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Abstract

Decision-makers often aggregate information across many sources, each of which

provides relevant information. We introduce a dynamic learning model where a decision-

maker learns about unknown states by sequentially sampling from a finite set of Gaus-

sian signals with arbitrary correlation. Such a setting describes sequential search be-

tween similar products, as well as reading news articles with correlated biases. We

study the optimal sequence of information acquisitions. Assuming the final decision

depends linearly on the states, we show that myopic signal acquisitions are nonetheless

optimal at sufficiently late periods. For classes of informational environments that we

describe, the myopic rule is optimal from period 1. These results hold independently

of the decision problem and its (endogenous or exogenous) timing. We apply these

results to characterize dynamic information acquisition in games.
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1 Introduction

Decision-makers often lack access to information that is directly revealing about what they

care about; instead, they aggregate information across many sources, each of which provides

relevant information. Consider for example an individual deciding whether to purchase a

home. His realtor provides information about the quality of the house, but this information

may be biased. Online reviews of the realtor provide a second source of information, which

help the decision-maker learn how much the realtor inflates on average. These reviews also

require interpretation, and the decision-maker can cross-check reviews of this realtor against

reviews of other realtors.

This example, already involved, is simplified relative to what information acquisition fre-

quently looks like in practice: individuals routinely acquire and aggregate information across

varied sources in order to learn about unknowns such as the payoff to a new policy, the value

of an asset, the inflation rate next year. When sources provide correlated information, the

value of information from a given source depends on what kinds of information are available

from other sources, and also on what information has already been acquired. Thus, correla-

tion across sources complicates the problem of optimal dynamic acquisition of information:

a decision-maker contemplating which information source to acquire today should take into

account its impact on the value of information collected in the future.

We model the problem of dynamic acquisition of information from correlated information

sources as follows: there are K unknown states θ1, . . . , θK ∈ R, which follow a multivariate

Gaussian distribution. A Bayesian decision-maker (DM) has access to K different signals,

each of which is a linear combination of the K unknown states and an independent Gaussian

noise term. Only the state θ1 is payoff-relevant, while other states represent unknown param-

eters of the signal generating distributions or correlated biases of the information sources.

Information acquisition requires physical time and effort, which we model as a capacity con-

straint: in each discrete period, the DM chooses one signal to observe (see Section 8 for an

extension to B > 1 signals). At a random final period t, the DM faces a decision problem,

in which he takes an action a ∈ A and receives a payoff that depends on his action a, the

state θ1 and possibly the date t. The time of the final period is determined according to a

full-support distribution over periods1—in the main text, we suppose that this distribution

is exogenous, but later demonstrate an extension to endogenous stopping.

We study the following rules for information acquisition:

1A familiar special case is one in which each period (conditional on being reached) is final with a constant

probability 1− δ, so that δ is the DM’s discount factor. Such a setup appears also in Wilson (2014).
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(a) myopic: in each period, the DM chooses the signal that (combined with past acquisi-

tions) maximizes the expected payoff he would receive if he were to immediately face

the decision problem.

(b) dynamically optimal : in each period, the DM chooses the signal that maximizes his

overall expected payoff, taking into account the randomness of the decision period and

of future signal realizations.

Additionally, we say that a dynamic information acquisition strategy is t-optimal if the DM

would follow this strategy given knowledge that period t is final.

The main contribution of our paper is to show that in this problem, the myopic and

dynamically optimal solutions are (generically) equivalent after finitely many periods, and in

special cases they are immediately equivalent. Moreover, these solutions achieve t-optimality

at every (large) time t. Thus, despite correlation across information sources, the myopic

choice is always (eventually) the best signal to acquire. This equivalence holds for all payoff

functions that the decision-maker might face, and for all possible timings of the decision

period.

Towards these results, we first demonstrate “invariance” of the solution to the decision

problem. Specifically, we show that the myopically optimal strategy, as well as t-optimality,

can be determined independently of the decision problem. We show this by first presenting

the decision problem of prediction: the DM chooses an action a to match the state θ1,

receiving payoff −(a − θ1)2. For this problem, the myopic decision-maker deterministically

acquires in each period the signal that achieves the greatest decrease in posterior variance

(since his expected payoff is simply the negative of his posterior variance). We show that

the signal that satisfies this criterion Blackwell-dominates the remaining signals, so that it

is best not only for the prediction of θ1, but for all decision problems. A similar argument

obtains for t-optimality, and a more complex version of this result for dynamic optimality is

presented in the appendix.

This reduction means that we can suppose without loss of generality that the decision

problem is prediction, and work with deterministic strategies that do not condition on signal

realizations. We provide in Section 7 sufficient conditions under which the myopic and dy-

namically optimal signal paths are identical from period 1, and moreover t-optimal for every

t. In these environments, the myopic decision-maker and the forward-looking decision-maker

acquire the same signals in the same (“best”) order. Intuitively, our sufficient conditions align

the information acquisition goal of the current period with those of all future periods: under

these conditions, the signal that achieves the greatest decrease in posterior variance in any
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given period turns out to also allow for maximal reduction of uncertainty in all subsequent

periods.

Equivalence between the myopic and forward-looking solutions does not hold for all

informational environments. In Section 8, we provide a simple counterexample, showing that

the signal that is most informative in the current period may not be part of any pair of signals

that maximizes learning across two periods. This illustrates how complementarity across

signals (due to correlation) can render the myopic choice sub-optimal. Nevertheless, we show

that in general, the information acquisition problem becomes “approximately separable”

over time: the strength of complementarity across different signals vanishes an order of

magnitude faster than the strength of substitution between realizations of the same signal.

With sufficiently many observations, the signals become approximately independent.

This insight allows us to derive the main results of the paper. We show that the myopic

and dynamically optimal signal paths are eventually approximately the same, and approxi-

mately t-optimal: the number of signals of each type acquired under the myopic, dynamically

optimal and t-optimal criteria will eventually differ by no more than one from each another.

Moreover, this “eventual gap of one” vanishes in generic informational environments, so that

at sufficiently late periods the myopic path is identical to the dynamically optimal path, and

is t-optimal.2

As discussed above, all of our results hold independently of discounting and of the decision

problem. Specifically, our sufficient conditions for the myopic signal path to be immediately

optimal are stated only in terms of the informational environment: the DM’s prior belief,

the signals’ linear coefficients and the signal variances. More generally, we demonstrate

a time T for each informational environment, such that the myopic, dynamically optimal

and t-optimal signal paths differ by at most one (in each signal count) after T periods. In

particular, when we consider geometric arrival of the final period with parameter 1− δ, the

time it takes to achieve approximate equivalence remains bounded as the “discount factor”

δ approaches 1.

A number of classical papers, including Easley and Kiefer (1988) and Aghion et al.

(1991), consider more general “learning by experimentation” problems. These authors find

that the DM’s beliefs converge over time, and experimentation motives eventually vanish.

Consequently, the incentive to “exploit” eventually becomes first-order important. Our result

that myopic signal choices are eventually optimal is spiritually similar to theirs. However,

2The sense of generic is the following: for fixed prior belief and linear combinations defining the signals,

eventual equivalence holds for generic signal variances. Likewise, for fixed prior and signal variances, the

result holds for generic linear coefficients.
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the mechanisms for these results are quite different. Easley and Kiefer (1988) and Aghion

et al. (1991) demonstrate the following: if there is a unique myopically optimal policy at the

limiting beliefs, then the optimal policies must converge to this policy. In our setting, every

policy (signal choice) is trivially myopic at the limiting beliefs (a point mass at the true

parameter), so we do not have uniqueness and cannot use this argument to identify long-run

behavior.3 We take the different approach of demonstrating “approximate separability” of

the dynamic problem, which leads to myopic long-run behavior.

In Section 9, we show that our results extend to intertemporal decision problems, where

the DM takes an action at each period and receives an arbitrary state-dependent payoff

depending on all of his actions. This more general framework covers endogenous stopping

problems, which have been extensively studied in the previous literature, and it also allows

for further applications such as dynamic investment and pricing. We note that our results

extend to characterize the optimal sequence of signal choices in these richer environments,

but we do not characterize the optimal sequence of actions (or stopping time).

Section 10 relaxes the exogenous capacity constraint of (observing) the same number of

signals per period. We allow the decision-maker to costly choose how many signal realizations

to acquire at each moment. Our results extend and show that myopic signal choices remain

(eventually) optimal in this more general setting.

Additional extensions of the model are presented in Section 11: our results extend to

i.i.d. states drawn each period and to multiple payoff-relevant states whenever the decision

problem is that of prediction. We also discuss a continuous-time analogue of our setup in

which at every time, the DM chooses attention levels (subject to capacity constraint) that

influence the signals he observes, in the form of diffusion processes. In a detailed appendix,

we extend and strengthen many of our previous results to this setting. For instance, we show

that eventual exact equivalence holds always (instead of generically), and that immediate

exact equivalence occurs under a milder condition of almost independence of prior beliefs.

Sections 12 and 13 discuss interpretations and applications of our main results. For

example, the robustness of our results to the decision problem suggests that a decision-

maker who faces uncertainty or ambiguity over the final decision problem can act in a

way that is (in special cases, immediately, and generically, eventually) best across all such

problems. Our setting is thus one in which robust information acquisition is both possible

3The distinction arises because in our pure learning environment, signal choice by itself does not generate

any payoff. This distinction also applies to other dynamic learning papers, see Section 2 for a list. As far

as we are aware, previous work in the learning literature do not discuss the (eventual) optimality of myopic

information acquisition.
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and simple enough for decision-makers to use in practice. In another interpretation, we

consider information acquisition by a sequence of decision-makers—each acquiring (public)

information to maximize a private objective. Here, our results imply that a social planner

cannot improve on the amount of information aggregated by a long sequence of myopic

decision-makers.

Finally, our immediate equivalence results reveal classes of environments in which the

optimal signal path can be characterized independently of the payoff function. This makes

it tractable to analyze dynamic information acquisition not only in single-agent decision

problems, but also in strategic settings. Our main application in Section 13 leverages this to

extend two results in the literature for information acquisition in games (specifically, Hellwig

and Veldkamp (2009) and Lambert, Ostrovsky and Panov (2017)) by allowing the players

to acquire information over time.

2 Related Literature

2.1 Dynamic Information Acquisition

Our work builds on a literature about optimal information acquisition in dynamic environ-

ments: see e.g. Moscarini and Smith (2001), Fudenberg, Strack and Strzalecki (2017), Che

and Mierendorff (2017), Mayskaya (2017), Steiner, Stewart and Matějka (2017), Hébert and

Woodford (2017), Zhong (2017). Also closely related is a large literature on sequential search,

including Wald (1947), Arrow, Blackwell and Girshick (1949), Weitzman (1979), Morgan and

Manning (1985), Callander (2011), Klabjan, Olszwski and Wolinsky (2014), Olszwski and

Weber (2015), Chick and Frazier (2012), Branco, Sun and Villas-Boas (2012), Ke, Shen and

Villas-Boas (2016), Ke and Villas-Boas (2017), Sanjurjo (2017) and Doval (2017).

The key new feature in our problem is the introduction of flexible correlation structures

across information sources.4 In our main model, the DM chooses between a limited number

of correlated information sources, in contrast to the classic problem of choosing the precision

of information (e.g. Moscarini and Smith (2001)). This question of how to optimally choose

between different “kinds” of information is posed in the concurrent work of Fudenberg,

Strack and Strzalecki (2017), Che and Mierendorff (2017) and Mayskaya (2017). As we

4Among the above papers, Callander (2011) also emphasizes the correlation between different signals (or

search alternatives in his model). But the signals in Callander (2011) are related by a Brownian motion

path, which yields a special correlation structure. His model is further studied in Garfagnini and Strulovici

(2016) and in Bardhi (2017) under different assumptions on agent behavior and different objectives.
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discuss in Section 11, the continuous-time version of our model generalizes Section 3.5 of

Fudenberg, Strack and Strzalecki (2017) to allow for many normally-distributed states and

signals that may be arbitrarily correlated. In contrast, Che and Mierendorff (2017) and

Mayskaya (2017) consider a DM who allocates attention between Poisson sources that provide

(noisy) evidence confirming or rejecting a particular state. Whether Gaussian or Poisson

uncertainty is more appropriate depends on the setting: the Poisson model captures lumpy

information, while Gaussian learning is applicable when small amounts of information arrive

frequently. Additionally, the two approaches are distinguished by the cardinality of the state

space—Che and Mierendorff (2017) and Mayskaya (2017) assume (respectively) a binary and

ternary state space, while we work with a continuous state space. The former approach is

more suited to problems such as learning about whether a defendant is guilty or innocent,

while the latter is more suited to learning about the (real-valued) return to an investment.

The extension of our model to intertemporal decisions (Section 9) bears resemblance to

the problem considered in Steiner, Stewart and Matějka (2017). These authors also study the

interaction between signal choices and actions, and the solution to their dynamic problem

reduces to a series of static optimizations, similar to the role of the myopic strategy in our

framework. Despite these analogies, a fundamental distinction is that Steiner, Stewart and

Matějka (2017) follow the rational inattention literature (Sims (2003)) and allow arbitrary

information to be acquired at entropic information costs. In similar spirit, Hébert and

Woodford (2017) and Zhong (2017) adopt more general “posterior-separable” information

costs to study optimal information acquisition in continuous time.5 Compared to these

papers, our DM has access to a prescribed set of Gaussian signals. In Section 10, we do allow

the DM to also control the intensity of information acquisition by endogenously choosing

how many signals to acquire in each period. But even in that extension, we assume that

the incurred information cost is a function of the number of observations. This is analogous

to Moscarini and Smith (2001) and is distinguished from the above papers that measure

information cost based on belief changes.

Acquisition of Gaussian signals whose means are (special) linear combinations of unknown

states appears previously in the work of Sethi and Yildiz (2016) and also Meyer and Zwiebel

(2007). In particular, Sethi and Yildiz (2016) characterizes the long-run behavior of a DM

who myopically acquires information from experts with independent biases. Their work

inspired our benchmark model in Section 3. Additionally, Hellwig and Veldkamp (2009),

Myatt and Wallace (2012), Colombo, Femminis and Pavan (2014) and Lambert, Ostrovsky

5Like us, Hébert and Woodford (2017) restricts to Gaussian information. Zhong (2017) does not make

this restriction and demonstrates the optimality of Poisson signals for binary state space.
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and Panov (2017) consider games in which players receive Gaussian information only once.6

As we demonstrate in Section 13, our results can be used to add certain kinds of sequential

information acquisition to these strategic models.

A major contribution of our paper, relative to this past work, is that we allow for general

payoff functions (depending on a one-dimensional state), and demonstrate that the optimal-

ity of myopic information acquisition is independent of the objective. In concurrent work,

Bardhi (2017) considers a similar setting of dynamic information acquisition from correlated

normal signals. Relative to Bardhi (2017), we mostly focus the analysis on characterizing the

optimal strategy given a random or endogenous decision time, while Bardhi (2017) extends

in a different direction, analyzing a principal-agent version of optimal search.

2.2 The Value of Information

Since our decision-maker compares signals in every period, our paper relates also to a lit-

erature about the value of information. Blackwell (1951)’s classic work provides a partial

ordering over signals corresponding to when a signal is more valuable than another in every

decision problem. Subsequent work extends this partial ordering by restricting to certain

classes of decision problems: for example, Lehmann (1988), Persico (2000), Cabrales, Goss-

ner and Serrano (2013) and Athey and Levin (2017).

We focus on the family of normal signals and show that the notion of myopic optimal-

ity is invariant to any utility function that depends on θ1 (Lemma 2). This insight that

one-dimensional normal signals admit a complete Blackwell-ordering in the static setting

appeared in Hansen and Torgersen (1974). But we take this insight further and establish

dynamic Blackwell comparison for sequences of normal signals. Specifically, Lemma 3 shows

that for a fixed future decision time, the sequence of signals that leads to the lowest poste-

rior variance Blackwell-dominates any other sequence. Lemma 7 shows that an information

acquisition strategy Blackwell-dominates another for any intertemporal decision problem if

and only if it leads to lower posterior variance at every time.

These results on the comparison of sequential normal experiments generalize the main

result in Greenshtein (1996). To explain the connection, Greenshtein (1996) compares two

deterministic sequences of signals, where each signal is θ1 plus independent normal noise.

His Theorem 3.1 implies that the former sequence is Blackwell-dominant if and only if its

cumulative precision is higher at every time. Note that this statement does not refer to the

6For games of information acquisition beyond the Gaussian setting, see e.g. Persico (2000), Bergemann

and Välimäki (2002), Yang (2015) and Denti (2017). All of these papers restrict to a single signal choice.
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prior beliefs, but if we impose a normal prior on θ1, higher cumulative precision is equivalent

to lower posterior variance. Thus, the result of Greenshtein (1996) would coincide with

ours if θ1 is the only persistent state, and if all signals are independent conditional on θ1.

Nonetheless, our setting features additional correlation (across different signals) through

the persistent states θ2, . . . , θK . Consequently, dynamic Blackwell comparison in our model

necessarily depends on the prior beliefs.7 This feature, together with the endogenous choice

of signals (which may not be deterministic), complicates our problem relative to Greenshtein

(1996).8 Nonetheless, our proof of Lemma 7 bears similarity to Greenshtein (1996) in that

we also construct “sequential Markov kernels.” The difference is that we work with posterior

beliefs rather than signal realizations.9

The comparison of sequential experiments allows us to simplify the analysis for a general

decision problem to the prediction problem. However, even with this reduction, the question

remains as to whether a sequence of signals exists that is best in terms of induced posterior

variances. Our results show that dynamics need not alter the static ordering of signals, and

such a signal sequence does (eventually) exist.

2.3 Statistics

Multi-armed Bandits. Our setting does not fall into the classic Multi-armed Bandit (MAB)

framework, see Gittins (1979) and the survey of Bergemann and Välimäki (2008). The

primary distinction is that in a MAB problem, learning takes place through realized flow

payoffs.10 Our model shuts down this feedback channel and assumes that payoff is only real-

ized at the end. In this sense, what we study is a sequential search problem with endogenous

choice of information.

Starting with Bubeck, Munos and Stoltz (2009), a recent literature studies so-called

“best-arm identification,” where a DM samples for a number of periods before selecting an

arm and receiving its payoff.11 This setup falls under our t-optimal problem, and our results

7This is already the case for static comparisons: as the prior beliefs vary, it is not always the same signal

that leads to the lowest posterior variance about θ1.
8We show that myopic and t-optimal strategies are indeed deterministic, but dynamically optimal strate-

gies could in general depend on signal realizations.
9As explained, this modification is essential due to the dependence on prior beliefs in our setting.

10Another distinction, as discussed in the Introduction, is that the exploitation incentive in bandit problems

directly implies the eventual optimality of myopic strategies. This result does not a priori carry over to our

learning environment. Moreover, the myopic strategy is immediately optimal in MAB only under restrictive

assumptions. See Berry and Fristedt (1988) and Banks and Sundaram (1992).
11Section 1.2 of Russo (2016) provides an excellent discussion of the relevant papers.
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for two states (K = 2) exactly apply to the “identification” between two correlated normal

arms. However, we are not able to handle more than two arms, due to our assumption of an

one-dimensional payoff-relevant state.12

Correlation is the key feature of our setting, but we are not aware of many papers that

study correlated bandits, either under the classical framework or under best-arm identifi-

cation. Rothschild (1974), Keener (1985) and Mersereau, Rusmevichientong and Tsitsiklis

(2009) provide a few stylized cases.

Optimal Design. Our work is closely related to the field of optimal design, initiated by

the the early work of Robbins (1952) (see Chernoff (1972) for a survey). Lemma 3 shows

that t-optimality is equivalent to simultaneously choosing t observations to achieve the most

accurate beliefs. This can be viewed as a Bayesian optimal design problem with respect to

the “c-optimality criterion”, which seeks to minimize the variance of an unknown parameter.

Our analysis is however focused on dynamics, and we utilize the notion of t-optimality only

to establish the equivalence between myopic and dynamic optimality. While most work in

the optimal design literature assumes a prescribed number of observations (corresponding to

a fixed exogenous final period), we have been able to demonstrate the optimality of “greedy

design” for a broad class of objectives.

3 Benchmark Case: Learning from a Biased Signal

Consider a decision-maker who wants to learn an unknown parameter x ∼ N (0, 1). This

parameter is realized at t = 0 and persists across all subsequent periods. The DM has access

to two signals: first, he can observe realizations of a biased signal X t = x + b + εtX , where

b ∼ N (0, 1) is an unknown persistent bias and εtX ∼ N (0, σ2
X) is an independent noise term.

Second, he can observe a signal about the bias, Bt = b + εtB, where εtB ∼ N (0, σ2
B) is an

independent noise term. The noise terms εtX and εtB are i.i.d. over time. To save on notation,

we suppress the time indices on signals throughout, referring to them simply as X and B.

Notice that although signal B does not directly contain any information about x, it helps

12With two arms, the DM only cares about the difference in their expected payoffs. The case with more

than two arms involves multiple payoff-relevant states and a decision problem that is not prediction. Since

multi-dimensional normal signals do not admit a complete Blackwell ordering (Hansen and Torgersen (1974)),

we can no longer prove results for general payoff functions by studying the simpler posterior variance function.

This technical difficulty limits the generalization of our results. We would like to mention that in settings

related to ours, Sanjurjo (2017), Ke and Villas-Boas (2017) and Chick and Frazier (2012) also highlight the

challenge of characterizing the optimal search strategy once there are at least three alternatives.
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the decision-maker to interpret realizations of signal X.

Time t = 1, 2, . . . is discrete, and each period (conditional on being reached) is final with

probability 1 − δ > 0. Below, we refer to δ as the DM’s discount factor. In each period up

to and including the final period, the DM chooses to observe a realization of either signal

X or signal B. At the final period, he provides a prediction a for the unknown state, and

receives the payoff −(a−x)2. We assume that past signal realizations are known at the start

of every period, so that in the final period, the DM bases his prediction on all the signals

acquired so far. Which signal should the DM choose to observe in each period?

Let us first consider the choices of the myopic decision-maker, who acquires information

as if he were to face the prediction problem in the current period (corresponding to δ = 0).

When asked to predict the state, the DM’s expected payoff is maximized by predicting the

posterior mean of x, and his payoff equals the negative of his posterior variance. Because

the DM’s prior and the available signals are Gaussian, his posterior belief about x is also

Gaussian. Crucially, the DM’s posterior variance can be expressed as the following function

of qX , the number of times he has observed signal X, and qB, the number of times he has

observed signal B:

f(qX , qB) := 1− 1

/(
1 +

σ2
B

σ2
B + qB

+
σ2
X

qX

)
. (1)

To derive this posterior variance function, we (without loss) re-order the signal acquisitions

so that the qB realizations of signal B are observed first. Following these observations, the

DM’s posterior belief about b has variance 1/
(

1 + qB
σ2
B

)
. Let X be the random variable

that is the sample mean of qX realizations of signal X. Then, the DM’s belief over (x,X),

conditional on the first qB observations of B, is jointly Gaussian with covariance matrix13 1 1

1 1 + 1
1+

qB
σ2
B

+ 1
qX
σ2
X


and (1) follows from the standard formula for Gaussian conditional variance.

Given any history of observations summarized by the pair (qX , qB), the myopic decision-

maker will choose to observe signal X if and only if f(qX + 1, qB) < f(qX , qB + 1). Using (1),

this is equivalent to the condition that

(σ2
B + qB)(1 + σ2

B + qB)σ2
X > σ2

BqX(1 + qX). (2)

Thus, on the myopic signal path, the DM alternates between observing strings of X’s and

13Observe that prior to observing any realizations of signal X, the DM believes x and b to be independent.
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strings of B’s. From (2) it can be further shown that over many periods, the number of

X-acquisitions divided by the number of B-acquisitions converges to the ratio σX/σB.14,15

The signal acquisition path described above turns out to be not only myopically optimal,

but also dynamically optimal for any discount factor δ. Lemma 1 below will be key to

showing this equivalence, and it says the following: fix an arbitrary period t and a signal

path h = (s1, s2, . . . ) ∈ {X,B}∞, where the sequence follows the myopic strategy in (2)

beginning in period t. Suppose the DM deviates at that period to some other signal and

subsequently follows the myopic strategy. Call the deviation path h̃ = (s̃1, s̃2, . . . ). The

lemma below states that the DM’s posterior variance is smaller at every period along signal

path h than along h̃.

Lemma 1. Var(x |ht) ≤ Var(x | h̃t) holds at every t.

Proof. We suppose st = X, so that the deviation is to s̃t = B; the other case where st = B

follows along identical arguments. Write t for the first period after t at which st = B.

Observe that if (2) holds at some history (qX , qB), then it continues to hold for all larger qB.

This means that the incentive to choose X at any period t ∈
(
t, t
]

along signal path h̃ is

greater than the incentive to play X at period t− 1 along the path h. It follows that

(st, . . . , st) = XXX · · ·XB

(s̃t, . . . , s̃t) = BXX · · ·XX
(3)

After t periods, the two signal paths coincide in the number of X signals and B signals that

have been acquired so far. Under myopic behavior, the same signal is acquired along either

path at every period t > t.

Thus it is clear that Var(x |ht) = Var(x | h̃t) at every t < t and t ≥ t.16 Now consider

any period t with t ≤ t < t. Then,

Var(x | h̃t) = Var(x |ht−1BX · · ·XX)

= Var(x |ht−1XX · · ·XB)

≥ Var(x |ht−1XX · · ·XX) = Var(x |ht),

14In the special case that σX and σB are positive integers, the myopic signal path is eventually periodic,

and the limiting ratio σX/σB is fulfilled with the shortest period possible. For example, if σX = σB , then

after sufficiently many periods, the DM will observe XBXB · · · and not XXBBXXBB. Formally, let d

denote the greatest common divisor of σX and σB . Then the period length is (σX + σB)/d.
15Notice that the smaller the variance σ2

X is, the less often signal X is observed (asymptotically) relative

to signal B, and vice versa. This is a general feature of the solution.
16The history ht includes all signals acquired up to and including period t.
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using exchangeability of signals in the second equality, and myopic optimality along signal

path h in the final inequality. This completes the argument.

From this lemma and the one-shot deviation principle, it follows that the myopic strategy

is also dynamically optimal. Moreover, since every history is reachable by a sequence of one-

shot deviations from the myopic signal path, repeated application of Lemma 1 yields that

the myopic strategy achieves the lowest posterior variance at every time among all possible

strategies. As mentioned previously, we call this stronger property t-optimality for each t.

The subsequent section defines a general class of information acquisition problems which

takes this example as a special case. We move beyond this example in two main directions:

first, we allow for more than two sources and arbitrary correlation patterns, and second, we

allow for arbitrary payoff functions.

4 General Model

4.1 Setup

The benchmark model considered in Section 3 can be seen as a special case of the following

model. There are K persistent states θ1, . . . , θK ∼ N (µ0, V 0), where µ0 ∈ RK denotes the

vector of prior means and V 0 is a K ×K positive-definite prior covariance matrix.

The DM has access to K different signals,17 each of which is a linear combination of the

unknown states and a Gaussian noise term

X t
i = 〈ci, θ〉+ εti, εti ∼ N

(
0, σ2

i

)
.

where each ci = (ci1, . . . , ciK)′ is a constant K × 1 vector and θ = (θ1, . . . , θK)′ is the vector

of unknown states.18 Throughout, let C be the matrix of coefficients whose i-th row is c′i.

Time t = 1, 2, . . . is discrete, and in each period the DM chooses one of the K signals to

observe. At some unknown final period t, he will face a decision problem, in which he chooses

an action a from a set A and receives payoff ut(a, θ). Each ut is an arbitrary state-dependent

and time-dependent utility function. The time of decision is governed (exogenously) by an

arbitrary full-support distribution. Special cases include geometric discounting, in which

17Our analysis directly extends to situations where the number of signals is less than the number of states,

but the case where there are more signals than states presents additional challenges, since the DM need not

observe all the signals in order to learn (the payoff-relevant state θ1). The question of how many (and which)

signals are acquired in that case is addressed in Liang and Mu (2017).
18Here and later, we exclusively use the apostrophe to denote vector or matrix transpose.
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every period (conditional on being reached) has a constant probability of being final, as well

as Poisson arrival of the final period.

