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Abstract 7 

The insurance sector is among the earliest private sector industries to see 8 

substantial losses associated with climate change, and the risk signals em-9 

bedded in insurance premiums could be a key driver for how climate ad-10 

aptation decisions are made by individuals and communities.  Therefore, 11 

risk assessments made in the insurance sector are critical for determining 12 

how the built environment responds to and rebuilds from natural disas-13 

ters, and how society prices in the changes in disaster risk associated with 14 

climate change.  Catastrophe models are the key tool the insurance com-15 

munity can use to bridge the gap between climate models and the ex-16 

treme events that are the primary way in which society experiences cli-17 

mate change.  The following discussion provides concrete suggestions for 18 

extending established catastrophe risk management practices to incorpo-19 

rate emerging climate risks.  Incorporating climate change into hurricane 20 

risk management requires risk managers to 1. Explore catastrophe and cli-21 

mate model sensitivity to inputs in the built environment, 2. Divide hurri-22 

cane risk by subperil so risk management strategies can be tailored to var-23 

iable levels of uncertainty, and 3. Translate climate impacts into metrics 24 

that tie directly to decision-making and business outcomes.  Each of these 25 

steps also highlights opportunities for collaboration between the insur-26 

ance sector and scientific community.  The general strategy of assessing 27 

sensitivity to model inputs, tailoring risk management strategies to the 28 

level of uncertainty in the hazard, and producing outputs that are useful 29 

for end users is broadly applicable for climate data services across a wide 30 

variety of sectors. 31 
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 34 

Catastrophe Models: A key tool for linking cli-35 

mate change to risk  36 

Insurance industry disaster risk is generally managed through tools known 37 

as catastrophe models.  Catastrophe models were widely adopted in the 38 

aftermath of Hurricane Andrew making landfall in Florida in 1992, and 39 

further solidified following the Northridge earthquake in California in 40 

1994. Because the most extreme events are not frequent enough to apply 41 

standard actuarial techniques with a basis in statistical theory of large 42 

sample sizes, these models offer a powerful tool to fill out gaps in histori-43 

cal coverage for rare and extreme events.  Historical records of disasters 44 

are heterogeneous in time and space, and even lengthy historical records 45 

are typically insufficient to characterize events in the 100-250 year return 46 

period range commonly assessed in the insurance industry.  Even where 47 

historical records are available, they might have impacted a building stock 48 

that was materially different from what exists today, with many fewer 49 

buildings in areas at high risk than is the case today, paired with older 50 

building codes that would not reflect a current view of damage potential.  51 

Catastrophe models allow insurers to assess the risk of plausible events 52 

that may not be in the historical record and capture the effects of 53 

changes in exposed building stock over time.   54 

Catastrophe models vary somewhat in form, but generally come with the 55 

same four basic components.  Catastrophe models take in exposure as an 56 

input, in the form of a database representing the locations that an insurer 57 

covers in its policies, describing their location, occupancy (such as single-58 

family residential, or a commercial office building), construction type 59 

(wood frame, steel), age, and other details of how the structure was built.  60 

The physical environment is modeled through a hazard module, which is 61 

an event set of thousands of years of hypothetical events, including tropi-62 

cal cyclones, earthquakes, floods, wildfires, etc.  The hazard and exposure 63 

feed into a vulnerability module, which builds a relationship between the 64 
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level of hazard and type of building – for example, the percent damage 65 

that a single-family wood frame home will experience at a given wind 66 

speed in a hurricane.  Vulnerability typically reflects a combination of en-67 

gineering expertise and tuning to historical losses.  Lastly, the amount of 68 

damage produced by the vulnerability component is fed into a financial 69 

model, which applies insurance policy terms like deductibles and limits.   70 

Catastrophe models do not attempt to capture the same types of events 71 

as a typical climate model.  While climate models are best at producing 72 

average projected changes in large scale patterns over long time periods, 73 

catastrophe models are designed to capture low frequency/high severity 74 

hazards in the tail of a probability distribution in single year increments at 75 

high spatial resolution.  To capture extreme tails of the hazard distribu-76 

tion, catastrophe models blend physical modeling with statistical sam-77 

pling of hazard parameters derived from the historical record, such as 78 

number of storms, genesis locations, or storm trajectory by latitude/longi-79 

tude (Hall and Jewson 2007).  Monte Carlo simulation of storm character-80 

istics is computationally cheap compared with the high resolution physi-81 

cal climate models needed to represent extreme events like hurricanes, 82 

enabling catastrophe models to produce tens or hundreds of thousands 83 

of years of simulated disasters to realistically reflect rare but high impact 84 

events.   85 

Although insurers have long been broadly aware of climate risk from an 86 

enterprise risk and regulatory standpoint, the catastrophe modeling tools 87 

that are most commonly used in daily decision-making and that feed into 88 

risk appetite reflect a snapshot of risk at a particular time. Since catastro-89 

phe models are drawn from a statistical distribution built from historical 90 

data, they are inherently designed for short-term climate impacts.  At pre-91 

sent, they do not explicitly incorporate most forms of forward-looking cli-92 

mate risk.   93 

The statistical distributions of events used to build a catastrophe model 94 

become less and less representative of potential risk with climate projec-95 

tions that are further in the future, where events may happen that are 96 

outside the distribution of historical experience.  However, climate model 97 

skill in attributing climate change impacts to extreme events tends to in-98 

crease for most hazards further in the future, as external forcing 99 
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continues to increase relative to internal natural variability.  Therefore, 100 

leveraging these complementary tools in combination can help to high-101 

light how climate change could impact extreme events, and how changes 102 

in extreme events might play out in societal impacts and economic losses.   103 

Although the most common catastrophe models are designed for the in-104 

surance sector, there are academic models that capture at least some 105 

components of the catastrophe models used in the insurance sector.  106 

Hazard models are the most common, such as the Columbia HAZard 107 

Model (Lee et al. 2018) and Synthetic Tropical cyclOne geneRation Model 108 

(STORM) (Bloemendaal et al. 2020).  However, the hazard and vulnerabil-109 

ity components of a catastrophe model that are used to produce a loss 110 

are not fully independent.  With two unknown variables for any given loss 111 

(hazard and vulnerability), the solution to produce that loss is not unique.  112 

