
Author Name

Book title goes here

2

List of Figures

1.1 Projected average size of data warehouses [3]. 4
1.2 (a) A graphical illustration of dynamic data updates. (b) Over-

laps between the original and the updated emerging pattern
spaces. 5

1.3 (a) The näıve approach and (b) the incremental maintenance
approach to answer hypothetical what if queries. 5

1.4 (a) Sample dataset; “AvoidOutdoor” is the class label; “Yes” in-
dicates the positive class, and “No” indicates the negative class.
(b) Emerging pattern space and its border. Here, we represent
the attribute values using their first letters. The JEP space
for the sample dataset, marked with a dotted line, includes 18
patterns; it can be concisely represented by its border, which
consists of only 4 patterns highlighted in solid boxes. 8

1.5 Pattern space subtraction to obtain the JEP space. 10
1.6 Operation Border Subtraction. 11
1.7 Procedure BorderDiff. 11
1.8 Union of two JEP spaces: given DN and DP = DP1

∪ DP2
,

JEP (DP , DN) = JEP (DP1
, DN) ∪ JEP (DP2

, DN). 12
1.9 Operation Border Union. 12
1.10 Intersection of two JEP spaces: given DP and DN = DN1 ∪

DN2
, JEP (DP , DN) = JEP (DP , DN1

) ∩ JEP (DP , DN2
). . . 13

1.11 Operation Border Intersection. 13
1.12 Maintenance of emerging patterns over data streams. Note:

∆+
P = ∆−P = ∆+

N = ∆−N . 19

3

4

List of Tables

5

6

Contents

I This is a Part 1

1 Incremental Maintenance of Emerging Patterns 3
Mengling Feng and Guozhu Dong
1.1 Background & Potential Applications 4
1.2 Problem Definition & Challenges 6

1.2.1 Potential Challenges 7
1.3 Concise Representation of Pattern Space: The Border 8
1.4 Maintenance of Border . 10

1.4.1 Basic Border Operations 11
1.4.2 Insertion of New Instances 13
1.4.3 Removal of Existing Instances 14
1.4.4 Expansion of Query Item Space 16
1.4.5 Shrinkage of Query Item Space 16

1.5 Related Work . 17
1.6 Closing Remarks . 19

Bibliography 21

Index 23

7

8

Symbol Description

α To solve the generator main-
tenance scheduling, in the
past, several mathematical
techniques have been ap-
plied.

σ2 These include integer pro-
gramming, integer linear
programming, dynamic pro-
gramming, branch and
bound etc.

∑
Several heuristic search al-
gorithms have also been de-
veloped. In recent years ex-
pert systems,

abc fuzzy approaches, simulated
annealing and genetic algo-
rithms have also been tested.

θ
√
abc This paper presents a survey

of the literature

Part I

This is a Part

1

Chapter 1

Incremental Maintenance of Emerging
Patterns

Mengling Feng

Data Mining Department, Institute for Infocomm Research

Guozhu Dong

Department of Computer Science and Engineering, Wright State University

1.1 Background & Potential Applications . 3

1.2 Problem Definition & Challenges . 5

1.2.1 Potential Challenges . 7

1.3 Concise Representation of Pattern Space: The Border 8

1.4 Maintenance of Border . 10

1.4.1 Basic Border Operations . 11

1.4.2 Insertion of New Instances . 13

1.4.3 Removal of Existing Instances . 14

1.4.4 Expansion of Query Item Space . 15

1.4.5 Shrinkage of Query Item Space . 16

1.5 Related Work . 17

1.6 Closing Remarks . 18

Due to the advance in data acquisition, storage and transfer technologies, data
is nowadays dynamically updated all the time. In addition, in many interactive
data mining applications, data is often modified repeatedly. Re-generating the
corresponding emerging patterns from scratch every time when the underlying
data is updated/modified is obviously inefficient. It is more advantageous to
incrementally maintain the emerging patterns.

In this chapter, we first present the motivations and potential applications
for incremental maintenance of emerging patterns. We then formally define
the maintenance problem, and discuss the challenges associated with solving
the problem. After that, we discuss how an emerging pattern space can be con-
cisely represented by its border [7]. Finally, we demonstrate how an emerging
pattern space, represented by its border, can be effectively maintained under
various data updates or modifications [13].

3

4 Book title goes here

1.1 Background & Potential Applications

TB

200

400

600

800

1000

1998 2000 2002 2004 2006 2008 2010 2012

Moore's Law Growth Rate

FIGURE 1.1: Projected average size of data warehouses [3].