We assume in the main model that there is a single payoff-relevant state.

Assumption 1 (Single Payoff-Relevant State). At every period t,

ut(a, θ1, θ−1) = ut(a, θ1) does not depend on θ−1.

Section 11 discusses the case of multiple payoff-relevant states.

We also assume that the decision problem is non-trivial in the following way.

Assumption 2 (Payoff Sensitivity to Mean). For any period t, any variance σ2 > 0 and

any action a∗ ∈ A, there exists a positive measure of µ1 for which a∗ does not maximize

E[ut(a, θ1) | θ1 ∼ N (µ1, σ
2)].

In words, holding fixed the DM’s belief variance, his expected value of θ1 affects the optimal

action to take at time t.19

Other than these assumptions we have made, our results are robust to the specifics of

the decision problem. In Section 9, we show that our main results generalize to endogenous

stopping, where the DM chooses an optimal time to stop acquiring information,20 and in-

tertemporal decision problems, in which the DM both acquires a signal and also takes an

action at in each period. For expositional clarity, we work with the simpler payoff function

ut(a, θ) with exogenous stopping in the main model.

Finally, we impose a mild assumption on the informational environment.

Assumption 3 (Full Rank and Exact Identifiability). The matrix C has full rank, and no

proper subset of row vectors of C spans the coordinate vector e′1.21

This assumption requires that no subset of signals fully reveals the payoff-relevant state.

Heuristically, the DM has to observe each signal infinitely often to recover the value of θ1.

We discuss below several interpretations for this model of information acquisition.

19A sufficient condition for Assumption 2 is that for every t and every a∗, there exists some other action

â such that ut(â, θ1) > ut(a
∗, θ1) as θ1 → +∞ or as θ1 → −∞. That is, we require that the two limiting

states θ1 → +∞ and θ1 → −∞ disagree about the optimal action. This is true for all natural applications

of the model.
20Whether the time of decision is exogenous or endogenous depends on the specific setting. For example,

a politician acquiring information about a policy may want to best cast her vote at a future meeting, but

her objective could also be to propose an alternative policy whenever she feels sufficiently informed. Under

the assumptions of our model, however, either timing yields (approximately) the same optimal signal path.
21That is, the inverse matrix C−1 exists, and its first row consists of non-zero entries.
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4.2 Interpretations

Learning from signals with correlated biases. The first interpretation takes the payoff-

irrelevant states θ2, . . . , θK to be unknown biases, so that the problem is one of dynamically

learning from biased news sources or biased experts. The coefficient matrix C allows for

general correlation structures across the biases of the sources; thus, the decision-maker can

learn about the bias of one source by observing signal realizations from another. We assume

that the DM knows the correlation structure, so that he can use observations across the

sources to de-bias his beliefs.

Learning a composite of unknowns. A second interpretation takes the payoff-relevant

state θ1 to be a linear combination of unknowns θ̃1, . . . , θ̃K about which the decision-maker

can learn independently.22 Such a structure emerges in a variety of settings: for example, the

DM may care about the value of a conglomerate that consists of several companies, where

each company i is valued at θ̃i. The DM wants to learn θ1 := θ̃1 + · · · + θ̃K but has access

to information about each company i’s value θ̃i separately.

As another example, suppose a political group wants to learn the average perspective

in the population towards an issue. There are K demographics, where the proportion of

the population in the k-th demographic is pk. The distribution of perspectives in the k-th

demographic is normal with unknown mean µk and known variance σ2
k, so that the average

perspective is θ1 :=
∑

k pkµk. The group can learn about θ1 by sampling individuals from

the population, but it is not feasible to sample individuals directly according to p. The

available polling technologies are modeled as K distributions q(1), q(2), . . . , q(K) ∈ ∆K−1 over

the demographics, and individuals can be sampled from any of these distributions.

Precision-accuracy tradeoff. In a final interpretation, suppose that the decision-maker

observes signals from some distribution, but does not know certain parameters governing

this distribution. For example, a scientist needs to measure the acidity of a substance using

a potentially biased instrument. There are two sources of error: measurement error due

to natural (idiosyncratic) fluctuations in the environment, and systematic error due to the

(persistent) bias of the instrument he uses. He can increase the precision of his estimate by

repeatedly measuring the substance, or he can make his estimates more accurate by learning

about the bias of the instrument (for example, by testing the instrument on a substance

with known acidity). The scientist’s information acquisition problem can be abstracted into

the benchmark case considered in Section 3.

22This interpretation is equivalent to the model we presented, under suitable linear transformations.
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5 Notation and Definitions

5.1 Strategies, Payoffs, and Beliefs

Let [K] = {1, 2, . . . , K} denote the set of all signals. At the beginning of any period t, the

DM faces a history ht−1 ∈ ([K] × R)t−1 = H t−1 consisting of his previous signal choices as

well as the realized signal values. A strategy is a measurable map from all finite histories

to signals—that is, S : ∪t≥1H t−1 → [K], where S(ht−1) represents the signal choice in

period t following history ht−1.23 Together with the prior belief that θ ∼ N (µ0, V 0), each

strategy induces a joint distribution over possible states and infinite histories: Θ × H∞ =

R× ([K]× R)∞.

Since the DM’s prior and available signals are Gaussian, his posterior belief about θ is

also Gaussian at every history. Specifically, if the DM’s belief at the beginning of a period is

θ ∼ N (µ, V ), then a single observation of signal i updates his belief to θ ∼ N (µ̂, V̂ ), where

the posterior covariance matrix

V̂ = φi(V )

is a deterministic function of the prior covariance matrix V (indexed to the signal i). On the

other hand, the posterior mean µ̂ depends on the signal realization, and it is the following

random variable:

µ̂ ∼ N (µ, V − V̂ ).

Note that the distribution of the posterior mean has variance V −V̂ , so its degree of dispersion

exactly equals the amount of uncertainty reduction from prior to posterior beliefs.24

At the final period, the DM’s posterior mean and variance about θ1 are sufficient to

determine his optimal action. Let θ1 ∼ N (µ1, V11) be his (marginal) belief about θ1, where

µ1 is the first coordinate of the vector µ, and V11 is the (1, 1) entry of the matrix V . Let

rt(µ, V ) = rt(µ1, V11) = max
a∈A

E[ut(a, θ1) | θ1 ∼ N (µ1, V11)] (4)

be the (maximum) expected flow payoff of a DM with arbitrary belief θ ∼ N (µ, V ), condi-

tional on period t being final. For notational simplicity, we write the DM’s belief about θ

given history ht as θ ∼ N (µt, V t).

We represent the on-path behavior of any strategy S in the following way, tracking the

number of acquired signals of each type up to and including a given period.

23Throughout, we assume without loss that the DM uses a pure strategy.
24This can be shown using the formula for conditional Gaussian variance. We omit the computation.
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Definition 1. Fix a strategy S and any infinite history h realized under S. The division

over signals at time t along history h is denoted by the vector qS(t) = (qS1 (t), . . . , qSK(t)),

where qSi (0) ≡ 0 and qSi (t) = qSi (t − 1) + 1 (S(ht−1) = i) . That is, qSi (t) counts the number

of periods in which signal i is observed, up to and including period t. Without referencing

the history h, the division at time t is just the random vector qS(t).

5.2 Optimality Criteria

We now define the notions of myopic, dynamically optimal, and t-optimal behavior that are

the focus of this paper.

As usual, call a strategy myopic, or myopically optimal if the DM’s signal choice in

each period maximizes the expected flow payoff in the current period.25 For the dynami-

cally optimal problem, write π(t) for the ex-ante probability that period t is final. Then,

the forward-looking DM faces a (time-inhomogenous) Markov decision problem with value

function given by the following Bellman equation:

U t−1 (µt−1, V t−1) = max
i∈[K]

E
[
π(t) · rt

(
µt, φi

(
V t−1))+ U t

(
µt, φi

(
V t−1))

| µt ∼ N
(
µt−1, V t−1 − φi

(
V t−1))] . (5)

To interpret, a DM who observes signal i in period t updates his belief about the state

vector to θ ∼ N (µt, φi(V
t−1)). With probability π(t), this is the final period and he receives

rt(µ
t, φi(V

t−1)) by taking the optimal action. Otherwise he continues to the next period

and expects to receive U t(µt, φi(V
t−1)) based on the updated belief. This value function

U t−1(µt−1, V t−1) is the total payoff to be gained following history ht−1 from the ex-ante

perspective; it is not discounted.

We note that due to the assumption of a single payoff-relevant state, the utility function

U t−1(µt−1, V t−1) depends on µt−11 and V t−1, but not on the expected value of the remaining

states.26 Thus, we will (without loss) restrict to Markovian strategies that depend only

on the simpler tuple (t, µt−11 , V t−1) rather than (t, µt−1, V t−1). We will further say that a

Markovian strategy is deterministic if it does not condition on signal realizations. Such a

25That is, S is myopic if at every history ht−1, the signal choice S(ht−1) is the signal i that maximizes the

expected flow payoff E[rt(µ
t, φi(V

t−1)] given the posterior belief µt ∼ N (µt−1, V t−1 − φi(V t−1)). Note that

by this definition, there can be multiple myopic strategies.
26Knowing µt−11 and V t−1 is sufficient to determine the evolution of µt1 and V t. It is however not enough

for the DM to remember only the variance of θ1, because processing future signals requires knowing how θ1

is correlated with the other states.
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strategy depends only on the calendar time t and the current covariance matrix V t−1. If a

Markovian strategy also conditions on the expected value of θ1, it is called stochastic.

Whether it be deterministic or stochastic, a Markovian strategy S is dynamically optimal

if at every history ht−1 with associated belief θ ∼ N (µt−1, V t−1), the signal choice S(ht−1)

is a maximizer on the RHS of the Bellman equation (5). This definition requires optimality

even at off-path histories.27

Finally, we define a property of strategies that we will refer to as t-optimality.

Definition 2. A strategy is t-optimal if it maximizes E [rt(µ
t, V t)], the expected flow payoff

in period t, among all strategies. The expectation is taken over the distribution of posterior

beliefs θ ∼ N (µt, V t) at the end of period t, induced by the strategy.28

Intuitively, a strategy achieves t-optimality if a DM who knows period t to be final will follow

the strategy. This can be understood as a limiting case of dynamic optimality, where the

distribution over periods is degenerate (i.e. fixed final period).

6 Invariance to the Decision Problem

Our first set of results delivers a key simplification of the analysis.

Consider the special case of the main model in which the DM’s expected flow payoff is

rt(µ, V ) = −V11,

where V11 is the posterior variance about θ1. This would arise, for example, if the decision

problem were prediction of θ1 and the payoff were quadratic loss, as in Section 3.29

In this case, because signal realizations do not affect the posterior covariance matrix, we

can restrict to deterministic strategies with the property that the signal choice at history

ht−1 only depends on t and the posterior covariance matrix V t−1.

We will show now that the development of myopic optimality and t-optimality for the

prediction problem is without loss: any myopic strategy in the prediction problem is myopic

in any decision problem, and a strategy is t-optimal for a general decision problem if and

only if it is t-optimal for prediction.

27A slightly weaker definition of dynamic optimality is that S simply maximizes the ex-ante payoff

U0(µ0, V 0). Because we are concerned in this paper with the optimality of the myopic strategy, we will

work with the stronger definition that imposes optimality at all histories.
28The more general notion of t-optimality following a given history is defined and used in the appendix.
29To recall, the DM chooses a ∈ R and receives u(a, θ1) = −(a− θ1)2. Then he optimally chooses a to be

the posterior mean of θ1, and his expected payoff equals the negative of his posterior variance about θ1.
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Intuitively, a myopic DM concerned about immediate payoffs only seeks to reduce the

uncertainty about θ1, but does not care about how correlated θ1 may be with the other states

(which helps future updating). By normality, when we restrict to static decision problems

that depend on θ1, the signal that leads to the lowest posterior variance about θ1 is in fact

best in Blackwell’s order (Blackwell (1951)). Thus we have

Lemma 2. Fix an arbitrary decision problem satisfying Assumption 2. A strategy is myopic

if and only if it is myopic for prediction (minimizing current posterior variance about θ1).

The insight for the “if” direction is discussed above and has appeared for instance in Hansen

and Torgersen (1974). For the “only if” part, Assumption 2 ensures that the relation between

posterior variance and Blackwell ordering is strict: a signal with strictly less noise leads to

strictly higher flow payoff. Henceforth, when working with myopic strategies, we can restrict

to deterministic strategies that simply minimize the variance about θ1 at each step.

The same equivalence turns out to hold for t-optimality (see Definition 2). To see this,

observe that our previous argument regarding Blackwell ordering implies that given a fixed

number of observations t, the optimal set of t signals is independent of the decision problem.

While our DM faces sequential acquisition and may condition later signal choices on earlier

signal realizations, this additional flexibility turns out not to be advantageous.30 Thus, for

a fixed final period, the optimal signal sequence is also invariant to the decision problem.

Our next lemma formalizes this, and states that a strategy is t-optimal if and only if

with probability 1, there is no way to reduce posterior variance by redistributing the total

number of past observations across different signals. To state the lemma, we let f(q1, . . . , qK)

denote the DM’s posterior variance function given qi observations of each signal i. This

posterior variance function plays a key role in our analysis, and Appendix A describes its

key properties.

Lemma 3. Fix an arbitrary decision problem satisfying Assumption 2. A strategy S is

t-optimal if and only if the induced (random) division qS(t) (see Definition 1) satisfies

qS(t) ∈ argmin
(q1,...,qK):qi∈Z+,

∑
i qi=t

f(q1, . . . , qK).

with probability 1.31

30This is roughly because posterior variance at the final period does not depend on signal realizations.
31Our proof in Appendix B shows, somewhat surprisingly, that the DM’s expected flow payoff in period

t is unchanged even if his signal choices lead to different divisions along different histories, so long as each

realized division minimizes posterior variance.
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Any division (q1, . . . , qK) in the argmin above is called a t-optimal division.

Using Lemma 2 and 3, we can deduce that for the informational environment discussed

in Section 3, any myopic strategy achieves t-optimality and dynamic optimality for arbitrary

time-dependent payoff functions. We show in the following section that this result extends

to several classes of informational environments.

Outside of such environments, the dynamically optimal strategy for general decision

problems does not admit a similar reduction (to the prediction problem). For example,

compare two signal sequences X1X2 and X3X4 where X1 is myopically better than X3 but

the pair X3X4 yields lower posterior variance than X1X2. Which sequence gives rise to

higher overall expected payoff will in general depend on the DM’s decision problem and on

discounting. This difficulty makes it harder to establish the equivalence between dynamic

and myopic (or t-) optimality. We will nevertheless show in Section 8 that the dynamically

optimal strategies are eventually deterministic and myopic in generic environments.

7 Sufficient Conditions for Immediate Equivalence

In Section 3, we saw an environment in which the myopic, dynamically optimal, and t-

optimal strategies agree from period 1. Here we generalize this equivalence to several classes

of environments. One sufficient condition is that the signals are separable in the following

sense: The informational environment (V 0, C, {σ2
i }) is separable if there exist convex func-

tions g1, . . . , gK and a strictly increasing function F such that the posterior variance function

satisfies

f(q1, . . . , qK) = F (g1(q1) + · · ·+ gK(qK)).

Intuitively, separability ensures that observing signal i does not change the relative value

of other signals, but strictly decreases the marginal value of signal i relative to every other

signal.32 The benchmark case in Section 3 falls into this class of environments, as does its

generalization below:

Example 1 (Multiple Biases). There is a single payoff-relevant state θ ∼ N (0, v0). The DM

has access to observations of X = θ + b1 + · · · + bK−1 + εX , where each bi is a persistent

bias independently drawn from N (0, vi), and εX ∼ N (0, σ2
X) is a noise term i.i.d. over time.

Additionally, he can learn about each bias bi by observing Bi = bi + εi, where εi ∼ N (0, σ2
i ).

32While we can write f in terms of V 0, C and {σ2
i }, this definition is strictly speaking not a condition on

the primitives.
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This environment is separable.33

Another class of separable environments occurs when the signals provide orthogonal (thus

independent) information:

Example 2 (Orthogonal Signals). Suppose the DM’s prior is standard Gaussian (V 0 = IK),

and the row vectors of C are orthogonal to one another. This environment is separable.34

By the same argument as in Section 3, in a separable environment, any strategy that is

myopic for prediction is t-optimal for prediction at every time. The reduction lemmata in

Section 6 enable us to extend the equivalence to arbitrary decision problems.35

Proposition 1. Suppose the informational environment is separable. Then any myopic strat-

egy is t-optimal at every time, and it is dynamically optimal. Conversely, any dynamically

optimal strategy is myopic and t-optimal at every time.

An alternative sufficient condition for the myopic strategy to be immediately optimal is

symmetry across the signals: The informational environment (V 0, C, {σ2
i }) is symmetric if

the posterior variance function f(q1, . . . , qK) is symmetric in its arguments.

An example of a symmetric environment is the following.

Example 3. There are three states θ1, θ2, θ3 independently drawn from N (0, 1) and three

signals X1 = θ2 + θ3 + ε1, X2 = θ1 + θ3 + ε2 and X3 = θ1 + θ2 + ε3. The noise terms ε1, ε2, ε3

have the same variance. Suppose the DM cares about θ1 + θ2 + θ3, then the signals are

symmetric.

In a symmetric environment, the natural strategy of observing the signal that has been

least observed turns out to be myopically, dynamically and t-optimal. We have

Proposition 2. Suppose the informational environment is symmetric. Then any myopic

strategy is t-optimal at every time and dynamically optimal. Any dynamically optimal strat-

egy is myopic and t-optimal at every time.

33The DM’s posterior variance about θ is given by

f(q1, . . . , qK−1, qX) = v0 −
v20

v0 +
σ2
X

qX
+
∑K−1
i=1

(
vi −

v2i
vi+σ2

i /qi

) .
34The posterior variance is

[
IK − C ′

(
CC ′ + diag

(
σ2
1

q1
, . . . ,

σ2
K

qK

))−1
C

]
11

By orthogonality, CC ′ is a diag-

onal matrix. Thus
(
CC ′ + diag

(
σ2
1

q1
, . . . ,

σ2
K

qK

))−1
is also a diagonal matrix, and it is separable in q1, . . . , qK .

35To derive the equivalence with dynamic optimality, we use the observation that if a strategy maximizes

the flow payoff at every period, then it also maximizes the ex-ante expected payoff for arbitrary discounting.
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Finally, we also show that for the case of two signals (K = 2), even without the separabil-

ity or symmetry assumption, myopic information acquisition achieves optimality whenever

the vectors defining the signals are not too close to collinear—see Appendix I for details.

8 Eventual Equivalence

8.1 A Counterexample to Immediate Optimality

The previous section provided conditions under which the myopic and dynamically optimal

signal paths coincide at every period, and are moreover t-optimal for every t. Why might

these equivalences fail? We provide a simple example below, building on the benchmark case

considered in Section 3.

Example 4. There are three states θ, b1, b2 independently drawn from N (0, 1), where only θ

is payoff-relevant. The DM chooses from the three signals X = θ+ b1 + εX , B1 = b1 + b2 + ε1,

and B2 = b2 + ε2, where all signal variances are equal to 1. Given a history (qX , q1, q2), the

DM’s posterior variance about θ is

f(qX , q1, q2) = 1− 1

2 + 1
qX
− 1

1+ 1
q1

+ 1
1+q2

. (6)

The derivation is similar to (1) in Section 3, so we omit it. From this formula, it can be

shown that the myopic decision-maker’s initial signal path is XXB1XX, which achieves

the (unique) t-optimal division (4, 1, 0) at period 5. However, the myopic DM’s next signal

acquisition is B1, so that the myopic division becomes (4, 2, 0), while the unique t-optimal

division for t = 6 is (3, 2, 1), as f(3, 2, 1) < f(4, 2, 0).36

The myopic strategy fails to achieve t-optimality at t = 6 for the following reason: after

the initial history XXB1X, the acquisition of signal X is myopically better than either B1

or B2. But looking forward two periods, the pair of signals B1B2 is better than any pair

that includes signal X (in particular the myopic choices XB1).

From this example, we see how complementarities between pairs of signals (such as be-

tween B1 and B2 above) can render the myopic choices sub-optimal.37 Nonetheless, we will

36We point out that in period 6, the myopic DM is in fact indifferent between observing B1 or B2; if he

observes B2 instead, his division would be (4, 1, 1), which is also not t-optimal.
37However, if signals are fully divisible, then even a myopic DM can take advantage of the complementarity

between B1 and B2 by devoting equal attention to them. In continuous time, the myopic strategy in Example

4 is in fact optimal from the beginning. See Appendix M for details.
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show that the strength of such complementarities vanishes at late time periods, so that the

myopic signal path eventually achieves approximate dynamic and t-optimality. Moreover, in

generic environments the myopic path is eventually exactly optimal.

8.2 Main Results

Below, we use m(t) = (m1(t), . . . ,mk(t)) to denote the division over signals under a determin-

istic myopic strategy, d(t) to denote the (random) division under an arbitrary dynamically

optimal strategy, and finally n(t) to denote a t-optimal division at time t, according to the

definition in Lemma 3.38 Thus mi(t) (resp. di(t), ni(t)) counts the number of times a myopic

(resp. forward-looking, t-optimal) DM observes signal i in the first t periods.

Our first result in this section says that the differences (in terms of signal counts) across

the three optimality criteria become minimal after sufficiently many periods. Specifically, at

every late period t, the number of times any signal has been observed under myopic, dynamic

and t-optimality can differ by at most 1.

Before stating the result, we impose a weak regularity condition. Fix any proper subset of

signals I. We require that some signal j outside of I strictly decreases posterior variance about

θ1 whenever each signal in I has been observed sufficiently many times. This assumption

guarantees that the dynamically optimal strategy observes each signal infinitely often along

every history of signal realizations. We comment that the assumption is satisfied for generic

informational environments.39 Additionally, it is not needed for the equivalence between

myopic and t-optimality, or in the continuous-time variant of our model (Appendix M).

Assumption 4 (Strict Variance Decrease). For any proper subset of signals I, there exists

j /∈ I and ε > 0 such that: for any division (q1, . . . , qK) with qj = 0 and qi sufficiently large

(∀i ∈ I), it holds that f(qj + 1, q−j) < f(qj, q−j)− ε.

Our eventual (approximate) equivalence result is now stated.

Theorem 1 (Eventual Gap of One). Suppose the informational environment (V 0, C, {σ2
i })

satisfies Assumption 3 and 4. There exists a large finite T such that the following holds: for

38Although non-deterministic myopic strategies may exist due to tie-breaking, any realized division over

signals under such strategies also occurs under a deterministic strategy. Since our results below are stated

in terms of these divisions, they apply to all myopic strategies, deterministic or stochastic.
39Zero marginal values occur only if ∂jf(q1, . . . , qK) = 0. Fixing V 0 and C, such an equation (for any

q1, . . . , qK) induces a non-trivial polynomial relation among the signal variances (σ2
i ). Since the number of

possible tuples (q1, . . . , qK) is countable, zero marginal values only happen in non-generic situations.
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any decision problem and any time t ≥ T ,40

(a) |mi(t)− ni(t)| ≤ 1,∀i.

(b) |di(t)− ni(t)| ≤ 1, ∀i for every realization of d(t).

(c) |di(t)−mi(t)| ≤ 1,∀i for every realization of d(t).

We provide a brief intuition for this result. For each k, define a new state θ̃k = 〈ck, θ〉, so

that the signal Xk is simply θ̃k plus independent Gaussian noise. The payoff-relevant state θ1

can be rewritten as a linear combination of the linearly transformed states θ̃1, . . . , θ̃K . Our

key observation is that the DM’s posterior belief over these transformed states (θ̃1, . . . , θ̃K)

becomes almost independent after sufficiently many observations of each signal. Formally, the

posterior covariance between any pair of transformed states is small relative to the posterior

variance about either state, and the ratio converges to zero as the number of observations

grows to infinity.

Based on the insight that different signals are approximately independent from each other,

we show that any complementarity or substitution effect across the signals is eventually weak.

The property of “de-correlation” alone is not sufficient to drive this latter conclusion. While

de-correlation gives the magnitude of the posterior covariance matrix, the complementarity

or substitution between two signals is essentially a function of how the posterior covariance

matrix varies with the acquisition of extra signals (i.e. its derivatives and second derivatives).

To this end, we develop a key technical lemma (Lemma 5 in Appendix A) regarding the

second derivatives of the posterior covariance matrix. This lemma says that the effect of

observing a signal on the marginal value of other signals is eventually second-order to its

effect on the marginal value of (further realizations of) the same signal.41 Thus, observing

a particular signal may change the ordering of other signals, but the cardinal extent of

such change is limited. We conclude that the dynamic information acquisition problem is

“near-separable” at sufficiently late periods, and it is approximately without loss to treat

the dynamic problem as a series of static problems, for which the myopic solution is optimal.

See Appendix E for the formal proof.42

40We remark that the results stated here only compare the on-path behavior of myopic, dynamically

optimal and t-optimal strategies. However, a slight modification of our proof shows that there exists T such

that following any initial history, the myopic, dynamically optimal and t-optimal divisions differ by at most

1 after T periods (a similar statement holds for Theorem 2 below). We omit the details.
41By Lemma 5, this is true along any signal path in which the signal counts go to infinity proportionally.

In Appendix D, we show such proportionality for the myopic, dynamically optimal and t-optimal strategies.
42We mention that eventual equivalence generalizes to a setting where the DM has access to “free signals”

that need not be acquired. The proof based on Lemma 5 is unchanged.
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One may wonder whether the “gap of one” stated in the theorem can be dropped. Indeed,

in generic informational environments, it turns out that any myopic strategy eventually

coincides (exactly) with a dynamically optimal strategy and also achieves t-optimality at

every period (see Appendix G for the proof):43

Theorem 2 (Generic Eventual Equivalence). Fix prior covariance matrix V 0 and linear

coefficients C. For generic signal variances {σ2
i }Ki=1 (with Lebesgue measure 1), there exists

T ∗ such that m(t) = d(t) = n(t) at every time t ≥ T ∗, for any decision problem.

In fact, even the “generic” qualifier can be dropped when K = 2 (see Appendix I), but it

cannot when K > 2: in Appendix J, we show that in the previous Example 4, all myopic

strategies fail to achieve t-optimality infinitely often. We also provide another example in

which the myopic division differs from the dynamically optimal division infinitely often, for

arbitrarily low discounting. These examples suggest that our results are best possible.44

Finally, if we allow the DM to observe B signals (including repetitions) each period, then

with sufficiently large B, we return the immediate equivalence results.

Theorem 3 (Immediate Equivalence under Many Observations). Fix any informational

environment satisfying Assumption 3, and suppose that the DM acquires B signals each

period. Then, if B is sufficiently large, any myopic strategy achieves t-optimality at every

time and is dynamically optimal.

Intuitively, this is because the myopic strategy with B observations per period is equiva-

lent to a strategy that plans B periods forward in our main model. The question of how large

B needs to be for immediate equivalence to obtain is related to the question of how large

the period T needs to be for the signal paths to be approximately equivalent (in Theorem

1). We provide now a bound for this T .

8.3 Time to Eventual Equivalence

Using the linear transformation described above, we may consider states θ̃1, θ̃2, . . . , θ̃K ∼
N (µ, V ) such that the payoff-relevant state is θ∗ = 〈w, θ̃〉 for some fixed vector w, and the

available signals are X t
i = θ̃i + εti with εti standard Gaussian noises independent from each

other and over time. The primitives of this transformed informational environment are the

43The key new technical tool is use of results on the Diophantine approximation (approximating real

numbers by rationals). See Appendix G for details.
44Nonetheless, these counterexamples (to eventual exact equivalence) rely on the discreteness of our main

model. The eventual gap of one vanishes in the continuous-time limit, as we show in Appendix M.
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weight vector w and the prior covariance matrix V . We are interested in how large the

period T has to be for Theorem 1 to apply. The following upper bound assumes that w is

the vector of all 1’s, although the method of proof easily generalizes to arbitrary w:

Theorem 4. Let R denote the operator norm of the matrix V −1.45 Suppose w = (1, . . . , 1)′,

then |mi(t)− ni(t)| ≤ 1 whenever t ≥ 24(R + 1)K2.46

We can derive similar bounds for the dynamically optimal division by incorporating Assump-

tion 4. The statement is somewhat cumbersome, so we will not give the details here.

