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Abstract

In many auction settings the auctioneer must disclose the identity of the winner

and the price he pays. We characterize the auction that minimizes the winner’s privacy

loss among those that maximize total surplus or the seller’s revenue, and are strategy-

proof. Privacy loss is measured with respect to what an outside observer learns from

the disclosed price, and is quantified by the mutual information between the price and

the winner’s willingness to pay. When only interim individual-rationality is required,

the most privacy preserving auction involves stochastic ex-post payments. Under ex-

post individual rationality, it is the second-price auction with deterministic payments.
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1 Introduction

In many auction markets, it is common practice for the auctioneer to disclose the identity

of the winning bidder and the price he paid. For instance, this transparency is prevalent

in many public procurement auctions worldwide. In the U.S., cities such as New York,

Chicago, and Philadelphia make the contract amount and winning bidder publicly acces-

sible.1 Likewise, the U.S. Department of the Treasury publishes the names of winners and

the sale prices for auctions of seized property.2 Another example is that of prominent auc-

tion houses, which have built their reputation on their capacity to secure high sale prices,

and also frequently disseminate the results of their auctions. While some may not reveal

the identity of the winner, this information often finds its way into the media.3,4

This disclosure of information may raise concerns for potential bidders. For instance, a

bidder may fear that the disseminated information could potentially be leveraged against

him in subsequent auctions. Additionally, a bidder who wins a contract through a procure-

ment auction will often need to negotiate with subcontractors. Knowledge of his true value

for winning the contract may undermine his bargaining position in these negotiations.

Other buyers may be concerned that winning an auction and paying either an excessively

high or low price could expose them to criticism from third parties (e.g. managers, clients,

or the general public).

This leads to the question: Given the necessity of disclosing the winner’s identity and

payment (e.g., due to regulatory requirements or as an anti-corruption measure), which

type of auction minimizes the winner’s privacy loss while still accomplishing the auction-

eer’s primary objective, which can be either efficiency or revenue maximization? In this

paper, we take a first step towards addressing this question.

Measuring privacy loss. To investigate the question, we employ the Bayesian approach

to measuring privacy loss, as proposed in Eilat, Eliaz and Mu (2021). The cornerstone of

this approach is the idea that privacy loss is a relative notion: How much new information

is effectively learned about the winner’s willingness to pay (“type”) from observing his

payment should be measured relative to what was previously known about the winner.

In the context of this paper, consider an “outsider” who observes the winner’s identity

1See open-contracting.org for a list of worldwide databases of public procurement auction results.
2See www.treasury.gov/auctions/treasury/rp/bidresults.shtml.
3See, e.g., thecollector.com and artnews.com.
4The disclosure of the winner’s identity and payment is often justified as a compromise between full

transparency (i.e., disclosing all participants and their bids) and complete opacity in an auction. Such a
compromise is warranted because full transparency may facilitate collusion among bidders, while complete
opacity may create opportunities for corruption.
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and payment. In accordance with the Bayesian tradition of mechanism design, the out-

sider is assumed to have a prior belief regarding the winner’s type. When she observes the

actual payment, the outsider updates her beliefs about the winner’s type. The Bayesian

approach to privacy loss quantifies the expected change in the outsider’s equilibrium be-

liefs triggered by the new information. A greater change indicates a more significant

privacy loss.

There are several equivalent methods for computing privacy loss. Throughout most

of the analysis we employ the following representation: Privacy loss is defined as the

mutual information between the random variable representing the winner’s type and the

random variable representing the payment. This representation quantifies the reduction

in uncertainty about the former random variable caused by observing a realization of the

latter. In Section 3 we discuss two equivalent methods for computing the same quantity.

The merits of the Bayesian approach to privacy loss are discussed in Eilat, Eliaz and

Mu (2021). Here, we mention only that Bayesian privacy loss does not require making

any assumptions about the exact nature of future strategic interactions. This allows us

to rank auctions according to the “amount of information” they divulge about the “sensi-

tive” variable (the winner’s type), without committing to the exact manner in which this

information will be used in the future.

Preview of the model and main results. We consider a pure private values environ-

ment with risk-neutral buyers whose participation in the auction is voluntary. A single

item is offered for sale. When the auction ends, two pieces of information are disclosed

to an outside observer: the winner’s identity and payment.5 For most of our analysis, we

focus on the class of efficient mechanisms with a dominant-strategy equilibrium. Because

payments can in principle be stochastic, this class contains many mechanisms (see Sec-

tion 4.2). Within this class, we seek the mechanism that minimizes the winner’s privacy

loss. We subsequently demonstrate that our main findings remain applicable when the

designer’s objective is revenue maximization.

Our focus on dominant-strategy mechanisms is motivated by several considerations.

First, this assumption makes the analysis more tractable. Specifically, we rely on this

assumption in Step 3 of the proof for Theorem 1. Second, dominant-strategy mechanisms

are considered to be desirable in practical applications. This is because they simplify

the strategic reasoning for bidders and exhibit robustness in the sense that equilibrium

outcomes do not rely on bidders’ high-order beliefs. Finally, the class of dominant-strategy

5We assume that no information is disclosed about the losing bidders – neither their identity, nor their
bids, are revealed. In light of this, we are concerned only with the privacy loss of the winner.
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mechanisms provides a natural candidate – the second-price auction (SPA) – that can

serve as a benchmark for assessing the most privacy-preserving mechanism, as it does

not directly disclose the winner’s willingness to pay. In contrast, other prevalent auction

formats that are not strategy proof, such as the first-price and the Dutch auctions, reveal

all information about the winner, and hence are the worst mechanisms in terms of the

winner’s privacy.

We demonstrate that, in certain cases, introducing post-bid randomization to the win-

ner’s payment can reduce the mechanism’s privacy loss. From an outsider’s perspective,

this randomization sometimes weakens the connection between the winner’s willingness

to pay and his final payment. In particular, if the price that the winner can pay is allowed

to be arbitrarily high (as long as interim individual rationality is satisfied), it is possible

to achieve efficiency or revenue maximization with privacy loss converging to zero. This

is accomplished through a mechanism in which, for any bid profile, the winner’s payment

is stochastic and takes the form of a lottery between 0 and some large payment K , with

probabilities determined such that both incentive compatibility and interim individual

rationality are satisfied.

However, in many real-life scenarios, requiring buyers to make arbitrarily high pay-

ments is impractical. Therefore, we examine two types of restrictions on the realized

payments. First, we consider the case where there is a uniform upper bound on the pay-

ments, namely that all buyer types are limited to paying no more than some constant K .

We show that the mechanism described above, in which the payment is stochastic and

the winner pays either 0 or K , minimizes the winner’s privacy loss among all efficient (or

revenue-maximizing) mechanisms that involve payments at most K .

Next, we examine a scenario in which the maximum amount that a winner can pay

is type dependent. Specifically, we assume that voluntary participation is applied ex-post
and therefore a buyer’s payment cannot exceed his true valuation. Perhaps surprisingly,

our main result in this case is completely opposite to the case with a uniform price cap:

stochastic payments do not prove effective in reducing the winner’s privacy loss when ex-

post individual rationality is required. In fact, we show that under mild conditions, a

well-known mechanism with deterministic payments minimizes the winner’s privacy loss:

the second-price auction (with the addition of a reserve price if revenue maximization is

the objective).

The proof for this result comprises three steps. First, we establish a general lemma

that characterizes the lower bound on the mutual information between two ordered ran-

dom variables with given marginal distributions. Next, we verify that the joint distribu-

tion of winner types and payments under the second-price auction indeed achieves the
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mutual information lower bound identified in the lemma. Finally, we note that any other

dominant-strategy mechanism induces a payment distribution that constitutes a mean-

preserving spread of the distribution of the second highest type among the bidders. We

then show that any mean-preserving spread payment distribution can only increase the

aforementioned lower bound.

2 Related Literature

Eilat, Eliaz and Mu (2021) introduced the notion of Bayesian privacy in mechanisms, but

studied privacy loss with respect to the designer of a mechanism that has access to the

participants’ actions. It analyzes a monopolistic seller who faces one buyer and seeks to

design the profit maximizing mechanism subject to some exogenous cap on privacy loss,

which is measured by the mutual information between the buyer’s action and type. In

contrast, this paper is concerned with the privacy loss from the perspective of an outsider
who observes only the outcome of the mechanism, where the outcome is the winner’s iden-

tity and payment. Additionally, this paper solves a different problem: find the mechanism

with the minimal privacy loss among all those that maximize some objective function.

Our paper is related to the literature on auction design that takes into account the in-

ference that will be made about the winner after the auction. A recent paper by Dworczak

(2020) studies the problem of a seller, whose payoff depends not only on the outcome of the

mechanism, but also on the outcome in an aftermarket. The paper represents the after-

market via the seller’s payoff that depends both on the winner’s type and on the posterior

belief about this type. Given an aftermarket, the seller’s problem is to design both an al-

location rule and a disclosure rule to maximize his payoff. The paper restricts attention

to a class of allocation rules that are dominant-strategy implementable via “cutoff mech-

anisms,” where the winner has to outbid a random threshold that does not depend on his

bid. The seller may disclose any information about the realization of the random cutoff.

There are three key differences between our framework and that of Dworczak (2020).

First, our approach is context independent in the sense that it does not require specifying

the exact payments for the seller (or the buyers) in the aftermarket. Second, our seller

cares about posterior beliefs in a lexicographic manner: Among the mechanisms that meet

some objective, he chooses the one that preserves the most privacy about the winner’s type.

Finally, in contrast to Dworczak (2020), our seller must disclose the price the winner paid.