Due to the advance in data generation and collection technologies, the
increased popularity of internet and the invention of cloud computing, the
amount of available data has exploded in recent years. Figure 1.1 shows the
projected sizes of data warehouses over the coming years. As pointed out by
the Vice President of Google, Marissa Mayer, “data explosion is bigger than
Moore’s law.” According to various studies, the amount of available data has
grown over 15-fold in the past few years, and the annual data growth rate is
projected to increase to 45-fold by 2020 [1]. In this era of data explosion, data
is no longer static. Data is dynamically updated all the time: new records
are inserted, obsolete records are removed and records containing error are
corrected. When the underlying data is updated, the corresponding emerg-
ing patterns also need to be updated. The most straightforward approach is
to re-discover the emerging patterns. However, as graphically illustrated in
Figure 1.2, the size of data affected by the updates is usually much smaller
than the overall data size, and the original and the updated emerging pattern
spaces have very large overlap. Moreover, the re-discovery approach also leads
to large computational overheads, and it is likely to be practically infeasible.
A more practical solution is to incrementally maintain the emerging patterns
to reflect updates in the underlying data. In real-life applications, incremental
maintenance of emerging patterns has been employed for real-time monitoring
of critical assets [11] and diagnosis of medical conditions [14]. This chapter
discusses how emerging patterns can be incrementally maintained when the
pattern space is concisely represented by its border.

Incremental maintenance of emerging patterns is also a useful tool for
interactive mining applications. One potential application is to answer hypo-
thetical queries, including, the “what if ” queries. Data analyzers are often
interested in finding out “what” might happen to the discovered emerging

Incremental Maintenance of Emerging Patterns 5

Original Data

Updated Data

∆
+

∆
-

(a)

Original Emerging
Pattern Space

Updated Emerging
Pattern Space

(b)

w

w

Insertion of
New Data

Removal of
Obsolete Data

FIGURE 1.2: (a) A graphical illustration of dynamic data updates. (b)
Overlaps between the original and the updated emerging pattern spaces.

patterns “if ”: some new transactions were inserted to the dataset, some ex-
isting transactions were removed, some existing transactions were replaced, or
some sets of items are included or excluded, etc. Useful insights can often be
discovered with interactive hypothetical queries.

Figure 1.3 (a) illustrates the näıve approach to answer what if hypothetical
queries. First, the näıve approach requires the re-discovery of emerging pat-
terns, which involves large amount of repeated computation effort. Moreover,
to answer what if queries, the näıve approach needs to compare the origi-
nal and updated pattern spaces. Since the size of emerging pattern spaces is
usually very large, the comparison is computationally expensive.

As illustrated by Figure 1.3 (b), incremental maintenance of emerging pat-
terns can be used to efficiently support the query answering process, without
using the pattern re-generation and comparison steps of the näıve approach.

FIGURE 1.3: (a) The näıve approach and (b) the incremental maintenance
approach to answer hypothetical what if queries.

6 Book title goes here

1.2 Problem Definition & Challenges

Following the definitions in Chapter ??, given two contrasting datasets
DP and DN and a support ratio threshold, σr, a pattern (or an itemset)
P is an “emerging pattern” for the positive dataset DP if and only if

SuppRatio(P,DP , DN) = Supp(P,DP)
Supp(P,DN) ≥ σr, where Supp(P,Dx) denotes the

support of P in dataset Dx. In some applications, the differences between
the contrasting datasets are measured based on support delta. In this case,
a pattern P is an emerging pattern for the positive dataset if and only if
SuppDelta(P,DP , DN) = Supp(P,DP) − Supp(P,DN) ≥ σd, where σd is
the minimum support delta threshold. Given σr or σd, the “space of emerg-
ing pattern” or “emerging pattern space”, denoted as EP (DP , DN , σr) or
EP (DP , DN , σd), is the set of all valid emerging patterns. Since the support
ratio threshold, σr, is more commonly used, for ease of discussion, in this
chapter we will assume σr is used unless otherwise stated.

Types of Updates

Insertion of new instances is an update where new positive instances,
∆P , and/or new negative instances, ∆N , are inserted into the original con-
trasting datasets. Suppose the original contrasting datasets are DP and DN .
The updated datasets then are D′P = DP ∪ ∆P and D′N = DN ∪ ∆N , and
|D′P | = |DP |+ |∆P | and |D′N | = |DN |+ |∆N |. (We assume that DP ∩∆P = ∅
and DN ∩∆N = ∅.) Insertion of new instances is the most common data man-
agement operation. It allows new data to be included in the data analysis.

