. This is

motivated by research showing that most consumers are not fully aware of the implica-

tions of allowing commercial entities to record information about them. Indeed, many

users make public postings on social media, log in to websites through their social
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media accounts and do not delete cookies (e.g., see Acquisti and Grossklags (2005),

Barth and de Jong (2017) and Kokolakis (2017)). Alternatively, our approach can be

interpreted as assuming homogenous preferences over privacy that take a threshold

form: A consumer transacts with a platform that has � or less loss of privacy.

Our main results highlight key properties of the optimal privacy-preserving mech-

anisms. First, the optimal �-constrained mechanism partitions the set of types into

�nitely many intervals (whose number depends on �), such that consumers truthfully

announce to which interval their type belongs, and the total loss of privacy is exactly

�. Thus, even though there is a continuum of types, and the privacy constraint allows

for a continuum of noisy messages (e.g., when each type � reports � + "; where " is

a continuous random variable), maximal pro�ts are attained with only �nitely many

messages. The second property relates to the structure of the intervals: There can

be at most one interval with an arbitrarily small mass. In other words, there is at

most one set of types with positive measure about which the monopolist attains very

precise information. This property also implies that there exists a threshold � such

that for any � � �; the optimal �-constrained mechanism has exactly two intervals. If
we impose more structure on the cost function, we can also give some welfare implica-

tions of the privacy constraint. In particular, when costs are quadratic, total welfare

is maximized at � = 0 and minimized at � = 1 when the prior density function is

increasing, while the opposite is true if it is decreasing.

To illustrate a complete characterization of the optimal privacy-preserving mech-

anism, we analyze the uniform-quadratic case where types are drawn from a uniform

distribution and costs are quadratic. In this case, the optimal �-constrained mech-

anism is unique up to reordering of the intervals and has the following properties.

The number of intervals is equal to the smallest integer n� whose natural logarithm

is at least �. There is exactly one �short� interval and n� � 1 �long� intervals of
equal length, such that privacy loss is precisely �. In addition, the optimal mech-

anism exhibits an interesting trade-o¤ between privacy and pro�ts: As � increases,

there are diminishing returns to loss of privacy when the optimal number of intervals

increase, but there are increasing returns over ranges of � where the optimal number

of intervals remains �xed (but their length changes). These properties of the optimal

mechanism remain true for distributions that are close to the uniform.

Our ex-ante notion of privacy allows the designer to meet the privacy constraint

even if he can learn almost perfectly about some small set of types. A more stringent

notion of privacy would restrict the designer not to learn too much about any con-

sumer type. To explore the implications of such a notion of privacy, we require that
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the largest change in the designer�s beliefs (as measured by relative entropy) must be

at most �. Under this ex-post privacy constraint, there exists an optimal mechanism

that partitions the type space into �nitely many intervals, each with a mass of at least

e��. In particular, in the uniform-quadratic case, for any � 2 [log(n); log(n+1)); the
optimal �-constrained mechanism partitions the types into n equal intervals.

In the absence of a commonly agreed upon notion of privacy loss, our main contri-

bution is to propose a Bayesian de�nition that builds upon a familiar measure from

information theory, which has already been adopted by economists as a measure of the

cost of information. This privacy notion can be easily incorporated into the standard

mechanism design framework, thereby allowing us to better understand the trade-o¤s

between welfare/pro�ts and privacy demands. As our results suggest, the proposed

privacy notion also provides a rationale for using �simple/coarse�mechanisms with

restricted message spaces (we expand on this in the next section).

There are many interesting questions left to explore in the study of privacy-

preserving mechanisms. In particular, studying mechanisms with strategic interaction

between participants raises some novel challenges. First, one-shot mechanisms may

not be optimal in these environments. Second, one needs to take a stand on how

privacy loss is aggregated across di¤erent individuals. This is particularly important

since optimal mechanisms may exhibit a di¤erential treatment of ex-ante identical

agents. We discuss these issues in Section 6.

2 Related literature

On the one hand, our notion of privacy di¤ers from the popular measure of �di¤er-

ential privacy� that is often used in the computer science literature. On the other

hand, it coincides with how the rational inattention literature models the cost of in-

formation. Hence, our proposed framework creates an interesting link between these

two distinct strands of literature. In this subsection we brie�y summarize the main

insights of these literatures and their relation to our research.1

The majority of theoretical work on privacy in computer science uses the notion

of �di¤erential privacy�, which was introduced by Dwork et al. (2006). Roughly

speaking, this notion means that changing the data of only a single individual, or

alternatively, of only a single attribute of an individual, has a negligible e¤ect on

1There are many works in these literatures, but we will be able to mention only a few of them.
For more detailed surveys on privacy in computer science and economics, see Pai and Roth (2013),
He¤etz and Ligett (2014) and Acquisti et al. (2016).
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computations that are done on this data. In the context of mechanism design, Pai

and Roth (2013) show that this notion can be de�ned as follows. Suppose there are n

individuals, who each draws a private type from some set T . De�ne a mechanism M

as a mapping from pro�les of types t 2 T n to distributions over some set of outcomes
X. Then M is �-di¤erentially private if for all pairs of type pro�les (t; t0) that di¤er

only in ti, and for any payo¤ function u : X ! R;

EM(t)u(x) � exp(�) � EM(t0)u(x)

This de�nition implies that the action of a single player has a negligible e¤ect on

the outcome, such that any action is �almost�weakly dominant (in the sense that

it cannot a¤ect a player�s payo¤ by a factor of more than 2�, regardless of the other

players�actions). In light of this, several studies in computer science have used the

above notion to design mechanisms where truthtelling is either �almost�or exactly

weakly dominant (see e.g., McSherry and Talwar (2007), Kearns et al. (2012) and

Nissim et al. (2012)).

Another line of research has proposed ways of incorporating agents with privacy

concerns into a mechanism design framework. The literature has mostly assumed

that each agent incurs an additive cost for loss of privacy, where this cost increases

with the level of di¤erential privacy (i.e., with the � above). Some notable examples of

these studies are Ghosh and Roth (2011), Ligett and Roth (2012), Fleischer and Lyu

(2012). Closely related, Gradwohl (2018) studies the problem of full implementation

when agents prefer to protect their privacy.

Yet another literature in computer science deals with distortion and anonymiza-

tion of databases and communication channels due to privacy concerns. Within this

literature, several papers used information-theoretic measures to quantify privacy,

like the notion of relative entropy that we use in our work. Noteworthy examples are

Agrawal and Aggarwal (2001) who study privacy-preserving data-mining algorithms;

Rebollo-Monedero et al. (2010) and Sankar et al. (2013) who study the privacy-

distortion trade-o¤; Wang et al. (2016) who link between three di¤erent notions of

privacy in the privacy-distortion context; and Díaz et al. (2003) who study the degree

of anonymity provided by schemes for anonymous connections. The key distinction

of the current paper is that we are interested in the strategic interaction between

privacy, mechanism and agent behavior, while in this literature strategic behavior

does not play any role.

The privacy constraint in our model entails that, in equilibrium, agents cannot
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communicate all their private information to the designer. Several papers have inves-

tigated a related question of optimal mechanism design with limited communication,

by imposing di¤erent restrictions on the cardinality of the action space available to

the agents. Notable examples are Kos (2012), Blumrosen et al. (2007), Blumrosen

and Feldman (2013), Bergemann et al. (2012), Melumad et al. (1992) and Green

and La¤ont (1987). In a di¤erent setting, Mookherjee and Tsumagari (2014) study

a dynamic mechanism design problem with costly communication and compare be-

tween centralized and decentralized production decisions. Van Zandt (2007), Fadel

and Segal (2009) and Babaio¤ et al. (2013) study the interaction between commu-

nication capacity and incentive feasibility by quantifying and bounding the �cost of

sel�shness��the amount of excess information (bits) that needs to be exchanged to

implement a given social choice function, relative to the case in which agents honestly

report their types.2

Finally, our work is closely related to the growing literature on rational inattention

with information costs (see, e.g., Sims (2003), Matµejka (2016), Matµejka and McKay

(2015) and Máckowiak and Wiederholt (2015)). In this literature, an uninformed

decision maker (DM) chooses the structure of a signal he wants to observe, subject to

the constraint that the signal can only contain a limited amount of information.3 In

fact, the choice of the DM is tantamount to choosing a distribution of posterior be-

liefs, subject to the information capacity constraint (and the martingale condition of

beliefs). Note that when a privacy-constrained designer chooses a mechanism (with

a corresponding equilibrium), he also implicitly chooses a distribution of posterior

beliefs, subject to the same information constraint.4 However, while the rationally

inattentive DM is bound only by the information constraint, the mechanism designer

is bound also by an incentive constraint �the participating agent(s) must be will-

ing to share the information in equilibrium. Studying the interaction between the

information constraint and the incentive constraint is the main objective of our work.

2Green and La¤ont (1986) study a model in which a principal can restrict the capacity of a com-
munication channel between an agent and his obedient subordinate. Like in our model, the capacity
of the channel is quanti�ed using an information-theoretic measure (mutual information). Unlike
our work, there is no con�ict of interests between the agent and the subordinate. Therefore, when
the (informed) agent designs the optimal communication protocol there are no incentive constraints
involved.

3The amount of information is measured as the expected reduction in entropy between the prior
and posterior beliefs (that the signal induces) regarding the state of the world.

4Formally, the designer chooses a set of messages for the agent(s) and a function that maps
between the (pro�le of) messages and consequences. However, in equilibrium messages can be
identi�ed with the posterior beliefs they induce regarding the agent type.
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3 The framework

We consider the classic Mussa-Rosen (1978) set-up of monopolistic screening. A seller

wishes to sell some quantity/quality q 2 R+ to a buyer, in exchange for payment
p 2 R. The seller�s pro�t is given by:

� (p; q) = p� c(q)

where c (�) is a twice-continuously di¤erentiable cost function that satis�es c(0) =
c0(0) = 0 and c00(q) > 0 for all q > 0. The buyer�s willingness to pay per unit is

� 2 � =
�
�; �
�
, and is unknown to the seller. If the buyer consumes q and pays p, his

utility is

u (p; q; �) = q � � � p

The seller�s prior probability distribution on � is F , which has support � and density

f > 0. We assume that the buyer�s virtual valuation, v (�) � �� 1�F (�)
f(�)

; is increasing

in � and satis�es v (�) > 0.5 To facilitate some technical arguments, we make the

slightly stronger assumption that v is continuously di¤erentiable and v0 > 0.