If our seller had the option to not disclose any information, he would choose it.6

6Dworczak (2020) gives sufficient conditions on the seller’s payoff function for which it is optimal to
conduct an SPA and disclose the price paid by the winner. However, our result that the SPA solves the seller’s
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A related literature studies the effect of disclosure policies on particular post-auction

interaction between the bidders and third parties. Calzolari and Pavan (2006b) study

the optimal disclosure of information between an upstream and a downstream principal

who contract sequentially with the same agent. Calzolari and Pavan (2006a) consider the

case of a monopolist who designs an allocation rule and a disclosure policy to maximize

revenue, taking into account that the winning bidder may resell the object. Molnár and

Virág (2008) consider a seller who designs an auction and a flexible disclosure rule to

maximize expected revenue, taking into account that the winner’s payoff depends both on

the value he derives from the good and on the posterior belief about his value, given the

information disclosed by the seller. They give sufficient conditions on the winner’s payoff

under which the seller discloses all or no information about bidders’ types.

Instead of jointly designing the selling mechanism and the disclosure policy, other au-

thors (some notable examples include Goeree (2003), Das Varma (2003), Katzman and

Rhodes-Kropf (2008) and Giovannoni and Makris (2014)) compared different auction for-

mats and different disclosure rules on revenue when the auction was followed by some

form of competition, or when the winner cares about the posterior belief formed about his

type. Similarly, Bergemann and Hörner (2018) analyze Markov-perfect equilibria of in-

finitely repeated first-price auctions, and compare the effect on revenue and efficiency of

different disclosure rules.

In the computer science literature, a popular approach to measuring privacy in mech-

anisms uses the notion of “differential privacy”, which was introduced by Dwork et al.

(2006) (see the surveys by Pai and Roth (2013) and Heffetz and Ligett (2014)). The key

difference from our approach is that differential privacy is non-Bayesian. Because it does

not incorporate a prior belief, it is not concerned with what new information is learned,

relative to what an outside observer knew or believed before the mechanism was executed.

Furthermore, as long as the environment is prior-free, maximizing ex-ante expected rev-

enue or welfare is not a well-defined problem. If we were to allow a prior in defining the

objective, but measured privacy loss using differential privacy, we would not be able to

meet the objective since it is very sensitive to the buyer’s reports.

A second approach in computer science applies cryptographic tools to ensure that the

bidder-bid relation is kept private. See the early paper by Naor, Pinkas and Sumner (1999)

and the recent survey in Alvarez and Nojoumian (2020). However, this approach is not

applicable in our setting, where there is an exogenous requirement to publicly reveal the

identity of the winner and the price paid.

problem is obtained only when we impose ex-post individual rationality, a restriction which is orthogonal to
the condition identified in Dworczak (2020).
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3 Model

A seller owns one unit of an indivisible good, whose value to him is normalized to zero.

There are n potential risk-neutral buyers. The willingness to pay (i.e. “type”) of buyer

i ∈ N = {1, ...,n}, denoted θi, is privately and independently drawn from a distribution F
over [θ,θ] with θ > θ ≥ 0. We restrict attention to distributions with strictly positive and

continuously differentiable densities f over the interval [θ,θ], which exhibit a monotone

hazard rate – i.e., the ratio (1−F(θ))/ f (θ) is decreasing in θ.

The seller designs a mechanism M whose outcome is an allocation of the good, which

could remain with the seller, and a profile of possibly stochastic payments. To streamline

the exposition, we assume that M is a simultaneous move mechanism, which is without

loss of generality as explained below. The seller considers only mechanisms that have

dominant-strategy equilibria, and where only buyers make payments to the seller. Partic-

ipation in the mechanism is voluntary, and a buyer who opts out gets a payoff of zero. We

assume that the seller can commit to the details of the mechanism.7

If one of the buyers wins the good, then the winner’s identity and his payment are

publicly disclosed. Until Section 4.3, we focus on “efficient” mechanisms in which the

good is always allocated to a buyer with the highest type. This restriction simplifies the

definitions below by ensuring that the winner is always well-defined.

Given a mechanism M that always allocates the good and a dominant-strategy equi-

librium (DSE) σ in this mechanism, let Pσ and Wσ denote the random variables that

represent the winner’s payment and winner’s type induced by σ and F, and let Gσ denote

their joint probability distribution. Let Gσ
P and Gσ

W denote the marginal distributions of

Pσ and Wσ, respectively, while Gσ
W |P denotes the conditional distribution of Wσ given Pσ.

An outsider, who observes the winner’s identity and payment (i.e. the realization of Pσ),

updates his beliefs about the winner’s type (the value of Wσ).

Definition 1 (Privacy loss) The privacy loss associated with a mechanism M that al-
ways allocates the good and a DSE σ is the mutual information between the induced ran-
dom variables Wσ (winner’s type) and Pσ(winner’s payment):

MI
(
Wσ,Pσ

)= DKL
(
Gσ||Gσ

W ⊗Gσ
P
)

(MI)

where DKL is the Kullback-Leibler (KL) divergence, and ⊗ denotes the product distribution.
7E.g., he cannot ignore bids, engage in shill bidding, or change randomization probabilities. This

(standard) assumption can be justified by ethical guidelines or legal constraints, or by reputational con-
siderations of third parties, such as accounting firms, who oftentimes conduct the auction in practice.
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Equivalent representations of privacy loss. Mutual information of two random vari-

ables is an information-theoretic concept that measures the mutual dependence between

the two variables. It can be computed in several equivalent ways, one of which is shown

on the right-hand side of Eq. (MI). Another method to compute the same quantity is given

by:

MI
(
Wσ,Pσ

)= EPσ

[
DKL

(
Gσ

W |P ||Gσ
W

)]
.

This representation emphasizes that the privacy loss is equal to the expected KL diver-

gence from the posterior belief of the winner’s type after observing the payment to the

prior belief, with expectations taken with respect to the realized payment. Symmetrically,

we also have

MI
(
Wσ,Pσ

)= EWσ

[
DKL

(
Gσ

P|W ||Gσ
P

)]
.

This is useful for computation, as we can often express the payment in terms of the winner

type without going through Bayesian updating.

Another equivalent representation of the mutual information is the following:

MI(Wσ,Pσ)= H(Wσ)−EPσ[H(Wσ|Pσ)],

where H(·) is the Shannon entropy of a distribution. Here, privacy loss is computed as the

expected entropy reduction in the belief about winner type. Because the entropy H(Wσ)

is constant across all efficient mechanisms, this representation suggests that minimizing

privacy loss is equivalent to maximizing expected residual uncertainty about winner type.

Example 1. To illustrate the definition, suppose there are two buyers whose valuations

are distributed uniformly on [0,1]. Suppose further that the seller uses an SPA, which

admits a DSE σ in which both buyers bid their value. Before the auction is carried out,

the prior is that the winner’s type w is the highest of two independent draws from a

uniform distribution. Hence, Gσ
W (w) = w2 is the prior CDF of winner type, with a density

of 2w. In an SPA, the realized payment p is the value of the loser, which is the lowest

of two independent draws from a uniform distribution. Therefore, Gσ
P (p) = 1− (1− p)2,

with a density of 2(1− p). The joint distribution Gσ (w, p) is uniform over the triangle

0 ≤ p ≤ w ≤ 1, with a density of 2. Plugging these into the KL-divergence formula, we

have:

DKL
(
Gσ||Gσ

W ⊗Gσ
P
)= ∫ 1

0

∫ w

0
2log

2
2w ·2(1− p)

dp dw = 1− log2.

�
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The seller’s objective is to design a mechanism with a DSE that maximizes the total ex-

pected surplus, such that there is no other mechanism with a DSE that achieves the same

objectives but with lower privacy loss. Later, we will explain how our analysis extends to

the case of revenue maximization.

Formally, let M denote the class of all pairs (M,σ), where M is a normal-form mecha-

nism, and σ is a DSE in M in which each buyer’s interim expected payoff is non-negative

(i.e., interim individual rationality is satisfied). Let V (M,σ) denote the expected social

surplus in the DSE σ of M. The seller’s problem is then given by:

inf
M,σ

DKL
(
Gσ||Gσ

W ⊗Gσ
P
)

(Seller’s problem)

s.t. (M,σ) ∈ arg max
(M′,σ′)∈M

V
(
M′,σ′)

A direct revelation mechanism is a normal-form mechanism in which bidders report

their types. Formally, a direct revelation mechanism is a tuple M = 〈q, t1 . . . tn〉, where

q : [θ,θ]n →∆(I) is an allocation function that maps a profile of reports to a lottery over who

gets the good (with I being the set of all players including the seller), and ti : [θ,θ]n →∆(R+)

maps the profile of reports to a potentially stochastic payment of buyer i (i.e., after the type

profile is reported the payment can still be stochastic). Let qi (θ) be the probability that

the good is assigned to buyer i according to the distribution q (θ), and let Ti (θ) = E [ti (θ)]
be the expected ex-post payment of buyer i, where the expectation is taken with respect to

the distribution of payments implied by ti (θ). Thus, the expected utility of buyer i when

the realized profile of types is θ is given by ui(θ)= qi (θ) ·θi −Ti (θ).

It is without loss of generality to restrict attention to direct revelation mechanisms

where truth-telling is a DSE. This is because privacy loss is calculated solely based on

what an outsider observes, and not directly influenced by the players’ reports to the de-

signer. By exactly the same arguments that lead to the standard revelation principle, we

obtain the following result:

Observation 1 (Revelation principle) For any mechanism with a dominant strategy
equilibrium, there exists a direct revelation mechanism in which truth-telling is a dominant
strategy, such that the two equilibria induce the same stochastic mapping from type profiles
to outcomes, and thus induce the same privacy loss.