Theorem 4 shows that the time to eventual equivalence depends on how long it takes for

(transformed) states to “de-correlate,” at which point potential complementarity or substi-

tution across signals is sufficiently weak.47 This depends on two primitives:

First, the time to eventual equivalence is increasing in the number of signals K. Intu-

itively, the greater the number of signals K, the more pairs of signals there are that need to

de-correlate. Second, the bound is increasing in the norm of V −1. To interpret this, suppose

first that we adjust the precision of the DM’s prior but fix the degree of correlation, for

example by scaling V by a factor less than 1. Then, the norm of V −1 increases, and equiva-

lence between myopic and t-optimality is attained later. This is because a more precise prior

can be understood as “re-scaling” the state space by shrinking all states towards zero. Since

signal noise is not correspondingly rescaled, each signal now reveals less about the states,

and de-correlation takes longer.

In contrast, suppose we hold prior precision fixed and increase the degree of prior correla-

tion. This would correspond to fixing the diagonal entries of V and increasing the off-diagonal

entries, so that the variances about individual states are unchanged but their covariances

become larger in magnitude. Then, the entire matrix V gets closer to being singular, the

norm of V −1 increases and the time to equivalence is longer. That is, greater correlation in

the prior requires more time to de-correlate.

45The operator norm of a matrix M is defined ‖M‖op = sup
{
‖Mv‖
‖v‖ : v ∈ RK with v 6= 0

}
.

46Our bound is of order K3 for almost all covariance matrices V , for the following reason: the positive-

definite matrix V can be written as U ·U ′ for some matrix U . Imagine that the entries of U are drawn i.i.d.

from a fixed distribution with finite mean and variance. Then a result in random matrix theory states that

‖U−1‖op has order
√
K with probability approaching 1 as K → ∞ (Rudelson and Vershynin (2008), Tao

and Vu (2010)). Thus ‖V −1‖op has order at most K.
47Note that Theorem 4 only provides an upper bound on the exact number of periods it takes for myopic to

become optimal, which would in general depend on the utility function and/or discount factor. Nonetheless,

the comparative statics results in the subsequent paragraphs hold not just for the upper bound we derive,

but also for the exact time. For instance, in the continuous-time limit of our model, doubling the prior

precision also doubles the time to equivalence.
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With sufficiently many observations, the DM’s belief simultaneously becomes more pre-

cise and less correlated, and these two effects are confounded in our previous result that

equivalence “eventually” occurs. It is tempting to think that eventual equivalence follows

from the (eventual) precision of the DM’s belief. However, our discussion above shows that

the important feature is not precision but correlation: having an arbitrarily precise belief

does not guarantee (immediate) equivalence; on the contrary, equivalence takes longer under

a precise correlated prior belief.

9 Endogenous Stopping and Intertemporal Decisions

While we have assumed an exogenous (random) final period so far, our results extend to

endogenous stopping problems in which the DM decides the final period t and takes an

action a ∈ A. His payoff is given by an arbitrary time-dependent payoff function ut(a, θ1),

which takes into account discounting and/or a constant cost of signals.48

In fact, we will consider a more general class of intertemporal decision problems described

as follows: in each period t, the DM observes one of the K signals and then chooses an

action at; his total payoff from these actions is U(a1, a2, . . . ; θ1), which can exhibit arbitrary

intertemporal dependence.49 We provide in Appendix L an example that takes this more

general form: a DM chooses how to divide resources between investment in an asset with

known return and an asset with unknown return; in each period, he simultaneously makes

investment decisions, and also acquires information about the unknown return.

We show that as long as the DM’s action choices do not affect how much he can learn

about the states,50 myopic information acquisition remains (approximately) optimal. For-

mally, we prove in Appendix L the following result:

Theorem 5. Suppose myopic signal choices minimize the posterior variance about θ1 after

any number of observations. Then, for any intertemporal decision problem, there is an

optimal strategy in which the DM acquires information myopically.

Thus, whenever the informational environment satisfies the sufficient conditions in Section 7,

the DM cannot do better than acquiring information myopically even if his actions may have

48Constant waiting cost per unit of time appears for instance in Fudenberg, Strack and Strzalecki (2017)

and Che and Mierendorff (2017).
49Endogenous stopping arises if we take each at to specify both the stopping decision and the action to

be taken when stopped.
50This assumption distinguishes our model from Multi-armed Bandit problems, see Section 2.
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intertemporal consequences. This property that the optimal signal path is independent from

the optimal sequence of actions makes it possible to characterize the latter as if information

arrives exogenously; in particular, the optimal stopping time can be solved for assuming

myopically chosen signals until the stopping time.51 We should however mention the distinc-

tion between “myopic signal choice” and “myopic action choice.” While Theorem 5 suggests

that myopic information acquisition is optimal under fairly permissive assumptions, myopic

actions often do poorly under the forward-looking criterion.

More generally, the eventual optimality of myopic information acquisition also holds for

intertemporal decision problems. For example, Theorem 2 remains true as stated and shows

that for any intertemporal decision problem, every optimal strategy acquires information

myopically after T ∗ periods.52,53

Our proof of Theorem 5 (and of its “eventual” analogue) is based on a dynamic Blackwell-

dominance lemma that generalizes the static reduction results in Section 6. This lemma

states that a sequence of normal signals yields higher expected payoff than another sequence

(in every intertemporal decision problem depending on θ1) if it leads to lower posterior

variance about θ1 at every period. We note that the direct extension of Blackwell-dominance

to the dynamic setting says that a DM with better information in every period obtains higher

payoff. In contrast, our lemma is based on the weaker assumption that the DM has better

cumulative information up to every period. This turns out to be technically non-trivial and

dependent on normality. Our argument in Appendix L generalizes Greenshtein (1996), see

the detailed discussion in Section 2.

10 Endogenous Learning Intensities

Our results also extend beyond the exogenous capacity constraint of one signal acquisition

per period. In this section, we assume instead that in each period t, the DM can choose

to observe any number Nt ∈ Z+ of signal realizations, where each realization is
∑K

k=1 cikθk

(for some i) plus independent Gaussian noise. In so doing, the DM incurs a flow cost

of information acquisition, modeled as κ(Nt) for some increasing cost function κ(·) with

51In a stylized two-state model, Fudenberg, Strack and Strzalecki (2017) analyze the optimal stopping

behavior under exogenous information and proceed to verify its optimality under endogenously chosen signals.

We discuss this connection in Section 11, when we introduce the continuous time version of our model.
52Moreover, the division over signals is t-optimal for t ≥ T ∗.
53Whether (and how much) this “eventual” result helps with characterizing optimal actions depends on

discounting. In endogenous stopping problems, for example, signal choices after T ∗ periods are only relevant

if the DM does not stop before then. This would be the case with high δ.
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κ(0) = 0.54 Note that this framework embeds our main model if we define κ(0) = κ(1) = 0

and κ(N) =∞ for N > 1.

We assume that the DM faces an intertemporal decision-problem as described in the

previous section. Specifically, he takes an action at at the end of each period t and receives

total payoff U(a1, a2, . . . ; θ1) −
∑

t δ
t−1 · κ(Nt) for some discount factor δ.55 For the special

case of endogenous stopping, payoff simplifies to

δτ · u(aτ ; θ1)−
τ∑
t=1

δt−1 · κ(Nt)

whenever the DM stops after τ periods.

This formulation of the endogenous stopping problem can be seen as a (discrete-time)

generalization of Moscarini and Smith (2001), who answer the question of how to optimally

choose the precision of information over time. Their model has a single state and a single

signal, corresponding to a special case of our framework where K = 1 and the DM only

chooses the “learning intensity” Nt. Nonetheless, with many signals available in our general

setting, the question is not just about how much information to acquire at each moment, but

also which information to acquire. Despite this difficulty, our immediate equivalence results

imply that optimal signal choices are often independent of optimal intensity levels:56

Theorem 5’. Suppose myopic signal choices minimize the posterior variance about θ1 after

any number of observations. Then, for any intertemporal decision problem with endogenous

learning intensities, there is an optimal strategy in which the DM chooses signals myopically.

This differs from the statement of Theorem 5 since we can only conclude now that

signal choices are myopic. Intensity choices, on the other hand, are not generally myopic.

More concretely, suppose the informational environment satisfies the sufficient conditions in

Section 7. Let h denote the myopic signal path. Then Theorem 5’ implies that an optimal

strategy under endogenous intensities is to “follow” h: observe the first N1 signals in h in

the first period, the next N2 signals in the second period, so on and so forth.

Our characterization of which information to acquire is a first step toward the analysis of

how much information to acquire (intensity levels) and when to stop acquiring information

54It is also natural to assume the convexity of κ(·), so that acquiring extra signals within a single period

is increasingly costly. However, the result below does not rely on this.
55For convenience of exposition, this assumes that information costs are separable over time and

from the actual decision. Our results can accommodate more general payoff functions of the form

U(N1, a1, N2, a2, . . . ; θ1).
56Eventual equivalence also generalizes, but we omit the details.
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(stopping time). In future work, we hope to pursue the latter questions and re-evaluate the

insights of Moscarini and Smith (2001) in our framework with multiple sources of information.

11 Other Extensions of the Model

Multiple Payoff-Relevant States. In the main model, we assumed that the decision-

maker’s payoff function depends on a unidimensional state θ1. When the DM cares about

multiple states at once, our results extend for the specific problem of prediction: the DM

predicts state vector θ̂ ∈ RK and receives payoff −(θ̂−θ)′W(θ̂−θ), where W is an arbitrary

positive semi-definite matrix. Our equivalence results and their proofs apply without change

to this setting.57 However, extension to general decision problems fails because there does

not exist a complete Blackwell ordering over signals about multi-dimensional states.

Non-Persistent i.i.d. States. So far we have considered persistent states θ1, . . . , θK . All

of our results extend if new states θt1, . . . , θ
t
K are independently drawn each period according

to θtk = θk + γtk, and the signals are X t
i =

∑K
i=1 cikθk + εti as before. The noise terms γtk and

εti are independent from one another. We assume that the DM receives ut(a, θ
t
1) in the final

period t, which depends on the payoff-relevant state at that time. To see that our results

extend, simply notice that the DM’s posterior variance about θt1 is the sum of his posterior

variance about θ1 and the variance of γt1. Because the latter cannot be controlled by the

DM, his optimal information acquisition strategy is unchanged. We leave to future work the

question of whether (and when) the myopic strategy is optimal under richer state dynamics

(e.g. AR processes).

Continuous Time. In Appendix M, we provide a detailed analysis of a continuous-time

version of our problem. We assume that the DM has one unit of attention in total at

every point in time. He chooses attention levels β1(t), . . . , βK(t) (subject to βi(t) ≥ 0 and

57For a diagonal matrix W, the DM’s objective function f is a weighted sum of posterior variances about

multiple states. Generalizing Lemma 5 in Appendix A, we can show that any such f exhibits “eventual

near-separability,” which implies our eventual equivalence results. Even if W is not diagonal, by the spectral

theorem, there exists an orthonormal matrix J and a diagonal matrix X such that W = JXJ′. Then the

objective function is a weighted sum of posterior variances about multiple, linearly-transformed states. Our

proofs still carry through as long as we modify Assumption 3 to require that each of these “transformed

payoff-relevant states” is exactly identified by the signals.
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∑
i βi(t) ≤ 1), which influence the diffusion processes X1, . . . , XK that he observes:58

dX t
i = βi(t) · θ̃idt+

√
βi(t)dB

t
i ,

where each Bi is an independent standard Brownian motion, and θ̃i = 〈ci, θ〉 is a “linearly

transformed state.” The decision problem is the same as in discrete time.59

If K = 2, the DM has an independent symmetric prior about the states θ̃1, θ̃2 and if he

cares about the difference θ̃1− θ̃2, then this model becomes the one considered by Fudenberg,

Strack and Strzalecki (2017) (Section 3.5), who show it is optimal (on-path) to pay equal

attention to both signals at every time.60 This result is a special case of our Theorem 8

in Appendix M, which generalizes to arbitrary prior beliefs and also characterizes optimal

attention strategy off-path.61 Our analysis also reveals that with two signals in general,

optimal attention levels are eventually constant.

For K > 2, we extend and strengthen many of our previous results to this continuous-

time setting. Specifically, Theorem 9 proves eventual exact equivalence in all informational

environments satisfying identifiability, thus improving upon the conclusion of Theorem 1

and 2. We also provide more permissive sufficient conditions for the myopic strategy to

be immediately optimal. Specifically, Theorem 7 shows that immediate optimality obtains

whenever the DM’s prior beliefs over different (transformed) states are “almost independent.”

This corroborates the intuition we provided for Theorem 1.

12 Discussion of Results

The equivalence results presented earlier show that under certain conditions, a decision-

maker will (eventually) acquire the same sequence of signals whether he optimizes a myopic

criterion or a forward-looking criterion, and that these signal choices are “t-optimal.” We

discuss now certain conceptual implications of these results.

Robust Information Acquisition. It is standard to assume that decision-makers know their

objective function. In practice, however, decision-makers often do not know when or how

58This formulation can be seen as a limit of our discrete-time model, if we take period length to zero and

also “divide” the signals to maintain the same amount of information that can be gathered every second.
59At an exogenously determined random final time t (drawn with density π(t)), the DM takes an action

a and receives payoff ut(a, θ1).
60While the decision problem in Fudenberg, Strack and Strzalecki (2017) involves endogenous stopping,

this difference does not affect our analysis as discussed in Section 9.
61To apply Theorem 8, we observe that the payoff weights are w1 = w2 = 1 (replacing θ̃2 by its negative).

Thus the condition w1(V11 + V12) + w2(V21 + V22) ≥ 0 is satisfied for every prior covariance matrix V .
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acquired information will be useful. For example, students take classes to acquire knowledge

without clear practical applications, and CEOs learn about their industry to inform decisions

that they cannot yet anticipate. These decision-makers’ beliefs over which decision problems

they will ultimately face, and when they will face them, can be highly complex. In fact,

decision-makers may not have well-defined beliefs, facing ambiguity over the final decision

problem and its timing. In general, the information acquisition problem for such decision-

makers can be difficult to describe and solve. Our results show that there are informational

environments in which these challenges can be sidestepped: by behaving myopically, the DM

acquires information in a way that is simultaneously best across all decision problems and

for all timings of decision. This suggests a domain in which robust information acquisition

is possible, and moreover simple enough for decision-makers to use in practice.

Multiple Decision-Makers. Consider a sequence of decision-makers who each acquires

a signal, whose realization is public, and then chooses an action (based on all past signal

realizations) to maximize a private objective. This model resembles the social learning frame-

works first introduced in Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992),

without the classic friction that decision-makers only observe coarse summary statistics of

past information acquisitions. In this setting, it is obvious that the decision-makers will even-

tually learn the payoff-relevant state. But an interesting feature of our environment is that

not only does learning occur, it turns out to occur “as fast as possible.” If the informational

environment is separable or symmetric, a social planner cannot improve on the amount of

information aggregated by a sequence of myopic decision-makers choosing information for

different and private objectives.62

13 Games with Dynamic Information Acquisition

13.1 A General Framework

In general, the possibility for a decision-maker to jointly acquire information and also to

choose an optimal action introduces substantial technical complications—in particular, it is

often the case that the optimal signal choices and the optimal action sequences need to be

solved jointly. Our immediate equivalence results tell us that there are domains in which we

can separate the concern of optimal information acquisition from other details of the prob-

lem, thus simplifying the analysis. We describe in detail below one such domain—dynamic

62By Theorem 2, the planner (generically) can do no better than a long sequence of decision-makers.
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information acquisition in games—with application to Hellwig and Veldkamp (2009) and

Lambert, Ostrovsky and Panov (2017).

Consider a normal-form game with N players and action profiles A = ×iAi. Each player

i’s payoff ui(a, ω) is a function of the realized action profile a ∈ A and an unknown real-valued

state ω. This payoff function is routinely extended to mixed action profiles by linearity.

The normal-form game will be played once. Time is discrete, and a full-support distri-

bution π determines the final period in which the game will be played.63 In each period t up

to and including that final period, each player i has access to signals from the set (X it
k )Kk=1,

defined as follows:

X it
k = 〈ck, θi〉+ εitk , (7)

where ck is a K × 1 vector of coefficients, the vector θi = (θi1, θ
i
2, . . . , θ

i
K) represents per-

sistent unknown states pertaining to player i’s observations, and εitk are standard Gaussian

noise terms that are independent across signals, players and time.64 Signal choices and real-

izations are privately observed. It is worth mentioning that Reinganum (1983) considered a

similar multi-agent model with this type of private information acquisition (specifically, firms

engaging in R&D before competing in oligopoly). Her model is based on the single-agent

“Pandora’s box” search framework presented in Weitzman (1979), and it is further developed

by Taylor (1995) within the context of research tournaments. However, these papers assume

perfectly revealing signals and are thus distinguished from our setting.

We require that the players share a common prior over ω and the states (θi)1≤i≤N with the

following conditional independence property: for each player i, conditional on the value of θi1,

the payoff-relevant state ω and the other players’ unknown states (θj)j 6=i are conditionally

independent from player i’s states θi.65 This ensures that no player i infers anything about

ω or about any other player j’s information beyond what he (player i) learns about θi1, which

essentially makes θi1 the only state of interest for player i.66

For concreteness, we provide examples (adapted from Lambert, Ostrovsky and Panov

(2017)) that do and do not satisfy conditional independence.67

63It is not important that actions are synchronous. Our subsequent observations will hold even if players

take actions at different random times.
64We make the simplifying assumption that the coefficients ck do not depend on the player, so that players

face symmetric informational environments. Assuming unit signal variances is just a normalization.
65Note however that we do not impose conditional independence between ω and the other players’ states.
66Conditional independence is imposed on players’ beliefs at t = 0. However, this assumption is sufficient

to guarantee conditional independence for subsequent posterior beliefs—given the value of θi1, each signal is

simply a linear combination of player i’s other states plus noise. Thus conditional independence is preserved.
67Example 5 is based on Example OA.3 in Lambert, Ostrovsky and Panov (2017), and Example 6 is based
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Example 5 (Satisfies Conditional Independence). The payoff-relevant state is ω ∼ N (0, 1).

One player has access to noisy observations of ω+ρ1ξ+ b1 and b1, where b1 is independent of

ω, ξ and ρ1 is a constant. The other player has access to noisy observations of ω+ρ2ξ+b2 and

b2, where b2 is independent of ω, ξ and b1, and ρ2 is a constant. Then, defining θ11 = ω+ ρ1ξ

and θ21 = ω + ρ2ξ, we see that for each player i, conditional on the value of θi1, the state of

nature ω and also the the other player’s states (θj1, bj) are independent from bi. Thus, the

best way for player i to learn about ω and about the other player’s information is to learn

θi1 = ω + ρiξ as precisely as possible.

Example 6 (Fails Conditional Independence). The payoff-relevant state is ω. One player has

access to noisy observations of ω + ξ, where ξ is independent of ω. The other player has

access to noisy observations of both ω and ξ. Because both states ω and ξ covary with ω+ξ,

there is no way to define the second player’s “state of interest” that would satisfy conditional

independence.

Throughout, we maintain Assumptions 2 and 3. In the current context, Assumption 3

requires that each θi1 is exactly identified by the signals available to player i. Assumption 2 is

similarly modified to state that for each player i and arbitrary opponent strategies, player i’s

expected payoff, conditional on the value of θi1, satisfies “payoff sensitivity to the mean.”68

This ensures that regardless of how opponents play, each player i always has strict incentive

to acquire information about θi1. Finally, we assume that the informational environment is

separable or symmetric, as defined in Section 7.

In each period until the final period, each player i acquires B independent observations

of his signals described above, possibly obtaining multiple (independent) realizations of the

same signal. Both signal choices and their realizations are private information.

For each player, a history at the end of t periods is a sequence of (that player’s) signal

choices and their realizations up to and including period t. For a fixed player i, an information

acquisition strategy specifies a mapping from every history to a (multi-)set of B signals among

(X i
k)1≤k≤K . A decision strategy specifies a mapping from every history to a mixed action

si ∈ ∆(Ai). Player i’s strategy in this model consists of an information acquisition strategy

as well as a decision strategy. The players’ strategies, together with the distribution π

on their Example 1.
68From player i’s perspective, the strategy of player j can be viewed as mappings from player j’s states

(θj1, . . . , θ
j
K) to player j’s mixed actions. Thus, given opponent strategies, player i’s expected payoff con-

ditional on his own states (θi1, . . . , θ
i
K) depends on his conditional belief about other players’ states and ω.

By “conditional independence”, this expectation is unchanged if player i only conditions on the value of θi1,

according to the prior.
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governing the final period, determine a joint distribution over states, histories and realized

action profiles. Each player seeks to maximize his expected payoff with respect to this

distribution, and we look for Nash equilibria of this model.

While this setup is rather general, it turns out to admit a simple solution:

Corollary 1. Under the above assumptions, each player’s signal path is myopic in every NE

of this model. That is, at every realized history, each player i acquires the B signals that

achieve the greatest immediate decrease in his belief variance about θi1.
69

In fact, our equivalence results show that the myopic information acquisition strategy is

dominant in the following sense: for arbitrary opponent strategies, player i’s best response

consists of acquiring signals myopically. Crucially, the optimal signal choices are independent

of the game matrix itself (and of opponent strategies). We now illustrate the use of this

corollary with two examples.

13.2 Application: Beauty Contest

Hellwig and Veldkamp (2009) introduced a beauty contest game with information acquisition.

We build on this by modifying the information acquisition stage so that players sequentially

acquire information over many periods (rather than once), and face a capacity constraint

each period (rather than costly signals). We show that the basic insights of Hellwig and

Veldkamp (2009) hold in this setting.

Specifically, suppose that at an unknown final period, a unit mass of players simultane-

ously chooses prices pi ∈ R to minimize the (normalized) squared distance between their

price and an unknown target price p∗, which depends on the unknown state ω and also on

the average price p =
∫
pi di:

ui(pi, p, ω) = − 1

(1− r)2
· (pi − p∗)2 where p∗ = (1− r) · ω + r · p (8)

The constant r ∈ (−1, 1) determines whether pricing decisions are complements or substi-

tutes.70

In every period up until the final period, each player acquires B signals from the set (X i
k),

as in the framework we have developed. To closely mirror the setup in Hellwig and Veldkamp

69Using the stronger solution concept of Perfect Bayesian equilibrium or Sequential equilibrium, we can

further deduce that the entire information acquisition strategy is myopic. That is, each player acquires

signals myopically at every history, on-path or off-path.
70When r > 0, best responses are increasing in the prices set by other players, thus decisions are comple-

ments. Conversely, r < 0 implies decisions are substitutes.
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(2009), we set each θi1 = ω. Assuming “conditional independence” of players’ signals, we

can directly apply Corollary 1 and conclude that in every equilibrium, players choose a

deterministic (myopic) sequence of information acquisitions. This result echoes Hellwig and

Veldkamp (2009) (Section 1.3.4), who show that equilibrium is unique when players choose

from private signals.71 Relative to these authors, our extension is to introduce dynamics and

show how the dynamic problem can be reduced into a static one, as we describe below.

Let Σ(t) be the posterior variance of a myopic decision-maker about ω after the first t

observations. Since the players in our model myopically acquire B signals per period, their

(common) posterior variance at the end of t periods is given by Σ(Bt). Thus, conditional

on period t being the final period, our game is as if the players acquire a batch of Bt signals

and then choose prices. This means that equilibrium prices are determined in the same way

as in Hellwig and Veldkamp (2009):

p(I i≤Bt) =
1− r

1− r + r · Σ(Bt)
· E(ω|I i≤Bt) (9)

where I i≤Bt represents player i’s information set, consisting of Bt signal realizations.

We can use this characterization of equilibrium to re-evaluate the main insight in Hellwig

and Veldkamp (2009): the incentive to acquire more informative signals is increasing in

aggregate information acquisition if decisions are complements and decreasing if decisions

are substitutes. For this purpose, we augment the model with a period 0, in which each

player i invests in a capacity level Bi at some cost. Afterwards, players acquire information

myopically (under possibly differential capacity constraints) and participate in the beauty

contest game.

Let µ ∈ ∆(Z+) be the distribution over capacity levels chosen by player i’s opponents.

Then, player i’s expected utility from choosing capacity Bi is given by

EU(Bi, µ) = −Et∼π

[
Σ(Bit)(

1− r + r ·
∫
B

Σ(Bt) dµ(B)
)2
]
. (10)

Above, the expectation is taken with respect to the random final period t distributed ac-

cording to π, while inside the expectation, the term
∫
B

Σ(Bt) dµ(B) is the average posterior

71Hellwig and Veldkamp (2009) also study a case in which players observe signals that are distorted by a

common noise (which violates conditional independence). They show that multiple equilibria generally arise

with such “public signals”. Dewan and Myatt (2008), Myatt and Wallace (2012) and Colombo, Femminis and

Pavan (2014) restore a unique linear symmetric equilibrium by assuming perfectly divisible signals, similar

to the continuous-time variant of our model. In contrast, our equilibrium analysis relies on the informational

environment (conditional independence), but not on symmetry (across the players) or linearity (of the best

reply function).
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variance among the players. Similar to Proposition 1 in Hellwig and Veldkamp (2009), we

have the following result:

Corollary 2. Suppose B̂i > Bi and µ̂ > µ in the sense of first-order stochastic dominance.

Then the sign of the difference EU(Bi, µ) + EU(B̂i, µ̂)− EU(Bi, µ̂)− EU(B̂i, µ) is

(a) zero, if there is no strategic interaction (r = 0);

(b) positive, if decisions are complementary (r > 0);

(c) negative, if decisions are substitutes (r < 0).

When decisions are complements, the value of additional information is increasing in the

amount of aggregate information. Thus player i has a stronger incentive to choose a higher

signal capacity if his opponents (on average) acquire more signals. This incentive goes in

the opposite direction when decisions are substitutes, which confirms the main finding of

Hellwig and Veldkamp (2009).

13.3 Application: Strategic Trading

We consider the strategic trading game introduced in Lambert, Ostrovsky and Panov (2017),

in which individuals trade given asymmetric information about the value of an asset. We

endogenize the information available to traders by adding a pre-trading stage in which traders

sequentially acquire signals. As before, we suppose that trading occurs at a final time period

that is determined according to an arbitrary full-support distribution.

In more detail: at the final time period, a security with unknown value v is traded in a

market, and each of n traders submits a demand di. There are additionally liquidity traders

who generate exogenous random demand u. A market-maker privately observes a signal

θM (possibly multi-dimensional) and the total demand D =
∑

i di + u. He sets the price

P (θM , D), which in equilibrium equals E[v | θM , D]. Each strategic trader then obtains profit

Πi = di · (v − P (θM , D)).

We suppose that in each period up to and including the final time period, each trader

i chooses to observe a signal from his set (X i
k) (described above). We maintain all of the

previous assumptions on the informational environment. The requirement of conditional

independence is strengthened to apply to a payoff-relevant vector ω = (v, θM , u) (instead

of a real-valued unknown): that is, for each player i, conditional on the value of θi1, the

payoff-relevant vector ω and the other players’ unknown states (θj)j 6=i are assumed to be

conditionally independent from player i’s states θi. Relative to the fully general setting
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considered in Lambert, Ostrovsky and Panov (2017), this assumption allows for flexible

correlation within a player’s signals, but places a strong restriction on correlation across

different players’ signals. Applying Corollary 1, we can conclude that:

Corollary 3. Under the above assumptions, there is an essentially unique linear NE in

which the on-path signal acquisitions are myopic, and in the final period, players play the

unique linear equilibrium described in Lambert, Ostrovsky and Panov (2017).

Thus, the closed-form solutions that are a key contribution of Lambert, Ostrovsky and

Panov (2017) extend to our dynamic setting with endogenous information.

14 Conclusion

Characterization of the optimal strategy for dynamic information acquisition is challenging

in many settings. Common restrictions include: parametric assumptions about the decision

problem and discounting structure; separation/asynchronism of information acquisition from

actions; and lack of correlation across information sources (or the assumption of specific

correlation structures). Even with these restrictions, the optimal solution often cannot be

explicitly characterized.