Deletion of existing instances is an update where existing positive
instances, ∆P , and/or negative instances, ∆N , are removed from the current
contrasting datasets. Suppose the original contrasting datasets are DP and
DN . The updated datasets then are D′P = DP −∆P and D′N = DN −∆N ,
and |D′P | = |DP | − |∆P | and |D′N | = |DN | − |∆N |. (We assume that ∆P ⊂
DP and ∆N ⊂ DN .) Deletion of existing instances is a data management
operation that allows obsolete and invalid instances to be removed. It ensures
the generated emerging patterns are not undesirably influenced by out-of-date
or invalid instances that contain error.

When the original contrasting datasets, DP and DN , are updated
into D′P and D′N by inserting or removing instances, the task of incre-
mental maintenance is to obtain the updated emerging pattern space,
EP (D′P , D

′
N , σr), by updating the original pattern space, EP (DP , DN , σr).

Expansion of query item space is an update where new items are
included in the existing “query item space”.

Incremental Maintenance of Emerging Patterns 7

Definition 1 Given the positive and negative datasets, DP and DN , let I =
{i1, i2, · · · } be the “complete item space” that includes all the items in DP

and DN . The “query item space”, denoted as IQ, defines an item subspace
where IQ ⊆ I. In the context of IQ, only items in IQ will be considered for
the formation of emerging patterns, and all other items will be ignored.

In the context of query item space, IQ, the emerging pattern space,
EPIQ(DP , DN , σr), is defined as the set of emerging patterns P that P ⊆ IQ.

Expansion of query item space is an update where the existing query item
space, IQ, expands with new items I∆. I∆ 6= ∅ and I∆ ⊂ I. The updated
Query Item Space becomes I ′Q = IQ ∪ I∆. Therefore, IQ ⊂ I ′Q ⊆ I.

Shrinkage of query item space is an update where the existing query item
space, IQ, shrinks by removing items I∆. I∆ 6= ∅ and I∆ ⊂ IQ. The updated
query item space becomes I ′Q = IQ − I∆. This implies that I ′Q ⊂ IQ.

When the original query item space, IQ, expands or shrinks into I ′Q,
the task of incremental maintenance is to obtain the updated emerging
pattern space, EPI′Q(DP , DN , σr), by updating the original pattern space,

EPIQ(DP , DN , σr).

We note that, for the insertion and removal of instance updates, the query
item space is assumed to remain unchanged.

1.2.1 Potential Challenges

Data updates may invalidate existing emerging patterns and introduce
new emerging patterns. As a result, the incremental maintenance of emerging
patterns consists of two main computational tasks: to update existing patterns
and to generate new emerging patterns.

To update the existing emerging patterns, the näıve way is to scan through
all the existing patterns to find out which patterns are affected by the data
updates and then update the patterns accordingly. Suppose the dataset is
incrementally updated with m new instances. The computational complexity
of the näıve approach is O(NEP × m), where NEP refers to the number of
the existing emerging patterns. Since NEP can often be very large, the näıve
approach is often computationally too expensive to be practically feasible.
Therefore, how to update the existing patterns effectively is one of the major
challenges in incremental maintenance of emerging patterns.

The generation of new emerging patterns is also technically challenging. In
theory, the number of possible candidates for the new emerging patterns equals
to (2n−NEP), where n is the total number of items (attribute-value pairs) and
NEP is the number of existing emerging patterns. In most applications, the
number of items can be around 500 ∼ 1, 000. Suppose there are 1, 000 items

8 Book title goes here

in the contrasting datasets. The potential search space for the new emerging
patterns will consist of over 10300 candidates. Given such a large search space,
effective techniques are needed to extract the new emerging patterns.

In the subsequent sections, we will investigate how the emerging patterns
can be effectively maintained by concisely representing the pattern space with
its border. The concept of border was first introduced in [7] as a concise rep-
resentation of emerging patterns.

1.3 Concise Representation of Pattern Space: The Bor-
der

ID Outlook Temp. Humidity Windy AvoidOutdoor
1 rain mild high false Yes
2 rain mild normal false Yes
3 sunny Hot high false No
4 sunny Hot normal true No

(a)
{}

r m h f n

r,m r,h m,h r,f m,f h,fr,n m,n h,n f,n

r,m,h r,m,f r,h,f m,h,f r,m,n r,f,n m,f,n r,h,n m,h,n h,f,n

r,m,h,f r,m,h,nr,m,f,n m,h,f,nr,h,f,n

r,m,h,f,n

Jumping Emerging Pattern Space

 Borders of Jumping Emerging Pattern Space

(b)

FIGURE 1.4: (a) Sample dataset; “AvoidOutdoor” is the class label; “Yes”
indicates the positive class, and “No” indicates the negative class. (b) Emerg-
ing pattern space and its border. Here, we represent the attribute values using
their first letters. The JEP space for the sample dataset, marked with a dotted
line, includes 18 patterns; it can be concisely represented by its border, which
consists of only 4 patterns highlighted in solid boxes.