In light of this, in the remainder of the paper we will focus on direct revelation mechanisms

with truthful DSE. To ease notation, we will omit the superscript σ.

As discussed above, there exists an essentially unique allocation q (θ) that character-
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izes an efficient mechanism:8

qi(θ)=
1, if θi =max1≤ j≤nθ j

0, otherwise
(1)

Next, by standard arguments, dominant-strategy incentive-compatibility (DSIC) requires

the expected ex-post transfers to satisfy the following equation for every buyer i and every

type profile (θi,θ−i):

Ti (θi,θ−i)=−ui
(
θ,θ−i

)−∫ θi

θ
qi

(
θ̂,θ−i

)
dθ̂+ qi (θi,θ−i) ·θi. (DSIC)

We then observe that ui(θ,θ−i) ≤ 0 because only buyers make payments to the seller, and

because the good is never allocated to type θ by Eq. (1). But interim individual rationality

requires Eθ−i

[
ui(θ,θ−i)

]≥ 0, so ui
(
θ,θ−i

)= 0 for any θ−i.

By plugging Eq. (1) into Eq. (DSIC), we obtain:

Ti (θi,θ−i)=
max {θ−i}, if θi ≥max {θ−i}

0, otherwise.
(2)

Thus, the designer’s problem reduces to the following: Among stochastic ex-post payment

functions t1 . . . tn that satisfy Eq. (2), find those that minimize the mutual information

between winner’s type and payment.

4 Characterization

A key factor in characterizing the solution to the seller’s problem is the maximum price

that a bidder may be required to pay. In light of this, we will explore two natural cases.

First, we will assume that the highest price cannot exceed an exogenous cap which is

uniform across bidders regardless of their type. For example, this is the case when all

bidders face a budget constraint that is identical for all types.

Next, we will consider the case where the price cap is type-dependent and cannot ex-

ceed the bidder’s willingness to pay. Under this specification, bidders must agree to pay

the realized price, i.e. we impose the stronger constraint of ex-post individual rational-

ity. We show that while stochastic payments prove beneficial with the exogenous uniform

price cap, the same does not hold when ex-post individual rationality is required.

8I.e., the allocation is unique up to zero measure type profiles.
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4.1 Privacy with Uniform Price Caps

Given a positive real number K , define a K−capped mechanism to be a mechanism in

which no buyer pays more than K in any realization of his payment. Namely, the upper

bound of the support of ti(θ) is smaller than K for all i and for all θ.

For any K ≥ θ, we say that a mechanism M = 〈q, t1 . . . tn〉 is a {0,K}-mechanism if, for

any profile of reports θ ∈ [θ,θ]n and every buyer i, the distribution of ti (θ) is supported on

{0,K}. Notice that any K-capped mechanism 〈q, t1 . . . tn〉 can be transformed into a {0,K}-
mechanism as follows. For any type profile θ, we keep the same allocation function and

modify the stochastic ex-post payment function of each buyer i to be a lottery with support

{0,K} whose mean is equal to Ti (θ) of the original mechanism. This transformation does

not affect the expected payment of any buyer at any type profile and thus maintains both

incentive compatibility and efficiency. Since DSIC and efficiency pin down Ti (θ), there

exists a unique efficient mechanism that is also a {0,K}-mechanism.

The result below shows that the efficient {0,K}-mechanism minimizes privacy loss

among all efficient K-capped mechanisms, and it is an essentially unique minimizer.

Proposition 1 For any K ≥ θ, the efficient {0,K}-mechanism minimizes privacy loss
among all efficient K-capped mechanisms. Moreover, if any efficient K-capped mechanism
achieves minimal privacy loss, then for every buyer i, the realized payment ti(θ) is sup-
ported on {0,K} for almost every type profile θ such that θi =max1≤ j≤nθ j.

Proof: Given an efficient K-capped mechanism M, we can view the efficient {0,K}-

mechanism as the following transformation of M: For any profile of reports θ, any buyer i
and any payment p in the support of ti(θ), replace the payment p by a lottery that induces

the payment K with probability p/K and the payment 0 with remaining probability. This

results in an efficient {0,K}-mechanism, which must be the unique one discussed above.

Denote by PM and P{0,K} the random variables that represent the winner’s payments

in M and the {0,K}-mechanism, respectively. The above transformation allows us to rep-

resent P{0,K} as a random variable that only depends on PM . In particular, conditional

on PM , the random variable P{0,K} is conditionally independent from the winner’s type W .

Therefore, by the Date Processing Inequality, we have

MI (W ,PM)≥ MI
(
W ,P{0,K}

)
.

This proves that the efficient {0,K} mechanism minimizes privacy loss.

To show that it is essentially the unique minimizer, note that the Data Processing

Inequality holds equal only if PM is also conditionally independent from W conditional on
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P{0,K}. Below we show that this can only be the case if PM is supported on {0,K}, which

will imply the result.

Let H denote the distribution of PM conditional on P{0,K} = K , while H denotes its

distribution conditional on P{0,K} = 0. Let µ and µ denote the expectation of H and H,

respectively. Given any winner type W , let α(W) denote the conditional probability that

P{0,K} = K . We have the following conditional expectation:

E
[
P{0,K} |W

]=α(W) ·K .

On the other hand, assuming conditional independence from W , the random variable

PM will have α(W) probability to follow the distribution H and remaining 1−α(W) proba-

bility to follow the distribution H. Therefore,

E [PM |W]=α(W) ·µ+ (1−α(W)) ·µ=α(W) ·
(
µ−µ

)
+µ.

Recall that the transformation from PM to P{0,K} does not change expected ex-post pay-

ments at any type profile. So the above two conditional expectations E
[
P{0,K} |W

]
and

E [PM |W] must be equal for every value W of the winner type. Because α(W) is not con-

stant in W ,9 this equality implies µ= 0 and µ= K . Since the support of PM is contained in

the interval [0,K], the distribution H must be the point-mass at K while H is the point-

mass at 0. This completes the proof that PM is supported on {0,K}. �

The next result shows that with a sufficiently large price cap K , the seller can make

the privacy loss arbitrarily small.

Proposition 2 For any ε > 0 there exists K(ε) > 0 such that the efficient {0,K(ε)}-
mechanism achieves privacy loss smaller than ε.

Proof. With Ti(θ) given by Eq. (2), let τ (θi) = Eθ−i [Ti(θ)] denote the interim expected

payment of buyer type θi in any efficient mechanism. Then, in the unique efficient {0,K}-

mechanism, winner type W would pay K with probability τ (W) /K and pay zero with the

remaining probability. Averaging across W (according to the distribution of the winner’s

type, GW ), the unconditional probability that the winner pays K is E [τ (W)] /K , and 0 with

9α(W) · K is the expected winner payment conditional on winner type W , which is the conditional
expectation of the second highest type. When W is close to θ, the second highest type is also close to θ.
But if W is bounded away from θ, then the second highest type also has a positive conditional probability of
being bounded away from θ, making its expectation bounded away from θ as well.
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the remaining probability. Hence the privacy loss in the efficient {0,K}-mechanism is given

by:

DKL(G||GW ⊗GP )= EW
[
DKL

(
GP|W ||GP

)]
=

∫ θ

θ

(
τ (w)

K
log

τ (w) /K
E [τ (W)] /K

+
(
1− τ (w)

K

)
log

1−τ (w) /K
1−E [τ (W)] /K

)
dGW (w) (3)

The integrand on the right-hand side of Eq. (3) is bounded above by

θ

K
log

θ

E [τ (W)]
+ log

1

1−θ/K
=O (1/K) .

Thus, as K →∞ the integral converges to zero. �

Remark. The auctions characterized in Propositions 1 and 2 involve rather extreme

stochastic payment schemes. These are not meant to be interpreted as descriptive or nor-

mative statements about privacy-preserving auctions. Instead, their purpose is to high-

light the potential role of randomization in reducing privacy loss in auctions. This stands

in stark contrast to our result in the next section where randomness is not useful in alle-

viating privacy concerns in the presence of ex-post individual rationality.

4.2 Privacy with Ex-post Individual Rationality

In this section we consider the case where the mechanism must satisfy ex-post individual

rationality (EPIR). Namely, the winner’s payment cannot exceed his valuation. In contrast

to our previous results, we now show that in this case, the most privacy-preserving auction

uses a deterministic pricing rule: the winner simply pays the second-highest bid.

Theorem 1 The standard SPA with deterministic payments minimizes the privacy loss
among all efficient, DSIC and ex-post individually rational mechanisms.10

Before we proceed to the proof, it is worth noting that the restriction to ex-post

individually-rational dominant-strategy mechanisms still leaves the door open to a wide

variety of auctions. Namely, although conditional on winning the expected payment of the

winner must be independent of the winner’s type and be equal to the second-highest bid,

this payment can potentially be stochastic ex-post (i.e., after all bids have been submitted).

Therefore, the distribution of prices that the winner pays can vary with the profile of bids,

10It follows from the proof below that randomized payments strictly increase the privacy loss when the
hazard rate 1−F(θ)

f (θ) is strictly decreasing in θ.
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including the winner’s bid. The distribution of prices only needs to adhere to the following

conditions: (i) its mean has to be equal to the second highest value, and (ii) its support

must be bounded above by the winner’s value. A variety of stochastic price schedules

satisfy these conditions, as we show below.