We show that many of these limitations can be lifted by considering environments with

Gaussian signals. The setting that we propose and analyze is the following: a decision-maker

has access to Gaussian signals that exhibit an arbitrary correlation pattern; in each period he

acquires a fixed number of signals, and at a final time period he chooses an action based on the

information acquired so far. We provide sufficient conditions on the informational primitives

such that the myopic sequence of signal acquisitions is exactly optimal, thus permitting

simple characterization of forward-looking behavior. Generically, myopic signal acquisitions

are optimal at sufficiently late periods, permitting exact analysis of long-run behavior. These

results require no additional parametric assumptions on the decision problem and extend also

to contemporaneous action choices (including endogenous stopping problems).

Conceptually, our results demonstrate a class of environments in which myopic decision

making turns out to have strong robustness and optimality properties. This challenges the

conventional understanding that forward-looking information acquisition often requires great

sophistication. While our proof techniques in this paper rely on the assumption of normal-

ity, we believe that qualitative features of our results extend for “approximately normal”

environments, which would emerge naturally in settings where each acquisition consists of
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large number of non-normal signals. We leave the formal verification of this conjecture to

future work.

Methodologically, our results simplify the analysis of optimal dynamic information acqui-

sition in an informational environment that is commonly studied in economics. We demon-

strate how existing papers that consider normal-linear signals can be extended to accom-

modate dynamic information acquisition. Finally, while we have presented our model and

results assuming a known signal structure, it is of interest to study how to cope with poten-

tial uncertainty about the learning environment. In continuing work, we are also pursuing

the question of optimal design of signals by self-interested sources that seek to maximize the

long-run frequency with which their signals are chosen.
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Appendix A Preliminary Results

We begin by presenting a number of preliminary results that are used throughout the ap-

pendix. The first two lemmas below characterize the function f mentioned in the main text,

which maps signal counts to the DM’s posterior variance about the payoff-relevant state θ1.

Lemma 4. Given prior covariance matrix V 0 and qi observations of each signal i, the DM’s

posterior variance about θ1 is given by

f(q1, . . . , qK) = [V 0 − V 0C ′Σ−1CV 0]11 (11)

where Σ = CV 0C ′ + D−1 and D = diag
(
q1
σ2
1
, . . . , qK

σ2
K

)
. The function f is decreasing and

convex in each qi whenever these arguments take non-negative extended real values: qi ∈
R+ = R+ ∪ {+∞}.

Proof. The expression (11) comes directly from the conditional variance formula for multi-

variate Gaussian distributions. To prove ∂f
∂qi
≤ 0, consider the partial order � on positive

semi-definite matrices so that A � B if and only if A − B is positive semi-definite. As qi

increases, the matrices D−1 and Σ decrease in this order. Thus Σ−1 increases in this order,

which implies that V 0 − V 0C ′Σ−1CV 0 decreases in this order. In particular, the diagonal

entries of V 0 − V 0C ′Σ−1CV 0 are uniformly smaller, so that f becomes smaller. Intuitively,

more information always improves the decision-maker’s estimates.

To prove f is convex, it suffices to prove f is midpoint-convex since the function is clearly

continuous. Take q1, . . . , qK , r1, . . . , rK ∈ R+ and let si = qi+ri
2

.72 Define the corresponding

diagonal matrices to be Dq, Dr, Ds. We need to show f(q1, . . . , qK) + f(r1, . . . , rK) ≥
2f(s1, . . . , sK). For this, we first use the Woodbury inversion formula to write

Σ−1 = (CV 0C ′ +D−1)−1 = J − J(J +D)−1J,

with J = (CV 0C ′)−1. Plugging this back into (11), we see that it suffices to show the

following matrix order:

(J +Dq)
−1 + (J +Dr)

−1

2
� (J +Ds)

−1.

Inverting both sides, we need to show 2 ((J +Dq)
−1 + (J +Dr)

−1)
−1 � J + Ds. From defi-

nition, Dq + Dr = diag( q1+r1
σ2
1
, . . . , qK+rK

σ2
K

) = 2Ds. Thus the above follows from the AM-HM

inequality for positive definite matrices, see for instance Ando (1983).
72We allow the function f to take +∞ as arguments. This relaxation does not affect the properties of f ,

and it is convenient for our future analysis.
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A.1 The Matrix Qi

Let us define for each 1 ≤ i ≤ K,

Qi = C−1∆iiC
′−1 (12)

where ∆ii is the matrix with ‘1’ in the (i, i)-th entry, and zeros elsewhere. We note that

[Qi]11 = ([C−1]1i)
2, which is strictly positive under Assumption 3.

A.2 Order Difference Lemma

In this subsection we establish the asymptotic order for the second derivatives of f .

Lemma 5. As q1, . . . , qK →∞, ∂2f
∂q2i

is positive with order 1
q3i

, whereas ∂2f
∂qi∂qj

has order at most
1

q2i q
2
j

for any j 6= i. Formally, there is a positive constant L depending on the informational

environment, such that ∂2f
∂q2i
≥ 1

Lq3i
and | ∂2f

∂qi∂qj
| ≤ L

q2i q
2
j
.

To interpret, the second derivative ∂2f/∂q2i is the effect of observing signal i on the marginal

value of the next observation of signal i. Our lemma says that this second derivative is

always eventually positive, so that each observation of signal i makes the next observation

of signal i less valuable. The cross-partial ∂2f/∂qi∂qj is the effect of observing signal i on

the marginal value of the next observation of a different signal j, and its sign is ambiguous.

The key content of the lemma is that regardless of the sign of the cross partial, it is

always of lower order compared to the second derivative. In words, the effect of observing a

signal on the marginal value of other signals (as quantified by the cross-partial) is eventually

second-order to its effect on the marginal value of further realizations of the same signal (as

quantified by the second derivative). This is true for any signal path in which the signal

counts q1, . . . , qK go to infinity proportionally, which is guaranteed by Proposition 3 below.

Proof. Recall from Lemma 4 that f(q1, . . . , qK) = [V 0 − V 0C ′Σ−1CV 0]11 and therefore

∂2f

∂qi∂qj
= [∂ij(V

0 − V 0C ′Σ−1CV 0)]11
∂2f

∂q2i
= [∂ii(V

0 − V 0C ′Σ−1CV 0)]11 (13)

Using properties of matrix derivatives,

∂ii(Σ
−1) = Σ−1(∂iΣ)Σ−1(∂iΣ)Σ−1 − Σ−1(∂iiΣ)Σ−1 + Σ−1(∂iΣ)Σ−1(∂iΣ)Σ−1. (14)

The relevant derivatives of the covariance matrix Σ are

∂iΣ = −σ
2
i

q2i
∆ii ∂iiΣ =

2σ2
i

q3i
∆ii
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Plugging these into (14), we obtain ∂ii(Σ
−1) = −2σ2

i

q3i
(Σ−1∆iiΣ

−1) +O
(

1
q4i

)
. Thus by (13),

∂2f

∂q2i
=

[
−V 0C ′ · ∂

2(Σ−1)

∂q2i
· CV 0

]
11

=
2σ2

i

q3i
·
[
V 0C ′Σ−1∆iiΣ

−1CV 0
]
11

+O

(
1

q4i

)
. (15)

As q1, . . . , qk → ∞, Σ → CV 0C ′ which is symmetric and non-singular. Thus the matrix

V 0C ′Σ−1∆iiΣ
−1CV 0 converges to the matrix Qi defined earlier in (12). From (15) and

[Qi]11 > 0, we conclude that ∂2f
∂q2i

is positive with order 1
q3i

. Similarly, for i 6= j, we have

∂ij(Σ
−1) = Σ−1(∂jΣ)Σ−1(∂iΣ)Σ−1 − Σ−1(∂ijΣ)Σ−1 + Σ−1(∂iΣ)Σ−1(∂jΣ)Σ−1.

The relevant derivatives of the covariance matrix Σ are

∂iΣ = −σ
2
i

q2i
∆ii ∂jΣ = −

σ2
j

q2j
∆jj ∂ijΣ = 0

From this it follows that ∂ij(Σ
−1) = O

(
1

q2i q
2
j

)
. The same holds for ∂2f

∂qi∂qj
because of (13),

completing the proof of the lemma.

A.3 The Myopic DM Never Gets Stuck

The following technical lemma will be used to show that the myopic strategy observes each

signal infinitely often (see the proof of Prop 1 Part (a) below). As mentioned in the main

text, proving the analogous result for the (possibly stochastic) dynamically optimal strategy

requires something stronger, namely Assumption 4.

Lemma 6. For q1, . . . , qK ∈ R+, ∂if(q1, . . . , qK) = 0,∀i if and only if q1 = · · · = qK = +∞.

Proof. From the proof of Lemma 5, we have in general

∂if = −σ
2
i

n2
i

· [V 0C ′Σ−1∆iiΣ
−1CV 0]11. (16)

Suppose that each ∂if is zero, and qi = +∞ for a proper subset I of signals. Then for

any j /∈ I, it holds that [V 0C ′Σ−1∆jjΣ
−1CV 0]11 = 0. Let v denote the first row vector of

V 0C ′Σ−1, then vj = 0 for any j /∈ I. Thus

vΣ = v(CV 0C ′ +D−1) = vCV 0C ′ + vD−1 = vCV 0C ′

where the last equality is because vj = 0 whenever j /∈ I, while D−1 = diag
(
σ2
1

q1
, . . . ,

σ2
K

qK

)
is zero on those rows i with i ∈ I. Recall that we defined v = e1V

0C ′Σ−1. Hence from the

preceding display,

e1 = vΣ(V 0C ′)−1 = vCV 0C ′(V 0C ′)−1 = vC.
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That is, v is the first row of C−1. By Assumption 3, all coordinates of v are non-zero. Thus

I = [K], proving the desired statement.

We note that ∂if = 0 could happen for some signal i, so that f is not necessarily strictly

decreasing in its arguments.73 The content of Lemma 6 is to show at every history, there is

some signal that provides positive marginal value.74 In contrast, the stronger Assumption 4

described in the main text requires the same signal to have positive value at every history.

Appendix B Proofs in Section 6 (Reduction)

Proof of Lemma 2. Following the discussion in the main text, we only need to show that

the signal with greatest immediate decrease in variance dominates every other signal in the

Blackwell sense. Consider any signal i that yields posterior variance [V t]11 about θ1 with

V t = φi(V
t−1). We recall that the DM’s distribution of posterior beliefs about θ1 is θ1 ∼

N (µt1, [V
t]11, with the posterior mean µt1 randomly drawn from N (µt−11 , [V t−1]11 − [V t]11).

It is easily checked that the same distribution of posterior beliefs is generated if instead the

DM observes the following signal:

X̃ = θ1 + εX ; εX ∼ N
(

0,
[V t−1]11 · [V t]11
[V t−1]11 − [V t]11

)
, εX ⊥ θ1.

It is then clear that a signal with larger posterior variance [V t]11 corresponds to the noise

term εX having larger variance, which is necessarily a garbling according to Blackwell. This

proves that the myopic signal choice for prediction is myopic for any decision problem.

To prove the converse, we need to show that a signal with strictly larger posterior variance

leads to strictly lower current-period flow payoff. For this, consider a pair of signals i, j with

[φi(V
t−1)]11 < [φj(V

t−1)]11. These signals are equivalent (in terms of the induced distribution

of beliefs about θ1) to X̃ = θ1 + εX and Ỹ = θ1 + εY as defined above, with the noise term εX

having smaller variance than εY . Then Ỹ is further equivalent to Z̃ = θ1 + εX + εZ , with εZ

a Gaussian noise independent from θ1 and εX . This analysis shows, as we mentioned, that

Z̃ = X̃+εZ is a garbled signal of X̃. A DM observing any realization of X̃ can randomly draw

εZ and take the optimal action according to the resulting value of Z̃. By payoff sensitivity

73Suppose K = 2, V 0 = I2, C =

(
a b

c d

)
, and signal variances are 1. Then ∂1f(q1, q2) = 0 iff

(ad − bc)dq2 + a = 0. This occurs when a = d = 1
3 , b = c = 2

3 and q2 = 3. In such an environment, a DM

who has observed signal 2 three times does not benefit from signal 1 (until he observes the next signal 2).
74This relies on normal-linear signals, see Appendix J.3.
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(Assumption 2), there is no single action that is optimal for all realizations of Z̃. Thus, by

taking appropriate mixed actions (with the same support) upon any signal realization, a DM

receiving signal i can achieve the same expected payoff as another DM receiving signal j.

But payoff sensitivity implies that pure actions do even better, completing the proof.

Proof of Lemma 3. We will show that starting with any prior covariance matrix V 0, a strat-

egy S is t-optimal if and only if the realized division qS(t) is always a t-optimal division

defined with respect to this prior (minimizing the posterior variance about θ1 after t peri-

ods).

First consider the “if” part. Take any strategy S that induces t-optimal divisions. We

need to show S yields a weakly higher flow payoff in period t than every other strategy S ′.

We prove this by induction on t. When t = 1, t-optimality reduces to myopic optimality,

and the claim follows from Lemma 2.

Suppose the result holds for t − 1. With t periods, we view any strategy S ′ following

the prior (µ0, V 0) as consisting of two parts: a signal choice i in the first period, and a

family of contingent strategies following the new belief (µ1, φi(V
0)). Applying the induction

hypothesis to every such belief, we see that the expected payoff (in period t) of any contingent

strategy is no more than a contingent strategy that observes each signal j for q̂j periods,

independent of signal realizations. Here (q̂1, . . . , q̂K) is a t-optimal division for t− 1 periods

(from period 2 to period t), defined with respect to the new prior covariance matrix φi(V
0).

Equivalently, q̂ is a division that minimizes f(q̂i + 1, q̂−i) subject to q̂1 + · · ·+ q̂K = t− 1.

In such a way, we have found a deterministic strategy75 Ŝ ′ that yields a weakly higher

payoff in period t than the strategy S ′. By similar reasoning, we can find a deterministic

strategy Ŝ that yields the same period-t payoff as S, but Ŝ induces a deterministic t-optimal

division at time t.76 Now observe that Ŝ and Ŝ ′ are both deterministic strategies, thus a

DM using either strategy is equivalently choosing a collection of t signals to observe, and

sequentiality does not matter. By definition of t-optimal divisions, Ŝ induces lower variance

than Ŝ ′ in period t. We can thus invoke the Blackwell ordering argument to conclude that Ŝ

yields a weakly higher payoff than Ŝ ′ in period t. This implies S is better than S ′, completing

the induction.

75The signal choice in the first period is always deterministic, and by construction later signal choices are

also deterministic, not depending on signal realizations.
76Because S induces t-optimal divisions, its contingent strategies must induce t-optimal divisions at time

t− 1 (defined with respect to the new prior). By induction hypothesis, these contingent strategies maximize

payoff in period t. This payoff is the same as if the contingent strategy does not condition on signal

realizations.
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An analogous inductive argument proves the “only if” part; that is, S is t-optimal only

if the realized division qS(t) is always a t-optimal division.

Appendix C Proofs in Section 7 (Immediate Equiva-

lence)

We first introduce a notion of “t-optimality following a given history”:

Definition 3. Fix a history h with length H, where each signal i has been observed Hi times.

A division over signals is constrained t-optimal for some t ≥ H (following history h), if

(n1, . . . , nK) ∈ argmin
qi≥Hi,

∑
i qi=t

f(q1, . . . , qK).

That is, the division minimizes the DM’s posterior variance about θ1 at time t among all

divisions “reachable from history h”. We write any such division as nh(t).

When h is the null history, this definition reduces to (unconstrained) t-optimality as

defined in the main text. In general, Lemma 3 implies that following history h, a continuation

strategy maximizes the flow payoff in period t iff it always induces a constrained t-optimal

division.77

Proof of Proposition 1. Suppose the informational environment is separable. Similar to

Lemma 1 for our benchmark case, we claim that after a one-shot deviation from the my-

opic rule, the posterior variances along the deviation path are uniformly larger than along

the original myopic path. Once this is proved, we can conclude that any myopic strategy

achieves constrained t-optimality following any given history, for the prediction problem. By

our reduction results, myopic is constrained t-optimal for any decision problem and it is thus

dynamically optimal.

Take a signal path h = (s1, s2, . . . ) that follows the myopic rule starting at time t.

Consider a deviation path h̃ = (s̃1, s̃2, . . . ) that observes some signal i 6= st in period t but

subsequently follows the myopic rule. Let t be the first period after t such that st = i. We

will show that in any period t ∈ (t, t], s̃t = st−1, so that the deviation path attempts to

“catch up” with the original myopic path.

77We use the convention that the induced division of a continuation strategy includes the signals observed

in the initial history. This simplifies notation in the sequel.
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To see this, we use induction on t. Suppose we have shown that the deviation path up

to time t− 1 is

h̃t−1 = (s1, . . . , st−1, i, st, . . . , st−2)

while the original myopic path up to time t− 1 satisfies

ht−1 = (s1, . . . , st−1, st, . . . , st−1).

Let j = st−1 and (q1, . . . , qK) be the myopic division at time t− 2. Then myopic optimality

at time t− 1 implies

f(qj + 1, q−j) ≤ f(qk + 1, q−k),∀k ∈ {1, . . . , K}.

Using f(q1, . . . , qK) = F (g1(q1) + · · · + gK(qK)) and the monotonicity of F , we can rewrite

the above as

gj(qj + 1)− gj(qj) ≤ gk(qk + 1)− gk(qk), ∀k.

This implies gj(qj + 1) − gj(qj) ≤ gk(qk + 1) − gk(qk),∀k 6= i and gj(qj + 1) − gj(qj) ≤
gi(qi+2)−gi(qi+1) by the convexity of gi. Now observe that the deviation path has division

(qi + 1, q−i) at time t− 1. Thus, the previous inequalities imply that signal j is the myopic

choice at history h̃t−1, completing the characterization of the deviation path. With this,

we can apply the same exchangeability argument as in the proof of Lemma 1. Hence the

Proposition follows.

Proof of Proposition 2. Suppose the informational environment is symmetric. We claim that

at any time t, a division n(t) is t-optimal if and only if |ni(t) − nj(t)| ≤ 1 holds for every

pair of signals i, j. Obviously, the divisions that have this property (and
∑

i ni(t) = t) are

symmetric (as tuples) to one another. Hence they achieve the same payoff, and it suffices to

prove the “only if” part of the claim.

Consider any division (q1, . . . , qK) with q1 ≥ · · · ≥ qK . We will prove that if q1− qK ≥ 2,

then this division is not t-optimal. By symmetry and convexity of f , we have

f(q1, q2, . . . , qK−1, qK) = f(qK , q2, . . . , qK−1, q1) ≥ f(q1 − 1, q2, . . . , qK−1, qK + 1).

because the vector (q1 − 1, . . . , qK + 1) is a convex combination of the vectors (q1, . . . , qK)

and (qK , . . . , q1). Using Lemma 6, we can show the inequality here must be strict.78 The

claim follows.

78Suppose equality holds. By convexity, f(q1−ε, q2, . . . , qK−1, qK +ε) is a constant c for ε ∈ [0, 1]. Because

f is a rational function (quotient of polynomials), this constant value extends to all ε ∈ R. Letting ε→ +∞,

we deduce f(−∞, q2, . . . , qK−1,+∞) = c. Hence f(+∞, q2, . . . , qK−1,+∞) = c also holds, because the Σ
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From this characterization of t-optimal divisions, we see that for every t-optimal division

n(t), there exists some t-optimal division n(t+ 1) with ni(t+ 1) ≥ ni(t),∀i. Hence a myopic

DM can achieve t-optimality at every time, and so he will. This proves that the myopic

strategy maximizes the ex-ante payoff.

We can further prove the optimality of the myopic strategy following any history. The

argument is essentially the same: given any history h consisting of Hi observations of each

signal i, we can characterize the constrained t-optimal divisions. Specifically, a division

nh(t) is constrained t-optimal if and only if it has the following property: for any pair of

signals i, j, if nhi (t) > Hi, then nhi (t)− nhj (t) ≤ 1. These constrained t-optimal divisions are

again monotonic over time, proving that any myopic strategy is constrained t-optimal and

dynamically optimal.

Appendix D Asymptotic Characterization

An important step toward proving our equivalence results is to show that the signal counts

grow to infinity proportionally, under any of the three optimality criteria.

Proposition 3. Suppose the informational environment (V 0, C, {σ2
i }) satisfies Assumption

3 and 4. Then there exist constants λ1, . . . , λK > 0 with
∑

i λi = 1 and a large constant N

such that

(a) |ni(t)− λit| ≤ N, ∀i.

(b) |mi(t)− λit| ≤ N,∀i.

(c) |di(t)− λit| ≤ N, ∀i for every realized division d(t).

The constant N only depends on the informational environment but not on the decision

problem. The asymptotic proportions λ1, . . . , λK are given by

λi =
|[C−1]1i| · σi∑K
j=1|[C−1]1j| · σj

. (17)

matrix for q1 = +∞ is the same as for q1 = −∞. Thus f(q1, q2, . . . , qK−1, qK) = f(+∞, q2, . . . , qK−1,+∞).

By the monotonicity of f , this implies f(q̂1, q2, . . . , qK−1, q̂K) = c whenever q̂1 ≥ q1 and q̂K ≥ qK . By the

rational function argument again, this constant value extends to all q̂1 and q̂K . Thus f(q1, q2, . . . , qK−1, qK) =

f(0, q2, . . . , qK−1, 0). By Lemma 6, there exists a signal i ∈ {2, . . . ,K−1} such that ∂if(0, q2, . . . , qK−1, 0) is

strictly negative. Without loss assume i = 2, then f(0, q2 +q1 +qK , q3, . . . , qK−1, 0) < f(0, q2, . . . , qK−1, 0) =

f(q1, q2, . . . , qK−1, qK), contradicting t-optimality.
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Below we present the proofs for the first two parts of this proposition. The corresponding

result for dynamically optimal strategies is proved later, in Appendix F.

Proof of Proposition 3 Part (a). Let us first show n1(t), . . . , nK(t) → +∞ as t → +∞.

Suppose this is not true, then we can find a subsequence of times, such that for each signal j,

nj(t) either remains constant or diverges to infinity as t increases along this subsequence, and

the former (nj(t) is constant) occurs for some signal j.79 Let qj be the limit of nj(t) along this

subsequence, then a proper subset of q1, . . . , qK is equal to +∞. By Lemma 6, there is some

signal j with ∂jf(q1, q2, . . . , qK) < 0; thus qj is finite in particular. Relabeling the signals if

necessary, we assume j = 1. Let us further assume q2 = +∞ so that ∂2f(q1, q2, . . . , qK) = 0.

By continuity, the discrete partial derivatives of f satisfy the following inequality:80

∂1f(n1(t), n2(t)− 1, . . . , nK(t)) < ∂2f(n1(t), n2(t)− 1, . . . , nK(t))

for sufficiently large t along this subsequence. But this implies

f(n1(t) + 1, n2(t)− 1, . . . , nK(t)) < f(n1(t), n2(t), . . . , nK(t)),

contradicting the assumption that (n1(t), n2(t), . . . , nK(t)) is a t-optimal division.

Next, as each ni → +∞, the matrix V 0C ′Σ−1∆iiΣ
−1CV 0 converges to the matrix Qi

defined above in (12). It follows from (16) that ∂if ∼ −σ2
i

n2
i
· [Qi]11 (ratio converges to

1). Since a t-optimal division must satisfy ∂if ∼ ∂jf ,81 we deduce that ni, nj must grow

proportionally. Using [Qi]11 = ([C−1]1i)
2, we deduce ni(t) ∼ λit.

Finally, from ni ∼ λit we have Σ = CV 0C ′ + D−1 = CV 0C ′ + O(1
t
). Thus the ma-

trix V 0C ′Σ−1∆iiΣ
−1CV 0 converges to Qi at the rate of 1

t
. From (16), we obtain ∂if =

−σ2
i ·[Qi]11+O( 1

t
)

n2
i

. Thus the first-order condition ∂if = ∂jf implies
λ2i+O( 1

t
)

n2
i

=
λ2j+O( 1

t
)

n2
j

.82 This is

equivalent to λ2in
2
j −λ2jn2

i = O(t), which yields λinj−λjni = O(1) after factorization. Hence

ni = λit+O(1).

Proof of Proposition 3 Part (b). We turn to a myopic decision-maker. The first-order con-

dition ∂if = ∂jf need not hold, but we do know that if signal i maximizes |∂if | at time

79Either nj(t) remains bounded, or there is a subsequence that diverges to infinity. Moreover, a bounded

sequence necessarily has a constant subsequence.
80Here and later, we will often abuse notation and let ∂if also denote the discrete partial derivative of f :

∂if(qi, q−i) = f(qi + 1, q−i)− f(qi, q−i), which equals an integral of the usual continuous derivative of f over

the interval [qi, qi + 1]. We will similarly abuse the second derivatives ∂iif and ∂ijf . Whether the discrete

or the continuous derivative is used will be clarified in the context.
81Because we are doing discrete optimization, ∂if and ∂jf need not be exactly equal. But they must be

approximately equal.
82These partials need not be exactly equal, but the error terms that arise are on the order of O( 1

t ).
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t, it will be observed in the next period. This property allows us to use the same argu-

ment as in the preceding proof to show mi(t) → +∞,∀i. Furthermore, the approximation

∂if ∼ −σ2
i

m2
i
· [Qi]11 implies that if mi(t) > (λi + ε)t, then ∂if(m(t)) > ∂jf(m(t)) for the signal

j with mj(t) < λjt. Thus this signal i cannot be myopically observed in period t + 1. This

shows mi(t) ∼ λit for sufficiently large t.83

With mi(t) ∼ λi(t), we have the better approximation ∂if =
−σ2

i ·[Qi]11+O( 1
t
)

m2
i

. Pick L to

be a sufficiently large constant. Whenever mi(t) > λit − 1 and mj(t) < λjt − L, we have

∂if(m(t)) > ∂jf(m(t)) so that signal i is not observed in period t + 1. The “−1” is chosen

for later convenience.

Define zk(t) = mk(t)−λkt,∀k and Z(t) =
∑

k

z2k(t)

λk
. These functions measure the discrep-

ancy between the myopic division and its linear asymptote. Note that
∑

k zk(t) = 0. We

claim that Z(t) is a bounded function. This is trivially true if each zk(t) ≥ −L. Suppose in-

stead that zj(t) < −L for some j. Then by the analysis in the previous paragraph, the signal

i that is observed in period t + 1 must satisfy mi(t) ≤ λit − 1. Under the myopic strategy,

mi(t+ 1) = mi(t) + 1 and mk(t+ 1) = mk(t) for every k 6= i. Thus zi(t+ 1) = zi(t)− λi + 1,

and zk(t + 1) = zk(t)− λk for k 6= i. From this, and using
∑

k λk = 1,
∑

k zk(t) = 0, we can

deduce after simplifications that

Z(t+ 1) = Z(t) +
2zi(t)− λi + 1

λi

Since zi(t) ≤ −1, λi ∈ (0, 1), we have Z(t+1) < Z(t)−1. Hence Z(t) and each zi(t) remains

bounded, proving the proposition.

Appendix E Proof of Theorem 1 (Eventual Gap of One)

We present the proof for equivalence between myopic and t-optimality. The comparison

with dynamic optimality follows similar arguments, with extra technicalities addressed in

Appendix F.

Suppose for contradiction that m1(t) ≤ n1(t)−2 (the opposite case will be treated later).

Since
∑K

i=1mi(t) = t =
∑K

i=1 ni(t), we can assume without loss m2(t) ≥ n2(t) + 1. For

notational ease, write ni = ni(t),∀ 1 ≤ i ≤ K. By t-optimality of the division (n1, . . . , nK)

we have

f(n1 − 1, n2 + 1, . . . , nK) ≥ f(n1, n2, . . . , nK).

83We omit the detailed argument, which is similar to what we do in the next two paragraphs.
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Consider the last period t̃ ≤ t in which a myopic decision-maker observed signal 2. Write

m̃i = mi(t̃), ∀i. By assumption we have m̃1 ≤ m1(t) ≤ n1 − 2, and m̃2 = m2(t) ≥ n2 + 1.