This section discusses how the space of emerging patterns can be concisely
represented. To illustrate the concept, we focus on a special type of emerging
patterns — the “Jumping Emerging Patterns” (JEP) .

Definition 2 Given the positive and negative contrasting datasets DP and
DN , a pattern P is a jumping emerging pattern for the positive dataset
if and only if Supp(P,DP) > 0 and Supp(P,DN) = 0, or equivalently,
SuppRatio(P,DP , DN) =∞.

Incremental Maintenance of Emerging Patterns 9

A jumping emerging pattern for the positive dataset is a pattern P that ap-
pears only in positive instances and does not appear in any negative instances.
For ease of discussion, when we mention “jumping emerging pattern” in sub-
sequent discussion, it refers to the jumping emerging pattern for the positive
dataset. The “space of jumping emerging pattern”, in short JEP space, is
then the pattern space that includes all valid jumping emerging patterns. We
denote the space of jumping emerging patterns as JEP (DP , DN). Jumping
emerging patterns are most commonly used in the applications of classifica-
tion, because they are often the most discriminative emerging patterns.

Figure 1.4 (a) shows a sample dataset on the relationship between the
weather conditions and whether one should avoid staying outdoor. (“Yes” and
“No” respectively denote the positive and negative classes.) Observe that,
for this simple dataset consisting of only 4 instances and 4 attributes, the
corresponding JEP space consists of 18 patterns. In the theoretical worse case,
the size of the JEP space can grow exponentially with respect to the number of
attributes. Updating and maintaining the JEP space can be computationally
expensive. Luckily, the JEP space has a useful property: it is a convex space.

Definition 3 A pattern space S is a convex space if, for all X, Y ∈ S, where
X ⊆ Y , it is the case that Z ∈ S whenever Z satisfies X ⊆ Z ⊆ Y .

The convexity of the JEP space implies that, given any jumping emerging
patterns X and Y , where X ⊆ Y , any pattern Z such that X ⊆ Z ⊆ Y is also
a jumping emerging pattern. This property forms the theoretical foundation
for the concise representation of the JEP space.

Given a JEP space, we define the most general emerging patterns as the
left bound of the pattern space, denoted as L; and we define the most specific
emerging patterns as the right bound of the pattern space, denoted as R. The
combination of the left and right bounds forms the border of the JEP space,
denoted as < L,R >.

Based on the convexity of the JEP space, we observe the following four
properties of its border. (a) Both the left and right bounds, L and R, are
antichains. Here, an antichain refers to a collection of patterns in which it is
true for any two patterns X and Y that X 6⊆ Y and Y 6⊆ X. (b) For each
pattern X in L, there exists at least one pattern Y in R such that X ⊆ Y . (c)
For each pattern Y in R, there exists at least one pattern X in L such that
X ⊆ Y . (d) Most importantly, all patterns in the JEP space are completely
covered by L and R.

As a result, the JEP space can be concisely represented by its border,
< L,R >. For the sample dataset of Figure 1.4, the JEP space (consisting
of 18 patterns) can be concisely summarized by its border, which consists of
only 4 patterns: L = {{r}, {m}} and R = {{r,m, h, f}, {r,m, n, f}}.

Moreover, based on the notations of the left and right bounds, L andR, we
can re-interpret the JEP space as a collection of patterns that are supersets
of some patterns in L and subsets of some patterns in R. The JEP space can
be expressed as [L,R] = {Z|∃X ∈ L,∃Y ∈ R such that X ⊆ Z ⊆ Y }. Note

10 Book title goes here

that notations < L,R > and [L,R] are different from each other. < L,R >
denotes the border of the JEP space, which consists of only the left bound,
L, and the right bound, R. On the other hand, [L,R] refers to the entire JEP
space that are bounded by the border, < L,R >.

Recall that a jumping emerging pattern is a pattern that occurs only in
the positive instances, DP , but not in the negative instances, DN . Therefore,
one can obtain all the jumping emerging patterns by subtracting all patterns,
which have non-zero support in DN , from the collection of patterns that have
non-zero support in DP . This idea is graphically demonstrated in Figure 1.5.
Based on the concept of border, the collection of non–zero support patterns in
DP can be expressed as [{∅},RP], where RP is the right bound of the pattern
space. Similarly, the collection of non-zero support patterns in DN can be
expressed as as [{∅},RN], where RN is the right bound of the pattern space.
As a result, the JEP space for the contrasting data DP and DN , denoted as
JEP (DP , DN), can be re-written as:

JEP (DP , DN) = [{∅},RP]− [{∅},RN] (1.1)

This expression of the JEP space will be used in subsequent discussions.
By concisely representing the JEP space with its border, one only needs to
incrementally update the border patterns instead of the entire pattern space,
which effectively reduces the computational complexity.