A simple example, in the spirit of Proposition 1, is the following. Given a profile of bids

where b1 is the highest bid and b2 is the second highest, the mechanism can determine

the winner’s price by randomizing between 0 and b1 with probabilities 1−b2/b1 and b2/b1,

respectively. Consequently, for every profile of bids, the winner pays the second highest

bid on average. More complex continuous distributions that satisfy the required properties

can also be devised. An example is when the winner’s price is drawn from a scaled Beta

distribution with parameters α = b2 and β = b1 − b2 that is supported on [0,b1], whose

mean is precisely b2. Theorem 1 proves that all these examples will generate a higher loss

of privacy compared to the deterministic SPA.

Proof of Theorem 1. The proof proceeds in three steps. First, given two distributions

X and Y on R, where X is non-atomic and X (s) ≤ Y (s) ∀s, we derive a lower bound

on the mutual information between any two jointly distributed random variables with

marginal distributions X and Y . Applied to our setting, this result gives us a lower bound

on the mutual information between winner’s type and payment, given these two variables’

marginal distributions. Next, we show that the SPA induces a joint distribution of winner

type and payment that achieves the above mutual information lower bound, given its

marginal distributions. Finally, we show that with the marginal distribution of winner

type pinned down by the prior F (due to efficiency), any other marginal distribution of

payment increases the mutual information lower bound compared to the one induced by

the SPA.

Step 1. We begin by deriving the lower bound on the mutual information between two

ordered random variables with given marginal distributions. A key observation for this

result is that the joint density that attains this lower bound has a multiplicative form.

To illustrate this observation in a simpler setup, consider the following discrete example

in which the optimal joint distribution can be characterizes using a standard Lagrangian

method.

Example 2. Suppose that X and Y are two discrete random variables, jointly distributed

on {1,2,3}×{1,2,3}, where X ≥Y with probability 1. Denote the probability mass functions

of the two random variables by g1 and g2, respectively. Table (1a) provides an example.

To find the joint distribution λ that minimizes the mutual information between the two

13



x = 1 x = 2 x = 3 g2(y)
y= 3 λ(3,3) 0.1
y= 2 λ(2,2) λ(3,2) 0.3
y= 1 λ(1,1) λ(2,1) λ(3,1) 0.6
g1(x) 0.1 0.4 0.5

(a)

x = 1 x = 2 x = 3 g2(y)
y= 3 0.1 0.1
y= 2 0.15 0.15 0.3
y= 1 0.1 0.25 0.25 0.6
g1(x) 0.1 0.4 0.5

(b)

Table 1: Parameters for Example 2. (a) Given random variables X and Y that satisfy X ≥
Y , with probability mass functions g1(·) and g2(·), respectively, find the joint distribution
λ(x, y) on 1 ≤ y ≤ x ≤ 3 that minimizes the mutual information between the two random
variables (b) The MI-minimizing joint distribution.

random variables, we solve:

min
λ

3∑
x=1

x∑
y=1

λ(x, y) · log(
λ(x, y)

g1(x) · g2(y)
)

s.t.
x∑

y=1
λ(x, y)= g1(x) ∀x, and

3∑
x=y

λ(x, y)= g2(y) ∀y

Differentiating the associated Lagrangian, we obtain the following first-order conditions:

λ∗(x, y)= h1(x)×h2(y)×1y≤x ∀x, y ∈ {1,2,3}

where h1(x) = eα(x)+log(g1(x)) and h2(y) = eβ(y)+log(g2(y))−1, and α(x) and β(y) are the La-

grange multipliers associated with the marginal constraints. Given the first-order con-

ditions and the marginal constraints, the parameters of the example yield the solution

h1(1) = 1
6 ,h1(2) = 5

12 ,h1(3) = 5
12 and h2(1) = 15

25 ,h2(2) = 9
25 ,h2(3) = 6

25 .11 This solution is de-

scribed in Table (1b), where, for example, λ(2,2)= h1(2)×h2(2)= 0.15. �

The following result extends the illustration in Example 2 to any pair of random vari-

ables X and Y , where X is non-atomic.12. The proof of this lemma is presented in Section

5 below.
11There may be multiple solutions for h1 and h2, but all solutions yield the same product.
12This result generalizes the bivariate case of Theorem 5.4 in Butucea et al. (2018) to environments where

the marginal distributions may not admit densities. This generalization is important for our application, as
the payment distribution is endogenously chosen and may not have a density (for example see Section 4.3
below). See also the independent work by Arnold, Molchanov and Ziegel (2020).
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Lemma 1 Let X and Y be two Borel probability measures on R, and with an abuse of no-
tation let X (s),Y (s) also denote their CDFs. Assume X is non-atomic (i.e. X (s) is continuous
in s) and X (s)≤Y (s) for all s ∈R.

Define M (X ,Y ) to be the set of joint distributions λ of two random variables X and Y

with marginal distributions X and Y , and satisfying X ≥ Y with λ- probability 1. Then,
with the convention log 1

0 =∞, it holds that

inf
λ∈M (X ,Y )

DKL(λ || X ⊗Y )=−1+
∫
R

log
1

Y (s)− X (s)
dX (s). (4)

The infimum above is achieved as minimum whenever the RHS of Eq. (4) is finite, in
which case the unique minimizer λ∗ is the joint distribution defined by

dλ∗

d(X ⊗Y )
(x, y)= 1

Y (x)− X (x)
· e−

∫ x
y

1
Y (s)−X (s) dX (s) ·1Y (x)>X (x) ·1y≤x. (5)

That is, the Radon-Nikodym derivative of λ∗ with respect to the product measure X ⊗Y is
zero if either Y (x)= X (x) or y> x. Otherwise this density is 1

Y (x)−X (x) · e−
∫ x

y
1

Y (s)−X (s) dX (s).
Moreover, if the RHS of Eq. (4) is finite and if there exists λ̂ ∈ M (X ,Y ) such that

dλ̂
d(X⊗Y ) (x, y)= h1(x) ·h2(y) for a pair of functions h1,h2 that are positive and bounded away
from zero, then λ̂=λ∗ as described above.

Applying Lemma 1 to our setup, we can let X = GW be the marginal distribution of

winner type, and Y = GP be the marginal distribution of payment in an efficient, DSIC,

EPIR mechanism. The RHS of Eq. (4) provides a lower bound on privacy loss, given by:

−1+
∫
R

log
1

GP (s)−GW (s)
dGW (s). (6)

We emphasize that the condition X ≥ Y with λ-probability 1 is crucial for the lemma;

otherwise λ = X ⊗Y could lead to zero mutual information. In our setup, this ranking

condition corresponds to the winner’s type always exceeding his payment, as required by

ex-post individual rationality.

Step 2. We now show that the joint distribution of winner type and payment under the

SPA achieves the mutual information lower bound in Eq. (4), given its marginal distribu-

tions. Note that X = GW = Fn is the marginal distribution of winner type, with density

gW (s) = nf (s)F(s)n−1. Denote the CDF of the second highest type out of n independent

draws from F by GL(s)= F(s)n+n(1−F(s))F(s)n−1. Then Y =GL is the marginal distribu-

tion of payment, with density gL(s)= n(n−1) f (s)(1−F(s))F(s)n−2.
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Under the SPA, the joint distribution λ̂ of winner type and payment is the joint distri-

bution of the highest and second highest types among n independent draws from F. This

joint distribution has density dλ̂(w, p)= nf (w) · (n−1) f (p)F(p)n−2. Therefore,

dλ̂
d(GW ⊗GL)

(w, p)= 1
nF(w)n−1(1−F(p))

∀ θ ≤ p < w ≤ θ.

Define h1(w) = 1
nF(w)n−1 ≥ 1

n and h2(p) = 1
1−F(p) ≥ 1. The last part of Lemma 1 shows

that λ̂ minimizes mutual information given its marginals. It is the unique minimizer

as
∫

log 1
GL(s)−GW (s) dGW (s)= ∫

log 1
n(1−F(s))F(s)n−1 dF(s)n = ∫ 1

0 log 1
n(1−x)xn−1 dxn is finite.13

Remark. Intuitively, while the highest and second highest types are not independently

distributed, their joint distribution can be obtained by conditioning a product distribution

on the “triangular region” that one of them is always larger than the other. Lemma 1

ensures that whenever the joint distribution of two ordered random variables has such a

property, this joint distribution minimizes mutual information given the marginals. This

feature was also illustrated in Example 2.

Step 3. Under DSIC, the winner’s expected payment at any type profile is the second

highest type. Thus for any DSIC mechanism, GP is a mean-preserving spread of GL, and

due to EPIR, GP (θ)= 1=GL(θ). From this we will show that GL minimizes the RHS of Eq.

(6) among all possible GP , which will prove Theorem 1.

From the mean-preserving spread property, we have
∫ t
−∞GP (s) ds ≥ ∫ t

−∞GL(s) ds for

every t ∈R. Equality holds for t ≥ θ because GP (θ)= 1=GL(θ). We then obtain:

∫ θ

t
GP (s) ds ≤

∫ θ

t
GL(s) ds for every t ∈ [θ,θ].

For any two real numbers a,b ≥ 0, we have log b
a ≤ b

a −1 and a log a
b ≥ a−b. Thus

∫ θ

t
(GL(s)−GW (s)) · log

GL(s)−GW (s)
GP (s)−GW (s)

ds ≥
∫ θ

t
(GL(s)−GP (s)) ds ≥ 0.