To sell the good the monopolist devises a static mechanism M = hM; p; qi, where
M is an arbitrary set of messages, and p : M ! R+ and q : M ! R+ are functions
that map each message in M to an outcome: Given a message m 2 M; the seller
provides the quantity q (m) and charges the price p (m). The seller�s objective is to

maximize his expected pro�t �:

�(M) = Em [p (m)� c (q (m))]

where Em is evaluated according to the probability that, given M, each message
m 2M is sent by a utility maximizing buyer in equilibrium. A strategy for the buyer

is a function � : �! �M .

In the absence of privacy constraints, an optimal (revenue maximizing) mechanism

in this set-up is a direct revelation mechanism in which: (i) The agent truthfully

reports his type �, (ii) The produced quantity q (�) is determined such that c0 (q (�)) =

v (�), and (iii) The requested price is p (�) = q (�) � �
R �
�
q (x) dx.

5Positive virtual valuation allows us to focus on the case in which the seller wants to include
all buyer types, and the only question is what quantity/quality and price should be o¤ered to each
buyer type. The strict inequality v(�) > 0 is used in the proof that an optimal mechanism exists.
But we note that a slightly modi�ed argument applies if v(�) = 0 and additionally c00(0) > 0.
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3.1 Bayesian privacy

At the outset, the seller already has some information about the buyer: He knows

the buyer�s type is distributed according to F . When a buyer decides to participate

in the mechanism and sends a message m 2 M , the seller updates his information
according to the posterior belief distribution F (�jm). This change of beliefs entails
loss-of-privacy for the buyer.

We measure the loss of privacy entailed by a message m 2 M by the relative

entropy between the posterior belief triggered by m and the prior belief: If the poste-

rior distribution F (�jm) has density f (�jm), the relative entropy (or Kullback-Leibler
Divergence) from F (�jm) to F is de�ned by:6

DKL (F (�jm) jjF ) =
Z �

�

f (�jm) � log f (�jm)
f (�)

d� (1)

If F (�jm) contains atoms we de�neDKL (F (�jm) jjF ) = +1.7 Throughout the paper,
�log" represents the natural logarithm.

We de�ne the ex-ante loss of privacy entailed by a mechanism to be the expected

divergence between the possible posteriors and the prior:

De�nition 1 The ex-ante loss of privacy entailed by mechanism M = hM; p; qi is
given by:

I (M) = Em [DKL (F (�jm) jj F )]

where Em is evaluated according to the probability that each message m 2 M is sent

in an equilibrium of M.8 ;9

6The relative entropy exhibits a number of key properties: DKL (GjjF ) � 0 for all G and F with
equality if and only if G = F , and DKL (GjjF ) is convex in both G and F . It is however not a
metric due to the failure of symmetry and of the triangle inequality.

7The integral on the RHS of (1) can be evaluated whenever F (�jm) is absolutely continuous with
respect to F . Since we have assumed that F admits a density w.r.t. Lebesgue measure, absolute
continuity is guaranteed when F (�jm) also admits a density. And when G := F (�jm) contains atoms,
our de�nition that DKL (GjjF ) = +1 preserves continuity of the relative entropy function in G.

8In calculating I (M) we adopt the convention that 0�1 = 0, and therefore I (M) can still be �nite
if there is a measure-zero set of messages (sent in equilibrium) that induce posterior distributions
F (�jm) whose divergence from the prior F is in�nite. But if the set of such messages has positive
measure, then I (M) = +1 according to our de�nition.

9To be fully rigorous, we note that the loss of privacy as de�ned here may in general depend
on equilibrium selection (so I (M) should better be written as I (M; �)). However, multiple equi-
libria/buyer indi¤erence only arise when there are messages that lead to the same quantity-price
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4 Optimal privacy-constrained mechanisms

4.1 Interval mechanisms

Suppose the seller has to design a mechanism that does not exceed some privacy

capacity � > 0. His problem can then be described as follows: Find a mechanism

M = hM; p; qi and a strategy � for the buyer that maximize the expected pro�t � =
Em [p (m)� c (q (m))] subject to three constraints:

1. Incentive-compatibility - given M, the strategy � is optimal for the buyer:

u (p (m) ; q (m) ; �) � u (p (m0) ; q (m0) ; �) (IC)

for all � 2 �, all m 2 supp (� (�)) and all m0 2M ,

2. Individual-rationality - given M, a buyer who follows � is not worse o¤ than if
he did not participate in M:

u (p (m) ; q (m) ; �) � 0 (IR)

for all � 2 � and all m 2 supp (� (�)),

3. Privacy constraint -

I (M) � � (P)

We refer to any mechanism that satis�es the above constraints as a �-feasible mech-

anism. Any mechanism that is pro�t-maximizing among all �-feasible mechanisms

is called a �-optimal mechanism. Our objective is to derive key properties of this

constrained-optimal mechanism. In particular, we are interested in addressing the

following questions: What information does each buyer type disclose to the mech-

anism? Do some buyer types disclose more information than others? What is the

maximal amount of information that is revealed by any buyer type? Is the privacy

constraint even binding?

Note that in standard mechanism design the monopolist maximizes his expected

pro�t subject only to the incentive-compatibility and individual-rationality constraints.

The optimal mechanism in this case perfectly screens every buyer type, and each of

the posterior beliefs is a degenerate distribution with a single atom on the buyer�s

pair. As we discuss below, such messages are �wasteful" and without loss excluded from the optimal
mechanism. Hence we will omit the issue of multiplicity.
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exact type. The loss of privacy entailed by such a mechanism is in�nite according

to our de�nition, and is therefore infeasible for any �nite �. This means that in a

�-optimal mechanism the monopolist obtains only a noisy signal about the buyer�s

type. Our �rst result establishes that this noise has a particular structure, which

can be interpreted as a coarse revelation principle: There is no loss of generality in

focusing on mechanisms that partition the type space into intervals and each type

reports the interval he belongs to.

Lemma 1 For any �-feasible mechanism, there exists another �-feasible mechanism
M = hM; p; qi with the same pro�t level, such that M consists of intervals that parti-

tion [�; �], and each type � 2 � reports the message m 2M for which � 2 m.

For future reference, we call such mechanisms as described in the lemma �interval

mechanisms."

The intuition for this result is as follows. Mechanisms that rely on mixed strate-

gies are �wasteful" in the sense that the seller could relax the privacy constraint by

inducing pure strategies without a¤ecting the outcome. This means that we can with-

out loss assume the supports of the seller�s posterior beliefs constitute a partition of

[�; �]. The single-crossing property of the buyer�s preferences further implies that the

sets of types that �pool" together are convex. Hence, the aforementioned partition

consists of intervals, leading to the lemma.

Next, we use the interval characterization to derive the quantity and price that

a �-optimal mechanism assigns to each message. Given a feasible mechanism M =

hM; p; qi, in which all the messages m 2M are intervals and each type � 2 � reports
the interval to which it belongs, the expected pro�t for the seller from employing M
is given by:10

�(M) =
X
m2M

�
q (m)

Z m

m

v (�) f (�) d� � c (q (m)) � [F (m)� F (m)]
�

(2)

wherem andm are the lower and upper bounds, respectively, for any intervalm 2M .
Therefore, the quantity that maximizes the expected pro�t while maintaining IC and

10To see this, recall that in every mechanism that satis�es (local) IC and binds IR at the lowest

type, the seller�s pro�t is given by �(M) =
R �
�

h
~q (�) � �

R �
�
~q (x) dx� c (~q (�))

i
f (�) d�, where ~q (�)

is the quantity provided to type �. The �rst term in the integrand is the social surplus generated
by selling quantity ~q (�) to type �, the second term is the minimal information rent that is left with
type � in every IC mechanism, and the third term is the cost of producing ~q (�). The seller is the
residual claimant of welfare. Equation (2) is obtained from this formula using integration by parts.
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IR is uniquely determined by:11

c0 (q (m)) = EF [v (x) j x 2 [m;m]] for any m 2M (3)

The standard envelope condition (derived from local IC) for buyer surplus also pins

down the requested price:

p (m) = q (m) �m�
X

m02M s.t m0�m

(m0 �m0) � q (m0) for any m 2M (4)

where the summation is over all the intervals m0 that are �lower" than m. It follows

that the assignment of types to quantity-price pairs in any �-optimal mechanism is

completely determined by the interval partition. Therefore, in the rest of the analysis

we focus on characterizing the set of intervals M in the �-optimal mechanism.

To do this, we �rst rewrite the seller�s optimization problem in terms of the interval

partition. In particular, we will compute the privacy measure of any mechanism that

uses intervals as messages. Note that when the seller sees a messagem in equilibrium,

his posterior density updates to f(� j m) = f(�)
F (m)�F (m) for � 2 [m;m], and f(� j m) = 0

otherwise. The relative entropy between this posterior belief and the prior is computed

as
R m
m
f(� j m) log f(�jm)

f(�)
d� = � log [F (m)� F (m)]. Since the message m is sent in

equilibrium with probability F (m)� F (m), we deduce that for interval mechanisms
M, the ex-ante loss of privacy is given by:

I(M) =
X
m2M

� [F (m)� F (m)] � log [F (m)� F (m)] : (5)

Consider the discrete distribution gM over the elements of M induced by the prior.