Non-zero Support

Patterns in DN

Jumping Emerging

Patterns

Non-zero Support

Patterns in D
P

Subtraction

FIGURE 1.5: Pattern space subtraction to obtain the JEP space.

1.4 Maintenance of Border

This section investigates how the border of the JEP space can be incremen-
tally maintained. First, Section 1.4.1 introduces some basic border operations,
including Subtraction, Union and Intersection. The subsequent sections then
demonstrate, based on the basic operations, how the border can be effectively
maintained under various data updates. Section 1.4.2 addresses the insertion

Incremental Maintenance of Emerging Patterns 11

of new instances, Section 1.4.3 the removal of existing instances, and Sec-
tions 1.4.4 and 1.4.5 the expansion and shrinkage of the query item space.

1.4.1 Basic Border Operations

Border Subtraction: Recall that, the JEP space can be obtained by sub-
tracting the non-zero support patterns in DN , represented by [{∅},RN], from
the set of non-zero support patterns in DP , represented by [{∅},RP]; see
Figure 1.5. That is, JEP (DP , DN) = [{∅},RP] − [{∅},RN] (Equation 1.1).
Based on this formula, the border subtraction operation generates the JEP
space with respect to the given RP and RN . Figure 1.6 describes the detailed
algorithm of the border subtraction operation, where RP = {A1, ..., Ak}. The
subroutine of the operation, BorderDiff, is described in Figure 1.7.

Input: Two pattern spaces given by < {∅}, {A1, ..., Ak} > and < {∅},RN >
Output: < L,R > such that [L,R] = [{∅}, {A1, ..., Ak}]− [{∅},RN >
Method:
1: L ← { }, R ← { };
2: for j from 1 to k do
3: border = BorderDiff (< {∅}, {Aj} >,< {∅},RN >);
4: L = L ∪ left bound of border ;
5: R = R ∪ right bound of border ;
6: end for
7: return < L,R >;

FIGURE 1.6: Operation Border Subtraction.

Input: Two pattern spaces given by < {∅}, {U} > and < {∅}, {S1, ..., Sk} >
Output: < L,R > such that [L,R] = [{∅}, {U}]− [{∅}, {S1, ..., Sk}]
Method:
1: L = {{x}|x ∈ U − S1};
2: for i from 2 to k do
3: L ← {X ∪ {x}|X ∈ L, x ∈ U − Si};
4: remove patterns in L that are not most general;
5: end for
6: return < L, {U} >;

FIGURE 1.7: Procedure BorderDiff.

Border Union: Suppose DN is a set of negative instances, DP is a set of
positive instances, and DP is partitioned into two sets, DP1

and DP2
. It is

interesting to know how the JEP space JEP (DP , DN) is related to the JEP

12 Book title goes here

spaces JEP (DP1
, DN) and JEP (DP2

, DN). We have the following answer to
that question:

Fact 4 Given a negative dataset DN and a positive dataset DP and a parti-
tion of DP into DP1

and DP2
, we have JEP (DP , DN) = JEP (DP1

, DN) ∪
JEP (DP2

, DN). This fact is illustrated in Figure 1.8.

[L1,R1]

DP1

DN

DP2

[L2,R2]

[L,R] Contrast

Contrast

Contrast

Union

DP = DP1 U DP2

JEP(DP2 ,DN)

JEP(DP1 ,DN)

JEP(DP ,DN)

DN

DP1 DP2

FIGURE 1.8: Union of two JEP spaces: given DN and DP = DP1
∪ DP2

,
JEP (DP , DN) = JEP (DP1

, DN) ∪ JEP (DP2
, DN).

In the notion of border, suppose JEP (DP , DN) = [L,R], JEP (DP1
, DN) =

[L1,R1] and JEP (DP1
, DN) = [L2,R2]. Then, [L,R] = [L1,R1] ∪ [L2,R2].

Based on Fact 4, the border union operation in Figure 1.9 obtains the JEP
space border < L,R > from the borders < L1,R1 > and < L2,R2 >.