Rearranging yields the following inequality:

∫ θ

t
(GL(s)−GW (s)) · log

1
GP (s)−GW (s)

ds ≥
∫ θ

t
(GL(s)−GW (s)) · log

1
GL(s)−GW (s)

ds. (7)

13∫ 1
0 log 1

1−x dxn ≤ ∫ 1
0 n log 1

1−x dx = n, and
∫ 1

0 log 1
xn−1 dxn ≤ ∫ 1

0
1

xn−1 dxn = n as well.
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Integrating across t, we obtain that for any function c(t)≥ 0:

∫ θ

θ
c(t)

(∫ θ

t
(GL(s)−GW (s)) · log

1
GP (s)−GW (s)

ds

)
dt

≥
∫ θ

θ
c(t)

(∫ θ

t
(GL(s)−GW (s)) · log

1
GL(s)−GW (s)

ds

)
dt.

Let C(s)= ∫ s
θ c(t) dt. By changing the order of integration, the above yields:

∫ θ

θ
C(s)(GL(s)−GW (s))·log

1
GP (s)−GW (s)

ds ≥
∫ θ

θ
C(s)(GL(s)−GW (s))·log

1
GL(s)−GW (s)

ds.

(8)

We now choose c(t) = ∂
(

f (t)
1−F(t)

)
/∂t for θ ≤ t < θ, which is well-defined and continuous

because f is continuously differentiable. By the monotone hazard rate assumption, c(t) is

non-negative. Thus, for this choice of c(t), Eq. (8) holds with C(s)= ∫ s
θ c(t) dt = f (s)

1−F(s)− f (θ).

By adding Eq. (8) and f (θ) multiples of Eq. (7) for t = θ, we obtain:

∫ θ

θ

f (s)
1−F(s)

(GL(s)−GW (s)) · log
1

GP (s)−GW (s)
ds (9)

≥
∫ θ

θ

f (s)
1−F(s)

(GL(s)−GW (s)) · log
1

GL(s)−GW (s)
ds.

Using the expressions for the distributions GW and GL, we have:

f (s)
1−F(s)

(GL(s)−GW (s))= f (s)
1−F(s)

·n(1−F(s))F(s)n−1 = nf (s)F(s)n−1 = gW (s).

Hence, Eq. (9) implies that:

∫ θ

θ
log

1
GP (s)−GW (s)

dGW (s)≥
∫ θ

θ
log

1
GL(s)−GW (s)

dGW (s). (10)

Namely, among all possible payment distributions GP , GL minimizes the mutual informa-

tion lower bound in Eq. (6).

4.3 Privacy and Revenue Maximization

In the above analysis, we assumed that the designer’s objective is to achieve efficiency. We

now demonstrate that our main results extend to the case of revenue maximization. By

Myerson (1981), the essentially unique allocation for a revenue-maximizing mechanism
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can be implemented by an SPA with a reserve price r, where r maximizes r(1−F(r)) and

is unique due to monotone hazard rate. Thus, Eq. (1) is modified so that qi(θ) = 1 if and

only if θi =max1≤ j≤nθ j ≥ r. Under DSIC, the expected ex-post transfers are also the same

as in the SPA with reserve price r, given by Ti(θi,θ−i)=max{max{θ−i}, r} in case qi(θ)= 1.

A revenue-maximizing designer who cares about privacy seeks to minimize privacy

loss among all stochastic ex-post payment functions that average to the above expected

payments. Note however that we need to extend the previous definition of privacy loss

to the current setting, because the winner is not always defined (in particular when all

buyers have value less than r). We propose the following extension of Definition 1: For any

mechanism M and DSE σ, let Wσ denote the random variable of winner type conditional
on the event E σ that the good is allocated. Similarly let Pσ denote the random variable of

winner payment conditional on the same event E σ. Then

Definition 2 (Privacy loss in the general case) The privacy loss associated with a
mechanism M and a DSE σ is the mutual information between the conditional random
variables Wσ and Pσ, multiplied by the probability that the winner exists:

P(E σ) ·MI
(
Wσ,Pσ

)
This coincides with Definition 1 when the mechanism always allocates the good, but pro-

vides a natural generalization to cases where the good is sometimes withheld.

Under this definition, we can again show that randomized payments do not help pre-

serve privacy once ex-post individual rationality is required:

Theorem 2 The standard SPA with an optimal reserve price and deterministic payments
minimizes the privacy loss among all revenue-maximizing, DSIC and ex-post individually
rational mechanisms.

Proof. We follow the previous proof of Theorem 1 and point out the modifications. Step

1 is unchanged. In Step 2, we consider the joint distribution λ̃ of winner type W and

payment P (conditional on existence of a winner) that is induced by the SPA with reserve

price r. The key observation is that for any p ≥ r,

P[W ≤ w | P = p]= F(w)−F(p)
1−F(p)

. (11)

To see this, suppose that t1 is the highest type, which means t1 ≥maxi>1 ti and also t1 ≥ r
because the winner exists. Thus t1 ≥ P and P[W ≤ w | P = p]=P[t1 ≤ w | t1 ≥ P = p], which

is further equal to P[t1 ≤ w | t1 ≥ p] by the independence across types.
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From Eq. (11) we obtain that under the SPA with reserve price r, the conditional

density of W given P = p is simply f (w)
1−F(p) for w ≥ p. The marginal distribution of W is

GW (w) = F(w)n−F(r)n

1−F(r)n , so the unconditional density of W is nf (w)F(w)n−1

1−F(r)n for w ≥ r. Dividing

the conditional density by the unconditional density, we arrive at the Radon-Nikodym

derivative of the joint distribution of (W ,P) with respect to the product of their marginals:

dλ̂
d(GW ⊗GL)

(w, p)= 1−F(r)n

nF(w)n−1(1−F(p))
∀ r ≤ p < w ≤ θ.

With h1(w) = 1
nF(w)n−1 and h2(p) = 1−F(r)n

1−F(p) , we can apply the last part of Lemma 1 to con-

clude that λ̂ minimizes mutual information given its marginals.14

As for Step 3, note that with a reserve price r, GW (s) = F(s)n−F(r)n

1−F(r)n ·1s≥r is the CDF of

winner type conditional on existence of a winner, and GL(s)= F(s)n−F(r)n+n(1−F(s))F(s)n−1

1−F(r)n ·1s≥r

is the conditional CDF of payment (GL has a mass point at r). We want to show that

whenever GP is a mean-preserving spread of GL, it holds that

∫ θ

r
log

1
GP (s)−GW (s)

dGW (s)≥
∫ θ

r
log

1
GL(s)−GW (s)

dGW (s). (12)

The proof is essentially the same as before, since we still have f (s)
1−F(s) (GL(s)−GW (s)) =

nf (s)F(s)n−1

1−F(r)n = gW (s) in the final calculation. Intuitively, the reserve price r affects GW and

GL by the same linear transformation. The integrals in Eq. (12) also change linearly.

5 Proof of Lemma 1

We begin with introducing some notation. For any interval I, we will write
∫

I u(s) dX (s)

for the Lebesgue integral of a measurable function u(s) with respect to the measure X .

Sometimes we also write
∫ b

a u(s) dX (s), even though we still have in mind the Lebesgue

integral unless otherwise specified – since X is non-atomic, whether or not the endpoints

a and b are included in the range of integration does not matter. Likewise,
∫

I u(s) dY (s) is

the integral of u with respect to Y over the interval I, but we will not write
∫ b

a u(s) dY (s)

since the endpoints may matter.

For a bivariate function v(x, y), we denote by∫
y≤x

v(x, y) dX (x) dY (y)

14As r maximizes r(1−F(r)), F(r)< 1 must hold and so h2(p) is bounded away from zero. In addition, λ̂ is
the unique minimizer because

∫
log 1

GL(s)−GW (s) dGW (s) is finite like before. We omit the calculation.
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the integral of v(x, y) with respect to the product measure X ⊗Y over the region y ≤ x.

When the Fubini-Tonelli Theorem applies, this integral can be rewritten as a double inte-

gral. Our notations will distinguish these different forms of integration.

The following lemma characterizes when there exists a “ranked” joint distribution with

given marginals X and Y :

Lemma 2 M (X ,Y ) 6= ; if and only if Y (s)≥ X (s) for every s ∈R.

Proof of Lemma 2. If X and Y are two random variables that satisfy X ≥ Y almost

surely, then the distribution of X first-order stochastically dominates the distribution of

Y . This implies Y (s) ≥ X (s) for every s. Conversely, by the well-known “coupling” char-

acterization, if X first-order stochastically dominates Y , then there exist random vari-

ables X and Y with marginal distributions X and Y respectively, and satisfy X ≥ Y

almost surely. For example, we can choose t to be a Uni f [0,1] random variable, and let

X = X−1(t)=min{z : X (z)≥ t} and Y =Y−1(t)=min{z : Y (z)≥ t}.

5.1 Preliminary Results

As can be seen from the definition of λ∗ in Eq. (5), the points s where the CDFs Y (s) and

X (s) coincide are special. In this section we prove some preliminary results about these

points.

For any s ∈R, let Y−(s)= limt<s,t→s Y (t) be the Y -measure of (−∞, s). Note that

1. while Y (s) is right-continuous in s, Y−(s) is left-continuous;

2. we do not define X− because X is assumed to be non-atomic;

3. Y (s)≥Y−(s)≥ X−(s)= X (s) holds for every s.

We then define the following sets:

A = {s ∈R : Y (s)= X (s)};

A = {s ∈R : Y−(s)= X (s)}.

Lemma 3 A is a closed set that contains A.

Proof of Lemma 3. Since Y (s) ≥ Y−(s) ≥ X (s), any s ∈ A necessarily also belongs to A.