Two models could produce the exact same loss for an event, with one ar-113 

riving at that estimate through a higher assumption of hazard but a lower 114 

assumption of vulnerability, and the other producing a lower amount of 115 

hazard but higher vulnerability.  Therefore, catastrophe models need to 116 

be carefully ground-truthed using observational data on wind and storm 117 

surge footprints, as well as engineering studies that link particular wind 118 

speeds to a proportion of damage.   119 

Tying the hazard and vulnerability modules together has historically lim-120 

ited the development of academic or public sector catastrophe models, as 121 

private sector companies have access to insurance claims data that are 122 

generally not publicly accessible, as well as combined scientific and engi-123 

neering expertise that is difficult to replicate in the academic space.  On-124 

going work to develop open source or publicly available catastrophe mod-125 

els could help to spread the risk insights that are accessible in the 126 

insurance industry to a broader set of end users in the public and private 127 

sectors.  For example, catastrophe models only capture direct physical 128 

damage to the insurable built environment – they are not yet able to cap-129 

ture broader societal impacts such as transition risk, detailed supply chain 130 

impacts, or climate-driven migration or social upheaval, all valuable po-131 

tential contributions from participants beyond the insurance industry. 132 

For the purposes of this discussion, the risk analysis methodology will fo-133 

cus on North Atlantic hurricane risk, although much of what follows is 134 



5 

 

applicable to other tropical cyclone basins as well.  The hurricane hazards 135 

highlighted are not intended to be comprehensive, but rather representa-136 

tive of how hazards may interact with the built environment. 137 

 138 

Three recommendations for risk modelers 139 

The following sections will break down three key considerations to ad-140 

vance meaningful and actionable climate risk analytics within the frame-141 

work of insurance risk management. 142 

1. Exposure: Explore sensitivity of climate-driven losses to inputs 143 

from the built environment. 144 

2. Hazard: Quantify scientific confidence and impact by subperil. 145 

3. Translating climate data for decision-makers. 146 

Each of these considerations highlights opportunities for leveraging catas-147 

trophe models to capture economic and societal impacts of climate 148 

change on hurricane risk.  However, each recommendation also has space 149 

for further improvement with better tools and advances in the basic sci-150 

ence.  Therefore, each section is followed by a “Research Opportunities” 151 

subheading, showing key data or analytical gaps that are an opportunity 152 

to improve quantification of the societal impacts of hurricanes in a chang-153 

ing climate. 154 

Recommendation 1 – Exposure: Explore sensitivity of climate-155 
driven losses to inputs from the built environment 156 

Climate hazards do not occur in a vacuum - they can only become disas-157 

ters when they intersect with an impacted community.  Catastrophe mod-158 

els are particularly adept at capturing the impact of climate hazards on 159 

the built environment, which may be subject to changes in risk that do 160 

not scale linearly with the change in hazard.  However, this means that as-161 

sessing climate impacts requires stringent data collection processes on 162 

exposure inputs, or the resulting modeled impacts will not be meaningful. 163 
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Modeling water risk in the built environment 164 

Several of the most immediately changing hurricane subperils, such as 165 

storm surge and inland rainfall, are making hurricane damage wetter.  166 

This poses a particular challenge for risk modelers, since water perils re-167 

quire a much finer degree of detail on exposed properties to produce 168 

meaningful views of risk compared with more developed hazards like 169 

wind and earthquake.  Wind risk, for example, is relatively forgiving of mi-170 

nor errors in modeling the location of a building, as the average risk from 171 

wind does not vary particularly dramatically at small spatial scales along 172 

the coast.  Flood risk, however, may vary widely even within a single 173 

building parcel, and minor errors in location can easily cause properties to 174 

be modeled in the middle of retention basins or roadside ditches, leading 175 

to dramatic overestimates in risk.  For this reason, modeling “climate risk” 176 

often requires substantial investments in improved data about exposed 177 

building locations in a book of business, long before examining any 178 

changes in physical hazard.  Advances in geocoding and capturing im-179 

portant building characteristics like basements and building elevation can 180 

dramatically improve the realism of modeling hurricane-driven water risks 181 

like surge and inland rainfall. 182 

Furthermore, at the scale of metropolitan areas, hurricane flood risk may 183 

not be distributed equitably.  Redlining was a historical discriminatory 184 

practice that deemed communities populated by racial and ethnic minori-185 

ties, and particularly Black communities, to be a bad financial risk.  Com-186 

munities that experienced redlining are disproportionately located in ar-187 

eas of higher flood hazard (Katz 2021).  The practice of redlining 188 

systematically reduced property values as well, since it limited access to 189 

mortgages and related financing, limiting the tax base for investments in 190 

flood defenses like stormwater drainage infrastructure.  After a disaster 191 

has occurred, homeowners are more likely to receive post-disaster fund-192 

ing to rebuild, both through federal and insurance assistance - this home-193 

ownership bias exacerbates unequal disaster impacts in communities 194 

with a higher proportion of renters (Fussell 2015).  Climate-related water 195 

risks may only compound this historical inequality, potentially leading to a 196 

pattern of “climate gentrification” where only the wealthy have the re-197 

sources to harden their homes, lobby for defensive infrastructure, and 198 
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rebuild after major disasters.  Investments in capturing socioeconomic 199 

data for use in physical risk models (Tedesco et al. 2021) can help to pre-200 

dict where such impacts are likely, highlighting communities that would 201 

benefit from additional investment in protective measures. 202 

Spatial distribution of hazard vs. built environment 203 

Even in the absence of changes in event frequency, risk and losses may 204 

change if different areas are exposed to hurricane risk in the future.  A 205 

prime example of where this may play out is through poleward migration.  206 

There is at least some suggestion that migration of storms toward higher 207 

latitudes may be occurring in the historical record in some basins (Kossin 208 

et al. 2014), which is most likely to be occurring beyond an extent explain-209 

able by natural variability in the North Pacific basin (Knutson et al. 2019).  210 

This pattern may be driven by a change in tropical cyclone genesis loca-211 

tion (Daloz and Camargo 2018), which could theoretically lead to declines 212 

in risk at very low latitudes.  However, mid-latitude metropolitan areas 213 

may see increases in risk whether poleward migration comes from mi-214 

grating genesis locations or an expansion in the parts of the ocean with 215 

sea surface temperatures warm enough to support tropical cyclones.   216 

Moving stronger storms over regions whose building codes were designed 217 

based on historical wind return periods can increase losses through 218 

higher building vulnerability, independent of any changes in storm fre-219 

quency.  Building codes and enforcement are not standardized and vary 220 

widely from state to state, but in general, more northerly states are less 221 

likely to design for tropical cyclone wind risk.  Even absent these building 222 

code considerations, exposing mid-latitude metropolitan areas like New 223 

York and Boston to hurricane risk, when these events have been histori-224 

cally rare, may substantially change the population that could be exposed 225 

to hurricane risk in the future. 226 

Critical thresholds 227 

Even where hazards are smoothly varying over time, the intersection be-228 

tween hazard and the built environment may lead to sharp discontinuities 229 

in risk.  Hurricane Sandy highlighted the cascading impacts that ensue 230 

when a hazard intersects with critical pieces of infrastructure, as when 231 
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Sandy’s storm surge entered the New York City subway system and took 232 

the storm’s impact from damaging to catastrophic.  Every metropolitan 233 

area has a point when damage becomes massively disruptive - whether it 234 

is public transit like New York, a critical piece of the power grid (also inun-235 