That is, gM(m) = F (m) � F (m) is the ex-ante probability that the buyer�s type �
belongs to the interval m. Then the above equation (5) can be compactly written as

I(M) = H(gM), which is the Shannon entropy of the discrete distribution gM .
This discussion yields the following result:

Lemma 2 The pro�t maximization problem is equivalent to �nding a set of intervals
M that partition [�; �] and satisfy H(gM) � �, such that (2) is maximized subject to
these constraints and with quantities given by (3).

11Since c is strictly convex and c0(0) = 0, the �rst order condition (3) uniquely determines the
value of the optimal q (m). The fact that v (�) is increasing ensures that q (�) is �increasing in m."
Thus higher types receive higher quantity in equilibrium and local IC implies global IC.
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4.2 Existence and further properties

So far we have set aside an important technical issue of whether a �-optimal mecha-

nism exists. To see why existence is not straightforward in our setting, recall Lemma

2 from above. Although that lemma provides a simple constrained optimization pro-

gram in terms of the intervals, the space over which the seller optimizes is not compact.

Indeed, compactness is guaranteed with any �nite upper bound on the number of in-

tervals used in the mechanism, but a priori the seller could even partition buyer types

into countably many intervals.

We will however show that an optimal mechanism exists and consists of �nitely

many intervals.

Proposition 1 There exists a �-optimal mechanism M = hM; p; qi, such that M
consists of �nitely many intervals that partition [�; �], and each type � 2 � reports

the interval to which it belongs.12

The proof goes as follows: Consider a sequence of �-feasible interval mechanisms

Mj = hMj; pj; qji such that �(Mj) converges to the supremum pro�t �� across �-

feasible mechanisms. We will replace each mechanismMj by another �-feasible inter-

val mechanism ~Mj =
D
~Mj; ~pj; ~qj

E
, such that the new message set ~Mj consists of at

most N intervals, where N is a constant that depends only on F and �. This upper

bound N restores compactness and allows us to �nd a subsequence of the partitions

f ~Mjg that converges to some limit partition ~M1. By Lemma 2 and continuity, ~M1

is also a feasible mechanism, and it achieves the limit pro�t along the convergent

subsequence. Therefore, if we could carry out the replacement in such a way that

�( ~Mj) � �(Mj), then �( ~M1) � �� and ~M1 would be �-optimal.

It remains to �nd the appropriate replacements ~Mj. We �rst observe that starting

from any mechanism Mj, merging two adjacent intervals in Mj into a single interval

(and adjusting the quantities/prices accordingly) always strictly decreases the pro�t.

However, by doing so the seller is able to save on the privacy measure, which enables

him to divide any other interval in Mj into two subintervals, increasing the pro�t.

The key argument, then, is to compare the pro�t gain in the latter step to the pro�t

loss in the former. We show that whenever two adjacent intervals are both of mass

12It is instructive to compare this result to an analogous result in the rational inattention literature.
Mat¼ejka (2016) shows that a rationally inattentive seller would charge only �nitely many prices even
though there is a continuum of states. The argument used to prove that result relies on properties
of Hermite polynomials. In contrast, the proof in our environment is rather elementary and only
makes use of the tradeo¤ between privacy and pro�t when merging/dividing intervals.
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smaller than some constant �, they can be combined to create enough slackness in

the privacy constraint; and if the slackness is used to break another (big) interval

into two, the seller achieves a net pro�t gain. Intuitively, this pro�t comparison holds

because the entropy function severely punishes against precise knowledge about any

small set of types. So when the seller combines two �small" intervals into a single

one, the saved privacy measure is signi�cant relative to the reduction in pro�t.

By repeatedly combining adjacent �small" intervals, we are able to transform Mj

into a mechanism ~Mj with weakly higher pro�t, and with no adjacent intervals both

having mass < �. The upshot is that ~Mj has at most N := 2
�
+1 intervals, completing

the proof.13

Below we collect a few other results that emerge from this proof:

Proposition 2 Under the Bayesian privacy measure, the privacy constraint is ex-
hausted in any �-optimal mechanism M. That is, I (M) = �.

As discussed above, the intuition is that the seller always bene�ts from re�ning

the information he elicits about the buyer�s type (i.e., dividing an interval into two

subintervals). By choosing one of the subintervals to be �small," the average privacy

constraint is still satis�ed. Note however that this argument and conclusion does not

extend to an alternative ex-post notion of privacy loss, which we discuss in Section 5.

Now that we know I (M) = � in the optimal mechanism, we can use Equation

(5), along with a well-known result from the literature, to put a lower bound on the

number of messages in any �-optimal mechanism:

(Cover and Thomas, Theorem 2.6.4) If a discrete random variable X takes n

values, then its Shannon entropy satis�es H(X) � log n, with equality if and only if
X has a uniform distribution.

Corollary 1 In any �-optimal mechanismM = hM; p; qi, the message setM consists

of at least e� elements.

13To be fully rigorous, in the proof we �rst �nd a replacement with �nitely many intervals. This
can be done because for any limit point Mj (more precisely, the bounds of intervals in Mj) may
have, the seller incurs little pro�t loss if he combines all the small intervals near this limit point.
Such loss is covered by the net pro�t gain in merging two small intervals and dividing a long one.
Once we have a �nite Mj to begin with, we still need to guarantee that the process of �combining
small intervals" will come to an end. We do this by combining two pairs of adjacent small intervals
at once and breaking a big interval into two. There is still net pro�t gain, and in addition the total
number of intervals strictly decreases. The �nal ~Mj involves at most one pair of adjacent small
intervals, so its size is again bounded uniformly across j.
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On the other hand, we show that when the privacy constraint is stringent, 2

messages are su¢ cient to implement the optimal mechanism.14

Proposition 3 There exists � > 0 such that in any �-optimal interval mechanism

M = hM; p; qi with 0 < � � �, the message set M consists of exactly two intervals.

This result is proved via a lemma stating that there can be at most one interval

with arbitrarily small mass (according to F ). Compared to the above proof sketch

for Proposition 1, the next lemma additionally rules out the existence of two �small"

intervals that are not adjacent.

Lemma 3 For every k > 0, there exists � > 0 such that in any �-optimal interval

mechanism M = hM; p; qi with � � k, at most one interval in M has mass < �.

Knowing that an optimal mechanism exists also allows us to derive the �rst order

conditions for an interval partition to be optimal. To be concrete, let the intervals in

M be m1 = [�0; �1];m2 = [�1; �2]; : : : ;mn = [�n�1; �n], with � = �0 < �1 < � � � < �n =
�. For brevity we denote qi � q (mi), so that qi is the quantity o¤ered to buyers with

type in [�i�1; �i]. The following is a necessary condition for the �cuto¤s" �1; : : : ; �n�1
to be optimal:

Lemma 4 Given n > 1, if an interval mechanism M = hM; p; qi maximizes pro�t
among �-feasible mechanisms with n intervals, then there exists a constant � � 0

such that for all i 2 f1; :::; n� 1g:

[(qi+1 � qi) � v (�i)� (c(qi+1)� c(qi))] = � �
�
log

F (�i)� F (�i�1)
F (�i+1)� F (�i)

�
where, by Equation (3), qi is determined by c0 (qi) = EF [v (x) j x 2 [�i�1; �i]].

Note that this lemma provides necessary conditions for optimality given the num-

ber of intervals n, but it does not characterize the optimal n for general distribution

F and cost function c (�). Without imposing additional structure on these primitives,
it is di¢ cult to provide a complete characterization of �-optimal mechanisms (which

need not be unique) that describes the number of intervals and their properties. In

light of this di¢ culty, we illustrate next the structure of a �-optimal mechanism in

the uniform-quadratic case.

14There are of course other optimal mechanisms that involve more (redundant) messages. This is
why the following proposition is stated with the restriction to interval mechanisms.
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4.3 Uniform-quadratic case

Suppose that � � U [�; �] and c(q) = q2

2
. To �nd the �-optimal mechanism for any

given � > 0 we proceed in two steps. First, given any n � 1, we �nd the pro�t-

maximizing �-feasible mechanism with exactly n intervals. We call this mechanism

the (n; �)-optimal mechanism. Then, we �nd the number of intervals n such that the

(n; �)-optimal mechanism yields the highest pro�t.

In the uniform-quadratic case, the optimal mechanism M = hM; p; qi with n in-
tervals admits a simple structure: If log n � � then all the intervals in M have the

same length; If log n > � then a necessary condition is thatM consists of exactly one

�short" interval and n� 1 equally �long" ones. The lengths are uniquely determined
by the binding privacy constraint I (M) = �, and the position of the �short" interval
within M does not matter. Formally:

Lemma 5 In the uniform-quadratic case, given any n � 1 and � > 0, the (n; �)-

optimal mechanism M = hM; p; qi is such that

1. If log n � � then M consists of n intervals of equal length (= 1
n

�
� � �

�
).

2. If log n > � then exactly one of the intervals in M has length ls and the re-

maining n� 1 intervals in M have length ll. These lengths ls < ll are uniquely

determined by the following two equations:

� � � = ls + (n� 1) ll (6)

� = � ls�
� � �

� log ls�
� � �

� � (n� 1) � ll�
� � �

� log ll�
� � �

� (7)

The mechanism is unique, up to reordering of the intervals.

The proof consists of three steps. First, we show that the order of the intervals

in M does not change the expected pro�t when prices and quantities are optimally

adjusted. Clearly it also does not a¤ect the entailed loss of privacy. Next, we show

that if the privacy constraint is binding, the �rst order conditions can be satis�ed

only if the intervals in M have at most two lengths (equivalently, two possible mass).

Finally, we use the second order conditions to show that in any optimal solution, n�1
intervals have the same length and the last interval has weakly shorter length.

We now proceed to characterize the optimal number of intervals in the �-optimal

mechanism. Let n�� denote the smallest integer for which log n
�
� � � (that is, n�� 2 N

is such that � 2 (log (n�� � 1) ; log (n��)]). We then have
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Proposition 4 In the uniform-quadratic case, given any �, the �-optimal mechanism
is the (n��; �)-optimal mechanism as described in Lemma 5.