Moreover, from Proposition 3, we know that t− t̃, and thus also each |m̃i − ni|, is bounded

above by a constant independent of t. Let us show under these conditions that

f(n1 − 1, n2 + 1, . . . , nK) ≥ f(n1, n2, . . . , nK)

=⇒ f(m̃1, m̃2, . . . , m̃K) > f(m̃1 + 1, m̃2 − 1, . . . , m̃K).
(18)

This will imply that the myopic decision-maker could have deviated to observing signal 1

rather than signal 2 at time t̃ and achieve a smaller posterior variance (at time t̃), yielding

a contradiction.

To show (18), we first rewrite the (first-half) assumption as

∂2f(n1 − 1, n2, . . . , nK) ≥ ∂1f(n1 − 1, n2, . . . , nK), (19)

where ∂if denotes the discrete partial derivative with respect to signal i. We also rewrite

the (second-half) conclusion in (18) as

∂2f(m̃1, m̃2 − 1, . . . , m̃K) > ∂1f(m̃1, m̃2 − 1, . . . , m̃K). (20)

Our goal is to show (19) implies (20). To do this, let us first compare the LHS of (20) to the

LHS of (19). The difference can be rewritten as a sum of second derivatives:

(m̃1 − n1 + 1)∂21f + (m̃2 − 1− n2)∂22f +
∑
j>2

(m̃j − nj)∂2jf.

Since m̃2 ≥ n2 + 1, the contribution of the second summand (m̃2 − 1 − n2)∂22f is non-

negative. Thus we deduce that that LHS of (20) is at least the LHS of (19) minus O( 1
t4

),

which captures the combined effects of cross partials (by Lemma 5 and Proposition 3).

On the other hand, the RHS of (20) differs from the RHS of (19) by

(m̃1 − n1 + 1)∂11f + (m̃2 − 1− n2)∂12f +
∑
j>2

(m̃j − nj)∂1jf

which is negative with order O( 1
t3

) because of the first summand (recall m̃1 ≤ n1 − 2).

Hence we have shown that from (19) to (20), the RHS decreases by more than the LHS for t

sufficiently large. Thus (19) implies (20) as desired, and we have ruled out m1(t) ≤ n1(t)−2.

Suppose instead that m1(t) ≥ n1(t) + 2 and m2(t) ≤ n2(t)− 1. Then we can take t̃ to be

the last period in which a myopic decision-maker observed signal 1. A symmetric argument

shows that the DM could have profitably deviated to observing signal 2 at time t̃. The

theorem follows.
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Appendix F Omitted Proofs for Dynamically Optimal

Strategies

In this appendix, we extend the previous proof of “eventual gap of one” to dynamically

optimal strategies. This extension is technically difficult in part because dynamically optimal

strategies often condition on signal realizations, so that the induced division d(t) can be

stochastic. Still, we will show that every realized division d(t) differs by at most one (in each

signal) from the deterministic division m(t) under a myopic strategy or from a t-optimal

division n(t). To that end, we first establish a dynamic Blackwell-dominance lemma for

comparing sequences of normal signals.

F.1 A Dynamic Blackwell-dominance Lemma

Recall that the DM only needs to remember the expected value about θ1 and the co-

variance matrix of all the states. Thus, a history of (payoff-relevant) beliefs is hT =

(µ0
1, V

0; . . . ;µT1 , V
T ). For a fixed prior covariance matrix V 0, an alternative way to sum-

marize the history is the divisions over signals. That is, a history up to and including period

T can also be written as hT = (µ0
1, d(0); . . . ;µT1 , d(T )), where each d(t) = (d1(t), . . . , dK(t))

counts the number of each signal acquired by time t. In this section, we will use this al-

ternative definition of history and view a strategy S as a mapping from such sequences of

divisions to signal choices. Each strategy induces a distribution of histories and determines

the DM’s expected payoff (assuming that he takes action optimally in the final period).

Consider a mapping G̃ from possible sequences of divisions to these sequences themselves:

For each sequence of divisions (d(0), . . . , d(T )), G̃ maps to another sequence (d̃(0), . . . , d̃(T )),

subject to “consistency.” There are three consistency requirements: First,
∑

i d̃i(t) = t,

meaning that each d̃(t) must be a possible division at time t. Second, d̃i(t) ≥ d̃i(t − 1),

meaning that the sequence d̃ can be realized under some strategy. Lastly, we require

(d̃(0), . . . , d̃(T − 1)) = G̃(d(0), . . . , d(T − 1))

so that nesting sequences are mapped to nesting sequences. For simplicity, we will often

denote d(0) by the vector 0.

We will use any such mapping G̃ to construct a deviation strategy S̃ from a given strategy

S. Loosely speaking, whenever d(T ) is the realized division under strategy S, we will let

S̃ induce the division d̃(T ) = G̃(d(T )). Thus if f(d̃(T )) ≤ f(d(T )) always holds, the DM’s
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posterior variance about θ1 is always smaller under strategy S̃ than under strategy S, which

would imply via Blackwell dominance that S̃ yields higher payoff than S.

Lemma 7. Fix any strategy S and any consistent mapping G̃ defined above. Suppose that

for every sequence of divisions (d(0), . . . , d(T )) realized under S, it holds that

f(d̃(T )) ≤ f(d(T ))

with strict inequality occurring with positive probability (under S). Then S is not a dynam-

ically optimal strategy.

We first give an intuitive discussion of the proof before supplying the formal details.

As mentioned, the basic idea is to construct a strategy S̃ that achieves the division d̃(T )

whenever S would achieve d(T ). That is, suppose the sequence of divisions under S has

been d(0), . . . , d(T − 1), and S dictates observing some signal to reach the division d(T ) in

the next period, then we let S̃ observe some other signal to reach the division d̃(T ) from the

current division d̃(T − 1).

If the strategy S were deterministic (not depending on signals realizations), then this

construction would be sufficient. However, difficulty arises whenever S conditions on the

expected value about θ1. To explain, consider a history hT−1 = (µ0
1, d(0); . . . ;µT−11 , d(T−1)).

At this history, strategy S is going to achieve the division d(T ) in the next period, and we

want strategy S̃ to achieve the division d̃(T ). But we cannot simply let S̃ reach d̃(T ) from the

history h̃T−1 = (µ0
1, d̃(0); . . . ;µT−11 , d̃(T − 1)). This is because the same sequence of posterior

expected values is realized with different probabilities under S̃ than under S, which makes

it impossible to compare expected payoffs.

To address this difficulty, we instead let S̃ achieve the division d̃(T ) from a distribution

of histories h̃T−1 = (ν01 , d̃(0); . . . ; νT−11 , d̃(T − 1)), such that these histories occur with the

same probability (under S̃) as the probability that hT−1 occurs (under S). This ensures

that we can compare the DM’s average payoff at these histories to his payoff at history

hT−1. Furthermore, we require these histories to induce a distribution of beliefs about θ1

that Blackwell-dominates the belief θ1 ∼ N (µT−11 , f(d(T − 1))) at hT−1, so that the DM’s

average payoff is indeed higher under the deviation S̃.

Because f(d̃(1)) ≤ f(d(1)), the DM’s distribution of posterior beliefs about θ1 after one

observation is Blackwell more informative under S̃ than under S. Thus the two conditions

identified in the preceding paragraph are satisfied at initial times T . Our key argument is

to extend these conditions inductively. Specifically, we show that if a distribution of beliefs

θ1 ∼ N (νT−11 , f(d̃(T − 1))) Blackwell-dominates a single belief θ1 ∼ N (µT−11 , f(d(T − 1))),
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then after observing a signal in period T (possibly different signal under S̃ than under S),

the posterior distribution of beliefs θ1 ∼ N (νT1 , f(d̃(T ))) Blackwell-dominates the posterior

distribution of beliefs θ1 ∼ N (µT1 , f(d(T ))). This enables us to select a distribution of

expected values νT1 for each µT1 such that Blackwell-dominance is preserved.

A non-technical version of the above argument is as follows: In the first period, the signal

under S̃ is better than the signal under S about θ1. Disregarding the effect on the other

states, we can equivalently think of the signal under S as θ1 + ξ1 and the signal under S̃ as

two signals θ1+ξ1 and θ1+η1; the Gaussian noise terms ξ1 and η1 have appropriate variances

and are independent from the state θ1 and from each other.84 What the deviation strategy S̃

does after the first period is to “temporarily forget” the extra signal θ1 + η1 and modify the

signal choice of S (according to the mapping G̃) as if it had only observed θ1 +ξ1. Forgetting

is temporary because we require the DM to remember the extra signal for future updating

purposes (as will be clear below).

In the second period, we again view the signals under S̃ and S as θ1 plus independent

noise. The precision of these noise terms are so that the signals in the first two periods

combine to yield the correct posterior variance about θ1.
85 Now if the precision of the

second-period signal is higher under S̃ than under S, we can again think of S̃ as generating

an extra signal in the second period than S, and in that case S̃ can continue to “temporarily

forget” this extra signal when deciding future information acquisition. However, we are only

guaranteed that the cumulative precision of signals under S̃ is higher than under S. Thus, it

is possible that the precision of the second-period signal is in fact lower under the deviation

strategy S̃.

Then, it will be the case that strategy S observes θ1 + ξ1 in the first period and two

signals θ1 + ξ2, θ1 + η2 in the second period. On the other hand, the deviation strategy S̃

observes two signals θ1 + ξ1, θ1 + η1 in the first period and only one signal θ1 + ξ2 in the

second period. We note that by f(d̃(2)) ≤ f(d(2)), the precision of η1 must be higher than

η2. Thus, the signal θ1 + η1 is equivalent to two further signals θ1 + η2 and θ1 + η̂1. Under

strategy S̃, the DM observes these signals in the first period, “temporarily forgets” them in

choosing the second-period signal, but later “retrieves” the signal value of θ1 + η2 so as to

maintain the same amount of information obtained under S̃ as under S.86 He then modify

84The variance of ξ is such that the DM’s posterior variance about θ1 given θ1 + ξ1 is f(d(1)); thus the

precision of ξ is 1
f(d(1)) −

1
f(0) . Similarly, the precision of η1 is 1

f(d̃(1))
− 1

f(d(1)) .
85The precisions are 1

f(d(2)) −
1

f(d(1)) under S and 1
f(d̃(2))

− 1
f(d̃(1))

under S̃. Their difference is the precision

of η2 (in the next paragraph), and it is lower than the precision of η1 derived previously.
86At the end of two periods, the DM has not yet “retrieved” θ1 + η̂1.
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the signal choice S in the third period, so on and so forth.

In summary, the assumption that f(d̃(T )) ≤ f(d(T )) tells us that the deviation strategy

S̃ generates cumulatively more information (about θ1) than S. This is weaker than the

statement that S̃ generates more information than S in every period, hence we cannot directly

extend Blackwell’s insight by letting the DM “permanently forget” the extra information he

receives under S̃. Nonetheless, our assumption on cumulative information does ensure that

the same information is received “earlier” under S̃ than under S. We use this observation

to let the DM “temporarily forget” the extra information under S̃, but later “retrieve” it

whenever necessary. This turns out to be sufficient to show that S̃ is a profitable deviation.

We now present the formal proof.

Proof of Lemma 7. We follow the above proof outline and construct a deviation strategy S̃

as follows:

In the first period, consider the signal choice under S. This signal leads to a division

d(1). We let (0, d̃(1)) = G(0, d(1)). The deviation strategy S̃ observes the unique signal

that would achieve the division d̃(1) after the first period.

After the first observation, the DM’s distribution of posterior beliefs about θ1 under strat-

egy S is θ1 ∼ N (µ1
1, f(d(1))) with µ1

1 a normal random variable with mean µ0
1 and variance

f(0) − f(d(1)). By comparison, the distribution of beliefs under S̃ is θ1 ∼ N (ν11 , f(d̃(1)))

with ν11 drawn from N (µ0
1, f(0) − f(d̃(1))). Since f(d̃(1)) ≤ f(d(1)), the latter distribu-

tion of beliefs (under S̃) is Blackwell more informative. Thus in fact, we can associate

each belief θ1 ∼ N (µ1
1, f(d(1))) under S with a more informative distribution of beliefs

N (ν11 , f(d̃(1))) under S̃. Specifically, for fixed µ1
1, the distribution of associated ν11 should be

ν11 ∼ N (µ1
1, f(d(1))− f(d̃(1))). We say this distribution of (payoff-relevant) beliefs under S̃

“imitates” the belief (µ1
1, f(d(1))) under S. By construction, this distribution of ν11 occurs

under S̃ with the same probability as µ1
1 occurs under S.

The likelihood of ν11 given µ1
1, the probability of µ1

1 occurring under S and the probability

of ν11 occurring under S̃ together determine the likelihood of µ1
1 given ν11 , which is a Gaussian

probability kernel p(µ1
1 | ν11). In the second period, the deviation strategy S̃ takes the current

belief (ν11 , f(d̃(1))) and randomly selects some µ1
1 to “imitate”, with probability given by p.

To be specific, given any selection of µ1
1, we find the signal that S is going to observe in

the second period given belief (µ1
1, f(d(1))). This signal choice under S leads to a sequence

of divisions (0, d(1), d(2)), which is mapped to (0, d̃(1), d̃(2)) under G̃. We let S̃ observe a

signal in the second period that would achieve the division d̃(2). By the consistency of G̃,

this signal is in fact unique.
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Let us now fix µ1
1 and study the distribution of posterior beliefs about θ1 after two observa-

tions. Under S, the posterior belief is θ1 ∼ N (µ2
1, f(d(2))) with µ2

1 normally distributed with

mean µ1
1 and variance f(d(1))− f(d(2)). Under the deviation strategy S̃, the distribution of

posterior beliefs is θ1 ∼ (ν21 , f(d̃(2))) with ν21 drawn from N (µ1
1, f(d(1))− f(d̃(2))).87

Since f(d̃(2)) ≤ f(d(2)), the distribution of beliefs under S̃ Blackwell-dominates the

distribution under S, for each µ1
1. We can thus associate each history (µ1

1, d(1);µ2
1, d(2)) under

S with a distribution of histories (ν11 , d̃(1); ν21 , d̃(2)) under S̃ such that the corresponding

beliefs under S̃ are more informative at both periods. This procedure can be repeated

in the third period, ad infinitum. The upshot is that each infinite history h under S is

associated with a distribution of histories h̃ under S̃ (occurring with the same probability).

At every period t, the DM’s belief about θ1 along the history h is his average belief across the

distribution of histories h̃, so that his average payoff across these histories is weakly higher

(and strictly so with positive probability). Integrating over different histories h shows that

S̃ improves upon S, proving the Lemma.

F.2 Switch Deviations

In what follows, we will apply Lemma 7 with a particular class of mappings G̃. Consider

any sequence of divisions (d∗(0), d∗(1), . . . , d∗(t0)). Let i be the signal observed in period t0

and j be any other signal. An “(i, j)-switch” mapping G̃ specifies the following:

1. Suppose T < t0 or d(t) 6= d∗(t) for some t ≤ t0, then let G̃(d(0), . . . , d(T )) be itself.

2. Suppose T ≥ t0, d(t) = d∗(t),∀t ≤ t0. If dj(T ) = dj(t0), then let d̃(T ) = (di(T ) −
1, dj(T ) + 1, d−ij(T )). If dj(T ) > dj(t0), then let d̃(T ) = d(T ).

s1 s2 s3 s4 s5 . . . st0−1︸ ︷︷ ︸
Signals match divisions d∗(0), . . . , d∗(t0 − 1)

Xi st0+1 . . . sτ−1︸ ︷︷ ︸
None of these are Xj

Xj sτ+1 . . .

(i, j)-switch

Figure 1: Pictorial representation of an (i, j)-switch based on a sequence of divisions d∗(0), . . . , d∗(t0).

87Here we use the following technical result: suppose the DM is endowed with a distribution of prior beliefs

θ ∼ N (µ, V ), with µ1 normally distributed with mean y and variance σ2, then upon observing signal i and

performing Bayesian updating, his distribution of posterior beliefs is θ ∼ N (µ̂, φi(V )), with µ̂1 normally

distributed with mean y and variance σ2 + [V ]11 − [φi(V )]11. This is proved by observing that the DM’s

distribution of beliefs about θ1 must integrate to the same ex-ante distribution of θ1.
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This definition is easier to interpret if we think about the resulting deviation strategy

S̃ constructed in the proof of Lemma 7. The first case above says that S̃ only deviates

when the history of divisions is d∗(0), . . . , d∗(t0 − 1), and S is about to observe signal i in

period t0. The second case says that S̃ dictates observing signal j instead at that history.

Subsequently, the DM under S̃ observes the same signal as S (at the belief under S that

is being imitated) until the first period at which S is about to observe signal j. If that

period exists, the deviation strategy S̃ switches back to observing signal i and agrees with

S afterwards.

The benefit of “switch deviations” is that their posterior variances are easily compared

with the original strategy: d̃(t) = d(t) except at a history that extends (d∗(0), d∗(1), . . . , d∗(t0−
1)) (and before signal j is observed again under S). And at such histories, f(d̃(t)) < f(d(t))

iff the discrete partial derivatives satisfy:

|∂if(di(t)− 1, dj(t), d−ij(t))| < |∂jf(di(t)− 1, dj(t), d−ij(t))|. (21)

Thus S is not dynamically optimal whenever we can find a realized division d(t0) under S,

such that di(t0) = di(t0 − 1) + 1 (so that signal i is observed under S in period t0) and the

inequality (21) holds for all t ≥ t0 and dj(t) = dj(t0).

F.3 Proof of Proposition 3 Part (c)

We now derive the asymptotic ratios for any dynamically optimal strategy S. We will show

that any realized division d(t) satisfies |di(t)−λit| ≤ N , where the constant N depends only

on the informational environment but not on the decision problem or the particular strategy

S.

We first show that as T → ∞, d1(T ), . . . , dK(T ) → ∞, and the speed of divergence

depends only on the informational environment. For contradiction, suppose the result is

not true. Then we can find a sequence of histories {hTm} such that Tm → ∞ but d1(Tm)

remains bounded. These histories need not nest one another. By passing to a subsequence,

we may assume qi = limm→∞ di(Tm) exists for every signal i, and qi =∞ for a proper subset

of signals i ∈ I. We further assume that the signal i∗ observed in the last period of each

history hTm is the same, and it belongs to I—otherwise, we simply truncate the history by

finitely many periods.

Choose j∗ /∈ I to be a signal that has positive marginal value (satisfying Assumption

4). We claim that for sufficiently large Tm, the (i∗, j∗)-switch deviation S̃ following history

hTm−1 (the first Tm − 1 periods of hTm) satisfies (21) with t0 = Tm. This will contradict the
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optimality of S. To prove this claim, observe that as Tm →∞, di∗(Tm)→∞ because i∗ ∈ I.

Since we are only concerned with the inequality (21) for di∗(t) ≥ di∗(Tm), the LHS of (21)

becomes vanishingly small. In contrast, the RHS is bounded away from zero by Assumption

4.88 Hence we have verified (21) and derived a contradiction to the optimality of S.

Next, as d1(t), . . . , dK(t)→∞, the following approximations hold (see (16)):

|∂if(di(t)− 1, dj(t), d−ij(t))| ∼
σ2
i · [Qi]11
di(t)2

|∂jf(di(t)− 1, dj(t), d−ij(t))| ∼
σ2
j · [Qj]11

dj(t)2

If lim supt0→∞
di(t0)
dj(t0)

> λi
λj

(recall that λi is proportional to σi ·
√

[Qi]11), then the above

estimates imply (21) whenever di(t) ≥ di(t0) (because t ≥ t0) and dj(t) = dj(t0), contradict-

ing the optimality of S. Hence, lim supt0→∞
di(t0)
dj(t0)

≤ λi
λj

for any pair of signals i, j, so that

limt0→∞
di(t0)
t0

= λi, ∀i.
Once this is established, it follows that the matrix Σ = CV 0C ′+D−1 converges to CV 0C ′

at the rate of 1
t
. By (16), we can deduce more precise approximations:

|∂if(di(t)− 1, · · · )| =
σ2
i · [Qi]11 +O(1

t
)

di(t)2
|∂jf(di(t)− 1, · · · )| =

σ2
j · [Qj]11 +O(1

t
)

dj(t)2

If di(t0)
dj(t0)

> λi
λj

+O( 1
t0

), then these refined estimates would again imply (21) whenever di(t) ≥
di(t0) and dj(t) = dj(t0). We conclude that di(t0)

dj(t0)
≤ λi

λj
+ O( 1

t0
). Since this holds for every

pair of signals, we deduce di(t0) = λi · t0 +O(1) as desired.

F.4 Proof of Theorem 1 Parts (b) and (c)

(b) Here we establish the “eventual gap of one” between dynamic and t-optimality. Let us

suppose for contradiction that at a large time T , dj(T ) ≤ nj(T )− 2 and di(T ) ≥ ni(T ) + 1

holds for some realized division d(T ) under a dynamically optimal strategy S. Let t0 ≤ T

be the last period along this history (leading to the division d(T )) in which signal i was

observed. Consider the (i, j)-switch deviation S̃ that begins in that period. We will verify

the inequality (21), which will contradict the optimality of S.

Getting rid of absolute values, we need to show for t ≥ t0, di(t) ≥ di(t0) and dj(t) = dj(t0),

∂i(di(t)− 1, dj(t), d−ij(t)) > ∂j(di(t)− 1, dj(t), d−ij(t)). (22)

By t-optimality of n(T ), we have

∂i(ni(T ), nj(T )− 1, n−ij(T )) ≥ ∂j(ni(T ), nj(T )− 1, n−ij(T )). (23)

88While the statement of Assumption 4 in the main text requires qj∗ = 0, it actually implies that signal

j∗ has positive marginal value for any given number of past observations qj∗ = dj∗(Tm).
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Our goal is to show (23) implies (22).

From (23) to (22), the LHS at most decreases by some cross partials. This is because

di(t) ≥ di(t0) = di(T ) ≥ ni(T ) + 1, where the middle equality is due to the definition of t0.

Moreover, we claim that the difference between T and t is bounded above by a constant. In

one direction, since di(t0) = di(T ), the asymptotic characterization implies T − t0 is bounded

above and so is T − t whenever t ≥ t0. In the other direction, since dj(t) = dj(t0), we have

t− t0 is bounded above. Thus t− T ≤ t− t0 is also bounded above. It follows that the LHS

of (22) decreases from the LHS of (23) by a bounded number of cross partials.

In contrast, the RHS of (22) is smaller than the RHS of (23) by at least a second derivative

∂jjf less some cross partials, because dj(t) = dj(t0) ≤ dj(T ) ≤ nj(T )−2. Because the second

derivative eventually dominates the combined effects of cross partials, we are able to deduce

(22) from (23) for sufficiently large T and any t ≥ t0.
89 We have thus proved (21) assuming

dj(T ) ≤ nj(T ) − 2, contradicting the optimality of S. A symmetric argument rules out

dj(T ) ≥ nj(T ) + 2 (and di(T ) ≤ ni(T )− 1).

(c) We follow the preceding proof and consider a history hT where dj(T ) ≤ mj(T ) − 2 and

di(T ) ≥ mi(T ) + 1. Define t0 and the (i, j)-switch deviation S̃ as before. To obtain a

contradiction, we will verify (22) for t ≥ t0, di(t) ≥ di(t0) and dj(t) = dj(t0).

Let T ∗ ≤ T be the last period in which the myopic DM observed signal j. Then it holds

that

∂i(mi(T
∗),mj(T

∗)− 1,m−ij(T
∗)) ≥ ∂j(mi(T

∗),mj(T
∗)− 1,m−ij(T

∗)) (24)

because signal j was myopically better than signal i in period T ∗.

Note that di(t) ≥ di(t0) = di(T ) ≥ mi(T ) + 1 ≥ mi(T
∗) + 1, while dj(t) = dj(t0) ≤

dj(T ) ≤ mj(T ) − 2 = mj(T
∗) − 2. Thus essentially the same argument as in the proof of

Part (b) enables us to deduce (22) from (24), contradicting the optimality of S. A symmetric

argument rules out dj(T ) ≥ nj(T ) + 2 and di(T ) ≤ ni(T )− 1. Theorem 1 is now completely

proved.

Appendix G Proof of Theorem 2 (Generic Eventual

Equivalence)

To guide the reader through this appendix, we begin by outlining the proof of the theorem,

which is broken down into several steps. We first show a simpler result that in generic

89Since the constants in Proposition 3 and in the order difference lemma only depend on the informational

environment, so does T .
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informational environments, the number of periods in which the three optimality criteria

coincide has natural density 1. While this is weaker than the desired Theorem 2, it already

rules out situations such as Example 4, where any strategy fails to achieve t-optimality in one-

third of the periods. Our proof of this result is based on the observation that if equivalence

does not hold at some time t, there must be two different divisions over signals for which

the resulting posterior variances about θ1 are within O( 1
t4

) from each other. This leads to a

Diophantine approximation inequality, which we can show only occurs at a vanishing fraction

of periods t.

To improve the result and demonstrate equivalence at “all large periods,” we show that

the number of “exceptional periods” t is generically finite if there are three different divisions

over signals whose posterior variances are within O( 1
t4

) from each other. This allows us

to conclude that in generic environments, the t-optimal divisions eventually monotonically

increase (in each coordinate) over time.

In such environments, t-optimality can be achieved at every late period. Thus, whenever

t-optimality obtains in some late period, it will be sustained in all future periods. Since we

have already established that a myopic or dynamically optimal strategy achieves t-optimality

infinitely often, we conclude equivalence at all large t.

G.1 Equivalence at Almost All Times

We begin by proving a weaker result. Proposition 4 below shows equivalence at almost all

times.

Proposition 4. Suppose the informational environment (V 0, C, {σ2
i }) is such that for any

i 6= j, the ratio λi
λj

is an irrational number. Then, at a set of times with natural density 1,90

m(t) = n(t) = d(t) holds for any decision problem. In particular, the dynamically optimal

division d(t) is deterministic and independent of the decision problem at these times.

Proof of Proposition 4. Suppose that m1(t) ≤ n1(t)−1,m2(t) ≥ n2(t)+1. Consider the last

period t̃ in which the myopic strategy observes signal 2. Write m̃i = mi(t̃) and ni = ni(t).

Then m̃1 ≤ m1(t) ≤ n1 − 1 and m̃2 = m2(t) ≥ n2 + 1.91

From t-optimality of n(t) and myopic optimality of m(t̃), we have the following inequal-

ities regarding the discrete partial derivatives :

∂2f(n1 − 1, n2, . . . , nK) ≥ ∂1f(n1 − 1, n2, . . . , nK). (25)

90Formally, for any set of positive integers A, let A(N) count the number of integers in A no greater than

N . Then we deinfe the natural density of A to be limN→∞
A(N)
N , when this limit exists.

91This analysis resembles the proof of Theorem 1 Part (a), in Appendix E.
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∂2f(m̃1, m̃2 − 1, . . . , m̃K) ≤ ∂1f(m̃1, m̃2 − 1, . . . , m̃K). (26)

Since m̃2 − 1 ≤ n2, the LHS of (26) is smaller than the LHS of (25) by (at most) a number

of cross partials. Similarly, the RHS of (26) is at most bigger than the RHS of by a number

of cross partials. These observations together with the order difference lemma imply that

the two sides of (25) differ by at most O
(

1
t4

)
.

To summarize: a necessary condition for m1(t) ≤ n1(t)− 1,m2(t) ≥ n2(t) + 1 to occur is

that

|f(n1 − 1, n2 + 1, . . . , nK)− f(n1, n2, . . . , nK)| = O

(
1

t4

)
. (27)

Likewise, we can deduce that (27) is also a necessary condition for d1(t) ≤ n1(t) −
1, d2(t) ≥ n2(t) + 1 to occur (see the proof of Theorem 1 Part (b), in Appendix F). Hence,

to prove the Proposition we only need to show that (27) only holds at a set of times with

natural density 0. The following lemma proves exactly this property.

Lemma 8. Suppose λ1
λ2

is an irrational number. For positive constants c0, c1, define A(c0, c1)

to be the following set of positive integers:

{t : ∃ q1, q2, . . . , qK ∈ Z+, s.t. |qi − λit| ≤ c0,∀i

∧ |f(q1, q2 + 1, . . . , qK)− f(q1 + 1, q2, . . . , qK)| ≤ c1/t
4}.