dated in New York during Sandy, causing the blackout in lower Manhat-236 

tan), or the point when a downtown center is inundated.  For coastal cit-237 

ies in particular, storm surge sitting on top of sea level rise brings many of 238 

these pieces of critical infrastructure closer to this range of risk.  Without 239 

explicit defensive measures, cities may find that infrastructure designed 240 

to be defended against a 1 in 100 or 1 in 250 year return period storm 241 

surge may actually be impacted by the 1 in 50 or 1 in 30 year storm surge 242 

in the future.  Different pieces of infrastructure may have different levels 243 

of risk tolerance – for example, a municipality is likely to be more com-244 

fortable with a road being occasionally inundated compared with a nu-245 

clear plant.  However, mapping and quantifying the risk to critical facilities 246 

is a key component of preparing communities for future extreme events. 247 

Exposure research opportunities 248 

1. Publicly available exposure data 249 

The insurance sector has access to a rich resource of data about the built 250 

environment, both through individual portfolios of business that they 251 

write, as well as “industry exposure” datasets produced by catastrophe 252 

modeling companies.  However, this data has some notable limitations.  253 

Most importantly, it is expensive to build and maintain, so it is generally 254 

proprietary and expensive to license.  Detailed data about the built envi-255 

ronment is necessary for quantifying costs of increased hazard, but the 256 

granularity of public datasets is generally not sufficient to capture high 257 

gradient hazards like flood, and it lacks an ability to distinguish critical in-258 

frastructure.  Investments in public data available to the research commu-259 

nity would fill a critical gap in quantifying economic impacts of climate 260 

change. 261 

Defining economic costs of extreme hazards like hurricanes is particularly 262 

critical in a policy environment where decisions about mitigation and ad-263 

aptation pathways are at least partially based on the expected economic 264 

costs of climate change.  Extreme hazards are a key driver of economic 265 
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loss, but they are minimally captured in the economic models widely used 266 

in the financial sector to model transition risk, which could lead to under-267 

estimation of the long-term costs of climate change on society. 268 

2. Tools to capture detailed exposure characteristics 269 

Hurricane water subperils, as well as other high-resolution hazards like in-270 

land flood and wildfire, require highly detailed information about the built 271 

environment to produce meaningful model results.  Investments in re-272 

mote sensing and machine learning to better identify details like building 273 

footprints and first floor elevations are critical to meaningfully incorpo-274 

rate emerging climate hazards into the risk models used throughout the 275 

insurance sector.  This is an active area of private sector investment, but it 276 

is also an area where academic researchers could contribute meaningfully 277 

to managing climate risk. 278 

3. Economic effects of physical risk on exposure values and in-279 

vestments 280 

Forward-looking views of physical risk require projections of future expo-281 

sures, along with the usual forecasts of physical hazards.  However, physi-282 

cal hazards may have impacts on property values, which can complicate 283 

and materially affect the expected cost of extreme events like hurricanes.  284 

Coastal flood is a key example of the complexity of assessing changes in 285 

future economic risks from hurricanes, with knock-on implications for 286 

both catastrophe and transition risk modeling. 287 

Coastal flood risk is not only composed of storm surge from hurricanes.  288 

For a given location, sea level rise manifests first through changes in 289 

coastal flood event frequencies, beginning with extreme hurricane surge 290 

events, and eventually moving through routine high tide flooding to com-291 

plete inundation.  Sunny day or “nuisance” flooding, high-frequency 292 

flooding driven by high tides combined with sea level rise, does not fall 293 

within the traditional purview of hurricane catastrophe models, although 294 

it can be exacerbated by bypassing hurricanes.  However, the mechanism 295 

of stacking high tide events on top of current and future sea level rise sce-296 

narios works much the same way as storm surge in a catastrophe model.  297 

While often treated separately, storm surge and other types of coastal 298 
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flood actually represent a continuum of coastal hazard, which may inter-299 

sect in ways that could drive larger-scale climate risks. 300 

While individual losses are small compared with storm surge, high fre-301 

quency coastal flooding events may have systematic risk potential due to 302 

their impact on property values.  Structures that experience routine 303 

flooding may be harder to sell, and ultimately lose value or grow in value 304 

more slowly than their lower-risk neighbors (Keys and Mulder 2020), as 305 

damages accumulate and insurance premiums rise from repeated claims.  306 

Since property values determine the amount of property taxes collected, 307 

this may limit a critical potential funding source for future coastal flood 308 

defenses.  Coastal states that lack income tax, like Florida and Texas, have 309 

fewer obvious local funding sources if coastal property tax bases were to 310 

be impacted by a local decline in property values.   311 

Property value risk is an area where insurers may be impacted on both 312 

sides of their balance sheet – in physical hazards driven by their portfolios 313 

of insured risks, as well as economic hazards within their investments.  314 

Municipal bonds, investments in the mortgage market, and other invest-315 

ments tied to a clear physical location could potentially see areas of clash, 316 

where a large hurricane could hypothetically trigger losses both from di-317 

rect physical damage, as well as longer-term slowing or reversal of invest-318 

ment returns concentrated in the same location.  While investments are 319 

chosen with a certain level of risk appetite for an economic shock, cli-320 

mate-driven financial risk has a different timeline for recovery than tradi-321 

tional economic shocks – unlike a recession, sea level is not expected to 322 

retreat globally for centuries or more, so some assets may not be recover-323 

able.  However, with a few exceptions like those noted above, invest-324 

ments typically have limited information about the physical locations of 325 

their facilities, a critical data gap for incorporating hazard assessments for 326 

extreme events like hurricanes into an investment portfolio.  327 

Despite its importance for societal impacts of hurricanes, the interaction 328 

between nuisance flooding and storm surges, particularly regarding socio-329 

economic risk, is comparatively understudied.  For example, is a major 330 

storm surge event more likely to cause widespread mortgage defaults if 331 

the community has already been stressed by nuisance floods depressing 332 

property values?  The interaction between high frequency and low 333 
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frequency coastal flood events is also currently not generally incorpo-334 

rated into catastrophe modeling, suggesting a potential avenue for collab-335 

oration between the climate modeling, catastrophe modeling, and eco-336 

nomic literature. 337 

 338 

Recommendation 2 – Hazard: Quantify scientific confidence 339 
and impact by subperil 340 