Proof: By Corollary 1, the number of intervals in a �-optimal mechanism is at

least e� > n�� � 1. By way of contradiction, assume this number is greater than n��.
Then by Lemma 5, at least n�� of the intervals in M have the same �big" mass. It

follows that each of the intervals in the mechanismM has mass smaller than 1
n��
< e��,

so that � log [F (m)� F (m)] > � for each m 2 M . By Equation (5), we then have
I(M) > �

P
m [F (m)� F (m)] = �, leading to a contradiction. �

Note that by Corollary 1, the number of messages in a �-optimal mechanism in the

uniform-quadratic case is equal to the lower bound on the number of intervals among

all mechanisms that satisfy H (gM) = �. In other words, there are no partitions with

less than n�� intervals that exhaust the privacy constraint, and even though there

are partitions with more than n�� intervals that meet the privacy constraint, they are

not optimal. The above proof actually shows that for n > n��, the (n; �)-optimal

mechanism does not exist if we require the mechanism to have exactly n intervals.

The optimum is only achieved when n� n�� of these intervals are degenerate.
The structure of the �-optimal mechanism has an interesting implication for the

trade-o¤ between privacy and pro�t. For � = 1 and � = 2 in the uniform-quadratic

case, Figure 1 depicts the expected pro�t of the monopolist in the �-optimal mecha-

nism as a function of �.

Figure 1. The privacy-pro�t frontier in the uniform-quadratic case

The kinks in Figure 1 represent values of � where the number of intervals in the

�-optimal mechanism increases. Between kink points the number of intervals remains

17



�xed but the intervals change. Notice that while there are diminishing returns to

loss of privacy when the number of intervals increase, there are increasing returns to

loss of privacy when � increases but the number of intervals remains �xed (that is,

the curve between kink points is convex). This means that when we introduce a new

(small) interval, the initial change in expected pro�t is small relative to the loss of

privacy. But as we continue to lower privacy, expected pro�t rises at an increasing

rate until a new interval is added.

While the results in this section are derived for the uniform prior distribution,

their qualitative properties (such as the shape of the privacy-pro�t frontier) are ro-

bust to small changes in this distribution. This is because the set of �-optimal mech-

anisms, when viewed as a correspondence from the distribution F to the space of

interval partitions, is upper-hemicontinuous.15 To see this, recall that Lemma 2 ex-

presses the seller�s problem as a constrained optimization program. The objective

function is clearly continuous, and the constraint H(gM) � � is both upper- and

lower-hemicontinuous.16 So the set of optimizers is upper-hemicontinuous by the

Theorem of the Maximum.

4.4 Welfare analysis

Varying the privacy capacity of a mechanism a¤ects the seller�s pro�t, the buyer

surplus and the total welfare (sum of pro�t and buyer surplus). In this section

we provide a thorough analysis of how � changes these quantities. Throughout this

section we assume quadratic costs, that is c (q) = q2

2
. We also assume F has monotone

hazard rate, that is f(�)
1�F (�) increases in �. This property implies that the virtual

valuation v(�) is increasing.

It is immediate to notice that the expected pro�t � is at least weakly increasing

in �. This is because higher � only relaxes the privacy constraint (P) in the seller�s

problem. Moreover, by Proposition 2 we know that the privacy constraint is binding

in �-optimal mechanisms. So we have the following stronger result:

15One metric on the space of �nite partitions is the following: If M consists of cuto¤s f�0; : : : ; �ng
and M 0 consists of cuto¤s f�00; : : : ; �0mg, then de�ne d(M;M 0) to be the smallest � � 0 such that for
each �i there exists �0j within � distance from it, and vice verse for each �0j .

16To show it is lower-hemicontinuous, let M be a partition with cuto¤s f�0; : : : ; �ng such thatPn
i=1�[F (�i) � F (�i�1)] � log[F (�i) � F (�i�1)] � �. Take any sequence of distributions F j that

converge (weakly) to F . We de�ne M j to be the partition with cuto¤s �ji given by F
j(�ji ) = F (�i),

for all 1 � i � n. Then the privacy measure of M j under the prior F j is the same as the privacy
measure of M under the prior F , so that M j is �-feasible under F j . Weak convergence in the
distribution implies �ji ! �i as j !1. Hence we have lower-hemicontinuity.
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Corollary 2 Pro�t from a �-optimal mechanism is strictly increasing in �.

Therefore, pro�t is minimized when the monopolist is required to provide full privacy

(� = 0), and it is maximized when he is allowed to fully separate the buyer types

(� =1).

For the buyer, the opposite is true:

Proposition 5 Buyer surplus from a �-optimal mechanism is maximized at � = 0,

where every type receives the same quantity, and it is minimized at � = 1, where
types are fully separated.

The intuition for this result is that whenever the seller obtains �ner information

about the buyer in the form of dividing an interval into two subintervals, the buyer

is worse-o¤ in terms of ex-ante expected utility.

Finally, a regulator might be interested in �nding the level of � that maximizes

total welfare. When the density function f (�) is monotone, the following proposition
provides a characterization:

Proposition 6 Suppose the density f (�) increases in �. Then total welfare is max-
imized at � = 0 and minimized at � = 1. Conversely, if f (�) decreases in �, then
total welfare is minimized at � = 0 and maximized at � =1.

It is interesting to note that in the uniform-quadratic case, total welfare of any �-

optimal mechanism is independent of the privacy capacity �.

5 Ex-post privacy-constrained mechanisms

So far we have analyzed an ex-ante notion of privacy loss. Under this criterion, the

monopolist can satisfy the privacy constraint even when he learns almost perfectly

about some small sets of buyer types (although by Lemma 3, there is at most one such

set at the optimum). In this section we explore a more stringent notion of privacy,

requiring that the designer not to learn too much about any buyer type. Formally,

we strengthen the average privacy constraint I(M) � � to its ex-post version:

De�nition 2 The ex-post loss of privacy entailed by mechanism M = hM; p; qi is
given by

Iep (M) = sup
m
[DKL (F (�jm) jj F )]

where the supremum is taken over messages m 2M that are sent with positive prob-

ability in equilibrium.
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That is, we impose an upper bound on the largest change in the seller�s beliefs, as

measured by relative entropy. Given � > 0, we say a mechanism is ex-post �-optimal

if it is pro�t-maximizing among all mechanismsM that satisfy IC, IR and the ex-post

privacy constraint Iep (M) � �.
It turns out that ex-post �-optimal mechanisms also take the interval partition

form:

Proposition 7 There exists an ex-post �-optimal mechanism M = hM; p; qi, such
that M consists of �nitely many intervals that partition [�; �], and each type � 2 �
reports the interval to which it belongs.

Note that the ex-post privacy constraint directly implies that each interval in M

has mass at least e��. So in contrast to Corollary 1, here the total number of intervals

in M is bounded above by e�. This upper bound also makes it easier to establish the

existence of an optimal mechanism, since compactness is now guaranteed.

As another contrast with the ex-ante privacy notion, we observe that the ex-post

privacy constraint is in general not exhausted in the optimal mechanism. This is a

simple corollary of the following characterization in the uniform-quadratic case:

Proposition 8 In the uniform-quadratic case, given any � 2 [log(n); log(n+1)), the
ex-post �-optimal mechanism divides the type space into n equal intervals.

When � = log(n), the ex-ante and ex-post constrained-optimal mechanisms co-

incide and exhaust both privacy constraints. But when log(n) < � < log(n + 1),

the ex-ante �-optimal mechanism consists of n + 1 intervals (not all equal), whereas

the ex-post �-optimal mechanism contains n equal intervals. In this case the ex-post

privacy constraint is slack.

6 Discussion

6.1 Revelation principle

The revelation principle typically refers to the idea that the mechanism design prob-

lem can often be simpli�ed without losing any generality by restricting attention to

mechanisms with two properties: (1) each agent reports his type, and (2) the mecha-

nism is one-shot. The �rst property clearly fails in the presence of privacy concerns,

but we partially restore it with our notion of �coarse revelation�(reporting the in-

terval that contains the agent�s type). The second property holds when the designer
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is restricted to sequential mechanisms in which the transitions from one stage to an-

other are deterministic. However, sequential mechanisms with random transitions

may do better than any one-shot mechanism. To illustrate this, suppose that the

agent�s type � is uniformly distributed on [0; 1]. Consider �rst the following one-shot

mechanism. If the agent reports � > 0:5, the good is o¤ered at price 0:375; if he

reports 0:25 < � � 0:5, then with probability 1
2
the good is o¤ered at price 0:25 and

otherwise no interaction occurs; �nally if he reports � < 0:25, no interaction occurs;.

It is easy to check that every agent type is willing to truthfully report the interval that

contains his type. Through this mechanism, the designer learns whether � belongs to

[0; 0:25]; [0:25; 0:5] or [0:5; 1].

Now we construct a sequential mechanism that gives the agent the same incentives

but preserves more privacy. In the �rst stage, the agent is asked whether his type is

above or below 0:5. If he says �above," the good is o¤ered at price 0:375. If he says

�below," then with probability 1
2
the interaction ends. With remaining 1

2
probability

the mechanism enters the second stage, in which the agent is asked whether � is above

or below 0:25. If yes, the good is o¤ered at price 0:25; otherwise no trade occurs.

Although the agent�s incentives (and pro�t) are the same as in the previous one-shot

mechanism, the ex-ante privacy constraint is relaxed since when � � 0:5, the designer
only learns the exact interval [0; 0:25] or [0:25; 0:5] with probability 1

2
. Note however

that it would be without loss to restrict to one-shot mechanisms under the ex-post

privacy notion, which considers the most informative realization.

6.2 Multiple agents

Extending our analysis to mechanisms with more than one agent presents a number of

challenges. First, the notion of privacy loss needs to be extended to accommodate the

possibility that di¤erent participants are exposed to di¤erent losses of privacy.17 One

approach is to measure the average loss of privacy across all agents. An alternative

approach is to require that the maximal loss of privacy for any agent is at most �. As

in our single-agent model, the privacy notion also has to address the fact that loss of

privacy may di¤er across types of the same agent.