Thus A contains A. To see that A is closed, consider any sequence sn ∈ A that converges

to some s ∈ R. Without loss we can assume sn is monotone in n. If sn increases in n, then

by left-continuity Y−(sn) = X (sn) implies Y (s) = X (s) and s ∈ A. If instead sn decreases in
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n, then Y−(s) ≤ limn Y−(sn) = limn X (sn) = X (s). But we discussed above that Y−(s) ≥ X (s),

so equality holds and s again belongs to A.

Since A is a closed set, its complement A
c

is open. This complement can then be

written as the union of at most countably many disjoint open intervals I1, I2, . . . , which we

fix in the sequel. Let us write Ik = (ak,bk),15 and note that ak,bk must both belong to A;

otherwise they belong to another open interval Im, which would intersect with Ik. We now

consider two possibilities. If ak ∈ A then we define Îk = Ik = (ak,bk), and if ak ∈ A\A we

define Îk = [ak,bk).

Lemma 4 Ac is the union of the disjoint intervals Îk.

Proof of Lemma 4. Clearly these intervals are disjoint. Moreover, by construction, if

s ∈ Îk then either s ∈ (ak,bk)⊂ A
c ⊂ Ac or s = ak ∈ A\A ⊂ Ac. Either way s belongs to Ac.

Conversely, if s ∈ Ac then there are two cases. One case is if s ∈ A
c
, in which case s

belongs to some Ik ⊂ Îk. The remaining case is if s ∈ A\A, so that Y (s) > Y−(s) = X (s).

Thus for t slightly larger than s, Y (s) > X (t) also holds and we thus have Y−(t) > X (t). It

follows that any such t belongs to A
c
. All these t must belong to a single open interval Ik,

and thus s = ak belongs to Îk by construction.

The next result relates the measure of the set A under X and under Y .

Lemma 5 The Y -measure of A is equal to the X -measure of A.16

Proof of Lemma 5. Note that the Y -measure of Ac is the total Y -measure of Îk summing

across k. For each k, the Y -measure of Îk is Y−(bk)−Y (ak) if ak ∈ A and Y−(bk)−Y−(ak)

if ak ∈ A\A. In both cases the measure equals Y−(bk)−Y−(ak) since ak ∈ A would imply

Y (ak)=Y−(ak).

Thus, from ak,bk ∈ A we know that the Y -measure of Îk is X (bk)− X (ak) for every k,

which is equal to the X -measure of Îk (recall X is non-atomic). Summing across k implies

that the Y -measure of Ac is equal to the X -measure of Ac. Taking the complement then

yields the lemma.

15Here we allow for the possibility that ak =−∞ and/or bk =∞. The subsequent analysis applies to these
special cases with minimal changes.

16However, the Y -measure of A may be bigger than its X -measure. For example if X is uniform on [0,1]
and Y is the point-mass at 0, then A = (−∞,0]∪ [1,∞) and it has X -measure zero but Y -measure one. In
this example A = (−∞,0)∪ [1,∞), which does have Y -measure zero.
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5.2 Proof of Lemma 1 When X (A)> 0

The following result shows that if the X -measure of the set A is strictly positive, then

every joint distribution λ ∈M (X ,Y ) is not absolutely continuous with respect to X ⊗Y . In

these cases the KL-divergence D(λ || X ⊗Y ) is always infinite, and Lemma 1 holds because

−1+ ∫
R log 1

Y (s)−X (s) dX (s) ≥ −1+ ∫
A log 1

Y (s)−X (s) dX (s) =∞, where the last equality holds

by the assumption that Y (s)− X (s)= 0 for a positive X -measure of points s.

Lemma 6 If A has positive X -measure, then every λ ∈ M (X ,Y ) is not absolutely continu-
ous with respect to X ⊗Y .

Proof of Lemma 6. Choose any λ ∈ M (X ,Y ). Consider any point s ∈ A, such that

Y−(s) = X (s). Thus λ assigns the same measure to the region y < s as to the region x < s.

But by assumption λ is supported on x ≥ y, so we also have λ(y < s) = λ(y ≤ x < s), which

implies λ(y< s ≤ x)= 0. In words, for any s ∈ A, λ assigns zero measure to those pairs (y, x)

with y< s ≤ x.

We use this to show that λ assigns zero measure to the set S = {(x, y) : x ∈ A and y< x}.

Indeed, for any rational number r ∈ R, we can let sr ∈ A be the point that is closest to r
(which exists because A is closed). Then define Sr = {(x, y) : y< sr ≤ x}, which we know has

λ-measure zero. Thus the union of Sr across rational numbers r also has measure zero.

This union covers S because for any x > y with x ∈ A, we can choose a rational number

r ∈ ( x+y
2 , x). Then the closest point sr satisfies |sr − r| ≤ |x− r|, which implies sr ∈ (y, x] and

so (x, y) ∈ Sr. Hence ∪rSr covers S, which must have λ-measure zero.

In particular, the subset S = {(x, y) : x ∈ A and y < x} also has λ-measure zero. Since

λ has marginal X on the x-dimension, we know that the λ-measure of T = {(x, y) : x ∈
A and y≤ x} is the X -measure of A. Thus the set difference

T\S = {(x, y) : x = y ∈ A}

has λ-measure equal to X (A)> 0. But this set T\S is part of the 45-degree line, which has

measure zero according to X ⊗Y .17 Hence λ is not absolutely continuous with respect to

X ⊗Y .
17For each y, the X -measure of those x such that x = y is zero because X is non-atomic. The overall

measure of the 45-degree line is thus also zero by Tonelli’s Theorem.
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5.3 Support of λ∗

From now on we assume the set A has X -measure zero. In this section we study properties

of the joint distribution λ∗, whose density with respect to X ⊗Y is

h∗(x, y)= 1
Y (x)− X (x)

· e−
∫ x

y
1

Y (s)−X (s) dX (s) ·1Y (x)>X (x) ·1y≤x. (13)

While h∗ is defined for any y ≤ x, the following result shows that it is supported on those

pairs (x, y) such that x and y belong to the same interval Îk for some k, where the intervals

Îk were defined previously in Lemma 4.

Lemma 7 Suppose y ∈ Ac (i.e. Y (y)> X (y)), and let k be the unique index such that y ∈ Îk.
Then for x ≥ y,

∫ x
y

1
Y (s)−X (s) dX (s) is finite if and only if x ∈ Îk. Consequently, h∗(x, y) as

defined in (13) is strictly positive if and only if x ≥ y and x ∈ Îk.

Proof of Lemma 7. The second statement follows immediately from the first, since for

x ∈ Îk ⊂ Ac it holds that Y (x)− X (x) > 0. To prove the statement about
∫ x

y
1

Y (s)−X (s) dX (s),

recall Îk = [ak,bk) or (ak,bk). Then because bk ∈ A, we have Y−(bk)= X (bk). Thus∫
[y,bk)

1
Y (s)− X (s)

dX (s)≥
∫

[y,bk)

1
Y−(bk)− X (s)

dX (s)= log
Y−(bk)− X (y)
Y−(bk)− X (bk)

=∞,

where the penultimate equality uses the substitution z = X (s), and the last equality uses

Y−(bk)≥Y (y)> X (y). It follows that
∫ x

y
1

Y (s)−X (s) dX (s) is infinite whenever x ≥ bk.

As for x ∈ [y,bk),
∫ x

y
1

Y (s)−X (s) dX (s) is finite because the integrand 1
Y (s)−X (s) is bounded

from above on the compact interval [y, x]. To see why, suppose for contradiction that there

exists a sequence sn ∈ [y, x] with Y (sn)− X (sn) → 0. Passing to a subsequence, we may

assume sn is monotone in n and has a limit s ∈ [y, x]. If sn decreases in n, then Y (sn)−
X (sn) → 0 implies Y (s) = X (s) by right-continuity, but this contradicts s ∈ [y, x] ⊂ Îk ⊂ Ac.

If sn increases in n, then Y (sn)− X (sn) → 0 implies s > y and Y−(s) = X (s). But this

contradicts s ∈ (y, x]⊂ Ik ⊂ A
c
.

5.4 λ∗ Belongs to M (X ,Y ) When X (A)= 0

We now apply Lemma 7 to show the following result:

Lemma 8 If A has X -measure zero, then λ∗ ∈M (X ,Y ).

Proof of Lemma 8. By construction λ∗ is supported on y ≤ x, so we just need to check

λ∗ has marginals X and Y . Consider any joint distribution λ ∈M (X ,Y ) that is absolutely
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continuous with respect to the product measure X ⊗Y . Let h(x, y) be the density dλ
d(X⊗Y ) ,

with h(x, y)= 0 whenever y> x. Then the marginal requirements on λ equivalently trans-

late into ∫
R

h(x, y) dX (x)= 1 for Y -almost every y; (14)∫
R

h(x, y) dY (y)= 1 for X -almost every x. (15)

When A has X -measure zero and therefore also Y -measure zero by Lemma 5, these

equalities for h = h∗ are proved in the following two lemmata.

Lemma 9 h∗ defined in Eq. (13) satisfies Eq. (14) for every y ∈ Ac (i.e. Y (y)> X (y)).

Lemma 10 h∗ defined in Eq. (13) satisfies Eq. (15) for every x ∈ Ac (i.e. Y (x)> X (x)).

Proof of Lemma 9. Fix any y with Y (y) > X (y), and suppose y ∈ Îk = [ak,bk) or (ak,bk).

Then thanks to Lemma 7,∫
R

h∗(x, y) dX (x)=
∫

[y,bk)
h∗(x, y) dX (x)=

∫
[y,bk)

1
Y (x)− X (x)

· e−
∫ x

y
1

Y (s)−X (s) dX (s) dX (x).