For a complex hazard like hurricanes, the question, “how does climate 341 

change affect hurricane risk?” is so broad as to be virtually meaningless.  342 

Within the framework of climate modeling, hurricanes are comparatively 343 

small scale and extreme events, so the science remains in flux for some 344 

aspects of the hazard.  However, some characteristics of hurricanes have 345 

seen clear, immediate impacts in the current climate.  Rather than at-346 

tempting to roll hazards with wildly variable levels of uncertainty to-347 

gether, it is useful to break apart hurricanes into their associated subper-348 

ils and apply different risk management strategies based on their 349 

corresponding scientific confidence and materiality of impact. 350 

High-confidence perils, like increases in storm surge inundation, are ex-351 

plicitly included in catastrophe models in the current climate, and could 352 

be added in near-term (5-10 year) time steps that are relevant for under-353 

writing, pricing, and portfolio planning.  For lower-confidence perils, like 354 

hurricane frequency, an exploratory approach that examines how much 355 

the hazard would have to change to affect the business (rather than pro-356 

scribed time-based scenarios) is more useful for planning purposes, and 357 

allows the organization to assess when and if action would be needed. 358 

Water subperils 359 

Storm surge 360 

Storm surge is the clearest and most immediate impact of climate change 361 

on tropical cyclone risk.  While the question of whether the component of 362 

the surge caused by the storm itself is changing remains open (Grinsted et 363 

al. 2012), sea level rise provides a higher platform for every incoming 364 
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storm surge (Knutson et al. 2020), increasing both depth and the inland 365 

extent of the surge inundation footprint.  The impact of sea level rise is 366 

compounded by the locations of major concentrations of exposure, which 367 

are often cities built on deltas that subside naturally, and in some cases 368 

whose subsidence is enhanced by factors like groundwater withdrawals 369 

(Nicholls et al. 2021). 370 

Catastrophe models are built using sea levels that are close to those of 371 

the present day, so this climate-related trend is explicitly included in mod-372 

eled loss results.  However, forward-looking sea level rise scenarios, par-373 

ticularly projecting out into the medium term where portfolio optimiza-374 

tion decisions are made, are in comparatively early stages of 375 

development, and are not consistently included in model results from 376 

many of the largest catastrophe model vendors.   377 

At the time scales that are most important for decision-makers in the in-378 

surance sector (up to 2050 at the latest), uncertainties in sea level rise 379 

even among a wide range of emissions scenarios are comparatively small, 380 

ranging from median [likely] global mean sea level rise by 2046-2065 of 381 

0.24m [0.17-0.32m] in RCP 2.6 to 0.30m [0.22-0.38m] in RCP 8.5 (Inter-382 

governmental Panel on Climate Change 2014).  While projecting global 383 

mean sea level changes down to the local scale required for catastrophe 384 

modeling is more challenging, the emergence of gridded products like 385 

that produced by NOAA in the US (Sweet 2017) makes it possible to pro-386 

duce reasonably localized sea level projections.  Capturing this regional 387 

level of detail is critical for interpreting changes in storm surge risk over 388 

time, as individual cities do not experience global mean sea level change.  389 

For example, portions of the US East Coast are experiencing sea level rise 390 

that is 50% or more above the global mean, predominantly but not exclu-391 

sively driven by post-glacial isostatic rebound (Piecuch et al. 2018). 392 

Catastrophe model results highlight the impact that climate change can 393 

have on tropical cyclone subperils, even within the historical record.  A 394 

study led by Lloyd’s in the aftermath of Hurricane Sandy found that the 395 

amount of sea level rise since 1950 had increased ground up losses by 396 

30% in the New York metropolitan area (Maynard et al. 2014).  Similarly, 397 

this modeling framework can be used to assign economic losses to the an-398 

thropogenic portion of sea level rise from historical storm surge events 399 
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(Strauss et al. 2021).  Increases in loss are not limited to the increase in 400 

storm surge depth; higher storm surges also lead to greater inland extents 401 

of storm surge footprints, with the greatest increase in extent on low, flat 402 

coastlines.  Consequently, loss increases may not be linear, but rather 403 

may have step functions as surge footprints are able to reach major con-404 

centrations of buildings or critical exposure that would have stayed dry 405 

with a lower baseline sea level.  With adjustments for sea level rise, catas-406 

trophe models could be valuable tools to highlight these critical disconti-407 

nuities in loss potential.  408 

 409 

Rainfall-Induced Flooding 410 

Hurricane rainfall is generally expected to intensify with climate change. 411 

The Clausius-Clapeyron equation shows a ~7% increase in the moisture 412 

that the atmosphere could potentially hold with every 1˚C temperature 413 

increase.  Therefore, a warmer atmosphere itself provides a potential 414 

mechanism to enhance hurricane rainfall.  Rainfall increases could also 415 

hypothetically be enhanced by stalling or other dynamical factors, as was 416 

the case for Hurricane Harvey over Houston and Hurricane Florence in the 417 

Carolinas (van Oldenborgh et al. 2017; Emanuel 2017a; Wang et al. 2018).  418 

Rain damage may not necessarily correlate well with wind damage, as 419 

major inland rainfall events have also been driven by tropical storms 420 

(Tropical Storm Allison, 2001 in Houston) and unnamed but near-tropical 421 

circulations (Baton Rouge flooding, 2016).  This effect is enhanced along 422 

parts of the Gulf Coast by the “brown ocean” effect, allowing storms to 423 

maintain their structure, and at times even form, while over land (Ander-424 

sen and Shepherd 2014). 425 

Rainfall impacts may also be enhanced by their intersection with the built 426 

environment.  For example, Hurricane Harvey produced the greatest 427 

amount of rainfall for a US tropical cyclone in records going back to the 428 

1880s, with seven rainfall stations breaking the prior record held by Hurri-429 

cane Hiki in Hawaii in 1950 (Blake and Zelinsky 2018).  This could be 430 

thought of as particularly unlucky, to have such a historic event happen 431 

right over Houston, the fifth-largest metropolitan area in the United 432 

States (United States Census Bureau 2021).  Alternatively, it could be 433 
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interpreted that the record US tropical cyclone rainfall event and dra-434 

matic flood impacts happened in Harvey specifically because it happened 435 

to occur over such a large metropolitan area.   436 

A variety of methods have been proposed to enhance rainfall over metro-437 

politan areas, including surface roughness provided by buildings (Zhang et 438 

al. 2018) and local aerosol pollution (Pan et al. 2020).  Similarly, impervi-439 

ous surfaces like buildings, roads, and parking lots can enhance flood risk 440 

by limiting avenues for rainfall to drain into the ground, forcing it to be-441 

have as overland flow instead and compounding the impact of increased 442 

rainfall on flood behavior (Sebastian et al. 2019). 443 

As this Houston example shows, cities are in the position of being 444 

uniquely exposed to enhanced hurricane rainfall risk.  Increased rainfall 445 

inputs are expected from warmer air and sea surface temperatures, with 446 

potential further enhancements specifically in tropical systems.  The pres-447 

ence of a city may itself enhance local precipitation.  And impervious 448 

cover prevents rainwater from absorbing into the ground, leading to over-449 

land flow into rivers and other drainage networks.  All of this is happening 450 

where populations exposed to hurricane risk are the most concentrated.  451 

This puts cities at an uncomfortable confluence of compounding climate 452 

and exposure-driven hurricane flood hazard, so they would greatly bene-453 

fit from more sophisticated risk modeling. 454 

Although historically not captured explicitly in catastrophe models in the 455 

US, hurricane rainfall is a subperil that gained particular interest in the af-456 