The second challenge concerns the failure of the revelation principle. Such failures

are more signi�cant with multiple agents, since a sequential mechanism may preserve

more privacy by collecting information from a small number of agents. For example, a

17This is particularly important since the literature on optimal mechanisms with restricted message
spaces has highlighted the usefulness of asymmetric mechanisms.
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descending price auction is strategically equivalent to a sealed-bid �rst price auction,

but collects information only about the winning bidder.18

Aside from these challenges, our framework can be extended to allow for multiple

agents. To illustrate, we analyze here the simple case of a seller with a single unit

of a good and no production costs, and two buyers who independently draw private

valuations for the good from a uniform distribution over
�
�; �
�
, where � � 1

2
� ensuring

that the virtual valuation is non-negative. We restrict attention to symmetric static

mechanisms and the ex-ante privacy measure (each agent�s privacy loss � �).
By essentially the same arguments as in our single-agent model, it can be shown

that the optimal privacy-constrained mechanism partitions the set of types into �-

nitely many intervals. In light of this, consider the class of mechanisms where the

types are partitioned into intervals, each buyer reports the interval to which his type

belongs, and the higher bidder is awarded the good (with ties broken evenly). The

optimal mechanism within this class turns out to be very similar to the optimal

mechanism we derived for a single buyer in the uniform-quadratic case:

Proposition 9 The optimal symmetric static mechanism in the two buyer problem

with uniform distribution and no production costs partitions the types in the same

way as the �-optimal mechanism in the one buyer problem with quadratic costs. That

is, for any � 2 (log(n� 1); log(n)], M consists of n� 1 intervals of length ll and one
interval of length ls. These lengths ls � ll are uniquely determined as in Lemma 5.

A pricing rule that assures incentive compatibility in this mechanism is the follow-

ing: the winner pays �i��i�1��2
�i+�i�1�2� , where [�i�1; �i] is the interval that he reported, and

the loser pays 0. Extending the analysis to any number of bidders is more involved

and is left for future research.

7 Concluding remarks

This paper proposed a Bayesian approach to incorporating privacy constraints into

mechanism design. The underlying idea is that the designer already has some prior

information about the participants, and the loss of privacy induced by a mechanism

should be measured as the di¤erence between this prior information and the updated

information that can be inferred from the agents� interaction with the mechanism.

18The revelation principle would be maintained under the most stringent privacy measure, which
considers the biggest loss of privacy across all agents and all of their type realizations.
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This entails an additional constraint - on top of the standard incentive-compatibility

and individual-rationality constraints - that needs to be satis�ed by a mechanism: The

di¤erence between the prior and posterior information must be below some threshold.

We illustrate this approach by using relative entropy to compute the di¤erence

between the prior and posterior beliefs and applying this measure to a canonical

monopolistic screening problem. We show the implications of imposing the privacy

constraint at the ex-ante stage (i.e., averaging over the possible realizations of the

consumer type, the loss of privacy must be below some bound) and at the ex-post

stage (i.e., for every realized type, the loss of privacy must be below some bound).

We also demonstate how our framework can be helpful in understanding the e¤ect of

privacy constraints on consumer and seller welfare.

Our approach opens the door to many interesting questions about mechanism

design and privacy. In particular, since the revelation principle can fail, what is the

optimal mechanism when we allow for sequential mechanisms with randomization?

What are optimal privacy-preserving auctions? We hope that future research will

provide answers to these and related questions.
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8 Appendix 1 - Proofs

8.1 Proof of Lemma 1

We will show that any mechanism M = hM; p; qi that satis�es I (M) = �, for some

�nite � > 0, can be transformed into an interval mechanism in a way that does not

change the expected pro�t of the monopolist, and weakly decreases the loss of privacy.

Given M = hM; p; qi and a best-response strategy � (�) for the agent under M, we
�rst drop duplicate messages: We say that message m0 is a duplicate of message m if

p (m) = p (m0) and q (m) = q (m0). Clearly, if m0 is a duplicate of m, then removing

m0 from M and adjusting � such that all types who sent m0 would now send m,

does not change the seller�s expected pro�t. Moreover, the posterior belief given

the message m in the new mechanism is an average of the posterior beliefs given the

messagesm andm0 in the original mechanism. Due to the convexity of the divergence

function DKL (F (�jm) jj F ) in its �rst argument, the entailed loss of privacy I (M)
is decreased.19

Next, denote by � (m) the set of all types who report the message m 2 M with

positive probability under �:

� (m) = f� 2 � j m 2 supp (� (�))g

By the single-crossing property of the agent�s preferences, the set � (m) is either an

interval or a singleton.20 However, since � is �nite, there can be only a zero-measure

19Given � and F , denote by Pr (m j �; F ) and Pr (m0 j �; F ) the probabilities that messagesm and
m0 are reported under �, respectively. Then the convexity of DKL (F (�jm) jjF ) in its �rst argument
implies that:

Pr (m j �; F ) �DKL (F (�jm) jjF ) + Pr (m0 j �; F ) �DKL (F (�jm0) jjF )

� [Pr (m j �; F ) + Pr (m0 j �; F )] �
�
DKL

�
Pr (m j �; F ) � F (�jm) + Pr (m0 j �; F ) � F (�jm0)

Pr (m j �; F ) + Pr (m0 j �; F ) jj F
��

where
Pr(m j �;F )�F (�jm)+Pr(m0 j �;F)�F(�jm0)

Pr(m j �;F )+Pr(m0 j �;F ) is the posterior belief that is induced when all the types
who sent m0 in equilibrium would now send m.

20Formally, if �0 2 � (m) and �00 2 � (m) for some m 2 M , then � 2 � (m) for all � 2 [�0; �00].
To see this, observe that �0 2 � (m) implies q(m)�0 � p(m) � q(m0)�0 � p(m0) for every message
m0. Similarly q(m)�00 � p(m) � q(m0)�00 � p(m0). Since any � 2 (�0; �00) is a convex combination of
�0 and �00, the above two inequalities lead to q(m)� � p(m) � q(m0)� � p(m0). Thus m is a best-
response of type �. It is in fact a strict best-response because the last inequality is strict whenever
m0 6= m; otherwise q(m)�0 � p(m) = q(m0)�0 � p(m0) and q(m)�00 � p(m) = q(m0)�00 � p(m0) hold
simultaneously, showing that m0 is a redundant copy of m. Hence for any � strictly in between �0
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subset of messages m 2 M for which � (m) is a singleton.21 We can therefore drop

these messages from M , and pick a new best response for each type whose message

was dropped. Since the behavior of only a zero-measure set of types was a¤ected, the

expected pro�t �(M) and the entailed loss of privacy I (M) are both unchanged.

Henceforth we may assume that �(m) is an interval for each m. Since there are

no duplicates, for every pair of messages m and m0 the intersection � (m) \ � (m0)

is either empty or a singleton (in other words, almost all types do not randomize

between messages as part of their best-response).

To complete the transformation of M into an interval mechanism we now use a stan-

dard revelation argument: replace every message m 2 M with the corresponding

interval � (m), and adjust the function p (resp. q) such that whenever the agent re-

ports the interval � (m) in the �transformed" mechanism he would get the price (resp.

quantity) that he would have got if he reported the messagem in the �original" mech-

anism. The elements in the transformed message set are pairwise disjoint intervals

whose union is �, and therefore they constitute a partition of �. IC, IR, privacy loss

and pro�t are maintained under this transformation, which proves the lemma. �

8.2 Proof of Proposition 1

8.2.1 Core argument

We follow the proof sketch outlined in the main text, leaving some technical details

to later subsections. As described in the main text, the key is to �nd a replacement
~M for any mechanismM such that pro�t is not decreased and the number of intervals

in ~M is bounded.

Step 1. Find a �big" interval. Set l = e��. We �rst show that any �-feasible

interval mechanism contains a �big" interval with mass � l (according to F ). Indeed,
from Equation 5 we have

I(M) =
X
m2M

� [F (m)� F (m)] � log [F (m)� F (m)] � �:

Note that
P

m2M [F (m)� F (m)] = 1. So there exists some m 2 M such that

� log [F (m)� F (m)] � �. In other words, the interval m has mass at least e��.

and �00, �(�) puts probability 1 on sending the message m.

21When � (m) is a singleton, the message m is sent by exactly one type, and therefore m reveals
this type in equilibrium.

28



Fixing this choice of l, we de�ne � to be a small positive constant as given by

Lemma 7 below. Starting from M, we will now look for the replacement ~M.

Step 2. From countable to �nite. We �rst �nd a replacement M̂ with at least as

much pro�t and only �nitely many intervals. Suppose p is an accumulation point of

the cuto¤s in M. Then on the left of p we can order the intervals in M from left to

right as m1;m2; : : : , with mi converging to p. In particular, the mass of mi converges

to zero, and we can �nd some ms and ms+1 both with mass < �. Applying Lemma 7

below, we can merge the intervals ms and ms+1 and divide the �big" interval into two

subintervals, in such a way that the privacy measure is unchanged and pro�t is strictly

increased. The achieved pro�t gain is su¢ cient to cover the loss from additionally

combining all the (countably many) intervals mt;mt+1; : : : , so long as we choose t to

be su¢ ciently large. As this last step also relaxes the privacy constraint, we obtain

a replacement mechanism in which p is no longer an accumulation point of intervals

on its left. Doing the same exercise for intervals on the right of p yields a mechanism

in which p is not an accumulation point.

In fact, we can achieve this replacement with some extra properties. Note that

whenever an accumulation point p exists, the �big" interval must have mass strictly

greater than l = e��; otherwise the privacy constraint requires every interval in M

to have mass exactly l, a contradiction. Thus by choosing ms and ms+1 to have

su¢ ciently small mass, we can ensure that when they are merged and the �big"

interval is divided into two subintervals, the bigger subinterval still has mass > l.