Input: < L1,R1 > representing JEP (DP1 , DN) and < L2,R2 >
representing JEP (DP2

, DN), for some datasets DP1
, DP2

, and DN

Output: < L,R > representing JEP (DP1
∪DP2

, DN)
% < L,R > satisfies [L,R] = [L1,R1] ∪ [L2,R2]
Method:
1: L = L1 ∪ L2;
2: R = R1 ∪R2;
3: remove patterns in L that are not most general;
4: remove patterns in R that are not most specific;

return < L,R >;

FIGURE 1.9: Operation Border Union.

Border Intersection: The border intersection operation addresses the oppo-
site scenario compared with the border union operation. We have the following
relationship between the underlying JEP spaces.

Fact 5 Suppose we have a positive dataset DP and a negative dataset DN ,
and a partition of DN into DN1 and DN2 . Then we have JEP (DP , DN) =
JEP (DP , DN1) ∩ JEP (DP , DN2). This is illustrated in Figure 1.10.

In the notion of border, suppose JEP (DP , DN) = [L,R], JEP (DP , DN1
) =

Incremental Maintenance of Emerging Patterns 13

[L1,R1]
DN1

DP

DN2
[L2,R2]

[L,R] Contrast

Contrast

Contrast

Intersect

DN = DN1 U DN2

JEP(DP ,DN2)

JEP(DP ,DN1)

JEP(DP ,DN)

DP

DN1 DN2

FIGURE 1.10: Intersection of two JEP spaces: given DP and DN = DN1
∪

DN2
, JEP (DP , DN) = JEP (DP , DN1

) ∩ JEP (DP , DN2
).

[L1,R1] and JEP (DP , DN2
) = [L2,R2]. Then, [L,R] = [L1,R1] ∩ [L2,R2].

The border intersection operation in Figure 1.11 gives the JEP space border
< L,R > based on the borders < L1,R1 > and < L2,R2 >.

Input: < L1,R1 > representing JEP (DP , DN1
) and < L2,R2 >

representing JEP (DP , DN2
), for some datasets DP , DN1

, and DN2

Output: < L,R > representing JEP (DP , DN1
∪DN2

)
% < L,R > satisfies [L,R] = [L1,R1] ∪ [L2,R2]
Method:
1: R = R1 ∩R2;
2: L = {A ∪B|A ∈ L1, B ∈ L2};
3: remove patterns in L that are not most general;
4: remove patterns P in L if 6 ∃Q ∈ R such that P ⊆ Q;

return < L,R >;

FIGURE 1.11: Operation Border Intersection.

1.4.2 Insertion of New Instances

Suppose we have DP and DN as the original contrasting positive and
negative datasets, and the corresponding non-zero support pattern spaces are
[{∅},RP] and [{∅},RN]. Thus, the original JEP space can be expressed as
JEP (DP , DN) = [{∅},RP] − [{∅},RN]. When new instances are inserted,
there can be two scenarios, where new positive instances are inserted or new
negative instances are inserted. We discuss these two scenarios separately.

Insertion of New Positive Instances: Suppose a set of new positive in-
stances, ∆P , is inserted, where ∆P ∩ DP = ∅. The updated set of positive
instances is (DP ∪ ∆P). Let [{∅},R∆

P] denote the non-zero support pattern
space of ∆P . The updated JEP space with respect to (DP ∪∆P) and DN can
be precisely defined by the following formula.

14 Book title goes here

JEP ((DP ∪∆P), DN)

= ([{∅},RP] ∪ [{∅},R∆
P])− [{∅},RN]

= ([{∅},RP]− [{∅},RN]) ∪ ([{∅},R∆
P]− [{∅},RN])

= JEP (DP , DN) ∪ JEP (∆P , DN) (1.2)

By Equation 1.2, the updated JEP space, JEP ((DP ∪ ∆P), DN), is the
union of the original JEP space, JEP (DP , DN), and the JEP space contrast-
ing ∆P and DN , JEP (∆P , DN). Let < L,R > be the border of the original
JEP space. We can obtain the border of the updated JEP space in two steps:

Step 1. Discover the border of the JEP space contrasting ∆P and DN .
Let < L′,R′ > denote the resulting border.

Step 2. Apply the border union operation (Figure 1.9) on < L,R > and
< L′,R′ >.