Then A(c0, c1) has natural density zero.

Proof of Lemma 8. The proof relies on the following technical result, which gives a precise

approximation of the discrete partial derivatives of f :

Lemma 9. Fix the informational environment. There exists a constant aj such that

f(qj, q−j)− f(qj + 1, q−j) =
σ2
j · [Qj]11

(qj − aj)2
+O

(
1

t4
; c0

)
(28)

holds for all q1, . . . , qK with |qi−λit| ≤ c0,∀i. The notation O
(

1
t4

; c0
)

means an upper bound

of L
t4

, where the constant L may depend on the informational environment as well as on c0.
92

Given (28), we see that the condition

|f(q1, q2 + 1, . . . , qK)− f(q1 + 1, q2, . . . , qK)| ≤ c1
t4

92In our application of Lemma 8, c0 is taken to be the constant N in Proposition 3 and thus depends

also on the informational environment. The statement of Lemma 8 is however more general and allows for

arbitrary c0, c1.
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implies
∣∣∣σ2

1 ·[Q1]11
(q1−a1)2 −

σ2
2 ·[Q2]11

(q2−a2)2

∣∣∣ ≤ c2
t4

and thus
∣∣∣( λ1
q1−a1 )2 − ( λ2

q2−a2 )2
∣∣∣ ≤ c3

t4
for some larger positive

constants c2, c3. This further implies
∣∣∣ λ1
q1−a1 −

λ2
q2−a2

∣∣∣ ≤ c4
t3

, which reduces to∣∣∣∣q2 − a2 − λ2
λ1

(q1 − a1)
∣∣∣∣ ≤ c5

t
. (29)

This inequality says that the fractional part of λ2
λ1
q1 is very close to the fractional part of

λ2
λ1
a1−a2. But since λ2

λ1
is an irrational number, the fractional part of λ2

λ1
q1 is “equi-distributed”

in (0,1) as q1 ranges in the positive integers.93 Thus the Diophantine approximation (29)

only has solution at a set of times t with natural density 0, proving Lemma 8. Below we

supply the technically involved proof of (28).

Proof of Lemma 9. Fix q1, . . . , qK and the signal j. Recall that the diagonal matrix D is

given by diag( q1
σ2
1
, . . . , qK

σ2
K

). Consider any q̂j ∈ [qj, qj + 1] and let D̂ be the analogue of D for

the division (q̂j, q−j). That is, D̂ = D except that [D̂]jj =
q̂j
σ2
j
. Let Σ̂ = CV 0C ′ + D̂−1. From

(16), we have

∂jf(q̂j, q−j) = −
σ2
j

q̂2j
·
[
V 0C ′Σ̂−1∆jjΣ̂

−1CV 0
]
11
. (30)

Here and later in this proof, ∂jf represents the usual continuous derivative rather than the

discrete derivative.

Let D0 = diag
(
λ1t
σ2
1
, . . . , λKt

σ2
K

)
and Σ0 = CV 0C ′ + D−10 . For |qi − λit| ≤ c0,∀i we have

D̂ −D0 = O(c0), where the Big O notation applies entry-wise. It follows that

Σ̂ = CV 0C ′ + D̂−1 = CV 0C ′ +D−1 +O(
1

t2
; c0) = Σ0 +O(

1

t2
; c0).

Observe that the matrix inverse is a differentiable mapping at Σ0 (which is CV 0C ′+D−10 �
CV 0C ′ and thus positive definite). Thus we have

Σ̂−1 = Σ−10 +O

(
1

t2
; c0

)
.

Plugging this into (30) and using q̂j ∼ λjt, we obtain that

∂jf(q̂j, q−j) = −
σ2
j

q̂2j
·
[
V 0C ′Σ−10 ∆jjΣ

−1
0 CV 0

]
11

+O

(
1

t4
; c0

)
. (31)

93Formally, the Equi-distribution Theorem states that for any irrational number α and any sub-interval

(a, b) ⊂ (0, 1), the set of positive integers n such that the fractional part of αn belongs to (a, b) has natural

density b− a. It is a special case of the Ergodic Theorem.
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Since Σ0 = CV 0C ′+ 1
t
·diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
, we can apply Taylor expansion (to the matrix

inverse map) and write

Σ−10 = (CV 0C ′)−1 − 1

t
(CV 0C ′)−1 · diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
· (CV 0C ′)−1 +O

(
1

t2

)
. (32)

This implies

V 0C ′Σ−10 ∆jjΣ
−1
0 CV 0 = V 0C ′(CV 0C ′)−1∆jj(CV

0C ′)−1CV 0 − Mj

t
+O

(
1

t2

)
= Qj −

Mj

t
+O

(
1

t2

)
, (33)

where Mj is a fixed K ×K matrix depending only on the informational environment. For

future use, we note that

Mj = V 0C ′(CV 0C ′)−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
(CV 0C ′)−1∆jj(CV

0C ′)−1CV 0

+ V 0C ′(CV 0C ′)−1∆jj(CV
0C ′)−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
(CV 0C ′)−1CV 0

= C−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
(CV 0C ′)−1∆jjC

′−1

+ C−1∆jj(CV
0C ′)−1 diag

(
σ2
1

λ1
, . . . ,

σ2
K

λK

)
C ′−1. (34)

Using (33), we can simplifty (31) to

∂jf(q̂j, q−j) = −
σ2
j

q̂2j
·
[
Qj −

Mj

t

]
11

+O

(
1

t4
; c0

)
. (35)

Integrating this over q̂j ∈ [qj, qj + 1], we conclude that

f(qj, q−j)− f(qj + 1, q−j) =
σ2
j

qj(qj + 1)
·
[
Qj −

Mj

t

]
11

+O

(
1

t4
; c0

)
. (36)

We set aj = −
(
λj ·[Mj ]11
2[Qj ]11

+ 1
2

)
. Then,

σ2
j

qj(qj + 1)
·
[
Qj −

Mj

t

]
11

= (σ2
j · [Qj]11) ·

1 +
2aj+1

λjt

qj(qj + 1)
=
σ2
j · [Qj]11

(qj − aj)2
+O

(
1

t4
; c0

)
,

implying the desired approximation (28). The last equality above uses
1+

2aj+1

λjt

qj(qj+1)
= 1

(qj−aj)2 +

O
(

1
t4

; c0
)
, which is because

qj(qj + 1)

(qj − aj)2
= 1 +

2(aj + 1)

qj − aj
+O

(
1

(qj − aj)2

)
= 1 +

2aj + 1

λjt
+O

(
1

t2
; c0

)
dividing through by qj(qj + 1).

62



G.2 A Simultaneous Diophantine Approximation Problem

Lemma 8 tells us that at most times t, there do not exist a pair of divisions (differing

minimally on two signal counts) that lead to posterior variances close to each other (with a

difference of c1
t4

). We obtain a stronger result if a triple of such divisions were to exist.

Lemma 10. Fix V 0 and C, and let signal variances vary. For positive constants c0, c1,

define A∗(c0, c1) to be the following set of positive integers:

{t : ∃ q1, q2, q3, . . . , qK ∈ Z+, s.t. |qi − λit| ≤ c0, ∀i

∧ |f(q1, q2 + 1, q3, . . . , qK)− f(q1 + 1, q2, q3, . . . , qK)| ≤ c1/t
4

∧ |f(q1, q2, q3 + 1, . . . , qK)− f(q1 + 1, q2, q3, . . . , qK)| ≤ c1/t
4}

Then, except for signal variances belonging to a Lebesgue measure-zero set, A∗(c0, c1) has

finite cardinality.

Proof. So far we have been dealing with fixed informational environments. However, a

number of parameters defined above depend on the signal variances σ = {σ2
i }Ki=1. Specifically,

while the matrix Qi = C−1∆iiC
′−1 is independent of σ, the asymptotic proportions λi ∝

σi · [Qi]11 do vary with σ. In this proof, we write λi(σ) to highlight this dependence.

Next, we recall the matrix Mj introduced earlier in (34). We note that for fixed matrices

V 0 and C, each entry of Mj(σ) is a fixed linear combination of
σ2
1

λ1(σ)
, . . . ,

σ2
K

λK(σ)
.

Then, the parameter aj(σ) in (28) is given by (see the previous proof)

aj(σ) = −1

2
− λj(σ) · [Mj(σ)]11

2[Qj]11
= −1

2
+ λj(σ)

K∑
i=1

b̃ji
σ2
i

λi(σ)
= −1

2
+

K∑
i=1

bjiσiσj (37)

for some constants b̃ji, bji independent of σ. In the last equality above, we used the fact that
λj(σ)

λi(σ)
equals a constant times

σj
σi

.

Thus Lemma 9 gives

f(qj, q−j)− f(qj + 1, q−j) =
σ2
j · [Qj]11

(qj − aj(σ))2
+O

(
1

t4
; c0

)
whenever |qi − λi(σ) · t| ≤ c0,∀i. We comment that the Big O constant here may depend

on σ. However, a single constant suffices if we restrict each σi to be bounded above and

bounded away from zero. Since measure-zero sets are closed under countable unions, this

restriction does not affect the result we want to prove.
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By the above approximation, a necessary condition for t ∈ A∗(c0, c1) is that q1, q2, q3

satisfy ∣∣∣∣(q2 − a2(σ))− η · σ2
σ1

(q1 − a1(σ))

∣∣∣∣ ≤ c6
q1

(38)

as well as ∣∣∣∣(q3 − a3(σ))− κ · σ3
σ1

(q1 − a1(σ))

∣∣∣∣ ≤ c6
q1

(39)

for some constant c6 independent of σ (c6 may depend on c0, c1 stated in the lemma). The

constant η is given by η =
√

[Q2]11/[Q1]11, and similarly for κ.

It remains to show that for generic σ, there are only finitely many positive integer triples

(q1, q2, q3) satisfying the simultaneous Diophantine approximation (38) and (39). To prove

this, we assume that each σi is i.i.d. drawn from the uniform distribution on [ 1
L
, L], where L is

a large constant.94 Denote by F (q1, q2, q3) the event that (38) and (39) hold simultaneously.

We claim that there exists a constant c7 such that P(F (q1, q2, q3)) ≤ c7
q41

holds for all q1, q2, q3.

Since F (q1, q2, q3) cannot occur for q2, q3 > c8q1, this claim will imply∑
q1,q2,q3

P(F (q1, q2, q3)) <
∑
q1

∑
q2,q3≤c8q1

c7
q41
<
∑
q1

c7c
2
8

q21
<∞. (40)

Generic finiteness of tuples (q1, q2, q3) will then follow from the Borel-Cantelli Lemma.95

To prove this claim, it suffices to show that if σ = (σ1, σ2, σ3, σ4, . . . , σK) and σ′ =

(σ1, σ
′
2, σ

′
3, σ4, . . . , σK) both satisfy (38) and (39), then |σ2 − σ′2|, |σ3 − σ′3| ≤ c

q21
for some

constant c.96 Without loss, we assume |σ2 − σ′2| ≥ |σ3 − σ′3|. Using (37), we can rewrite the

condition (38) as ∣∣∣∣ (q2 +
1

2

)
− η · σ2

σ1

(
q1 +

1

2

)
︸ ︷︷ ︸

A

+
∑
i

βiσ2σi︸ ︷︷ ︸
B

∣∣∣∣ ≤ c6
q1

94The uniform distribution most directly implies the Lemma regarding Lebesgue measure zero, but any

other continuous distribution is equally fine for this argument.
95Because of the use of Borel-Cantelli Lemma, this proof (unlike Lemma 8 above) does not allow us to ef-

fectively determine, for given σ, whether (38) and (39) only have finitely many integer solutions. Nonetheless,

a modification of this proof does imply the following finite-time probabilistic statement: when σ1, . . . , σK

are independently drawn, the probability that myopic, dynamic and t-optimality coincide at every period

t ≥ T is at least 1−O( 1
T ), where the constant involved only depends on the distribution of σ.

96This implies that the probability of the event F (q1, q2, q3) conditional on any value of σ1, σ4, . . . , σK is

bounded by c7
q41

, which is stronger than the claim.

64



for some constants βi independent of σ. A similar inequality holds at σ′:∣∣∣∣ (q2 +
1

2

)
− η · σ′2

σ1

(
q1 +

1

2

)
︸ ︷︷ ︸

A′

+
∑
i

βiσ
′
2σ
′
i︸ ︷︷ ︸

B′

∣∣∣∣ ≤ c6
q1

It follows from the above two inequalities that |A+B − A′ −B′| ≤ 2c6
q1

. Furthermore, since

|A− A′| ≤ |A+B − A′ −B′|+ |B −B′| (by triangle inequality), we deduce∣∣∣∣η · (σ′2 − σ2)σ1
·
(
q1 +

1

2

)∣∣∣∣ ≤ 2c6
q1

+

∣∣∣∣∣∑
i

βi(σ
′
2σ
′
i − σ2σi)

∣∣∣∣∣ (41)

Because σ′i = σi for i 6= 2, 3, we have∣∣∣∣∣∑
i

βi(σ
′
2σ
′
i − σ2σi)

∣∣∣∣∣ =

∣∣∣∣∣∑
i

βi(σ
′
2 − σ2)σi +

∑
i

βiσ
′
2(σ
′
i − σi)

∣∣∣∣∣
=

∣∣∣∣∣
(∑

i

βi(σ
′
2 − σ2)σi

)
+ β2σ

′
2(σ
′
2 − σ2) + β3σ

′
2(σ
′
3 − σ3)

∣∣∣∣∣
≤ (K + 2)L ·max

i
|βi| · |σ′2 − σ2|

Plugging this estimate into (41), we obtain the desired result |σ2− σ′2| ≤ c
q21

. This completes

the proof of the lemma.

G.3 Monotonicity of t-Optimal Divisions

We apply Lemma 10 to prove the eventual monotonicity of t-optimal divisions in generic

informational environments.

Lemma 11. Fix V 0 and C. For generic signal variances {σ2
i }Ki=1, there exists T0 such that

for t ≥ T0, the t-optimal division n(t) is unique, and it satisfies ni(t+ 1) ≥ ni(t),∀i.

Proof. Uniqueness follows from the stronger fact that in generic informational environments,

f(q1, . . . , qK) differs from f(q′1, . . . , q
′
K) whenever q 6= q′. This is because any such equality

corresponds to a non-trivial polynomial equation over σ, and there are only countably many

of them to be ruled out.

Using the order difference lemma, we can already deduce |ni(t + 1) − ni(t)| ≤ 1,∀i at

sufficiently large times t. Suppose that n1(t+ 1) = n1(t)− 1. Then because
∑

i(ni(t+ 1)−
ni(t)) = 1, we can without loss assume n2(t+ 1) = n2(t) + 1 and n3(t+ 1) = n3(t) + 1.
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For notational ease, write ni = ni(t), n
′
i = ni(t+ 1). By t-optimality, we have

f(n1 − 1, n2 + 1, n3, . . . , nK) ≥ f(n1, n2, n3, . . . , nK)

f(n′1, n
′
2, n

′
3, . . . , n

′
K) ≤ f(n′1 + 1, n′2 − 1, n′3, . . . , n

′
K)

These inequalities are equivalent to

∂2f(n1 − 1, n2, n3, . . . , nK) ≥ ∂1f(n1 − 1, n2, n3, . . . , nK) (42)

∂2f(n′1, n
′
2 − 1, n′3, . . . , n

′
K) ≤ ∂1f(n′1, n

′
2 − 1, n′3, . . . , n

′
K) (43)

with ∂if representing the discrete partial derivative.

Since n′2 − 1 = n2, the LHS of (43) is at most smaller than the LHS of (42) by a number

of cross partials. Similarly, the RHS of (43) is at most bigger than the RHS of (42) by a

number of cross partials. Thus the two sides of (42) cannot differ by more than O( 1
t4

). That

is, for some constant c1 we have97

|f(n1 − 1, n2 + 1, n3, . . . , nK)− f(n1, n2, n3, . . . , nK)| ≤ c1
t4
. (44)

An analogous argument using n′1 = n1 − 1 and n′3 = n3 + 1 yields

|f(n1 − 1, n2, n3 + 1, . . . , nK)− f(n1, n2, n3, . . . , nK)| ≤ c1
t4
. (45)

Moreover, from Proposition 3, there is a constant c0 such that

|ni − λit| ≤ c0, ∀i. (46)

Now, Lemma 10 says that in generic environments, there are only finitely many integer

solutions (n1, . . . , nK) to (44), (45) and (46). This proves what we want.

G.4 Completing the Proof of Theorem 2

By Lemma 11, generically there exists T0 such that n(t) is monotonic over time in each signal

for t ≥ T0. If a myopic or forward-looking DM achieves t-optimality at some time t ≥ T0, he

can and thus will continue to do so at every future time (because such a strategy maximizes

the payoff in every period). Thanks to Proposition 4, such a time t exists. The theorem is

proved.

97As discussed in the proof of Lemma 10, we can find a single constant c1 that works for all σ bounded

above and bounded away from zero.
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Appendix H Proof of Theorem 3 (Batch of Signals)

Observing B signals each period is the same as planning B periods at once in the original

model. Let us use the latter interpretation and show that the t-optimal division is eventually

increasing every B periods, whenever B ≥ K − 1. This is because by the order difference

lemma, if t is large and ni(t + B) ≤ ni(t) − 1 for some signal i, then nj(t + B) ≤ nj(t) + 1

for every other signal j.98 But these inequalities would together imply B = (ni(t + B) −
ni(t)) +

∑
j 6=i(nj(t+B)− nj(t)) ≤ K − 2, leading to a contradiction.

For sufficiently large B, it is clear that these t-optimal divisions are monotone from the

beginning. Thus any myopic strategy can and thus will achieve t-optimality and dynamic

optimality.

Appendix I Equivalence Results for K = 2

I.1 Immediate Equivalence with Complementary Signals

When there are only two states and two signals, immediate equivalence holds for a broad

class of environments:99

Proposition 5. Suppose K = 2, the prior is standard Gaussian (V 0 = I2), and both signals

have variance 1.100 Write C =

(
a b

c d

)
and assume without loss that |ad| ≥ |bc|. Then

myopic, dynamic and t-optimality coincide from period 1 whenever the following inequality

holds:

(1 + 2b2) · |ad− bc| ≥ |ad+ bc|. (47)

In particular, this is true whenever abcd ≤ 0.

Proof. Under the assumptions, the DM’s posterior variance about θ1 is computed to be

f(q1, q2) =
1 + b2q1 + d2q2

1 + (a2 + b2)q1 + (c2 + d2)q2 + (ad− bc)2q1q2
98The argument is similar to (18), which we omit.
99In the proposition below, if the linear coefficients a, b, c, d were picked at random, then with probability

1
2 we would have abcd ≤ 0. Immediate equivalence follows.
100We make these simplifying assumptions on prior and signal variances so that the condition for equivalence

is easy to state and interpret. They are not essential in any way.
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Given qi observations of each signal i in the past, a myopic DM chooses signal 1 if and only

if f(q1 + 1, q2) < f(q1, q2 + 1), which reduces to

(ad− bc)2b2q21 + (1 + b2)(ad− bc)2q1 − (a2d2 − b2c2)q1 + c2(1 + b2)

<(ad− bc)2d2q22 + (1 + d2)(ad− bc)2q2 + (a2d2 − b2c2)q2 + a2(1 + d2)
(48)

The condition |ad| ≥ |bc| ensures that the RHS is an increasing function of q2, because the

coefficients in front of q22 and q2 are both positive. Meanwhile, the condition (1 + 2b2)|ad−
bc| ≥ |ad + bc| implies the LHS is larger when q1 = 1 than when q1 = 0, so that the LHS is

increasing in (integer values of) q1. Thus, the proof of Lemma 1 extends without change.101

Any myopic strategy is t-optimal and dynamically optimal.

To interpret, (47) requires that the determinant of the matrix C, ad − bc, to be not

too small (holding other terms constant). Put differently, the two vectors (in R2) defining

the signals should not be close to collinear. This rules out situations where the two signals

provide such similar information in the initial periods that they substitute one another.102

I.2 Eventual Equivalence

Even when immediate equivalence does not obtain, the signal paths under myopic, dynamic

and t-optimality are eventually exactly identical for the case of K = 2. This holds for

arbitrary prior beliefs and signals, not just generically (c.f. Theorem 2).

Theorem 6. Suppose K = 2 and suppose the informational environment satisfies Assump-

tion 3.103 There exists a large time T ∗ such that the following holds: any myopic division

m(t) is t-optimal at times t ≥ T ∗, and so is any dynamically optimal division d(t) for any

decision problem.

101Specifically, after a one-shot deviation from signal 1 to signal 2, the deviation path keeps observing signal

1 until the first time the original myopic path observes signal 2. The same exchangeability argument then

shows that the posterior variances along the deviation path are uniformly larger than the original path.
102For example, when a = 3, b = 1, c = 5, d = 2, it can be shown that the myopic path begins with

BXXXXXXXXX, while the dynamically optimal path (for the prediction problem and δ = 0.9) is to

observe XXXXXXXXXB. Lemma 1 fails here because following a one-shot deviation from B to X in the

first period, the DM finds it myopically better to continue observing X rather than B, as f(2, 0) < f(1, 1).

This suggests strong substitution between the two signals so that deviating to X in the first period decreases

the marginal value of signal B even more than it does signal X.
103Recall that Assumption 4 is always satisfied when K = 2
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That is, when K = 2, any myopic or dynamically optimal strategy achieves t-optimality

after finitely many periods.104

A key step of the proof is to show that when K = 2, the “constrained t-optimal divisions”

(see Definition 3 in Appendix C) are eventually monotonic, so that payoff can (and thus will)

be minimized period by period.

Lemma 12. Fix an informational environment (V 0, C, {σ2
i }) with K = 2. There exists

H∗ such that for any history h with signal counts H1, H2 ≥ H∗, the constrained t-optimal

divisions following h satisfy nhi (t+ 1) ≥ nhi (t), ∀i, ∀t ≥ H.

Proof of Lemma 12. We first show that the unconstrained t-optimal divisions are monotonic

for t ≥ 2H∗.105 Let (n1, n2) be the t-optimal division. Then by Proposition 3, the t + 1-

optimal division is n1 + b+ 1, n2− b for some bounded integer b. Without loss assume b ≥ 0,

then we need to show b is in fact equal to zero. This is because for fixed b ≥ 1,

f(n1 + 1, n2 − 1) ≥ f(n1, n2) =⇒ f(n1 + b+ 1, n2 − b) > f(n1 + b, n2 + 1− b) (49)

as n1, n2 increase to ∞ proportionally. The proof of this uses the order difference lemma,

similar to (18), so we omit it. Since the LHS of (49) holds by t-optimality, we deduce that

the unconstrained t-optimal divisions are indeed increasing over time.

Let us turn to the constrained divisions. Fix a history h with length H ≥ 2H∗. If

nh(H) is unconstrained t-optimal, then by monotonicity, any future unconstrained t-optimal

division satisfies the constraints. Thus nh(t) is unconstrained t-optimal at all t ≥ H. The

conclusion of the lemma holds in this case.

Otherwise, suppose without loss that H1 < n1(H) and H2 > n2(H). This means the DM

has observed an excess of signal 2 than optimal. Denote by T > H the first time at which

n2(T ) = H2; such a time exists because n2(t) increases by 0 or 1 each time. We claim that

for H ≤ t < T , nh(t) = (t−H2, H2), and for t ≥ T , nh(t) = n(t). This will prove the lemma.

Intuitively, the claim says that the DM should keep observing signal 1 until its signal

count catches up with the unconstrained optimum. To prove it formally, we note from the

convexity (single-peakedness) of f that

f(n1(t), n2(t)) < f(t−H2, H2) =⇒

f(t−H2, H2) < f(t− q2, q2),∀q2 > H2 > n2(t).

104We do not state the result as m(t) = d(t) = n(t) because these divisions need not be unique.
105Together with Proposition 4, this monotonicity is sufficient to prove Theorem 6 under the extra assump-

tion that λ1/λ2 is an irrational number. Our proof below does not rely on this assumption.
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By the choice of T , we have n2(t) < H2 for t ∈ [H,T ). Thus the above display implies nh(t) =

(t − H2, H2) is the constrained optimum at such times t. For larger t, the unconstrained

t-optimal division satisfies the constraints. Hence the constrained optimum must also be an

unconstrained optimum, proving the claim and the lemma.

With Lemma 12, we can quickly prove Theorem 6 as follows. The lemma implies that

following any history h with Hi ≥ H∗, a myopic continuation strategy can, and thus will,

achieve constrained t-optimality at every time. Such a strategy maximizes the flow payoff in

every period following h, so it is dynamically optimal. By Proposition 3, Hi ≥ H∗ holds along

the myopic and dynamically optimal signal paths whenever the history h is sufficiently long.

Moreover, any constrained optimum eventually becomes unconstrained optimum. Theorem

6 is proved.

Appendix J Examples Without Eventual Equivalence

J.1 Myopic Not t-Optimal Infinitely Often

Here we continue to study Example 4 presented in the main text. Consider the t-optimal

division at time t. The payoff function in (6) suggests that the problem can be separated into

two parts: choosing qX , and allocating the remaining observations between q1 and q2. The

latter allocation problem is identical to the benchmark case—an optimal division between

signals B1 and B2 satisfies q2 = q1 − 1 or q2 = q1. With some extra algebra, we obtain that

for N ≥ 1:

1. If t = 3N + 1, then the unique t-optimal division (qX , q1, q2) is (N + 2, N,N − 1);

2. If t = 3N + 2, then the unique t-optimal division is (N + 3, N,N − 1);

3. If t = 3N + 3, then the unique t-optimal division is (N + 2, N + 1, N).

Crucially, note that when transitioning from t = 3N + 2 to t = 3N + 3, the t-optimal

number of X signals is decreased. This reflects the complementarity between signals B1 and

B2, which causes the DM to observe them in pairs. Due to this failure of monotonicity,

t-optimality at all large times is unattainable.106

106We can however show that in this example, any myopic strategy maximizes the ex-ante expected payoff

(in the prediction problem), whenever the DM is moderately impatient (specifically, δ ≤ 0.91). Moreover,

for any discounting δ < 1, the myopic signal path eventually coincides with the forward-looking solution.
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J.2 Myopic Not Dynamically Optimal

Next, we provide another example in which, for any positive discount factor δ, the myopic

division differs from the dynamically optimal division at infinitely many periods. The setup

is almost the same as Example 4, except that the noise term εX has variance 2. The DM

has posterior variance about θ given by

f(qX , q1, q2) = 1− 1

1 + 2
qX

+ 1− 1
1+ 1

q1
+ 1

1+q2

(50)

The change from the previous example is that 2
qX

appears in the denominator, rather than
1
qX

.

As in the analysis of the previous example, there will be times t̂− 1 and t̂ at which the

t-optimal division transitions from (M,N,N − 1) to (M − 1, N + 1, N), for some positive

integers M,N . By t-optimality, we must have f(M,N,N − 1) ≤ f(M − 1, N,N) and

f(M − 1, N + 1, N) ≤ f(M,N,N). Using (50), we deduce that any such pair (M,N)

satisfies

2
(
N2 + 5N + 6

)
− 2− 4

N + 1
≤M(M − 1) ≤ 2

(
N2 + 5N + 6

)
+ 2 +

4

N
. (51)

Observe that for any N > 2, we have 4
N+1

< 2 and 4
N
< 2. Since both M(M − 1) and

2 (N2 + 5N + 6) are even numbers, the above condition reduces to

M(M − 1) = 2(N2 + 5N + 6 + φ), (52)

where φ ∈ {−1, 0, 1}. If t̂ = M + 2N for such M,N , we call it a “bad” time.

We can show by induction that the myopic strategy achieves t-optimality at any time t

that is not “bad”. Specifically, suppose t̂ is a bad time and the myopic division at time t̂− 2

is the t-optimal division (M − 1, N,N − 1).107 Then, at time t̂− 1, the DM’s myopic choice

is to observe signal X, which achieves the t-optimal division (M,N,N − 1). t-optimality

cannot be achieved at the bad time t̂, but the myopic DM observes B1 to reach the division

(M,N + 1, N − 1), since f(M,N + 1, N − 1) = f(M,N,N) < f(M + 1, N,N − 1). Next, at

time t̂ + 1, the DM myopically observes signal B2. This yields the division (M,N + 1, N),

which is t-optimal at time t̂+ 1. Afterwards, the t-optimal divisions are monotonic until the

next bad time.108 Hence the myopic strategy preserves t-optimality until then.