In other words, we can perform the replacement in such a way that the �same big

interval" is sequentially divided (each time creating a small subinterval on the left

and a big one on the right). The bene�t is that as we get rid of the accumulation

points in M one by one (which may be countably many), we obtain a sequence of

replacement mechanisms that become �ner in the original �big" interval in M and

more coarse everywhere else. This sequence converges, and the limit mechanism has

at most one accumulation point in the �big" interval.22 By merging and dividing once

more, we arrive at M̂ with �nitely many intervals and weakly higher pro�t than M.

Step 3. From �nite to bounded. We now demonstrate how to replace the

�nite mechanism M̂ with yet another mechanism ~M with higher pro�t and at most

N := 2
�
+ 4 intervals. Starting from M̂, if there are two pairs of adjacent intervals (4

distinct ones) all with mass < �, then we combine both pairs at the same time and

22If we do not divide the same big interval repeatedly, then it is possible that new accumulation
points arise in the iterative process. That would complicate the argument.
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used the privacy measure saved from one of the mergers to divide the �big" interval

into two subintervals. The privacy constraint is relaxed, and by Lemma 7 below, total

pro�t is increased if we choose the merger that induces greater pro�t loss.

Hence whenever M̂ contains two pairs of adjacent �small" intervals, it can be

replaced with a mechanism M̂(1) with higher pro�t and one less interval in total. The

latter property ensures that when iterating this process, we will eventually reach a

mechanism ~M in which at most one pair of adjacent intervals both have mass < �.

Excluding this pair and the two intervals next to them, at least half of the remaining

intervals have mass � �. So the total number of intervals in ~M is bounded by N . �

8.2.2 Estimate of pro�t gain/loss

Lemma 6 There exists a small positive constant � depending on F and c(�), such that
for any triple of cuto¤s a < b < c, the pro�t loss � incurred when merging the two

intervals [a; b] and [b; c] into a single interval [a; c] (and adjusting quantities/prices

accordingly) satis�es

� � �

(F (b)� F (a))(F (c)� F (b))(F (c)� F (a)) �
1

�
:

Note from Equations (2) and (3) that � only depends on a; b; c and is independent

of the remaining cuto¤s.

Proof: We de�ne two auxiliary functions. First, we implicitly de�ne the function

� (x) as follows: c0 (� (x)) = x for all x > 0. By Equation (3) we have that q (m) =

� (Ev (m)) for all m 2M .
Convexity of the cost function and c0(0) = 0 ensures that � is uniquely de�ned

and increasing. In fact, by the chain rule we have

�0(x) =
1

c00(�(x))
:

Since c00(q) is positive and continuous for q > 0, we deduce that c00(�(x)) is bounded

above and away from zero whenever �(x) is, which in turn holds when x is bounded

above and away from zero. Thus for all x 2 [v(�); v(�)], �0(x) is bounded above and
away from zero.

Next, we de�ne the function h (x) as follows:

h (x) = � (x) � x� c (� (x))
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The �rst derivative of h (x) is given by:

h0 (x) = �0 (x) � x+ � (x)� c0 (� (x)) � �0 (x) = �0 (x) � x+ � (x)� x � �0 (x) = � (x)

Thus the second derivative h00 is bounded above and away from zero for x 2 [v(�); v(�)].

We now estimate the pro�t reduction when merging two intervals into a single

one. Let Ev (m) denote EF [v (�) j � 2 [m;m]]. Then the pro�t of mechanism M =

hM; p; qi as given by Equations (2) and (3) can be rewritten as

�(M) =
X
m2M

h (Ev (m)) � [F (m)� F (m)]

When two intervals [a; b] and [b; c] are combined, the pro�t loss is therefore

� = h(E[v(�) j a � � � b]) � [F (b)� F (a)] + h(E[v(�) j b � � � c]) � [F (c)� F (b)]
� h(E[v(�) j a � � � c]) � [F (c)� F (a)]:

(8)

For notational convenience, let v1 = E[v(�) j a � � � b], v2 = E[v(�) j b � � � c] and
v = E[v(�) j a � � � c]. Observe that v1 < v < v2 and

v1�[F (b)�F (a)]+v2�[F (c)�F (b)] =
Z b

a

v(�)f(�)d�+

Z c

b

v(�)f(�)d� = v�[F (c)�F (a)]:
(9)

Thus from Equation (8) and the strict convexity of h, it is clear that � > 0.

To obtain a sharper estimate as required by the lemma, we apply second-order

Taylor expansion to write

h(v1) = h(v) + (v1 � v)h0(v) +
(v1 � v)2

2
h00(�)

h(v2) = h(v) + (v2 � v)h0(v) +
(v2 � v)2

2
h00(�)

for some � 2 (v1; v) and � 2 (v; v2). Plugging these into Equation (8) and using (9),
we have

� = h(v1) � [F (b)� F (a)] + h(v2) � [F (c)� F (b)]� h(v) � [F (c)� F (a)]

=
(v1 � v)2

2
h00(�) � [F (b)� F (a)] + (v2 � v)

2

2
h00(�) � [F (c)� F (b)]:
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Recall that h00 is bounded above and away from zero, and F (b)�F (a) is on the same
order as b� a (since the density f is bounded above and away from zero). Thus the

lemma would follow once we show that v � v1 is on the same order as c � b (and
similarly v2 � v is on the same order as b� a).
Indeed, we can rewrite Equation (9) as (v2� v1) � [F (c)�F (b)] = (v� v1) � [F (c)�

F (a)]. Thus it remains to show v2 � v1 is on the same order as c� a. Note that

v2 � v(b) =
R c
b
[v(�)� v(b)]f(�)d�
F (c)� F (b) =

R c
b

R �
b
v0(y)f(�) dyd�

F (c)� F (b) :

As v0(y)f(�) is bounded above and away from zero, the numerator above is on the

same order as
R c
b

R �
b
1 dyd� = (c�b)2

2
. So v2 � v(b) is on the same order as c � b.

Similarly v(b) � v1 is on the same order as b � a. This proves that v2 � v1 is on the
same order as c� a, and hence the lemma.

8.2.3 Comparison of two pro�t changes

Lemma 7 Given l > 0, there exists � 2 (0; l) with the following property. If any
interval mechanism M has two adjacent small intervals both of mass < � as well as

a big interval of mass � l, then when merging the two small intervals and using the
saved privacy measure to divide the big interval into two subintervals, the pro�t gain

in the latter step is at least twice as big as the pro�t loss in the former step.

Proof: Suppose there are two adjacent intervals with mass x; y < �; assume

without loss that x � y. If we combine them into a single interval, the pro�t loss is

on the order of xy(x + y) by Lemma 6. Meanwhile, Equation (5) implies that the

amount of privacy measure saved is

� = (x+ y) log(x+ y)� x log x� y log y = x log(1 + y
x
) + y log(1 +

x

y
): (10)

By assumption, there exists another interval of mass L � l. We use the saved

privacy measure to break this interval into two: That is, we look for a subinterval of

mass � 2 (0; L
2
) such that the total privacy measure is restored. This requires

L logL� (L� �) log(L� �)� � log � = �:
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From this we obtain23

� � jlog �j � �

2
: (11)

We claim that (10) and (11) together imply � � xpx+ y (whenever x � y < �).
For this it su¢ ces to show that

x
p
x+ y � log( 1

x
p
x+ y

) <
x log(1 + y

x
)

2
<
�

2
:

Rearranging, the above inequality is equivalent to

1

x
p
x+ y

<
�
1 +

y

x

� 1
2
p
x+y
:

For small x; y, the exponent 1
2
p
x+y

is at least 4. So by binomial expansion, the RHS

above has size at least� 1
2
p
x+y

4

�
�
�y
x

�4
�
�

1

8
p
x+ y

�4
� y
x
=

y

4096x(x+ y)2
� 1

8192x(x+ y)
:

This is indeed greater than the LHS, which was 1
x
p
x+y
.

Hence we have shown that when using the saved capacity to divide the big interval

into two subintervals, the smaller subinterval has mass � � xpx+ y. By Lemma 6,
the resulting pro�t gain is on the order of �(L � �)L � L2�

2
. Since L � l which is

given, this pro�t gain is at least on the order of � � xpx+ y. This greatly exceeds
the initial pro�t loss (which is about xy(x+y)) due to combining two small intervals,

completing the proof.

8.3 Proof of Proposition 2

This result follows directly from Lemma 6 above: If the privacy constraint were slack,

the seller could divide any interval in M into two subintervals and strictly increase

the pro�t. By choosing one of the subintervals to be very small, he would still satisfy

the privacy constraint. This contradicts optimality. �

23By the Mean Value Theorem, L logL� (L� �) log(L� �) = �(1+ log �) for some � 2 (L� �; L).
So �(1 + log �� ) = �. Since � �

L
2 � �, this implies

� � � = x log(1 + y

x
) + y log(1 +

x

y
) � x � y

x
+ y � x

y
= x+ y � 1

e
:

Thus we further have 1 + log � � 1 � � log �. From �(1 + log �� ) = � we then deduce � � jlog �j �
�
2 .
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8.4 Proof of Proposition 3

We argue that Proposition 3 follows from Lemma 3, which we prove below. Indeed,

that lemma implies the existence of some � > 0 such that any �-optimal interval

mechanism with � � 1 contains at most one interval with mass < �. For this �, de�ne
� = �� log �. Then in any �-optimal mechanism with � � � < 1, Equation (5) and
feasibility impliesX

m2M
� [F (m)� F (m)] � log [F (m)� F (m)] � � � �� log �:

In particular, [F (m)� F (m)] � log [F (m)� F (m)] > � log � holds for every interval

m 2 M . Note that the function x log x is decreasing for x 2 [0; 1
e
] and increasing

for x 2 [1
e
; 1]. Thus the preceding inequality implies either F (m) � F (m) < �, or

F (m)� F (m) > 1
2
(which is a rough estimate).

In other words, each interval in M has mass either less than � or greater than 1
2
.