For this fixed y, let α(x) = ∫ x
y

1
Y (s)−X (s) dX (s) for x ≥ y. Then as shown in Lemma 7, α(x)

is finite for x ∈ [y,bk) and approaches ∞ as x → bk. Moreover, α(x) is increasing and con-

tinuous on the interval [y,bk), where continuity follows from the Dominated Convergence

Theorem and X being non-atomic.

Since the function α(x) is equal to 0 at x = y and increases continuously for x < bk,

we can view it as defining a non-atomic measure (also called α) on [y,bk). Directly from

the definition α(x)= ∫ x
y

1
Y (s)−X (s) dX (s), we see that α is absolutely continuous with respect

to X , with density function dα
dX (s) = 1

Y (s)−X (s) on this interval (this density is finite since

s ∈ Îk ⊂ Ac). It follows that∫
R

h∗(x, y) dX (x)=
∫

[y,bk)

1
Y (x)− X (x)

· e−α(x) dX (x)

=
∫

[y,bk)
e−α(x) dα(x)=

∫ ∞

0
e−z dz = 1.

The penultimate equality crucially uses limx<bk,x→bk α(x) = α(bk) = ∞ when making the

substitution z =α(x). This proves the lemma.

Proof of Lemma 10. Fix any x with Y (x)> X (x), and suppose x ∈ Îk = [ak,bk) or (ak,bk).

Then for h = h∗, the equality in (15) reduces to∫
(−∞,x]

e−
∫ x

y
1

Y (s)−X (s) dX (s) dY (y)=Y (x)− X (x).
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By Lemma 7, we can restrict the range of integration to [ak, x] or (ak, x]. In fact we can

always assume the range of integration is [ak, x], because Îk = (ak,bk) would imply ak ∈
A ⊂ A, and thus Y does not have an atom at ak. In this case including the point ak in the

range of integration does not affect the integral on the LHS above.

For this fixed x, let β(y) = ∫ x
y

1
Y (s)−X (s) dX (s) for y ≤ x. By Lemma 7, the function β(y)

is finite for y ∈ (ak, x] ⊂ Îk, and it is thus continuous on this interval by the Dominated

Convergence Theorem. Although β(ak) could be infinite (in case ak ∉ Îk), the function

β is still right-continuous at ak by the Monotone Convergence Theorem. Thus β(y) is

decreasing and continuous on the closed interval [ak, x].

We need to show that
∫

[ak,x] e−β(y) dY (y) = Y (x)− X (x). Let g(y) = e−β(y), then g is

increasing and continuous for y ∈ [ak, x] with g(x)= 1.18 It remains to show that∫
[ak,x]

g(y) dY (y)=Y (x)− X (x). (16)

If ak = x, then the LHS above is simply Y ({x}) (the mass of Y at x) because g(x) = 1.

In this case the above equality holds because x = ak ∈ A implies Y−(x) = X (x), and thus

Y ({x})=Y (x)− X (x).

Below we consider ak < x. Note that we still have Y−(ak) = X (ak). We prove (16) by

approximating the LHS integral by the integrals of increasing step functions. Specifi-

cally, consider any partition of the interval [ak, x] into disjoint intervals [y0, y1]∪ (y1, y2]∪
·· · (yn−1, yn] with ak = y0 < y1 < ·· · < yn = x. For each such partition, define two functions

g(y) and g(y) such that for each y ∈ (yi−1, yi], g(y) = g(yi−1) whereas g(y) = g(yi). Natu-

rally, we also let g(y0)= g(y0) and g(y0)= g(y1).

Since g is an increasing function, we have g ≤ g ≤ g point-wise for any partition.

Moreover, since g is continuous on the interval [ak, x], the functions g, g converge point-

wise to g as the partition becomes finer and finer. Thus, by the Dominated Conver-

gence Theorem (which applies since g, g are uniformly bounded between 0 and 1), we

have that
∫

[ak,x] g(y) dY (y) is the common limit of the integrals
∫

[ak,x] g(y) dY (y) and∫
[ak,x] g(y) dY (y), as the partition becomes arbitrarily fine. Thus, to show (16), it suffices

to show the following inequality for every partition:∫
[ak,x]

g(y) dY (y)≤Y (x)− X (x)≤
∫

[ak,x]
g(y) dY (y).

Using the fact that g and g are simple functions, we can rewrite their integrals as finite

18In case ak = −∞, we define β(−∞) = ∫ x
−∞

1
Y (s)−X (s) dX (s) and g(−∞) = e−β(−∞) accordingly. The subse-

quent arguments also apply to this case.
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sums. The above inequalities then become

g(y0) · (Y (y1)−Y−(y0))+
n−1∑
i=1

g(yi) · (Y (yi+1)−Y (yi))≤Y (yn)− X (yn);

g(y1) · (Y (y1)−Y−(y0))+
n−1∑
i=1

g(yi+1) · (Y (yi+1)−Y (yi))≥Y (yn)− X (yn).

For the first inequality, we prove by induction that

g(y0) · (Y (y1)−Y−(y0))+
m−1∑
i=1

g(yi) · (Y (yi+1)−Y (yi))≤ g(ym) · (Y (ym)− X (ym)). (17)

The base case m = 1 says g(y0) · (Y (y1)−Y−(y0)) ≤ g(y1) · (Y (y1)− X (y1)). Since y0 = ak and

Y−(y0)= X (y0), it suffices to show for any y0 < y1:

g(y0) · (Y (y1)− X (y0))≤ g(y1) · (Y (y1)− X (y1)).

This holds trivially if g(y0)= 0 or Y (y1)− X (y0)= 0. Otherwise

log
g(y1)
g(y0)

=β(y0)−β(y1)=
∫ y1

y0

1
Y (s)− X (s)

dX (s)≥
∫ y1

y0

1
Y (y1)− X (s)

dX (s)= log
Y (y1)− X (y0)
Y (y1)− X (y1)

,

as we desire to show.19 As for the induction step in (17) from m to m+1, we need to verify

that g(ym)(Y (ym)− X (ym))+ g(ym)(Y (ym+1)−Y (ym)) ≤ g(ym+1)(Y (ym+1)− X (ym+1)). This

reduces to

g(ym) · (Y (ym+1)− X (ym))≤ g(ym+1) · (Y (ym+1)− X (ym+1)),

which can be proved in exactly the same way as above (where we showed this for m = 0).

The above analysis dealt with the lower bound g. As for g, we will similarly show by

induction that

g(y1) · (Y (y1)−Y−(y0))+
m−1∑
i=1

g(yi+1) · (Y (yi+1)−Y (yi))≥ g(ym) · (Y (ym)− X (ym)). (18)

The base case m = 1 holds because Y−(y0)= X (y0)≤ X (y1). For the induction step, we need

to verify g(ym)(Y (ym)− X (ym))+ g(ym+1)(Y (ym+1)−Y (ym)) ≥ g(ym+1)(Y (ym+1)− X (ym+1)),

19The final equality here follows by viewing the integral as a Riemann-Stieltjes integral, and making the
substitution z = X (s).
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which is equivalent to

g(ym) · (Y (ym)− X (ym))≥ g(ym+1) · (Y (ym)− X (ym+1)).

This clearly holds if Y (ym)≤ X (ym+1), so we assume Y (ym)> X (ym+1). We then have20

log
g(ym+1)
g(ym)

=
∫ ym+1

ym

1
Y (s)− X (s)

dX (s)≤
∫ ym+1

ym

1
Y (ym)− X (s)

dX (s)= log
Y (ym)− X (ym)

Y (ym)− X (ym+1)
.

This proves the induction step and implies (18).

Therefore (16) holds and the lemma is proved.

5.5 λ∗ Minimizes Mutual Information When X (A)= 0

By Lemma 8 we know that λ∗ ∈ M (X ,Y ). In this section we show DKL(λ || X ⊗Y ) ≥
DKL(λ∗ || X ⊗Y ) for any λ ∈ M (X ,Y ). We introduce the following result, which ensures

that the support of λ is a subset of the support of λ∗.

Lemma 11 Suppose A has X -measure zero. Then every λ ∈M (X ,Y ) is supported on those
points (x, y) with y≤ x and y, x ∈ Îk for the same index k.

Proof of Lemma 11. First of all, λ is supported on Ac × Ac because it has marginals X
and Y , which assign zero measure to A. Thus we can restrict attention to x, y ∈ Ac =∪k Îk.

Recall that Îk = [ak,bk) or (ak,bk). In either case the left end-point ak belongs to A, so

that Y−(ak) = X (ak). Thus, just as we showed in the proof of Lemma 6, λ must assign

zero measure to the set Sk = {(x, y) : y < ak ≤ x}. Since the number of indices k is at most

countable, the union of the sets Sk also has λ-measure zero. Note that if y ≤ x and y, x
belong to Î j and Îk respectively (with j 6= k), then (x, y) ∈ Sk. Thus the union of Sk covers

all such points (x, y). Taking the relative complement of this union in Ac×Ac implies that

λ is only supported on the remaining points where x and y do belong to the same Îk.

We now show that the KL-divergence from any λ ∈M (X ,Y ) to X⊗Y can be decomposed

as the sum of the KL-divergence from λ to λ∗ and the KL-divergence from λ∗ to X ⊗Y ,

so that λ∗ uniquely minimizes the KL-divergence. This “triangle equality” does not in

general hold, but it holds here because the density of λ∗ has a multiplicatively separable
form, a property that we study further in the next section.