Thus this is an example in which myopic information acquisition eventually achieves dynamic optimality,

but does not eventually achieve t-optimality.
107t-optimality can be verified using (50) and (52).
108The key is to show that n1(t+ 1)−n1(t), n2(t+ 1)−n2(t) ∈ {0, 1}. Given this, non-monotonicity of the

t-optimal division must mean that nX(t+ 1) = nX(t)− 1, n1(t+ 1) = n1(t) + 1, n2(t+ 1) = n2(t) + 1.
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Take any pair (M,N) satisfying (52) with φ = 1. This pair determines a bad time

t̂ = M + 2N . From the preceding paragraph, the myopic strategy observs XB1B2 at times

t̂ − 1, t̂ and t̂ + 1. Consider a deviation strategy which observes B1B2X in these 3 periods,

and which agrees with the myopic signal path in all other periods. The flow payoffs obtained

under the deviation differ from the payoffs under the myopic strategy only in two periods:

t̂− 1 and t̂.

At time t̂− 1, the deviation does worse by an amount of

f(M−1, N+1, N−1)−f(M,N,N−1) =

2
M(M−1) −

1
N2+5N+7+ 2

N(
1 + 2

M−1 + 1− 1
1+ 1

N
+ 1

1+N

)(
1 + 2

M
+ 1− 1

1+ 1
N
+ 1
N

)
(53)

At time t̂ however, the deviation does better by an amount of

f(M,N+1, N−1)−f(M−1, N+1, N) =

1
N2+5N+5− 2

N+1

− 2
M(M−1)(

1 + 2
M−1 + 1− 1

1+ 1
1+N

+ 1
1+N

)(
1 + 2

M
+ 1− 1

1+ 1
N
+ 1

1+N

)
(54)

Since M(M − 1) = 2(N2 + 5N + 7), the RHS of (53) is of order 1
N5 , while the RHS of (54) is

of order 1
N4 . Thus for any positive discount factor δ, the deviation strategy achieves higher

discounted total payoff than the myopic strategy whenever N is sufficiently large.109

Thus, for any δ > 0, it cannot be the case that m(t) = d(t) for every large t; otherwise,

a 3-period deviation constructed above (with N sufficiently large) achieves higher ex-ante

payoff.110

109The Diophantine equation (52) has infinitely many positive integer solutions (M,N) for φ = 1. To see

this, we rewrite (52) as (2M − 1)2 − 2(2N + 5)2 = 7, which is a Pell’s equation. All integer solutions are

characterized by (2M − 1) + (2N + 5)
√

2 = (3±
√

2)(3 + 2
√

2)`, with ` an arbitrary integer. Thus there are

infinitely many bad times, corresponding to (M,N) = (6, 2), (14, 7), . . . .
110Our analysis leaves open the possibility that m(t)−d(t) equals a nonzero constant vector at large times t,

so that the myopic and forward-looking signal paths are eventually the same, but the signal counts continue

to differ. We can however show it does not occur in this example: first recall that we have shown m(t) = n(t)

at a set of (bad) times with natural density 1. Suppose d(t) 6= m(t) for all large t, then d(t) 6= n(t) at almost

all t. But λX/λ1 = λX/λ2 =
√

2, so the proof of Proposition 4 implies dX(t) cannot be different from nX(t)

(or mX(t)). The remaining case is if d1(t) = m1(t)+1, d2(t) = m2(t)−1 (or vice versa) for large t. Note that,

holding fixed mX(t), the myopic division always minimizes the DM’s posterior variance (since any division

m1(t),m2(t) with m1(t) − m2(t) ∈ {1, 2} is t-optimal for the prediction of b1). Thus the forward-looking

DM can switch an observation of signal B1 to signal B2 (or vice versa) and reduce his posterior variance at

every future period, leading to a contradiction.
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J.3 Beyond Linear Signals

The example below highlights the significance of linear signals for our equivalence results.

Example 7. Consider a setup similar to Example 4 before, with three states θ, b1, b2 drawn

independently. The DM has access to three signals

X = θ + sign(b1) + εX

B1 = sign(b1b2) + ε1

B2 = b2 + ε2

where εX , ε1, ε2 are Gaussian noise terms. The distinction from Example 4 is that the signals

here are not linear combinations of the unknown states, but rather depend on the “sign” of

b1 and b2. We focus on the prediction problem, in which the DM seeks to minimize squared

prediction error about θ.

Note that prior to the first observation of signal B1, signal B2 is completely uninformative

about the payoff-relevant state θ (even when combined with previous observations of signal

X). Similarly, signal B1 is individually uninformative about b1 and thus about θ — the

sign of b1b2 does not contain any new information about b1 when b2 is equally likely to be

positive or negative. These imply that the DM’s uncertainty about θ is not reduced upon

the first observation of either B1 or B2. Hence, the myopic strategy in this example is to

always observe X. A myopic DM gets stuck in observing X, contrary to Lemma 6.

In so doing, a myopic DM never fully learns the value of θ. By contrast, a forward-

looking DM would observe each signal infinitely often and completely identify the value of θ.

Thus, eventual equivalence between the myopic and dynamically optimal signal paths fails

(drastically) in this example for all signal variances, violating the conclusion of Theorem 2.

Appendix K Proof of Theorem 4 (Time to “Eventual

Gap One”)

The proof of the bound resembles the proof of Theorem 1 Part (a), except that we need

sharper estimates (for the posterior variance function and its derivatives). We now turn

to these estimates. Throughout, we work with the linearly-transformed model, where each

signal Xi is simply θ̃i plus standard Gaussian noise, and the DM’s prior covariance matrix

over the transformed states is V . Let w = (1, . . . , 1)′, and γ = γ(q1, . . . , qK) represents the
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following K × 1 vector:

γ′ = w′ · V (V + E)−1

with E = diag( 1
q1
, . . . , 1

qK
). Our more precise approximations of the posterior variance func-

tion f and its derivatives are based on this vector γ. For 1 ≤ i ≤ K, γi denotes the i-th

coordinate of γ.

K.1 Preliminary Estimates

In this subsection, we re-derive the posterior variance function f , its derivatives and second

derivatives. The formulae below take as primitives V and w, but they are equivalent to those

presented in Appendix A (for the original model). All partial derivatives in this subsection

are the usual continuous derivative.

Fact 1 (Posterior Variance).

f(q1, . . . , qK) = w′(V − V (V + E)−1V )w. (55)

Fact 2 (Partial Derivatives of Posterior Variance).

∂if(q1, . . . , qK) = − 1

q2i
· w′V (V + E)−1∆ii(V + E)−1V w = −γ

2
i

q2i
. (56)

Fact 3 (Second-Order Partial Derivatives of Posterior Variance).

∂iif(q1, . . . , qK)

=
2 · w′V (V + E)−1∆ii(V + E)−1V w

q3i
− 2 · w′V (V + E)−1∆ii(V + E)−1∆ii(V + E)−1V w

q4i

=
2γ2i
q3i
·
(

1− [(V + E)−1]ii
qi

)
(57)

Fact 4 (Cross-Partial Derivatives of Posterior Variance).

∂ijf(q1, . . . , qK) =
−2

q2i q
2
j

· w′V (V + E)−1∆ii(V + E)−1∆jj(V + E)−1V w

=
−2γiγj
q2i q

2
j

· [(V + E)−1]ij. (58)

The above facts are proved by simple linear algebra. The upshot is the following result

which quantifies the asymptotic characterization in Proposition 3 (easy to see that λi = 1):

Proposition 6. For T ≥ 21.5(R+ 1)K2, it holds that 0.948 · T
K
≤ mi(T ), ni(T ) ≤ 1.054 · T

K
.
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Proof. We will derive the bounds for mi(t), which is more difficult. Note from the definition

of γ that γ′ · (V +E) = w′ · V , thus (V +E)γ = V w and V (w− γ) = Eγ = (γ1
q1
, . . . , γK

qK
)′. It

follows that

w − γ = V −1 ·
(
γ1
q1
, . . . ,

γK
qK

)′
.

From the definition of the operator norm, we deduce

K∑
i=1

(1− γi)2 = ‖w − γ‖2 ≤ R2 ·

(
K∑
j=1

γ2j
q2j

)
. (59)

Let γ be evaluated at (m1(t), . . . ,mK(t)), and suppose signal j is the myopic choice in

period t + 1, so that |∂jf | =
γ2j

(mj(t))2
is maximal.111 Then the above inequality implies

|1 − γj| ≤ R
√
K·γj

mj(t)
. Assuming mj(t) > 20RK, this gives |1 − γj| ≤ γj

20
√
2
, so that γj < 1.037.

Plugging back into (59) and using mj(t) > 20RK, we have for each i,

(1− γi)2 + (1− γj)2 <
1.0372R2K

(mj(t))2
< 0.00135

which implies 0.963 < γi, γj < 1.037 and γj−γi < 0.052.112 Thus
γj
γi

= 1+
γj−γi
γi

< 1+ 0.052
0.963

<

1.054. But by assumption | γj
mj(t)
| ≥ | γi

mi(t)
|, so that

mj(t)

mi(t)
< 1.054.

Now since T ≥ 21.5(R + 1)K2, the DM must have observed some signal j in period

t0 + 1 ≤ T with the property that mj(t0 + 1) ≥ T
K

. Thus mj(t0) ≥ 21.5RK and our

preceding analysis yields mi(t0) >
21.5RK
1.054

> 20RK for every signal i. It follows that when

t ≥ t0 + 1, mi(t) >
mj(t)−1
1.054

holds for every pair of signals i, j. Summing across i or j yields

the desired bounds.113

111This claim is somewhat incorrect, since the myopic signal maximizes (the absolute value of) the discrete

partial derivative, rather than the continuous derivative. However, there is minimal distinction between the

two: the discrete partial derivative always satisfies

γ2j
qj(qj + 1)

≤ |f(qj + 1, q−j)− f(qj , q−j)| ≤
γ2j
q2j
,

where γ is evaluated at (q1, . . . , qK). The RHS follows from the convexity of f , while the LHS uses the

property that γ2j increases in qj , because
∂γj(q)
∂qj

=
γj
q2j
· [(V + E)−1]jj .

Thus, if signal j is the myopic choice in period t+ 1, we always have
γ2
j

(mj(t))2
≥ γ2

i

mi(t)·(mi(t)+1) ≥
γ2
i

2(mi(t))2
.

Except for having to adjust the constants, the rest of this proof is minimally affected—in fact, these constants

need not change much either, because we have
γ2
j

(mj(t))2
≥ γ2

i

mi(t)·(mi(t)+1) ≥
γ2
i

1.1(mi(t))2
once we have shown

mi(t) ≥ 10. The constant 1.1 appearing here is easily absorbed into the subsequent estimates.
112The latter uses (1− γi)2 + (1− γj)2 ≥ (γj−γi)2

2 .
113Fixing j and directly summing this inequality across i, we would obtain mj(t) < 1.054 TK + 1. The extra

“+1” can be removed by noting mj(t) >
mj(t)+K−1

1.054 and summing this with the inequalities mi(t) >
mj(t)−1
1.054

across i different from j.
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A particular step of the above proof is recorded below.

Fact 5. Suppose q1, . . . , qK ≥ 20RK. Then 0.963 ≤ γi(q1, . . . , qK) ≤ 1.037 and |γi − γj| ≤
0.052.

As a corollary, we have a quantitative version of the order difference lemma:

Lemma 13. Suppose q1, . . . , qK ≥ 20RK. Then 1.80
q3i
≤ ∂iif ≤ 2.16

q3i
, while |∂ijf | ≤ 2.16R

q2i q
2
j
,∀i 6=

j.

The proof of this is based on the previously listed facts and 0 ≤ [(V +E)−1]ii ≤ [V −1]ii ≤ R

(thus also |[(V + E)−1]ij| ≤ R).114

K.2 Bound on Consecutive Observations

We now bound the number of periods between consecutive observations of signal i.

Lemma 14. Suppose t ≥ 21.5(R+ 1)K2, and the myopic DM observes signal j in period t.

Then mj(t+ 3K) > mj(t).

Proof. Let T = t+ 3K. Write mi = mi(t) and Mi = mi(T ). Without loss assume j = 1. We

need to show M1 > m1.

Suppose for contradiction that M1 = m1. Since
∑K

i=1(Mi −mi) = T − t = 3K, we can

without loss assume M2 − m2 ≥ 4. Since signal 1 was myopically optimal at time t, the

discrete partial derivatives satisfy

∂1f(m1 − 1,m2, . . . ,mK) ≤ ∂2f(m1 − 1,m2, . . . ,mK).

We claim that this implies

∂1f(M1,M2 − 1, . . . ,MK) < ∂2f(M1,M2 − 1, . . . ,MK),

so that the DM cannot myopically observe signal 2 at time T (observing signal 1 would be

better).

To prove this claim, consider the difference between the preceding two displays. Since

M1 = m1, the LHS of the latter display is smaller than the LHS of the former plus ∂11f and

114This estimate is rather crude: when V is diagonal, [(V + E)−1]ij = 0 but R can be arbitrarily large.

This suggests potential improvements to our bound that better capture correlation in the prior.
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at most T − t cross partials. The RHS, however, is larger by (M2 −m2 − 1)∂22f minus at

most T − t cross partials. It thus suffices to show

3∂22f ≥ ∂11f + 6K|∂ijf |. (60)

These derivatives are evaluated at points (q1, . . . , qK) with mi ≤ qi ≤ Mi, so that

0.948 t
K
≤ qi ≤ 1.054 T

K
≤ 1.13 t

K
.115 Hence, by Lemma 13, we have

∂11f

∂22f
≤ 2.16 · q32

1.8 · q31
≤ 2.16 · 1.133

1.8 · 0.9483
< 2.1

and also
|∂ijf |
∂22f

≤ 2.16 · q32 ·R
1.8 · q2i q2j

≤ 2.16 · 1.133

1.8 · 0.9484
· RK
t

<
2.15RK

t
<

1

10K
.

Hence (60) holds, proving the myopic DM did not observe signal 2 at time T . Essentially the

same argument can be used to derive a contradiction assuming that signal 2 was observed

at some time between t and T . But then M2 = m2, again a contradiction. The Lemma is

thus proved.

K.3 Completing the Proof of Theorem 4

Fix t ≥ 24(R+ 1)K2. Suppose for contradiction that |mi(t)−ni(t)| > 1 for some i. Without

loss assume |m1(t) − n1(t)| > 1 and this difference is largest among all signals. We further

assume m1(t) ≤ n1(t)− 2 and m2(t) ≥ n2(t) + 1. A symmetric argument applies to m1(t) ≥
n1(t) + 2.

Let t̃ ≤ t be the last period when the myopic DM observed signal 2. By Lemma 14,

t − t̃ ≤ 3K.116 Write ni = ni(t),mi = mi(t), m̃i = mi(t̃). As in the proof of Theorem 1

Part (a), we will prove (18) and deduce a contradiction. We have (considering the difference

between (19) and (20))

f(m̃1, m̃2, . . . m̃K)− f(m̃1 + 1, m̃2 − 1, . . . m̃K)− f(n1 − 1, n2 + 1, . . . , nK) + f(n1, n2, . . . , nK)

=∂2(m̃1, m̃2 − 1, . . . , m̃K)− ∂1(m̃1, m̃2 − 1, . . . , m̃K)− ∂2(n1 − 1, n2, . . . , nK) + ∂1(n1 − 1, n2, . . . , nK)

=(m̃2 − n2 − 1)∂22f + (n1 − m̃1 − 1)∂11f − (n1 − m̃1 − 1 + m̃2 − n2 − 1)∂12f +
∑
j>2

(nj − m̃j)(∂1jf − ∂2jf)

≥(n1 −m1 − 1) · ∂11f − (|n1 − m̃1|+ |n2 − m̃2|) · |∂12f | −
∑
j>2

|nj − m̃j| · (|∂1jf |+ |∂2jf |).

(61)

115The last step uses t ≥ 42K and so T
t ≤

15
14 .

116Consider t0 = 21.5(R+1)K2, then by Proposition 6, m2(t0) ≤ 1.054t0 < 22.7(R+1)K2 < 0.948t ≤ m2(t).

Thus the myopic DM observed signal 2 between time t0 and time t, and t̃ ≥ t0. Applying Lemma 14 to t̃

yields t− t̃ ≤ 3K.
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All partial derivatives in the above are discrete partial derivatives, and the last inequality

holds because m̃1 ≤ m1 and m̃2 = m2 ≥ n2 + 1.

The total number of cross partials that appear above can be bounded by

2
∑
j

|nj − m̃j| ≤ 2
∑
j

|nj −mj|+ 2
∑
j

|mj − m̃j|

≤ 2K(n1 −m1) + 2(t− t̃) ≤ 10K(n1 −m1 − 1),

where the first step uses the triangle inequality, the second step uses the assumption |nj −
mj| ≤ n1 −m1, and the last step uses t− t̃ ≤ 3K, n1 −m1 ≥ 2.

However, we have shown previously that
|∂ijf |
∂11f

< 1
10K

. Hence the RHS of (61) is strictly

positive, completing the proof of the theorem.

Appendix L Intertemporal Decisions

L.1 Example: Investment in a Risky Asset with Unknown Return

We first provide a concrete example to illustrate the class of intertemporal decision problems

discussed in Section 9. Suppose a worker repeatedly decides how much to consume, how

much to save in a liquid asset (bond), and how much to invest in an illiquid asset (pension

fund). The return to the liquid asset is known: 1 dollar saved today is worth er dollars

tomorrow, with r > 0. The return to the illiquid asset is unknown, and it is the payoff-

relevant state in the worker’s decision problem; for now, we assume that every dollar invested

today in the pension fund deterministically yields eθ1 dollar(s) tomorrow. The worker works

for T periods, and in each of these periods he learns about θ1 and then allocates his wealth

across consumption, saving and investment. In period T + 1, the worker retires and receives

all the returns from his investments (into the illiquid asset). His objective is to maximize a

discounted sum of consumption utilities as well as the utility from his wealth upon retirement.

Our equivalence results applied to this example imply that in separable or symmetric

informational environments, the worker’s optimal information acquisition strategy is myopic,

minimizing the posterior variance about θ1 at every period. This property would then allow

us to analyze the worker’s optimal consumption/saving/investment behavior as if information

were exogenously given. While we will not comment on the optimal sequence of actions, our

results provide an important simplification of the analysis by separating the concern of

optimal information acquisitions from the question of optimal decisions.

78



An important (hidden) assumption of the above example is that the return to invest-

ment is deterministic and only observed at the end. However, by considering the realized

return as a particular signal, our model can also cover situations in which the DM (per-

haps periodically) learns from past, stochastic returns. Our results would extend as long

as the distribution of the realized (log) return does not depend on the amount of invest-

ment—specifically, the worker could counterfactually figure out the return to his investment,

even when he did not invest.

L.2 Proof of Theorem 5

To simplify notation, we (equivalently) let the DM take action at at the beginning of each

period t, prior to observing a signal in that period. The DM’s strategy in this problem

consists of an information acquisition strategy S as well as a decision strategy A. Specifically,

at any history hT (which is a sequence of divisions and expected values about θ1), A(hT )

specifies the action to be taken in period T + 1, while S(hT ) is the signal choice.117 Fix any

pair (S,A), we will demonstrate another pair (S̃, Ã) that achieves the same expected payoff,

where S̃ acquires information myopically. This will prove the theorem.

Our argument closely follows the proof of Lemma 7 in Appendix F. Let G̃ maps each

sequence of divisions (d(0), . . . , d(T )) under S to the deterministic sequence of myopic di-

visions (m(0), . . . ,m(T )). Then, as in the proof of Lemma 7 (especially the last paragraph

there), we can associate each history of beliefs hT = (µ0
1, f(0);µ1

1, f(d(1)); . . . ;µT1 , f(d(T )))

under S to a distribution of belief histories h̃T = (µ0
1, f(0); ν11 , f(m(1)); . . . , νT1 , f(m(T )))

that occurs with the same probability under S̃ and is more informative about θ1 at every

period. Then, at a given history h̃T under S̃, we let the DM randomly draw a history hT to

“imitate” and follow the action choice given by A. That is, we set Ã(h̃T ) = A(hT ) with the

appropriate probability that h̃T imitates hT .118

With this construction of Ã, we see that a DM following the decision strategy A obtains

the same payoff along any infinite belief history h as another DM who uses the decision

strategy Ã and faces the distribution of belief histories h̃. Integrating over h, we have shown

that (S̃, Ã) achieves the same payoff as (S,A). Hence the Theorem follows.

117Since pure strategies suffice for the DM’s problem, it is not necessary to condition on past actions.
118The appropriate probability kernel has been discussed in the proof of Lemma 7.
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Appendix M The Continuous-Time Model

In this appendix, we consider a continuous-time variation of our main model. We assume

that the DM has one unit of attention in total at every point in time. He chooses attention

levels β1(t), . . . , βK(t) (subject to βi(t) ≥ 0 and
∑

i βi(t) ≤ 1), which influence the diffusion

processes X1, . . . , XK that he observes:119

dX t
i = βi(t) · θ̃idt+

√
βi(t)dB

t
i ,

where eachBi is an independent standard Brownian motion, and θ̃i = 〈ci, θ〉 is a “transformed

state.” The payoff-relevant state is

θ1 = 〈w, θ̃〉

for some fixed K × 1 vector w. We assume exact identifiability, so each coordinate wi > 0.

At any time t, the DM’s past attention levels integrate to a division q(t) over the sig-

nals. A Markovian information acquisition strategy S maps
(
q(t),

{
X≤ti

}K
i=1

)
to ∆([K]),

representing how the DM divides attention at each instant as a function of his posterior

beliefs.

The decision problem is the same as in discrete time: at an exogenously determined

random final time t (drawn with density π(t)), the DM takes an action at and receives payoff

ut(at, θ1). The forward-looking DM thus maximizes E
[∫∞

0
π(t) · ut(at, θ1) dt

]
. We maintain

the assumptions of a single payoff-relevant state and payoff sensitivity.

As in the discrete-time model (see Appendix K), the DM’s posterior variance about θ1 is

a function of his prior covariance matrix V over θ̃, the division q and the weights w:

f(q1, . . . , qK) = w′(V − V (V + E)−1V )w

with E = diag
(

1
q1
, . . . , 1

qK

)
. This posterior variance together with the posterior expected

value of θ1 determines the optimal action at that maximizes the flow payoff E[ut(at, θ1)]. We

will thus focus on the dynamically optimal information acquisition strategy, and take for

granted the corresponding optimal actions.

The notion of constrained t-optimality following a given history h is defined in the usual

way. As before, a strategy S is constrained t-optimal if and only if the induced division qS(t)

is almost surely a constrained t-optimal division:

qS(t) ∈ argmin
qi≥Hi,

∑
i qi=t

f(q1, . . . , qK).

119This formulation can be seen as a limit of our discrete-time model, if we take period length to zero and

also “divide” the signals to maintain the same amount of information that can be gathered every second.
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The only difference from discrete time is that qi can now take non-integer values. We

note that by using an argument analogous to Footnote 78, we can show there is a unique

constrained t-optimal division nhi (t) at every time t.

M.1 Sufficient Conditions for Immediate Equivalence

We first examine the question of when myopic information acquisition is dynamically and t-

optimal from the beginning of time. Let us define a myopic strategy in continuous time to be

any limit of dynamically optimal strategies as the DM becomes infinitely impatient. Then,

we seek sufficient conditions under which dynamic optimality coincides with t-optimality.

As is now routine, this equivalence holds if and only if the constrained t-optimal divisions

are monotonic over time, following any given history.

Proposition 1 and 2 directly extend and show that immediate equivalence obtains when-

ever the informational environment is separable or symmetric. More surprisingly, Example 4

presented in the main text now satisfies immediate equivalence, even though this equivalence

fails in the discrete-time model (see Appendix J for details).120 We mention that the exam-

ple can be generalized to allow more states θ1, b1, . . . , bK−2, bK−1 and a “hierarchy” of noisy

signals about θ1 + b1, b1 + b2, . . . , bK−2 + bK−1, bK−1. Immediate equivalence still obtains.

We now show that in continuous time, immediate equivalence holds whenever the DM’s

prior is almost independent. This formally confirms the intuition we provided for Theorem

1. Recall that V is the DM’s prior covariance matrix over the transformed states θ̃1, . . . , θ̃K .

120To see immediate equivalence in continuous time, we recall that Example 4 has three states θ, b1, b2

and three noisy signals X,B1, B2 about θ + b1, b1 + b2, b2 respectively. The t-optimal problem is to allocate

t = tX + t1 + t2 units of time across these three signals to minimize the posterior variance about θ. Because

the DM’s prior beliefs over the states are independent, his allocation problem can be broken down into two

sub-problems: first, for fixed sum t1 + t2, what is the optimal way to allocate t1, t2 to minimize the posterior

variance about state b1? Second, given the minimal variance about b1 as a function of t1 + t2, what is the

optimal pair (tX , t1 + t2)? Note that the first sub-problem is the same as our benchmark model. Thus, the

optimal pair (t1, t2) is increasing in the sum t1 + t2. On the other hand, because the minimal variance about

b1 is a convex function of t1 + t2, the second sub-problem also exhibits separability. Hence, the optimal pair

(tX , t1 + t2) is increasing in t, which implies that the entire triple (tX , t1, t2) is monotonic.

The reason this argument does not apply in discrete time is because the minimal variance about b1 is not

a convex function of t1 + t2, when t1, t2 are restricted to integer values. More specifically, for given t1 + t2,

the DM’s optimal allocation for learning b1 involves t1 = t2 + 1. But this is not always feasible in discrete

time when the desired sum t1 + t2 is an even integer. It is in those situations that a discrete-time DM does

not fully take advantage of the complementarity between signals B1 and B2.
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Theorem 7. Suppose time is continuous. Given K, myopic, dynamic and t-optimality

coincide at every time whenever the prior covariance matrix satisfies

|Vij| ≤
1

2K − 3
· Vii,∀i 6= j.

Importantly, this sufficient condition does not depend on the weight vector w, so that the

myopic solution is optimal regardless of what the DM’s payoff-relevant state is.121 We com-

ment that the constant 1
2K−3 is best possible in the following sense: for any ρ > 1

2K−3 , there

exists some weight vector w and some prior covariance matrix V satisfying |Vij| ≤ ρ · Vii,
such that immediate equivalence does not obtain.122

For the special case of two states and two signals, we are able to derive a sufficient and

necessary condition for immediate equivalence. Replacing each θ̃i by its negative if necessary,

we will assume w1, w2 > 0.

Theorem 8. Suppose time is continuous and K = 2. Then myopic, dynamic and t-

optimality coincide at every time if and only if

w1(V11 + V12) + w2(V21 + V22) ≥ 0.123

The proofs of these results are deferred to later in this appendix.

M.2 Eventual Equivalence

Next, we investigate the informational environments in which immediate equivalence does

not occur. Recall that in discrete time, Theorems 1 and 2 show that the number of signals

acquired of each type under different optimality criteria differ by at most one, and this

“eventual gap of one” vanishes in generic environments. We now show that in continuous

time, the “eventual gap of one” can be dropped in all (not just generic) environments.

Intuitively, the continuous-time model can be seen as a limit of our main discrete-time model

as the period length shrinks to zero. Since the “gap of one” corresponds to a difference of

one period, it vanishes in the limit.

121This condition is not necessary; for example, separability does not require that the prior covariance

matrix satisfies the inequality above.
122For K = 2, this follows from the “only if” characterization in Theorem 8 below. For general K,

we construct an informational environment with K signals that turns out to be equivalent to a simpler

informational environment with 2 signals. Details are provided following the proof of Theorem 7.
123This condition can be rewritten as Cov (w1θ̃1 + w2θ̃2, θ̃1 + θ̃2) ≥ 0.
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Theorem 9. Suppose time is continuous. There exists a large time T ∗ such that for any

decision problem, the division d(t) under the dynamically optimal strategy is deterministic

when t ≥ T ∗, and d(t) = n(t) is the unique t-optimal division.