By de�nition of �, there is at most on interval with mass < �. It is also clear that at

most one interval can have mass > 1
2
. Hence any �-optimal interval mechanism with

� � � consists of at most two intervals. Since the privacy constraint is exhausted,

exactly two intervals are employed. �

8.5 Proof of Lemma 3

In the proof of Proposition 1, we showed that in any �-feasible mechanism there is

a �big" interval of mass at least e�� � e�k. So by Lemma 7, there cannot be two

adjacent intervals both with mass < � (for some small �).

It remains to deal with the situation where two small intervals are not adjacent.

The proof strategy is to move one of these intervals to be next to the other, and to

show that the pro�t change is at most on the order of xy, where x; y are the mass of

these small intervals. Once this is shown, we can repeat the argument in the proof of

Lemma 7, merging the now adjacent small intervals and dividing the big interval. As

computed in that proof, the pro�t gain in the last step is on the order of x
p
x+ y,

which exceeds any pro�t loss incurred earlier. This would complete the proof.

To be more speci�c, suppose the two small intervals are [�i�1; �i] and [�j; �j+1], for

some i < j. Set x = F (�i) � F (�i�1) and y = F (�j+1) � F (�j). Consider moving
the small interval on the left toward the right while maintaining its mass: We can do

this sequentially by replacing �i with ~�i = F�1(F (�i+1)� x), then replacing �i+1 with
~�i+1 = F

�1(F (�i+2)� x), so on and so forth until ~�j�1 = F�1(F (�j)� x) and the two
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small intervals become adjacent. This process preserves the privacy measure, and it

remains to estimate the pro�t change.

Note that in each step, the two intervals [~�t�1; �t] and [�t; �t+1] are changed into

two new intervals [~�t�1; ~�t] and [~�t; �t+1]. Recall from the proof of Lemma 6 that

�(M) =
X
m2M

h(Ev(m)) � (F (m)� F (m)):

Thus the pro�t increase in each step is given by

�t = h(~u) �
h
F (~�t)� F (~�t�1)

i
+ h( ~w) �

h
F (�t+1)� F (~�t)

i
� h(u) �

h
F (�t)� F (~�t�1)

i
� h(w) � [F (�t+1)� F (�t)]

(12)

where u;w; ~u; ~w represent the expected virtual valuation on the intervals [~�t�1; �t],

[�t; �t+1], [~�t�1; ~�t], [~�t; �t+1] respectively.

We �rst consider the di¤erence h( ~w) �
h
F (�t+1)� F (~�t)

i
�h(u) �

h
F (�t)� F (~�t�1)

i
.

By construction, F (�t+1)� F (~�t) = F (�t)� F (~�t�1) = x, so this di¤erence simpli�es
to (h( ~w)� h(u)) � x. Moreover, as we showed in the proof of Lemma 6,

u = E[v(�) j ~�t�1 � � � �t] = v(�t)+O(�t�~�t�1) = v(�t)+O(F (�t)�F (~�t�1)) = v(�t)+O(x)

where �O(�)" is the standard big O notation with implied constants depending on the
distribution and cost function. Thus h(u) = h(v(�t)) + O(x) and similarly h( ~w) =

h(v(�t+1)) +O(x). It follows that

h( ~w)�
h
F (�t+1)� F (~�t)

i
�h(u)�

h
F (�t)� F (~�t�1)

i
= [h(v(�t+1))� h(v(�t))]�x+O(x2):

Next we consider the other di¤erence h(~u)�
h
F (~�t)� F (~�t�1)

i
�h(w)�[F (�t+1)� F (�t)]

in Equation (12). It simpli�es to (h(~u)� h(w)) � [F (�t+1)� F (�t)]. Moreover,

~u =

R ~�t
~�t�1

v(�)f(�) d�

F (~�t)� F (~�t�1)
=

R ~�t
~�t�1

v(�)f(�) d�

F (�t+1)� F (�t)
= w +

R �t
~�t�1

v(�)f(�) d� �
R �t+1
~�t

v(�)f(�) d�

F (�t+1)� F (�t)

= w +
[v(�t)� v(�t+1)] � x
F (�t+1)� F (�t)

+

R �t
~�t�1

[(v(�)� v(�t)] � f(�) d� �
R �t+1
~�t

[v(�)� v(�t+1)] � f(�) d�
F (�t+1)� F (�t)

= w +
[v(�t)� v(�t+1)] � x
F (�t+1)� F (�t)

+O(x2);

where the last step holds because for each � 2 [~�t�1; �t], the di¤erence between
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[(v(�)� v(�t)] � f(�) and [(v(� + �t+1 � �t)� v(�t+1)] � f(� + �t+1 � �t) is at most
on the order of (�t � �) � (�t+1 � �t) = O(x) � [F (�t+1)� F (�t)]. Thus h(~u) =

h(w) + h0(w) � [v(�t)�v(�t+1)]�x
F (�t+1)�F (�t) +O(x

2). It follows that

h(~u) �
h
F (~�t)� F (~�t�1)

i
�h(w) � [F (�t+1)� F (�t)] = h0(w) � [v(�t)� v(�t+1)] �x+O(x2)

Taken together, we have estimated the RHS of Equation (12), so that

�t = fh(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])g�x+O(x2):

Summing across t 2 fi; : : : ; j� 1g, we obtain that when moving the small interval on
the left to be adjacent to the one on the right, the total pro�t change is24

�LR = O(x
2)+

j�1X
t=i

fh(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])g�x:

If we instead move the small interval on the right to be adjacent to the one on the

left, then total pro�t change is similarly computed as

�RL = O(y
2)�

j�1X
t=i

fh(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])g�y:

Note the minus sign in front of the second term; this is because when moving from

the right to the left, the ordering of the subscripts need to be reversed.

Now observe that if we compute the weighted sum y � �LR + x � �RL, then the

second term is cancelled out. This yields

y ��LR + x ��RL = O(x
2y + y2x):

Therefore �LR and �RL cannot both be very negative. To be concrete we may

without loss assume �LR � �O(xy). Then in moving the small interval on the left
to the right, the initial pro�t loss (if any) is small relative to the pro�t gain provided

in Lemma 7. This again contradicts optimality, and hence there cannot even be two

small intervals that are non-adjacent. �

24There are j � i terms of order at most x2, and since j � i is bounded by the total number of
intervals which in turn is bounded by Lemma 7, their sum is still O(x2).
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8.6 Proof of Lemma 4

By Lemma 2, the seller�s problem is to �nd a vector of cuto¤s ! =
�
�0 = �; �1; � � � ; �n�1; �n = �

	
that maximizes the expected pro�t

�(!; q�i (!)) :=

nX
i=1

�
q�i (!)

Z �i

�i�1

v (x) f (x) dx� c (q�i (!)) � [F (�i)� F (�i�1)]
�

subject to the constraint

I (!) :=

nX
i=1

� [F (�i)� F (�i�1)] � log [F (�i)� F (�i�1)] � �;

where q�i (!) is determined by c
0 (qi) = EF [v (x) j x 2 [�i�1; �i]].

We form the Lagrangian

L (!) = � (!; q�i (!)) + �(�� I (!))

where � 2 R+ is the Lagrange multiplier. By the envelope theorem we have that d�
d�i
=

@�
@�i
, and therefore the �rst order conditions, that is @L(�)

@�i
= 0 for all i 2 f1; : : : ; n� 1g,

are given by (after cancelling out f(�i)):

[(qi+1 � qi) � v (�i)� (c(qi+1)� c(qi))] = �
�
log

F (�i)� F (�i�1)
F (�i+1)� F (�i)

�
for all i 2 f1; : : : ; n� 1g. �

8.7 Proof of Lemma 5

Given � > 0 and n � 1, we will characterize the partition of � into n intervals that
maximizes the expected pro�t subject to the privacy constraint. We represent any

partition as a vector of cuto¤s ! = (�0; :::; �n) , such that � = �0 � �1 � � � � � �n�1 �
�n = �.

Our proof strategy is as follows. First, we will write the explicit expressions of

the expected pro�t �(!) and the loss of privacy I (!) that are induced by a vector

of cuto¤s !. We verify that the expected pro�t depends only on the lengths of these

intervals, so it is invariant to their ordering.25 The same is true for the entailed loss

25For instance, the pro�t is the same for ! = (�0; :::; �k�1; �k; �k+1; :::; �n) and for !0 =
(�0; :::; �k�1; �k�1 + (�k+1 � �k) ; �k+1; :::; �n)
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of privacy.

Next, we will write the �rst order conditions of the problem in terms of the interval

mass (equivalently, lengths), and show that there can be at most two di¤erent mass

in the optimal solution. Finally, we write the second order conditions and argue that

exactly one interval has weakly smaller mass.

Invariance to ordering. When the agent�s type is uniformly distributed over [�; �],
the virtual value of type � is given by v(�) = 2� � �, and the optimal quantity for
any interval [�i�1; �i], as determined by Equation (3), is �i = �i + �i�1 � �.
The pro�t as given by equation (2) is:

�(!) =
nX
i=1

�
�i + �i�1 � �

�
�
Z �i

�i�1

�
2x� �

� 1

� � �
dx�

�
�i + �i�1 � �

�2
2

�i � �i�1
� � �

=
1

2
�
� � �

� nX
i=1

(�i � �i�1)
�
�i + �i�1 � �

�2
=

1

2
�
� � �

�  nX
i=1

(�i � �i�1) (�i + �i�1)2 � 2
nX
i=1

�
�2i � �2i�1

�
� � +

nX
i=1

(�i � �i�1) � �
2

!
.

The three terms in the parentheses above can be simpli�ed as follows:
Pn

i=1 (�i � �i�1) =�
� � �

�
and

Pn
i=1

�
�2i � �2i�1

�
=
�
�
2 � �2

�
and

Pn
i=1 (�i � �i�1) (�i + �i�1)

2 = 4
3

�
�
3 � �3

�
�

1
3

Pn
i=1 (�i � �i�1)

3.26 Plugging the three expressions back, we deduce

�(!) =

 
1

6

�
� � �

�2
+
1

2
�2 � 1

6
�
� � �

� nX
i=1

(�i � �i�1)3
!