termath of Hurricane Harvey, and is now more broadly incorporated into 457 

hazard modeling.  However, given the complexity of a peril that is chang-458 

ing via climate-driven hazard impacts, land use impacts, and whose loss 459 

history reflects a blend of public sector (mostly residential flood losses, in 460 

the National Flood Insurance Program) and private sector (larger com-461 

mercial flood losses), this is an emerging hazard in the catastrophe model-462 

ing community that will likely continue to evolve as climate impacts and 463 

attribution continue to solidify. 464 

 465 
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Compound flood 466 

Many major coastal metropolitan areas are located along estuaries or del-467 

tas that are susceptible to both riverine flood and coastal flood risk.  A 468 

tropical cyclone can drive both risks occurring at the same time, with 469 

storm surge running up waterways and preventing river waters from 470 

draining as quickly, paired with intense inland rainfall enhancing river 471 

flood at the same time.  Therefore, although the return period of a flood 472 

height can be calculated independently for coastal and river floods, best 473 

practice would account for the strong correlation between these perils in 474 

coastal areas that are exposed to storm surges.  Furthermore, compound-475 

ing riverine and coastal flood events will be exacerbated by sea level rise 476 

(Moftakhari et al. 2017).  The science of compound hazards is compara-477 

tively immature, and it presents an opportunity to quantify risk in areas 478 

where human exposure and impacts are particularly high.  Capturing this 479 

correlated hazard footprint is an area that is under development at many 480 

catastrophe modeling vendors. 481 

 482 

Wind subperil 483 

Wind frequency 484 

Changes in hurricane frequency and intensity due to climate change are a 485 

key question posed by regulatory bodies, which partially reflects the fact 486 

that this is a problem which catastrophe models are ideally suited to ad-487 

dress.  The hazard portion of a catastrophe model is a database of hypo-488 

thetical events and their associated frequencies, which may be constant 489 

or vary by event, to produce a hazard distribution that matches the his-490 

torical record.  Manually adjusting the frequencies of these events, or res-491 

imulating event catalogs by resampling, is a comparatively straightfor-492 

ward exercise that allows for exploring a range of frequency and intensity 493 

change scenarios. 494 

Unfortunately, frequency is one of the areas of hurricane science where 495 

immediate climate-related impacts are least clear.  Even at a global scale, 496 

there is credible disagreement even on the direction of potential 497 



16  

 

frequency changes, much less the magnitude of those changes (Knutson 498 

et al. 2020; Lee et al. 2020).  In the insurance industry, tropical cyclone 499 

risk is not managed at the global scale, but rather based on landfall fre-500 

quencies at the country scale.  In the case of the US, landfall frequencies 501 

are further downscaled to a regional scale, with loss tolerances designed 502 

to maintain capital adequacy around specific regions like the US Gulf or 503 

Northeast.  Projecting future changes in frequency of hurricane landfalls 504 

at the scale of a few states at sub-decadal time scales lies well beyond the 505 

current state of climate science. 506 

Wind intensity 507 

Much like frequency changes, catastrophe models are suitable tools to as-508 

sess the impacts in changes in intensity.  Across a large stochastic catalog 509 

of hypothetical events, intensity changes can be alternatively interpreted 510 

as a change in frequency.  For example, a 5% increase in the intensity of a 511 

100mph hurricane could instead be thought of as an increase in the fre-512 

quency of 105mph events, shifting the entire probability distribution of 513 

hurricane intensities towards stronger events.   514 

Changes in intensity are less useful without an understanding of how that 515 

change is distributed across the spectrum of storms.  Intensity changes 516 

are often reported as a mean change across all storms, either globally or 517 

within individual basins (Knutson et al. 2020).  But an increase in intensity 518 

concentrated in low category storms would have a very different loss dis-519 

tribution than a similar change among stronger storms - building codes 520 

along the coast typically are designed to protect at least against weaker 521 

storms, but lower category storms are much more frequent than more in-522 

tense ones.  Catastrophe models could assess competing influences on 523 

loss with a change in intensity distribution, but a flat change across all 524 

storms may be less applicable to risk management. 525 

Wind risk management strategies 526 

The limited forward-looking skill in hurricane frequency projections and 527 

comparative lack of detail in intensity projections pose a challenge to risk 528 

modelers.  Even when the scientific community can make reasonable fre-529 

quency projections for global tropical cyclone activity, that skill typically 530 
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declines when extrapolated to a single basin.  And importantly, basin ac-531 

tivity does not cause property damage – landfall statistics are the ultimate 532 

measure of real wind risk to an insured portfolio.  However, these limita-533 

tions do not mean that insurers lack tools to manage future hurricane 534 

wind perils.   535 

A key consideration for insurers involves assessing which parts of the his-536 

torical record should be included when determining current frequency 537 

distributions.  In the North Atlantic hurricane basin, much of this debate 538 

centers on the application of a correction to account for Atlantic multide-539 

cadal variability, a pattern which strongly influences hurricane activity via 540 

increased sea surface temperatures, decreased sea level pressure, and re-541 

duced vertical wind shear in the tropical Atlantic (Goldenberg et al. 2001), 542 

and which is correlated with greatly increased frequency of major hurri-543 

canes (Klotzbach et al. 2015), but may not actually represent a physical 544 

oscillation with any predictive skill (Waite et al. 2020; Mann et al. 2021).  545 

Catastrophe models have the option to represent hurricane frequencies 546 

associated with the positive phase of the AMO, such as by producing me-547 

dium-term forecasts or conditioning frequencies on observational periods 548 

in the same AMO phase rather than the full historical record, but usage of 549 

these views would be complicated if the Atlantic multidecadal variability 550 

lacks forward-looking skill.   551 

Accounting for the degree of historical human influence on hurricane fre-552 

quency is controversial as well.  Sea surface temperatures are unlikely to 553 

return to their preindustrial state any time in the near future, but does re-554 

moving older storms limit the view of internal variability?  In the Atlantic, 555 

the 1960s-1980s experienced a low number of hurricanes, but was this 556 

driven by anthropogenic aerosol pollution (Murakami et al. 2020) that is 557 

not expected to return?  Even if reasonable projections of basin-scale 558 

event frequency can be made, can we disentangle the influence of sub-559 

basin processes like wind shear patterns, which may materially modify 560 

landfalls (Kossin 2017) in ways that may not stay consistent with future 561 

climate change (Ting et al. 2019)?  Quantifying the climate change im-562 

pacts that have already occurred through the last century is key for un-563 

derstanding what baseline to use for current and future wind risk. 564 
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Although a consensus on future changes in frequency is lacking, modeling 565 