20Note that g(ym)= e−β(ym) > 0 for any ym > y0 = ak.
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Lemma 12 Suppose A has X -measure zero. Then for every λ ∈M (X ,Y ), it holds that

DKL(λ || X ⊗Y )= DKL(λ ||λ∗)+K(X ,Y ),

where K(X ,Y ) = −1+ ∫
R log 1

Y (s)−X (s) dX (s). Consequently, DKL(λ∗ || X ⊗Y ) = K(X ,Y ) ≤
DKL(λ || X ⊗Y ), and when K(X ,Y )<∞ equality holds if and only if λ=λ∗.

Proof of Lemma 12. If λ is not absolutely continuous with respect to X⊗Y , then because

λ∗ is absolutely continuous with respect to X ⊗Y , λ is also not absolutely continuous with

respect to λ∗. In this case both DKL(λ || X⊗Y ) and DKL(λ ||λ∗) are infinite, and the lemma

holds.

Suppose instead that λ is absolutely continuous with respect to X ⊗Y , admitting a

density h(x, y). Then from Lemma 11, it is without loss (up to sets that have measure

zero under X ⊗Y ) to assume h(x, y) > 0 only if they belong to the same Îk and y ≤ x. For

notational ease, we let Tk denote the “triangular region” associated with Îk:

Tk = {(x, y) : y≤ x and y, x ∈ Îk}.

Then h is strictly positive only on ∪kTk. We also recall from Lemma 7 that the density h∗

associated with λ∗ is strictly positive on and only on ∪kTk.

We can write the mutual information induced by λ as follows:

DKL(λ || X ⊗Y )=
∫
R2

h(x, y) logh(x, y) dX (x) dY (y)

=
∫
∪kTk

h(x, y) logh(x, y) dX (x) dY (y)

=
∫
∪kTk

h(x, y) log
h(x, y)
h∗(x, y)

dX (x) dY (y)+
∫
∪kTk

h(x, y) logh∗(x, y) dX (x) dY (y)

= DKL(λ ||λ∗)+∑
k

∫
Tk

h(x, y) logh∗(x, y) dX (x) dY (y).

(19)

In this derivation one may be worried about absolute integrability affecting the equality

between the second line and the third line. This turns out to not be an issue because in the

third line, the first integrand h(x, y) log h(x,y)
h∗(x,y) is bounded below by h(x, y)−h∗(x, y), so the

negative part of h(x, y) log h(x,y)
h∗(x,y) is absolute integrable. Meanwhile, as shown below, the

second integrand h(x, y) logh∗(x, y) is bounded below by −h(x, y)
∫ x

y
1

Y (s)−X (s) dX (s), which

is also absolute integrable with integral 1.

We now compute
∫

Tk
h(x, y) logh∗(x, y) dX (x) dY (y) for each k. Recall that for x, y ∈ Îk,
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h∗(x, y) = 1
Y (x)−X (x) · e−

∫ x
y

1
Y (s)−X (s) dX (s). Thus logh∗(x, y) = log 1

Y (x)−X (x) −
∫ x

y
1

Y (s)−X (s) dX (s),

and it follows that∫
Tk

h(x, y) logh∗(x, y) dX (x) dY (y)

=
∫

Tk

h(x, y) log
(

1
Y (x)− X (x)

)
dX (x) dY (y) −

∫
Tk

h(x, y) ·
(∫ x

y

1
Y (s)− X (s)

dX (s)
)

dX (x) dY (y).

(20)

To simplify the first term on the RHS above, we recall that h is the density of λ ∈M (X ,Y ),

and thus satisfies the marginal requirements (14) and (15). In particular, (15) gives∫
Rh(x, y) dY (y)= 1 for X -almost every x, and thus

∫
Îk

h(x, y) dY (y)= 1 for X -almost every

x ∈ Îk. Applying Tonelli’s Theorem, we thus have∫
Tk

h(x, y) log
(

1
Y (x)− X (x)

)
dX (x) dY (y)=

∫
Îk

log
1

Y (x)− X (x)
·
(∫

Îk

h(x, y) dY (y)
)

dX (x)

=
∫

Îk

log
1

Y (x)− X (x)
dX (x).

(21)

As for the second term on the RHS of (20), we have21

∫
Tk

h(x, y) ·
(∫

[y,x)

1
Y (s)− X (s)

dX (s)
)

dX (x) dY (y)

=
∫

y,s,x∈Îk: y≤s<x
h(x, y)

1
Y (s)− X (s)

dX (s) dX (x) dY (y)

=
∫

s∈Îk

1
Y (s)− X (s)

·
(∫

y,x∈Îk: y≤s,x>s
h(x, y) dX (x) dY (y)

)
dX (s).

(22)

Now observe that the integral
∫

y,x∈Îk: y≤s<x h(x, y) dX (x) dY (y) is simply the measure that

λ assigns to the region {(y, x) ∈ Tk : y ≤ s < x}. Since the different Îk are disjoint, we see

from Lemma 11 that the λ measure of this region is just equal to the λ-measure of the

larger region {(y, x) : y ≤ s < x}, which is just Y (s)− X (s). Hence, plugging in the RHS of

(22), we obtain ∫
Tk

h(x, y) ·
(∫

[y,x)

1
Y (s)− X (s)

dX (s)
)

dX (x) dY (y)

=
∫

s∈Îk

1
Y (s)− X (s)

· (Y (s)− X (s)) dX (s)=
∫

s∈Îk

1 dX (s)= X (Îk).
(23)

21We can write
∫ x

y
1

Y (s)−X (s) dX (s) as
∫

[y,x)
1

Y (s)−X (s) dX (s) because X is non-atomic.
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If we now plug (21) and (23) into (20) and then back into (19), we arrive at

DKL(λ || X ⊗Y )= DKL(λ ||λ∗)+∑
k

(∫
Îk

log
1

Y (x)− X (x)
dX (x)− X (Îk)

)
= DKL(λ ||λ∗)+

∫
Ac

log
1

Y (x)− X (x)
dX (x)− X (Ac)

= DKL(λ ||λ∗)+
∫
R

log
1

Y (x)− X (x)
dX (x)−1

= DKL(λ ||λ∗)+K(X ,Y ),

(24)

where the penultimate equality uses X (Ac)= 1. This completes the proof.

5.6 Multiplicatively Separable Density Must be λ∗

It remains to prove the last paragraph in the statement of Lemma 1. To do this we show

the following analogue of Lemma 12:

Lemma 13 If λ̂ ∈M (X ,Y ) satisfies dλ̂
d(X⊗Y ) (x, y)= h1(x) ·h2(y) for a pair of functions h1,h2

that are positive and bounded away from zero, then for every λ ∈M (X ,Y ) it holds that

DKL(λ || X ⊗Y )= DKL(λ || λ̂)+DKL(λ̂ || X ⊗Y ).

Lemma 13 immediately implies that λ̂ minimizes mutual information whenever the min-

imum is achieved. Thus λ̂=λ∗ whenever the RHS of Eq. (4) is finite.

Proof of Lemma 13. Like before, it is without loss to assume λ admits density h with

respect to X ⊗Y ; otherwise both sides of the desired equality are infinite. We then have

DKL(λ || X ⊗Y )=
∫
R2

h(x, y) logh(x, y) dX (x) dY (y)

=
∫
R2

h(x, y) log
h(x, y)

h1(x)h2(y)
dX (x) dY (y)+

∫
R2

h(x, y) log(h1(x)h2(y)) dX (x) dY (y)

= DKL(λ || λ̂)+
∫
R2

h(x, y) logh1(x) dX (x) dY (y)+
∫
R2

h(x, y) logh2(y) dX (x) dY (y).

(25)

Here we made use of the assumption that h1(x) and h2(y) are bounded away from zero,

which ensures that the negative parts of h(x, y) logh1(x) and h(x, y) logh2(y) are absolutely

integrable.

Since λ has marginals X and Y , we have
∫

h(x, y) dY (y) = 1 for X -almost

every x and
∫

h(x, y) dX (x) = 1 for Y -almost every y. So by the Fubini-
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Tonelli Theorem,
∫
R2 h(x, y) logh1(x) dX (x) dY (y) = ∫

logh1(x) dX (x), and similarly∫
R2 h(x, y) logh2(y) dX (x) dY (y)= ∫

logh1(x) dX (x)= ∫
logh2(y) dY (y). Plugging these into

Eq. (25), we obtain

DKL(λ || X ⊗Y )= DKL(λ || λ̂)+
∫

logh1(x) dX (x)+
∫

logh2(y) dY (y).

Since this equality holds in particular for λ = λ̂, we obtain DKL(λ̂ || X ⊗ Y ) =∫
logh1(x) dX (x)+∫

logh2(y) dY (y). Therefore it follows that

DKL(λ || X ⊗Y )= DKL(λ || λ̂)+DKL(λ̂ || X ⊗Y ),

as we desire to show.

6 Conclusion

This paper takes a first step at exploring the implication of Bayesian privacy concerns in

designing efficient and optimal auctions. Because in many environments the identify of

the auction winner and the price she paid are made public, we focus on minimizing the

privacy loss to the winner. We propose to quantify this loss by the mutual information

between the winner’s type and her payment. Our main result suggests a justification for

standard second-price auctions in the sense that they are the most privacy-preserving

auctions among all ex-post individually-rational dominant-strategy mechanisms.

Our proof technique relies on a new result on the lower bound of the mutual informa-

tion between two ordered random variables. We use this result, in conjunction with the

feature of dominant strategy mechanism that the winner’s payment is a mean-preserving

spread of the second highest bid, to establish our main theorem. A natural follow-up to our

results in to study ex-post individually-rational privacy preserving auctions under other

solution concepts. Since this would necessitate different proof techniques, it is left as an

open question for future research.
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