(13)

This expression depends only on the lengths �i � �i�1.
The loss of privacy that is entailed by the partition ! is:

I (!) = �
nX
i=1

(�i � �i�1)
� � �

log
(�i � �i�1)
� � �

(14)

This is also invariant to the ordering of the intervals.

First order conditions. Let xi =
�i��i�1
��� denote the probability mass of the i-th

interval. In what follows we will work with the probability masses fxig instead of the
cuto¤s f�ig.
For given � and n, Equations (13) and (14) suggest that the seller faces the

26To simplify the third term we used the identity (x� y) (x+ y)2 = 4
3

�
x3 � y3

�
� 1

3 (x� y)
3.
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following constrained minimization problem:

min
nX
i=1

x3i

s:t: xi � 0;
nX
i=1

xi = 1;

nX
i=1

xi log xi � ��:

The Lagrangian is given by:

L (�; �; fxigni=1) =
nX
i=1

x3i + �(1�
nX
i=1

xi)� �(
nX
i=1

xi log xi + �):

Whenever fxig is a local constrained minimizer, the �rst order conditions imply

3x2i � � log xi = �+ � for all 1 � i � n: (15)

If � � 0, then the function 3x2�� log x is monotonically increasing. Thus every xi
is the same. This corresponds to the case where log n � �; it is clear that min

Pn
i=1 x

3
i

is achieved when each xi = 1
n
, and the privacy constraint is slack.

Otherwise assume � > 0. In this case the derivative of the function 3x2 � � log x
is 6x � �

x
, which is monotonically increasing and crosses 0 at x̂ =

q
�
6
. Thus, the

function 3x2�� log x decreases on [0; x̂] and increases on [x̂;1). Equation (15) yields
that xi can take at most two values x and x, with x < x̂ < x.

Second order conditions. We next show that at most one xi can be equal to

x. Suppose for the sake of contradiction that in the optimal solution � > 0 and

x1 = x2 = x. Let g(x) = (
Pn

i=1 xi;
Pn

i=1 xi log xi)
0 2 R2 denote the constraint values.

Then its derivative/Jacobian Dg(x) is the 2� n matrix whose �rst row is all 1s and
whose second row is (1 + log x1; : : : ; 1 + log xn). Consider v = (1;�1; 0; : : : ; 0)0 2 Rn.
Then clearly v belongs to the null space of Dg(x).

The second derivative of the Lagrangian L(�; �; x) with respect to (the vector) x
is the diagonal matrix H =diag(6x1 � �

x1
; : : : ; 6xn � �

xn
). It is easy to see that

v0Hv = 6x1 �
�

x1
+ 6x2 �

�

x2
= 2

�
6x� �

x

�
;

which is negative because x < x̂. But this fails the second derivative test for con-

strained local minimums; see e.g. Simon and Blume (1994), p. 468.

Summary. By the above analysis, if log n � � then the optimal solution involves
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equally long intervals and satis�es the privacy constraint with slackness. If log n > �

then having equally long intervals violates the privacy constraint. So it must hold

that � > 0 and xi takes two values. Moreover, exactly one xi takes the smaller value,

which then pins down the di¤erent xi as described in the lemma. �

8.8 Proof of Proposition 5

By the envelope theorem, the interim expected utility of a buyer with type �̂ is given

by
R
���̂ q(�)d�. Thus ex-ante buyer surplus can be computed asZ Z

���̂
q(�)d� dF (�̂) =

Z
q(�)(1� F (�))d�: (16)

In what follows, we consider the e¤ect of combining two adjacent intervals in a

mechanism into a single interval. Speci�cally, let �j�1; �j; �j+1 be three adjacent cuto¤s

in a constrained-optimal mechanism (for any �). Write qj = E[v(x) j x 2 [�j�1; �j]],
qj+1 = E[v(x) j x 2 [�j; �j+1]], and q = E[v(x) j x 2 [�j�1; �j+1]]. Then the change in
buyer surplus when �eliminating" the cuto¤ �j is

� :=q �
Z �j+1

�j�1

(1� F (�))d� � qj �
Z �j

�j�1

(1� F (�))d� � qj+1 �
Z �j+1

�j

(1� F (�))d�

=(q � qj) �
Z �j

�j�1

(1� F (�))d� � (qj+1 � q) �
Z �j+1

�j

(1� F (�))d�:

We will show � � 0, which implies the proposition.27 Indeed, observe that

q(F (�j+1)� F (�j�1)) =
Z �j+1

�j�1

v(�)d� = qj(F (�j)� F (�j�1)) + qj+1(F (�j+1)� F (�j)):

So (q� qj)(F (�j)�F (�j�1)) = (qj+1� q)(F (�j+1)�F (�j)). Thus, � � 0 is equivalent
to R �j

�j�1
(1� F (�))d�

F (�j)� F (�j�1)
�
R �j+1
�j

(1� F (�))d�
F (�j+1)� F (�j)

:

This holds because the LHS is just
R �j
�j�1

(1�F (�))d�R �j
�j�1

f(�)d�
, which is at least 1�F (�j)

f(�j)
by the

assumption that 1�F (�)
f(�)

is decreasing. Similarly the RHS of the above equation is at

27Starting from any mechanism, repeatedly combining adjacent intervals eventually leads to the
fully pooling mechanism, which yields weakly higher buyer surplus. Thus � = 0 maximizes buyer
surplus. Similarly � =1 minimizes buyer surplus.
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most 1�F (�j)
f(�j)

. Hence � � 0 and the proposition follows.28 �

8.9 Proof of Proposition 6

Total welfare from a buyer of type � is given by �q(�)� (q(�))2=2. Thus ex-ante total
welfare is Z

q(�) �
�
� � q(�)

2

�
f(�)d�:

Note that on each interval [�i�1; �i]. q(�) is constant and equal to the expected virtual

valuation on this interval. Thus the above can be equivalently written asZ
q(�) �

�
� � v(�)

2

�
f(�)d�: (17)

Compared with the above Equation (16) for buyer surplus, the di¤erence here is that

the function
�
� � v(�)

2

�
f(�) takes the place of 1 � F (�). If the function � � v(�)

2

decreases in �, then the same argument as before shows that combining two intervals

increases total welfare, which must be maximized at � = 0 and minimized at � =1.
It remains to show � � v(�)

2
is decreasing whenever f(�) is increasing. This is

because 2� � v(�) = � + 1�F (�)
f(�)

, whose derivative is � (1�F (�))f 0(�)
(f(�))2

. Thus the �rst half

of the proposition is proved. The second half is proved by a symmetric argument: If

f(�) is decreasing then � � v(�)
2
is increasing, and combining two intervals decreases

total welfare. �

8.10 Proof of Proposition 7

Directly following the proof of Lemma 1, we can transform any ex-post �-feasible

mechanism into an interval mechanism that achieves the same pro�t and still satis�es

the ex-post privacy constraint. The only step that requires some care is in eliminating

�duplicate" messages. If m0 is a duplicate of m, then after removing m0 from M and

adjusting the equilibrium, the seller�s posterior belief given the message m in the new

mechanism is an average of his posterior beliefs given the messages m and m0 in the

original mechanism. Both of these posterior beliefs have relative entropy at most �

from the prior, and so does the average belief. Thus removing duplicates preserves

the ex-post privacy constraint.

Suppose m 2 M is an interval, then the relative entropy between the posterior

upon seeingm and the prior is simply � log [F (m)� F (m)]. So the privacy constraint

28This argument generalizes to any cost function with c000 � 0.
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requires that each interval m has mass at least e�� according to F . It follows that

any ex-post �-feasible mechanism contains at most e� intervals. Hence an optimal

interval mechanism exists by compactness. �

8.11 Proof of Proposition 8

When � 2 [log(n); log(n+1)), any feasible interval mechanism has at most e� < n+1
intervals. Now recall from the proof of Lemma 5 that in the uniform-quadratic case,

having n equal intervals achieves the greatest pro�t among all partitions with at most

n intervals (even when the privacy constraint is ignored).29 Thus the mechanism

with n equal intervals, which is ex-post �-feasible, must be the ex-post �-optimal

mechanism. �

8.12 Proof of Proposition 9

Consider an arbitrary partition with cuto¤s f� = �0; : : : ; �n = �g. For each interval
[�i�1; �i], the probability of winning is computed as

qi =
�i�1 � � + (�i � �i�1)=2

� � �
=
(�i + �i�1)=2� �

� � �
;

which is the probability that the opponent type belongs to a lower interval or it belongs

to the same interval and the tie is broken favorably. By the envelope theorem, type

�i�s interim expected utility is thus

ui =
iX
j=1

(�j � �j�1) � qj =
iX
j=1

(�j � �j�1) �
(�j + �j�1)=2� �

� � �
=
(�i � �)2

2(� � �)

after some simpli�cation. It follows that the expected payment when reporting the

interval [�i�1; �i] is given by

pi = �i � qi � ui =
�i�i�1 � �2

2(� � �)
:

29From that proof, we know the seller seeks to minimize
Pn

i=1 x
3
i subject to

Pn
i=1 xi = 1. The

minimum is clearly achieved when each xi = 1
n .
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Therefore total pro�t from both buyers equals

�(M) =
1

(� � �)2
nX
i=1

(�i�i�1 � �2) � (�i � �i�1):

Since
P

i �
2 � (�i � �i�1) = �2 � (� � �) is a constant, the seller seeks to maximize the

expression
P

i �i�i�1(�i � �i�1). Now observe that

3
nX
i=1

�i�i�1(�i � �i�1) =
nX
i=1

�
�3i � �3i�1 � (�i � �i�1)3

�
= �

3 � �3 �
nX
i=1

(�i � �i�1)3:

Hence the seller equivalently minimizes
Pn

i=1(�i � �i�1)3. But recall from the proof

of Lemma 5 that this is also the objective in the single-buyer uniform-quadratic case.

Since the privacy constraint is also the same, so must be the solution. �
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