is more consistent in predictions for the most intense storms - generally 566 

producing an increase in the proportion of the most intense storms (Cate-567 

gory 4-5 storms or Category 3-5, depending on the study), with an in-568 

crease in absolute number in all but those models where an overwhelm-569 

ing decline in total storm number overwhelms the increasing proportion 570 

of stronger storms (Knutson et al. 2020).  Furthermore, there is evidence 571 

that this trend is appearing even in recent historical records in the Atlan-572 

tic (Kossin et al. 2020), which may reflect a blend of natural and climate 573 

variability, but places the change within the time frame that is most rele-574 

vant for insurance analytics. 575 

While major hurricanes make up a small fraction of total storms, they 576 

contribute disproportionately to damage and loss.  Estimates that ac-577 

count for inflation, population, and growth of wealth arrive at roughly 578 

80% of all US hurricane losses coming from storms of Category 3 or 579 

above, even though they only account for about a third of US landfalls 580 

(much of the remainder comes from surge-heavy storms like Hurricanes 581 

Sandy and Ike).  Similarly, the most intense Category 4 and above storms, 582 

which produce ~10% of US landfalls, are responsible for roughly half of all 583 

US hurricane losses (Weinkle et al. 2018).  Furthermore, as the US popula-584 

tion continues to concentrate in major coastal cities that are exposed to 585 

wind risk, losses will be compounded irrespective of any underlying cli-586 

mate trends.  For insurers concerned about capital adequacy and near-587 

term climate impacts, it is clear that climate sensitivity testing should fo-588 

cus on changes in high category hurricanes, where the science is compar-589 

atively clearer, and where changes in frequency can drive the largest po-590 

tential impacts in losses. 591 

The impact of large losses from major hurricanes on the US property in-592 

surance market is clearly visible in the Rate on Line index maintained by 593 

the broker Guy Carpenter (Guy Carpenter 2020).  After a substantial spike 594 

in market prices for US property risk following the extremely active 2004-595 

05 Atlantic hurricane seasons, there was a long decline that coincided 596 

with the US major hurricane drought (Hall and Hereid 2015).  Market 597 

prices did not consistently reverse their trajectory until after the US major 598 

hurricane drought was broken in the 2017 Atlantic hurricane season.  599 
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These market fluctuations likely have a variety of causes, including a re-600 

cency bias on the part of decision-makers.  An increase in available capital 601 

competing for premium dollars, due to a lack of events requiring claims 602 

payments, was particularly important in the reinsurance and insurance-603 

linked securities markets.  There are disputes about how to define a ma-604 

jor hurricane drought (Hart et al. 2016), and pressure may be a more con-605 

sistent representation of a storm’s damage potential than wind speed 606 

(Klotzbach et al. 2020), but however a major storm is defined, the com-607 

parative lull of the most intense US hurricane wind events clearly was as-608 

sociated with a long-term fluctuation in the US property insurance mar-609 

ket.  This substantial market impact was driven by a gap in intense 610 

hurricanes that likely occurred by chance, but changes in the background 611 

frequency of major hurricanes could change the odds that such a drought 612 

could recur in the future. 613 

Changes in hurricane wind risk may threaten insurers from an operational 614 

and claims handling perspective as well.  Rapid intensification is a particu-615 

lar threat, since it makes hurricane forecasting unusually difficult, is a key 616 

driver of major hurricanes (Lee et al. 2016), and may worsen with future 617 

climate change (Emanuel 2017b, Bhatia et al. 2019).  From the perspec-618 

tive of a building, it doesn’t matter how quickly a hurricane intensifies – 619 

damage is determined by the intensity of the local wind field.  However, 620 

major insurers use track and intensity forecasts to position teams of 621 

claims adjusters in advance of a storm, and may bring in external contrac-622 

tors for repairs if the local labor market is unlikely to be able to be suffi-623 

cient to support post-event rebuilding.  Lack of predictive skill in rapid in-624 

tensification may cause claims teams to underestimate the needed 625 

response, slowing claims handling or recovery due to underestimated 626 

pre-deployment.  If the events that cause the most economic damage are 627 

the least predictable, that should be reflected in how insurers prepare to 628 

respond immediately before and after a hurricane makes landfall. 629 

Hazard research opportunities 630 

1. Localizing water impacts 631 

Risk managers are charged with managing water risks at the spatial scale 632 

of individual locations.  This means that spatially-averaged climate 633 
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impacts on water hazards, like global sea level rise on storm surges, are 634 

less useful than detailed spatial projections.  Gridded sea level products 635 

are starting to fill that gap.  However, adding storm surge on top should 636 

ideally not behave like a bathtub, but rather reflect the changing hydrody-637 

namics of surge with a new baseline, to better capture inland surge inun-638 

dation. 639 

As noted in the rainfall section, there is also some evidence for important 640 

impacts on hazard related to the presence of the built environment, such 641 

as extent of impervious cover.  Cities pose the greatest potential for risk 642 

accumulation in a single event, so capturing these local-scale impacts on 643 

hazard is important to correctly represent risk where the exposed popula-644 

tion is the largest. 645 

2. Deeper understanding of tail wind impacts 646 

As noted above, the highest intensity storms drive the overwhelming ma-647 

jority of economic losses from hurricanes in the US.  However, the most 648 

extreme storms are also the most difficult to represent in climate models, 649 

making this a critical research target to quantify the most societally im-650 

pactful risk. 651 

3. Thinking beyond frequency 652 

A variety of emerging research topics on wind risk have been proposed 653 

for hurricanes, including changes in rapid intensification (Emanuel 2017b), 654 

inland decay rates (Li and Chakraborty 2020), and track changes (Shuai 655 

and Ralf 2021).  Many of these risks would have material impacts on 656 

property and life and safety risk without touching the frequency or sever-657 

ity of overall hurricane counts.  Splitting hurricane risk by subperil high-658 

lights these emerging hurricane risk management topics, and although 659 

confidence is currently low, further research could help to explore ways 660 

that hurricanes may produce societal impacts in a more sophisticated way 661 

than simply checking if there will be more hurricanes or fewer.  662 

4. Explicitly modeling impacts of green infrastructure on hazard 663 

Catastrophe models have opportunities for enhancement that could 664 

make them more effective partners in climate adaptation.  For example, 665 
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interest has grown in recent years in “green infrastructure” to build 666 

