C-Mixup: Improving Generalization in Regression

Huaxiu Yao*1, Yiping Wang*2, Linjun Zhang3, James Zou1, Chelsea Finn1 ¹Stanford University, ²Zhejiang University, ³Rutgers University

tl;dr: a simple interpolation-based method (C-Mixup) to improve generalization on regression tasks by interpolating examples with closer labels

Background

Mixup in Deep Learning

A learning model

$$\mathcal{D}_{tr} = \{x_i, y_i\}_{i=1}^N \to \text{Classifier},$$

mixup_[1]

$$\widetilde{\mathcal{D}}_{tr} = \{\widetilde{x}_i, \widetilde{y}_i\}_{i=1}^N \to \text{Classifier,}$$

where

Why mixup may Fail in Regression?

Directly applying mixup in Regression may produce arbitrary labels

Goal: building interpolation-based models to improve the generalization in regression

C-Mixup: Mixup for Regression

Key idea: interpolating examples with similar labels

Changing the sampling probability of mixing pairs

$$P((x_i, y_j)|(x_i, y_j)) \propto \exp(-\frac{d(i, j)}{2\sigma^2})$$

d: distance between examples i and j

Similar examples

Higher probability to be mixed

Natural way: compute the distance using the input feature x

$$d(i,j) = d(x_i, x_i)$$

Drawbacks:

- Lacking good distance metrics to capture structured feature information
- Distance between features can be easily influenced by feature noise

C-Mixup

Examples with closer labels \implies Higher probability to be mixed

$$d(i,j) = d(y_i, y_j)$$

- + Benefit both in-distribution and out-of-distribution generalization
- + Calculating label distance is computationally efficient

Experiments

In-distribution Results

	Tabular				Time-series				Video	
-									↑	
	Airfoil		NO2		Exchange-Rate		Electricity		Echo	
	RMSE	MAPE	RMSE	MAPE	RMSE	MAPE	RMSE	MAPE	RMSE	MAPE
ERM	2.901	1.753%	0.537	13.615%	0.0236	2.423%	0.0581	13.861%	5.402	8.700%
mixup	3.730	2.327%	0.528	13.534%	0.0239	2.441%	0.0585	14.306%	5.393	8.838%
Mani mixup [2]	3.063	1.842%	0.522	13.382%	0.0242	2.475%	0.0583	14.556%	5.482	8.955%
k-Mixup	2.938	1.769%	0.519	13.173%	0.0236	2.403%	0.0575	14.134%	5.518	9.206%
Local Mixup	3.703	2.290%	0.517	13.202%	0.0236	2.341%	0.0582	14.245%	5.652	9.313%
MixRL	3.614	2.163%	0.527	13.298%	0.0238	2.397%	0.0585	14.417%	5.618	9.165%
C-Mixup (Ours)	2.717	1.610%	0.509	12.998%	0.0203	2.041%	0.0570	13.372%	5.177	8.435%

Out-of-Distribution Results

Subpopulation shift: mitigate spurious correlation **RCF-MNIST**

0.146

Image

Domain shift: generalize to new domains PovertyMap [3]

0.146 | 5.201 | 7.362 | 0.498 | 0.458

Drug

Tabular

· ·								1	
	Sub. Shift		Domain Shift						
	RCF-MNIST	PovertyMap (R)		Crime (RMSE)		SkillCraft (RMSE)		DTI (R)	
	Avg. (RMSE) \downarrow	Avg. ↑	Worst ↑	Avg. ↓	Worst ↓	Avg. ↓	Worst ↓	Avg. ↑	Worst ↑
ERM	0.162	0.80	0.50	0.134	0.173	5.887	10.182	0.464	0.429
IRM	0.153	0.77	0.43	0.127	0.155	5.937	7.849	0.478	0.432
IB-IRM	0.167	0.78	0.40	0.127	0.153	6.055	7.650	0.479	0.435
V-REx	0.154	0.83	0.48	0.129	0.157	6.059	7.444	0.485	0.435
CORAL	0.163	0.78	0.44	0.133	0.166	6.353	8.272	0.483	0.432
GroupDRO	0.232	0.75	0.39	0.138	0.168	6.155	8.131	0.442	0.407
Fish	0.263	0.80	0.30	0.128	0.152	6.356	8.676	0.470	0.443
mixup	0.176	0.81	0.46	0.128	0.154	<u>5.764</u>	9.206	0.465	0.437

0.53

Analysis

C-Mixup (Ours)

I. Different distance metrics

II. Scalability: batch-wise C-Mixup

Apply C-Mixup on every batch

0.123

	Dataset	Airfoil	NO2	Exchange-Rate	Electricity
RMSE↓	C-Mixup-batch C-Mixup	$\begin{array}{c} 2.792 \pm 0.135 \\ 2.717 \pm 0.067 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{vmatrix} 0.0205 \pm 0.0017 \\ 0.0203 \pm 0.0011 \end{vmatrix}$	0.0576 ± 0.000 0.0570 ± 0.000
MAPE↓	C-Mixup-batch C-Mixup	$ \begin{vmatrix} 1.616 \pm 0.053\% \\ 1.610 \pm 0.085\% \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ig egin{array}{l} 2.064 \pm 0.218\% \ 2.041 \pm 0.134\% \ \end{matrix}$	13.697 ± 0.1559 13.372 ± 0.1069

References

[1] Zhang, Hongyi, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. "mixup: Beyond empirical risk minimization." arXiv preprint arXiv:1710.09412 (2017).

[3] Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu et al. "Wilds: A benchmark of in-the-wild distribution shifts." ICML 2021.