We make a few comments. First, this result does not rely on the assumption that some signal

always decreases the posterior variance about θ1 strictly, i.e. Assumption 4. Second, we only

state above the equivalence between dynamic and t-optimality, but since a myopic strategy is

the limit of dynamically optimal strategies, we also deduce the eventual optimality of myopic

information acquisition. Lastly, our proof can be quantified to give an effective upper bound

on T ∗, analogous to what we did in Appendix K; we omit the details to save space.

M.3 Proof of Theorem 7

All partial derivatives in this appendix are the usual continuous derivative.

It suffices to show that whenever |Vij| ≤ 1
2K−3Vii holds for every pair of signals i 6= j, the

constrained t-optimal divisions following any given history are monotonic over time. This

implies (constrained) t-optimality can and thus will be achieved at every time (following any

given history). We will in fact prove this monotonicity under a weaker condition. Specifically,

we will only assume that

Vii ≥ (K − 2) max
j 6=i
|Vij|+

∑
j 6=i

|Vij|. (62)

Fix any history h with signal counts Hi. The unique constrained t-optimal division nhi (t)

minimizes f(n1, . . . , nK) subject to ni ≥ Hi,∀i and
∑

i ni = t. Thus, by the maximum

theorem, nh(t) is continuous in t.

At any given time t >
∑

iHi, the Kuhn-Tucker condition for optimality implies that

whenever nhi (t) > Hi, the partial derivative ∂if(nh(t)) must be a constant independent of

the signal i. Fix a time t∗ and let us classify the K signals into two groups: if nhj (t) = Hj

for all t in a small neighborhood around t∗, we put signal j into the first group. Every other

signal i is put into the second group. That means, if signal i is in the second group, then we

can find t arbitrarily close to t∗ such that nhi (t) > Hi.

Since t∗ >
∑

iHi, we can suppose without loss that nh1(t∗) > H1. Thus by continuity,

nh1(t) > H1 for t sufficiently close to t∗. Then, if signal i is in the second group, we can find

times t → t∗ such that nhi (t) > Hi and nh1(t) > H1. It follows that ∂if(nh(t)) = ∂1f(nh(t)).

Taking the limit as t → t∗ and using the continuity of nh(t), we deduce ∂if(nh(t∗)) =
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∂1f(nh(t∗)).124

Let us suppose without loss of generality that the second group consists of signals 1, . . . , k.

Then, the preceding paragraph shows for t close to t∗:

∂if(nh1(t), . . . , nhK(t)) is constant for 1 ≤ i ≤ k.

Differentiating with respect to t, we obtain125

K∑
j=1

∂nhj (t)

∂t
· ∂ijf(nh1(t), . . . , nhK(t)) is constant for 1 ≤ i ≤ k.

By definition of the groups,
∂nhj (t)

∂t
= 0 for j > k, we thus have

k∑
j=1

∂nhj (t)

∂t
· ∂ijf(nh1(t), . . . , nhK(t)) = c, ∀1 ≤ i ≤ k.

This is a system of k linear equations in the k linear unknowns
∂nhj (t)

∂t
. Thus, we deduce by

matrix algebra (
∂nh1(t)

∂t
, . . . ,

∂nhk(t)

∂t

)′
= c ·Hess−1 · (1, . . . , 1)′ (63)

with Hess being the top-left k×k sub-matrix of the Hessian matrix of f (evaluated at nh(t)).

We note that

1 =
k∑
i=1

∂nhi (t)

∂t
= c · (1, . . . , 1) ·Hess−1 · (1, . . . , 1)′

where the first equality follows from
∑

i n
h
i (t) = t and the second follows from (63). Since f

is convex, Hess is positive-definite and so is Hess−1. Thus (1, . . . , 1)·Hess−1 ·(1, . . . , 1)′ > 0,

which implies c > 0 via the preceding display.

Recall that
∂nhj (t)

∂t
= 0 for j > k and t in a neighborhood of t∗. Thus, proving the (local)

monotonicity of nh(t) reduces to proving
∂nhi (t)

∂t
≥ 0 for 1 ≤ i ≤ k. By (63), this is further

equivalent to each coordinate of Hess−1 · (1, . . . , 1)′ being non-negative. This is given in the

following lemma:

124This is obviously true if nhi (t∗) > Hi, but the second group of signals may also contain some i for which

nhi (t∗) = Hi (but nhi (t) > Hi at times t close to t∗).

125It can be shown from the Implicit Function Theorem that the derivatives
∂nh

j (t)

∂t almost always exists

and is given by (63) below. The only exception occurs when t is the largest time at which nhj (t) = Hj—even

in that case, the right-sided derivative exists and is given by (63).
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Lemma 15. Suppose the prior covariance matrix V satisfies (62). Let 1 ≤ k ≤ K and

suppose a division (q1, . . . , qK) is such that ∂if(q1, . . . , qK) = ∂jf(q1, . . . , qK) holds for 1 ≤
i, j ≤ k. Denote by H the top k × k sub-matrix of the Hessian matrix of f (evaluated at q).

Then H−1 · (1, . . . , 1)′ ≥ 0.

Proof of Lemma 15. We will prove the Lemma assuming k = K. The proof for smaller k is

similar (and does not use the full strength of Assumption (62)).

By Farkas’ lemma, the vector H−1 · (1, . . . , 1)′ has non-negative coordinates if and only if

for any real numbers x1, . . . , xK , (x1, . . . , xK) ·H ≥ 0 implies x1 + · · ·+xK ≥ 0. Suppose for

contradiction that x1 + · · ·+xK < 0. Without loss assume x1 is the smallest (most negative)

among x1, . . . , xK . We will show under these assumptions that

|x1| ·H11 >
∑
j 6=1

|xj| · |H1j|, (?)

which will contradict (x1, . . . , xK) ·H ≥ 0.

We recall the following computations from the beginning of Appendix K:

∂1f = −γ
2
1

q21
; ∂jf = −

γ2j
q2j

∂11f =
2γ21
q31
·
(

1− [(V + E)−1]11
q1

)
; ∂1jf =

−2γ1γj
q21q

2
j

· [(V + E)−1]1j.

The assumption that ∂1f = ∂jf tells us |γ1
q1
| = |γj

qj
|. It follows that

|∂1jf |
∂11f

=
|[(V + E)−1]1j/qj|

1− [(V + E)−1]11/q1
.

Using this, the desired inequality (?) becomes (recall H is the Hessian matrix)

1− [(V + E)−1]11
q1

≥
∑
j 6=1

|xj|
|x1|
· |[(V + E)−1]1j|

qj
(??)

We now evaluate the LHS above. To do this, we introduce a piece of notation. For

subsets I, J ⊂ {1, . . . , K}, we write M−IJ the sub-matrix of M after removing rows i ∈ I
and columns j ∈ J ; M−{i}{j} is simplified as M−ij. Then we have (by directly expanding the

determinant and collecting terms)

det(V + E) =
∑

S⊂{1,...,K}

∏
i∈S

1

qi
· det(V−SS).
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det((V + E)−11) =
∑

S⊂{2,...,K}

∏
i∈S

1

qi
· det(V−S1S1) with S1 representing S ∪ {1}.

We use the convention that when S is the empty set,
∏

i∈S · · · = 1.

The above two equalities and Cramer’s rule for matrix inverse imply that

1− [(V + E)−1]11
q1

= 1− det((V + E)−11)

q1 det(V + E)
=

∑
S⊂{2,...,K}

∏
i∈S

1
qi
· det(V−SS)

det(V + E)
. (64)

In a similar way, we also have

|[(V + E)−1]1j|
qj

=
|det((V + E)−1j)|
qj det(V + E)

=
| 1
qj
·
∑

T⊂{2,...,K}−{j}
∏

i∈T
1
qi
· ± det(V−T 1T j)|

det(V + E)

≤
∑

T⊂{2,...,K}−{j}
∏

i∈T j
1
qi
· |det(V−T 1T j)|

det(V + E)
(65)

with T 1 = T ∪{1}, T j = T ∪{j}. The plus or minus sign in the first line arises in expanding

det((V + E)−1j).

Using (64) and (65), the desired inequality (??) is further reduced to

∑
S⊂{2,...,K}

∏
i∈S

1

qi
· det(V−SS) >

K∑
j=2

|xj|
|x1|
·

∑
T⊂{2,...,K}−{j}

∏
i∈T j

1

qi
· |det(V−T 1T j)|. (? ? ?)

We organize the RHS above according to T j and rewrite the desired inequality as∑
S⊂{2,...,K}

∏
i∈S

1

qi
· det(V−SS) >

∑
S⊂{2,...,K}

∏
i∈S

1

qi
·
∑
j∈S

|xj|
|x1|
· |det(V−S1

jS
)|

where S1
j represents the set S ∪ {1} − {j}. Thus, we only need to show for each non-empty

set S ⊂ {2, . . . , K} (the following inequality is strict when S = ∅):

det(V−SS) ≥
∑
j∈S

|xj|
|x1|
· |det(V−S1

jS
)|. (? ? ? ?)

Fix S. We claim that the RHS of (? ? ? ?) is at most (K − 2) ·maxj∈S |det(V−S1
jS

)| +∑
j∈S|det(V−S1

jS
)|. To see this, recall that we assume x1 is the most negative. Thus whenever

xj < 0, the ratio
|xj |
|x1| is bounded above by 1. Moreover, since x1+ · · ·+xK < 0, those positive

xj sum to at most (K − 1) · |x1|. Hence our claim. Consequently, it suffices to show

det(V−SS) ≥ (K − 2) ·max
j∈S

|det(V−S1
jS

)|+
∑
j∈S

|det(V−S1
jS

)|.
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This is equivalent to

det(V−SS) ≥ ±(K − 1) det(V−S1
j∗S

) +
∑

j∈S,j 6=j∗
± det(V−S1

jS
) (? ? ? ? ?)

for any j∗ ∈ S and any choice of plus-minuses.

Relabeling if necessary, we assume S = {l + 1, . . . , K}. For 1 ≤ i ≤ K, let ui be the

l-dimensional vector corresponding to the first l coordinates of the i-th row of V . Then V−SS

is a l × l matrix whose row vectors are u1, u2, . . . , ul. By contrast, V−S1
jS

has row vectors

u2, . . . , ul, uj—since S1
j = S ∪ {1} − {j}, the first row of V is deleted while the j-th row is

not. Suppose we have the following linear equation in vectors (with y1, . . . , yl appropriate

scalars):

± (K − 1)uj∗ +
∑

j>l,j 6=j∗
±uj =

l∑
i=1

yi · ui. (66)

Then, by the multi-linearity of the determinant,

±(K − 1) det(V−S1
j∗S

) +
∑

j>l,j 6=j∗
± det(V−S1

jS
) = y1 det(V−SS).

Hence, to prove (? ? ? ? ?), it remains to prove y1 ≤ 1 assuming (66). Choose 1 ≤ i∗ ≤ l

to maximize |yi|, and suppose for contradiction that this maximum is greater than 1. The

equality (66) applied to the i∗-th coordinate gives

±(K − 1)Vj∗i∗ +
∑

j>l,j 6=j∗
±Vji∗ =

l∑
i=1

yiVii∗ .

The triangle inequality together with |yi∗| ≥ |yi|, |yi∗ | > 1 thus implies

|yi∗ | · Vi∗i∗ ≤
∑
j 6=i∗,j∗

|yi∗| · |Vji∗|+ (K − 1) · |Vj∗i∗|. (67)

But this contradicts our assumption (62).126 This contradiction completes the proof of the

Lemma. Theorem 7 also follows.

M.3.1 An Example Showing the Optimality of 1
2K−3

We provide a specific example to show that the constant 1
2K−3 is best possible for Theorem

7 to be true. Let the prior covariance matrix V have diagonal entries 1 and off-diagonal

126That assumption implies |yi∗ | · Vi∗i∗ ≥
∑
j 6=i∗,j∗ |yi∗ | · |Vji∗ | + (K − 1)|yi∗ | · |Vj∗i∗ |, with equality only

if |Vj∗i∗ | is maximal. Together with (67), we deduce |Vj∗i∗ | = 0 and all equalities hold equal. Thus every

Vji∗ = 0, which contradicts (67) because Vi∗i∗ > 0.
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entries −ρ, with ρ > 1
2K−3 . This means the DM’s prior beliefs over the states are symmetric:

each state has the same prior variance, and there is constant prior correlation between any

pair of states. The DM cares about 〈w, θ̃〉, where we choose w1 = w2 = · · · = wK−1 = 1 and

wK a small positive number.

For this problem, we will show that the (unconstrained) t-optimal divisions are not mono-

tonic over time, so that immediate equivalence between dynamic and t-optimality does not

hold. Note that signals 1, . . . , K − 1 have symmetric prior as well as symmetric payoff

weights. Thus, the posterior variance function f(q1, . . . , qK−1, qK) is symmetric in its first

K−1 arguments. This implies the t-optimal division n(t) must satisfy n1(t) = · · · = nK−1(t);

otherwise it would not be unique. The t-optimal problem simplifies to

(n1, nK) ∈ argmin
q1,qK :(K−1)q1+qK=t

f(q1, . . . , q1, qK).

That is, the DM optimally divides attention between signal K and the remaining signals

(which are always given equal attention).

The posterior beliefs of such a DM are derived assuming he had observed the following K

signals: θ̃i+N (0, 1
q1

) for 1 ≤ i ≤ K−1 and θ̃K+N (0, 1
qK

). We claim that the (marginal) belief

about 〈w, θ̃〉 is unchanged if the DM had instead observed only two signals: 1
K−1

∑K−1
i=1 θ̃i +

N (0, 1
(K−1)q1 ) and θ̃K + N (0, 1

qK
). We provide an intuitive argument for this claim (rather

than going through the computations, which are also doable). First, by symmetry, the DM’s

belief about
∑K−1

i=1 θ̃i is the same whether he observed the K − 1 signals θ̃i + N (0, 1
q1

) for

1 ≤ i ≤ K−1, or their average 1
K−1

∑K−1
i=1 θ̃i+N (0, 1

(K−1)q1 ). Next, we need to show that the

K− 1 signals do not provide more information than their average for the DM to learn about

θ̃K . This is because the extra information provided by the K − 1 signals takes the form of

θ̃j − θ̃k for 1 ≤ j < k ≤ K − 1, and any such difference between the states is independent

from θ̃K conditional on the sum
∑K−1

i=1 θ̃i.
127

Under the equivalence discussed in the preceding paragraph, the t-optimal decision

problem with K states and K signals is the same as if there were only two states θ∗1 =
1

K−1
∑K−1

i=1 θ̃i, θ
∗
2 = θ̃K and correspondingly two signals. In the latter, simplified problem,

the DM chooses to devote (K − 1)q1 units of time to the first signal and qK units to the

second. The constraint ((K − 1)q1 + qK = t) and the objective function (minimizing the

posterior variance) are the same as in the original problem, as soon as we change the payoff

weights to be w∗1 = K − 1 and w∗2 = wK .

127In the DM’s prior, θ̃j − θ̃k has zero covariance with
∑K−1
i=1 θ̃i and with θ̃K . Thus θ̃j − θ̃k is independent

from
∑K−1
i=1 θ̃i and θ̃K , jointly. Conditional independence between θ̃j − θ̃k and θ̃K follows.

88



The prior covariance matrix V ∗ in the simplified (two by two) problem is given by

V ∗11 = Var

(
1

K − 1

K−1∑
i=1

θ̃i

)
=

1− (K − 2)ρ

K − 1
,

V ∗12 = V ∗21 = −ρ and V ∗22 = 1. Now ρ > 1
2K−3 implies V ∗11 + V ∗12 < 0. Thus for w∗2 = wK

sufficiently small, it holds that

w∗1(V
∗
11 + V ∗12) + w∗2(V

∗
21 + V ∗22) < 0.

By the proof of Theorem 8 below, we conclude that the t-optimal divisions in the two-state

problem are not monotonic over time. Hence the t-optimal divisions in the original K-state

problem are also not monotonic.128

M.4 Proof of Theorem 8

Recall that ∂if(q1, q2) = −γ2i
q2i

, with γ = (V +E)−1V w and E = diag( 1
q1
, 1
q2

). We then directly

compute that

∂1f(q1, q2) =
−(w1 · det(V ) · q2 + w1V11 + w2V21)

2

q21q
2
2 det2(V + E)

:=
−(x1q2 + y1)

2

q21q
2
2 det2(V + E)

;

∂2f(q1, q2) =
−(w2 · det(V ) · q1 + w1V12 + w2V22)

2

q21q
2
2 det2(V + E)

:=
−(x2q1 + y2)

2

q21q
2
2 det2(V + E)

.

(68)

For notational ease, we define x1 = w1 · det(V ), x2 = w2 · det(V ), y1 = w1V11 + w2V21 and

y2 = w1V12 +w2V22. Observe that x1, x2 > 0. We need to show immediate equivalence holds

if and only if y1 + y2 ≥ 0.

In one direction, suppose that y1 + y2 ≥ 0. Let us consider the t-optimal divisions and

show they are monotonic over time. To see this, without loss assume y1 ≥ y2, which means

y1 ≥ 0 because y1+y2 ≥ 0. Take any time t > 0. Then from (68), ∂1f(0, t) < ∂2f(0, t). Thus

the first-order-condition for t-optimality implies that at the t-optimal division (q1, t − q1),
either ∂1f(q1, q2) = ∂2f(q1, q2) or q1 = t, q2 = 0. As x1q2 + y1 + x2q1 + y2 > 0, the partial

derivatives are equal if and only if x1q2 + y1 = x2q1 + y2. Combined with q1 + q2 = t,

this yields a candidate t-optimal division q1 = x1t+y1−y2
x1+x2

, q2 = x2t−y1+y2
x1+x2

. For t < y1−y2
x2

, this

128This example shows if we replace 1
2K−3 with any larger constant in the statement of Theorem 7, then there

exist some payoff weights w and some prior such that the Theorem fails. One may wonder if equivalence can

be restored by constraining the payoff weights—e.g., for K = 2, Theorem 8 establishes immediate equivalence

for equal payoff weights w1 = w2 and an arbitrary prior. However, an example similar to the one given here

shows equal payoff weights do not guarantee immediate equivalence when K > 2.
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candidate solution is not feasible because q2 < 0. Thus the t-optimal division at t < y1−y2
x2

is

(t, 0). For t ≥ y1−y2
x2

, it can be verified that the above candidate solution indeed minimizes f

(because ∂1f − ∂2f turns from negative to positive only once). Thus the t-optimal division

at t ≥ y1−y2
x2

is (x1t+y1−y2
x1+x2

, x2t−y1+y2
x1+x2

), which is seen to be monotonic over time. We can use the

same argument to show that the constrained t-optimal divisions are monotonic,129 proving

the equivalence between dynamic and t-optimality.

In the opposite direction, suppose that y1 + y2 < 0. We will show that the t-optimal

divisions are not monotonic over time. First notice that one of y1, y2 must be positive,

because w1y1 + w2y2 = w2
1 · V11 + 2w1w2 · V12 + w2

2 · V22 > 0. Without loss, let us assume

y1 > 0 and y2 < −y1. From (68), we see that for t sufficiently small (t < −y1−y2
q1+q2

), ∂2f(q1, q2) <

∂1f(q1, q2) holds whenever q1 + q2 = t. Thus, the t-optimal division at such times t is (0, t).

But consider t̂ = −y2
x2

. By (68) we have ∂2f(t̂, 0) = 0 > ∂1f(t̂, 0). Hence f(t̂, 0) < f(t̂− ε, ε)
for any small ε. Together with the convexity of f , we deduce that the t-optimal division

at t̂ is precisely (t̂, 0). This violates monotonicity, as we desire to show. The proof of the

theorem is complete.

M.5 Proof of Theorem 9

As in Appendix I, an important step of the proof is to show that following any history

in which each signal is observed sufficiently often, the constrained t-optimal divisions are

monotonic.

Lemma 16. Suppose time is continuous. There exists H∗ such that for any history h with

signal counts Hi ≥ H∗,∀i, the constrained t-optimal divisions following h are increasing (in

each coordinate) over time.

Proof. We only need to show that the DM’s posterior covariance matrix exhibits “approxi-

mate independence” after sufficiently many observations of each signal. Once this is proved,

we can apply Theorem 7 to the posterior beliefs and deduce the Lemma.

The posterior covariance matrix is given by

V̂ = V − V (V + E)−1V = V (V + E−1)E = E − E(V + E)−1E,

129Suppose we want to minimize f(q1, q2) subject to q1 + q2 ≥ t, q1 ≥ H1, q2 ≥ H2. Writing q1 = H1 + q̂1

and q2 = H2+ q̂2, then the partial derivatives become ∂1f = −(x1q̂2+ ŷ1)2/ . . . and ∂2f = −(x2q̂1+ ŷ2)2/ . . . ,

with ŷ1 = y1 + x1H2 and ŷ2 = y2 + x2H1 taking the role of y1, y2. Since ŷ1 + ŷ2 ≥ y1 + y2 ≥ 0, our method

of proof remains valid.
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with V being the prior covariance matrix and E = diag( 1
q1
, . . . , 1

qK
). If S denotes the operator

norm of V −1, then V̂ii = 1
qi
− [(V+E)−1]ii

q2i
≥ 1

qi
− R

q2i
. On the other hand, |V̂ij| = |[(V+E)−1]ij |

qiqj
≤

R
qiqj

. These estimates imply V̂ii ≥ (2K − 3) · |V̂ij| whenever qi, qj ≥ (2K − 2)R. Choosing

H∗ = (2K − 2)R proves the Lemma.

Proof of Theorem 9. Let H∗ be given by the preceding lemma. Suppose we can demonstrate

a time T0 such that any realized division d(T0) under a dynamically optimal strategy S

satisfies di(T0) ≥ H∗. Then, because constrained t-optimality is attainable at every future

time, the optimal strategy S must attain it. That is, at any time t ≥ T0, the division d(t)

must be constrained t-optimal subject to di(t) ≥ di(T0),∀i. For sufficiently large t, this

constrained t-optimal division coincides with the unconstrained t-optimal division,130 which

proves the theorem.

Hence, the remaining difficulty is to prove di(t) → ∞. In Appendix F, we showed the

same result in discrete time by considering (i, j)-switch deviations. The proof strategy here

is similar but somewhat trickier, because we do not assume some signal strictly decreases

posterior variance.

To start, we recall the class of deviation strategies in Appendix F and adapt them to

the continuous-time setting. For each continuous path of divisions (d(t))0≤t≤T , G̃ maps

to another path (d̃(t))0≤t≤T subject to consistency. The continuous-time analogue of the

dynamic Blackwell-dominance lemma (Lemma 7) is that if f(d̃(T )) ≤ f(d(T )) always holds,

then the deviation strategy S̃ that simulates S yields a weakly higher expected payoff.

Let H > H∗ be a large constant and H be an even larger constant, to be determined

later. Fix a dynamically optimal strategy S. Consider any history under S such that some

signal has been observed at least H units of time, while some other signal has been observed

fewer than H units of time. Relabelling the signals if necessary, we assume that (t0 denotes

the calendar time of that history)

d1(t0), . . . dk(t0) < H ≤ dk+1(t0), . . . , dK−1(t0); dK(t0) ≥ H.

Below we will construct a deviation strategy S̃ following this history.

We define the deviation S̃ and its induced divisions d̃(T ) jointly. At any time T ≥ t0,

there are three possibilities:

1. Suppose that, given the path of divisions (d(t))0≤t≤T , the original strategy S devotes

attention to signal K. Then we let S̃ distribute this amount of attention evenly among

130Our asymptotic characterization of n(t) shows that the unconstrained t-optimal division satisfies the

constraints at large t. Thus it is also the constrained t-optimal division.
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those signals j ∈ {1, . . . , k} for which d̃j(T ) < H. If no such signal exists, let S̃ also

observe signal K.

In other words, whenever the time derivative of dK(T ) is positive, we set the time

derivative of d̃K(T ) to be zero, and compensate it by increasing the time derivatives of

dj(T ) for those signals j that are insufficiently observed.

2. Suppose that S devotes attention to signal k + 1, . . . , K − 1. Then we let S̃ observe

the same signal.

3. Suppose that S devotes attention to signal j ∈ {1, . . . , k}. If d̃j(T ) < H or d̃j(T ) =

dj(T ), then we let S̃ also observe signal j. Otherwise d̃j(T ) = H > dj(T ), and we let

S̃ observe signal K instead.

To interpret, S̃ deviates from S as soon as some signal (signal K) has been observed too

often compared to some other “deficient signals”. Following that history, S̃ refrains from

observing signal K and instead devotes attention to the deficient signals, until all deficient

signals reach a certain signal count. Moreover, the third case above says that when a deficient

signal j reaches the target level, S̃ switches back to observing signal K until S̃ agrees with S

on the signal count of j. In this sense, the deviation S̃ considered here is a natural extension

of the “switch deviations” introduced in the discrete-time model (see Appendix F).

Let us verify that either d̃(T ) = d(T ), or f(d̃(T )) < f(d(T )). Suppose d̃(T ) 6= d(T ),

then there must exist some signal j ∈ {1, . . . , k} such that dj(T ) < d̃j(T ). By the above

construction, there could be four types of signals (we omit the dependence on T to ease

notation):

∀1 ≤ j ≤ m, dj < d̃j < H and d̃j − dj = α;

∀m+ 1 ≤ j ≤ l, dj < d̃j = H and d̃j − dj = αj ≤ α;

∀l + 1 ≤ j ≤ K − 1, dj = d̃j ≥ H;

dK > d̃K ≥ H and dK − d̃K = mα +
l∑

j=m+1

αj

(69)

for some indices 0 ≤ m ≤ l ≤ k, l ≥ 1 and positive real number α.131

If m = 0, then (the first type does not exist and) d̃j ≥ H for every signal j. Thus for

some constant L and any sufficiently large H, it holds that |∂jf(d̃)| ≥ 1/(L(d̃j)
2). Without

131Every d̃j − dj is equal to the same α for 1 ≤ j ≤ m because attention devoted to signal K is always

distributed evenly among the deficient signals.
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loss assume α1 is largest. Then

f(d̃) ≤ f(d1, d̃2, . . . , d̃K)+(d̃1−d1) ·∂1f(d̃) ≤ f(d1, d̃−1)−
α1

LH2 ≤ f(d1, . . . , dK−1, d̃K)− α1

LH2

where the first inequality uses the convexity of f , and the last inequality uses its monotonicity.

On the other hand,

f(d) ≥ f(d1, . . . , dK−1, d̃K)+(dK−d̃K)·∂Kf(d−K , d̃K) ≥ f(d1, . . . , dK−1, d̃K)−(K−1)α1·
L

(d̃K)2
.

Since d̃K ≥ H, we do have f(d̃) < f(d) whenever H is significantly larger than H.

Now consider m > 0. Similar to the above, we have

f(d) ≥ f(d1, . . . , dm, d̃m+1, . . . , d̃K−1, dK) ≥ f(d1, . . . , dm, d̃m+1, . . . , d̃K)− (K − 1)α · L

(d̃K)2
.

And for any j ∈ {1, . . . ,m},

f(d̃) ≤ f(dj, d̃−j)− α · |∂jf(d̃)| ≤ f(d1, . . . , dm, d̃m+1, . . . , d̃K)− α · |∂jf(d̃)|.

Since there is at least one signal j with |∂jf(d̃)| ≥ 1
LH2 ,132 we can again deduce f(d̃) < f(d)

whenever H is much larger than H.

Hence, we have shown that S̃ is a profitable deviation from S unless d̃(t) is always the

same division as d(t). By construction, this implies that whenever a signal is observed more

than H units of time, the dynamically optimal strategy S stops observing it until no other

signal is deficient. At time T0 ≥ K ·H, some signal must have been observed more than H.

Thus di(T0) ≥ H ≥ H∗ for every signal i, completing the proof of the theorem.

132To see this, let q denote the division d̃, with qi ≥ H,∀m+ 1 ≤ i ≤ K. Then use the previously derived

inequality (59) to show that either some γj(1 ≤ j ≤ m) is at least 1/2, or the RHS is at least 1/4. The result
γ2
j

q2j
≥ 1

LH2 holds either way.
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