coastal flood defenses against storm surge that utilize ecosystem services 667 

from mangroves, marshes, oyster banks, and the like to minimize surge 668 

damage.  There is some evidence that these ecosystem services can pro-669 

duce material reductions in storm surge damage and losses, at times with 670 

clearly quantified economic benefits defined in the scientific literature 671 

(Narayan et al. 2017; del Valle et al. 2020; Reguero et al. 2021), but there 672 

are opportunities to further explore cost-benefit tradeoffs between mo-673 

bile coastal wetlands compared with hard infrastructure like seawalls, 674 

which catastrophe models could be well-suited to address.   675 

Catastrophe models in their present state are designed to reflect a snap-676 

shot of risk at a single point in time, so leveraging the time-varying devel-677 

opment of coastal flood risk presents an opportunity to blend the 678 

strengths of both climate and catastrophe models.  By quantifying ex-679 

pected annual losses associated with storm surges under different de-680 

fense assumptions, a catastrophe model coupled with a probability distri-681 

bution of sea level rise out of a climate model could put an explicit price 682 

tag on the choice of an effective but inflexible piece of gray infrastructure 683 

like a seawall, compared with a coastal ecosystem that perhaps does not 684 

stop every surge, but can dynamically respond to changing sea levels.  685 

Without such tools, hard coastal defense projects like seawalls that make 686 

sense with current sea levels cannot be sufficiently compared with mobile 687 

ecosystems like marshes, which may migrate inland without human inter-688 

vention assuming no inland obstructions. 689 

Similarly, a common way that cities attempt to reduce the impacts of in-690 

creased extreme rainfall (from hurricanes or otherwise) is via green 691 

stormwater management – building in green spaces, rain gardens, and 692 

other strategies to reduce impervious surfaces, absorb excess rainfall, and 693 

minimize flood peaks.  Despite clear benefits to flood risk, with knock-on 694 

improvements in groundwater storage and other ecosystem services (Pru-695 

dencio and Null 2018), catastrophe models generally lack the ability to ex-696 

plicitly give credit for the risk reduction produced by these activities, 697 

which could perversely disincentivize this key adaptation strategy, since 698 

local spending on risk reduction would not lead to a corresponding reduc-699 

tion in modeled loss impacts. 700 



22  

 

Recommendation 3 – Translating climate data for decision-701 
makers 702 

Time horizon 703 

There has been a longstanding disconnect between the timing required to 704 

make decisions in a business environment in comparison with the time 705 

frames that generally receive the most attention in the scientific litera-706 

ture.  The scientific community often focuses on the ~2050-2100 time 707 

frame, where climate impacts are more likely to have emerged from natu-708 

ral variability.  At this time scale, anthropogenic forcing is large relative to 709 

natural variability, making trends and impacts on extreme events clearer.  710 

Conversely, the insurance business wants to know what to expect for the 711 

upcoming year, to correspond with the length of a standard insurance 712 

contract, up to perhaps a decade in the future, for its underwriting and 713 

portfolio management strategy.  While insurers may do qualitative hori-714 

zon-scanning exercises beyond this time frame to consider broader prod-715 

uct strategy and emerging risks, quantitative risk assessment beyond the 716 

portfolio steering time frame have limited practical applicability in the in-717 

surance decision-making framework.  This time frame is heavily impacted 718 

by interannual and decadal scale variability, where predictive skill in cli-719 

mate models is low, so at first glance it is difficult to give clear guidance.  720 

Similarly, seasonal and sub-seasonal forecasting is available that relies 721 

heavily on climate features like El Niño/La Niña, but for contracts that are 722 

written to cover an entire year, the relative benefit to insurance compa-723 

nies of adjusting their risk appetite to match a forecast at the current 724 

level of forecast skill is marginal (Emanuel et al. 2012). 725 

However, this view does not consider that the models used to manage 726 

risk are built using historical data.  While recent events are included in 727 

regular catastrophe model updates, these models also include events 728 

from past decades that occurred in a climate that will not return within 729 

the next century.  A key potential space to incorporate climate risk comes 730 

from understanding how much change in hazard has already occurred rel-731 

ative to a historical dataset that may span up to the last 50-100 years.  732 

Trends in extreme hazards like hurricanes represent a complex mix of in-733 

ternal natural variability, potentially short-term external forcings like aer-734 

osol pollution, and long-term anthropogenic climate change, so 735 
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disentangling the influence of each for various hurricane subperils would 736 

help risk managers to account for trends in historical data while preserv-737 

ing as much of the distribution of natural variability as possible.  For ex-738 

ample, catastrophe models are not limited to only using storm surges 739 

within the last few years, even though sea levels have risen throughout 740 

the full historical record.  By extracting the component of historical storm 741 

tides that came from wind only, the full distribution of historical surge 742 

events is preserved, and then added on top of current sea levels.  This ex-743 

plicitly accounts for known climate trends up to present while still lever-744 

aging the full variability present in over a century of historical data.  In this 745 

sense, attribution exercises that quantify how much climate change has 746 

impacted individual recent storms or trends in events is highly valuable 747 

within the insurance sector, since they can then be explicitly modeled 748 

while preserving a historical statistical distribution that better captures 749 

decadal-scale natural climate variability. 750 

Selecting an appropriate time horizon for risk assessment has also 751 

emerged as a concern for climate risk disclosure in the regulatory space.  752 

Different parts of the public and private sector have different risk toler-753 

ances and planning horizons.  Insurers tend to focus on immediate and 754 

short-term quantitative climate impacts, because their risk is driven by 755 

extreme events like hurricanes, more than changes in mean conditions 756 

that are better understood at longer time periods.  Infrastructure plan-757 

ners may also need to think about extreme events, such as when design-758 

ing a seawall for future storm surges, but the design lifetime of a struc-759 

ture is much longer than an annual insurance contract, which can be 760 

adjusted dynamically as new climate risks emerge.  Even within infrastruc-761 

ture planning, a nuclear power plant likely has a lower tolerance for a fail-762 

ure in hazard defenses than a local street.  A risk management framework 763 

that includes (1) critically assessing the time scale at which material cli-764 

mate risks emerge, (2) cumulative tolerance for negative outcomes, and 765 

(3) the ability to adjust as the climate changes is a useful thought exercise 766 

for determining climate risk tolerance both within and outside of the in-767 

surance sector.   768 

Within insurance, the short-term, quantitative assessment of climate risk 769 

can be supplemented by longer term, qualitative analysis of emerging 770 
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risks and mitigation that are poorly captured in current tools.  For exam-771 

ple, it is likely that building codes will continue to improve in the face of 772 

more destructive hurricanes, but predicting the timing and magnitude of 773 

these reductions in building vulnerability is not currently possible, lower-774 

ing the skill of long-term projections in hurricane economic losses.  These 775 

differing levels of skill at different time horizons must also be clearly artic-776 