Insertion of New Negative Instances: Suppose a set of new negative
instances, ∆N , is inserted, where ∆N ∩DN = ∅. Thus, the updated negative
instances are (DN ∪∆N). Let [{∅},R∆

N] denote the non-zero support pattern
space of ∆N . The updated JEP space with respect to DP and (DN ∪ ∆N)
can be precisely defined as:

JEP (DP , (DN ∪∆N))

= [{∅},RP]− ([{∅},RN] ∪ [{∅},R∆
N)

= ([{∅},RP]− [{∅},RN]) ∩ ([{∅},RP]− [{∅},R∆
N])

= JEP (DP , DN) ∩ JEP (DP ,∆N) (1.3)

We observe that, upon insertion of negative instances, ∆N , the updated
JEP space, JEP (DP , (DN ∪∆N)), can be expressed as the intersaction of the
original JEP space, JEP (DP , DN), and the JEP space contrasting DP and
∆N , JEP (DP ,∆N). Let < L,R > be the border of the original JEP space.
We can obtain the border of the updated JEP space in two steps:

Step 1. Discover the border of the JEP space contrasting DP and ∆N .
Let < L′,R′ > denote the resulting border.

Step 2. Apply the intersection operation (Figure 1.11) on < L,R > and
< L′,R′ >.

1.4.3 Removal of Existing Instances

When removing existing instances, there are also two scenarios: removing
existing positive instances or removing existing negative instances. Different

Incremental Maintenance of Emerging Patterns 15

from the insertion case, the maintenance of the JEP space under the two
removal scenarios is very distinct from each other.
Removal of Existing Positive Instances: Suppose a set of positive in-
stances, ∆P , is removed from the original data DP . The JEP space will shrink
upon the removal. The updated JEP space can be obtained by removing all
non-zero support patterns in ∆P . Let [{∅},R∆

P] denote the non-zero support
pattern space of ∆P . The updated JEP space with respect to (DP −∆P) and
DN is:

JEP ((DP −∆P), DN) = JEP (DP , DN)− [{∅},R∆
P] (1.4)

Let < L,R > be the border of the original JEP space, JEP (DP , DN).
The subtraction in Equation 1.4 can be performed in the following steps:

Step 1. Discover the border of the non-zero support pattern space of
(DP −∆P). Let < {∅},R′P > denote the resulting border.

Step 2. Let L′ = L.
Step 3. Remove all patterns P in L′ satisfying 6 ∃Q ∈ R′P satisfying P ⊆ Q.

The resulting < L′,R′P > is then the border of the the updated JEP space.
Removal of Existing Negative Instances: Suppose a set of negative in-
stance, ∆N , is removed. Upon the removal of existing negative instances, the
JEP space will expand, as new emerging patterns will appear [13]. Under
this case, the maintenance of the JEP space is much more complicated. We
illustrate the process mathematically with the following formula. For ease of
discussion, we denote A = [{∅},RP], the non-zero pattern space of the posi-
tive instances DP , B = [{∅},R′N], the non-zero pattern space of the updated
negative instances (DN −∆N), and C = [{∅},R∆

N], the non-zero pattern space
of the removed negative instances ∆N .

JEP (DP , (DN −∆N))

= A− B = A− B −A ∩ B
= A− B −A ∩ B − C ∪ A ∩ C
= (A− B ∪ C) ∪ (A ∩ (C − B))

= JEP (DP , DN) ∪ (A ∩ (C − B)) (1.5)

We observe that the first term of the union, (A − B ∪ C), is equivalent
to the original JEP space, JEP (DP , DN). The term (C − B) = ([{∅},R∆

N]−
[{∅},R′N]) is then the JEP space contrasting ∆N and DN , JEP (∆N , DN).
Let < L,R > be the border of the original JEP space, JEP (DP , DN). The
border of the updated JEP space can be obtained as follows.

Step 1. Discover the border of JEP (∆N , DN).
Let < L′,R′ > denote the resulting border.

Step 2. Remove all patterns P in L′ that does not appear in DP .
Step 3. Apply the border union operation on < L,R > and < L′,R′ >.

16 Book title goes here

1.4.4 Expansion of Query Item Space

Let DP and DN denote the positive and negative datasets respectively. Let
I be the complete item space that includes all the items in DP and DN and
IQ be the original query item space. Suppose a new item e ∈ I is inserted in
the query item space, IQ. The query item space expands. The updated query
item space becomes I ′Q = IQ ∪ {e}.

Let [{∅},RP] be the non-zero support patterns in DP under the original
query item space, IQ, and let [{{e}},R′P] be the non-zero support patterns in
DP containing item e. Under the updated updated query item space, I ′Q =
IQ ∪ {e}, the non-zero support patterns in DP can then be expressed as
[{∅},RP] ∪ [{{e}},R′P].

Similarly, let [{∅},RN] be the non-zero support patterns in DN under IQ,
and let [{{e}},R′N] be the non-zero support patterns in DN containing item
e. Under the updated updated query item space, I ′Q = IQ ∪ {e}, the non-zero
support patterns in DN can then be expressed as [{∅},RN] ∪ [{{e}},R′N].