ulated in the regulatory space, to avoid counterproductive or maladaptive 777 

decision-making driven by quantitative modeling at longer time horizons 778 

that exceed scientific knowledge. 779 

 780 

Risk metrics 781 

Climate risk has often been treated as a type of emerging risk within the 782 

insurance sector, with a focus on exploratory scenarios that are designed 783 

to highlight potential impacts across different parts of the business (un-784 

derwriting, investments, regulatory risk, etc.).  While such scenarios are 785 

valuable in assessing broad-scale, interconnected risks at longer time 786 

scales, they have limited utility in active decision-making.  A hypothetical 787 

scenario with a 50% increase in major hurricanes may appear alarming to 788 

a risk manager, but without a clear and short-term time frame for when 789 

such a change could be expected, it is difficult to justify making immedi-790 

ate adjustments to a portfolio of risks.   791 

More valuable information from a risk management perspective comes 792 

when climate risk is translated to use the same risk metrics that are used 793 

in portfolio steering.  This “normative approach” designs climate sensitiv-794 

ity tests around common business goals like profitability or maintaining 795 

sufficient capital (Rye et al. 2021).  Rather than framing climate testing as 796 

an assessment of business impacts for a given amount of climate change, 797 

this approach allows risk managers to the question around, and instead 798 

run negative stress tests to determine what level of climate impact would 799 

be sufficient to affect the risk appetite of the business.   800 

The insurance industry uses a wide range of metrics to plan for risk appe-801 

tite, but some of the most common are tail risk metrics, expected losses, 802 

historical events, and extreme disaster scenarios (Rye et al. 2021).  Tail 803 
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metrics might include probable maximum loss (PML), a representative 804 

large loss at a low expected frequency such as a 100 year or 250 year re-805 

turn period, or tail value at risk (TVaR), the average of all losses above a 806 

given return period.  In the insurance industry, tail metrics are often used 807 

to assess capital sufficiency, to ensure that enough reserves are held to 808 

pay claims after large events, and they are key drivers of an organization’s 809 

risk tolerance.  Expected loss, or average annual loss (AAL), is the amount 810 

of loss that occurs each year on average over a long period of time, which 811 

insurers must cover with premium revenue to maintain long-term profita-812 

bility.  Historical events and extreme disaster scenarios both represent 813 

known loss values, which can be used as standalone scenarios, or compa-814 

nies can use frequency to assess risk tolerance - for example, how often 815 

the company could sustain a Hurricane Andrew-level loss, or a Category 3 816 

hurricane in New York City. 817 

The value of a climate management approach driven by traditional risk 818 

metrics is that it drives climate risk into the language used by risk manag-819 

ers across the insurance industry.  Climate science is no longer limited to 820 

the domain of scientific technical experts.  As climate impacts move fur-821 

ther into the broader society, the role of translation - tracking and under-822 

standing the rapidly evolving scientific literature, contextualizing the level 823 

of uncertainty, and turning climate hazards into decision-relevant metrics 824 

- will spread further into more climate-affected industries.  Insurance of-825 

fers an opportunity to set a clear example for how to turn science into de-826 

cision-relevant data for practitioners throughout the economy. 827 

Translating impacts research opportunities 828 

1. Hazard assessment at a wider range of time horizons 829 

Decision-makers on the ground who will be directly impacted by climate 830 

change, be it insurance companies, city planners, commercial risk manag-831 

ers, or homeowners taking out a mortgage, do not have the luxury of 832 

waiting until 2100, when climate forcings are large enough to see clear 833 

signals emerge far beyond natural variability.  Particularly for rare events 834 

like hurricanes, even large trends can take decades to emerge from his-835 

torical records that feature substantial multidecadal variability, as has 836 
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been the case in the literature looking at historical trends in major hurri-837 

canes (Vecchi et al. 2021). 838 

Therefore, the end-users of hurricane climate information would greatly 839 

benefit from added research activity in the messy present.  This is not a 840 

call for seasonal or decadal forecasting, per se, but rather a more robust 841 

quantification of how much change seen to date is driven by anthropo-842 

genic forcing, compared with how much can be confidently attributed to 843 

natural variability. 844 

2. Engagement with end-users on time horizons and metrics 845 

This discussion highlights key time horizons and metrics that are widely 846 

used in the insurance sector, but other climate data end-users are likely 847 

to have different needs.  Infrastructure or city planners may want to look 848 

50-75 years in the future, and a mortgage holder may want to understand 849 

their cumulative flood risk over the next 30 years.  The work of engaging 850 

with climate data services end-users is slow and has struggled to gain pri-851 

ority from an incentives standpoint (funding, advancing toward tenure, 852 

etc.).  Enhanced interaction with social scientists may help improve com-853 

munication and co-development of climate analytics between the aca-854 

demic, public, and private sectors (Findlater et al. 2021). 855 

 856 

Conclusion 857 

In this article, I have presented three recommendations for how to lever-858 

age the capabilities of catastrophe risk management for dealing with cli-859 

mate change impacts on hurricane risk: 860 

1. Risk modelers need to bring more data about the built environ-861 

ment to the table to meaningfully model emerging climate risks, 862 

particularly for water subperils like storm surge and inland rainfall.  863 

The substantial gaps in capturing the built environment in the cli-864 

mate modeling space shines a bright light on one of the most im-865 

portant contributions that catastrophe models could make to cap-866 

turing future societal impacts of climate-driven hurricane risk. 867 

 868 
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2. The unbundling of hurricane hazards into subperils that can be as-869 

sessed for relative confidence in their intersection with broader cli-870 

mate trends offers a model that could be widely applied to other 871 

emerging climate hazards, like flood and wildfire risk.  Where cli-872 

mate hazard confidence is higher, such as sea level rise, the near-873 

term impacts on hurricane subperils like storm surge are clear 874 

enough that further dissecting of uncertainty will not fundamen-875 

tally alter what is now a risk management and policy problem (So-876 

bel 2021).  However, lower confidence but high severity impacts 877 

like changes in hurricane frequency can be explored through sensi-878 

tivity testing, and prioritized by their downstream societal and eco-879 

nomic impacts. 880 

 881 

3. Finally, incorporating climate science into catastrophe modeling is 882 

a clear case study highlighting the value of “climate translators” in 883 

the private sector.  Calls for climate risk disclosure have leap-884 

frogged the abilities of climate models (Fiedler et al. 2021), but 885 

that does not mean that climate models have nothing to offer the 886 

risk management community.  Instead, emerging climate risks in 887 

hurricane risk management will require both climate scientists and 888 

catastrophe modelers to better understand the strengths and limi-889 

tations of each other’s data and toolkits.  Translating climate sci-890 

ence into actionable information for end-users is critical across the 891 

public and private sectors to help society adapt to the inevitable 892 

climate challenges to come. 893 

The entire economy will have to grapple with the ongoing impacts of 894 

changes in extreme events like hurricanes.  Insurance risk managers can 895 

leverage their decades of experience in working with models designed to 896 

quantify society’s most extreme natural hazards, which will bring valuable 897 

leadership to the private sector response to climate change.  The re-898 

sources and expertise in the catastrophe risk management community 899 

are a key investment toward greater societal resilience in the face of cli-900 

mate change. 901 

 902 
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