Based on Equation 1.1, the updated JEP space for the expanded query
item space, I ′Q, can be expressed as:

JEPI′Q(DP , DN)

= ([{∅},RP] ∪ [{{e}},R′P])− ([{∅},RN] ∪ [{{e}},R′N])

= ([{∅},RP]− [{{e}},R′N]− [{∅},RN]) ∪
([{{e}},R′P]− [{∅},RN]− [{{e}},R′N])

= ([{∅},RP]− [{∅},RN]) ∪ ([{{e}},R′P]− [{{e}},R′N])

= JEPIQ(DP , DN) ∪ ([{{e}},R′P]− [{{e}},R′N]) (1.6)

According to Equation 1.6, the updated JEP space can be obtained based
on the border, < L,R >, of the original JEP space, and it can be achieved in
two steps:

Step 1. Apply border subtraction operation to obtain the border of
[{{e}},R′P]− [{{e}},R′N]. Let < L′,R′ > be the resulting border.

Step 2. Apply the border union operation on < L,R > and < L′,R′ >.

1.4.5 Shrinkage of Query Item Space

Shrinkage of query item space is the opposite operation of the expansion
of query item space. Let IQ be the original query item space. Suppose an
item e ∈ IQ is removed from IQ. The query item space shrinks, and the
updated query item space becomes I ′Q = IQ−{e}. Following the notations in
Section 1.4.4, the updated JEP space for the shrunken query item space can
then be formulated as:

Incremental Maintenance of Emerging Patterns 17

JEPI′Q(DP , DN)

= ([{∅},RP]− [{{e}},R′P])− ([{∅},RN]− [{{e}},R′N])

= ([{∅},RP]− [{{e}},R′P]− [{∅},RN]) ∪
(([{∅},RP]− [{{e}},R′P]) ∩ [{{e}},R′N])

= [{∅},RP]− [{∅},RN]− [{{e}},R′P]

= JEPIQ(DP , DN)− [{{e}},R′P] (1.7)

By Equation 1.7, the updated JEP space can be obtained by removing
all existing emerging patterns that contain item e. Suppose the border of the
original JEP space is < L,R >. The border of the updated JEP space,
< L′,R′ >, can be effectively obtained as follows:

Step 1. L′ = {P |P ∈ L and e 6∈ P}.
Step 2. R′ = {P |P ∈ R and e 6∈ P}.
Step 3. Remove all patterns P in R′ that are not most specific.
Step 4. Remove all patterns P in R′ that do not contain any pattern in L′.

1.5 Related Work

Incremental maintenance of emerging patterns has not received as much
research attention as its discovery task. However, considerable amount of re-
search effort has been committed to the incremental maintenance of frequent
patterns. “Frequent Patterns” [?] are patterns that appear frequently in the
data. The spaces of frequent patterns and emerging patterns share many sim-
ilarities. For instance, both pattern spaces grow exponentially with the num-
ber of items, and both pattern spaces are convex [13, 12]. Therefore, ideas
in frequent pattern maintenance can often be extended to the incremental
maintenance of emerging patterns.

In the literature, the frequent pattern maintenance algorithms can be
classified into four main categories: the 1) Apriori-based algorithms, 2)
Partition-based algorithms, 3) Prefix-tree-based algorithms and 4) Concise-
representation-based algorithms [9].

FUP [4] is the first Apriori -based maintenance algorithm. Inspired by Apri-
ori [?], FUP updates the space of frequent patterns iteratively based on the
candidate-generation-verification framework. The key technique of FUP is to
make use of support information in previously discovered frequent patterns to
reduce the number of candidate patterns. Since the performance of candidate-
generation-verification based algorithms heavily depends on the size of the

18 Book title goes here

candidate set, FUP outperforms Apriori. Similarly, the partition-based algo-
rithm SWF [10] also employs the candidate-generation-verification framework.
However, SWF applies different techniques to reduce the size of candidate set.
SWF slices a dataset into several partitions and employs a filtering threshold in
each partition to filter out unnecessary candidate patterns. Even with all the
candidate reduction techniques, the candidate-generation-verification frame-
work still leads to the enumeration of large number of unnecessary candidates.
This greatly limits the performance of both Apriori -based and partition-based
algorithms.

To address this shortcoming of the candidate-generation-verification
framework, tree-based algorithms are proposed. Examples include FP-growth
[?], a prefix-tree based algoirhtm, and Apriori-TFP [6], a Total Support Tree (T-
tree) based algorithm. In [11] and [14], Apriori-TFP was extended to incremen-
tally maintain emerging patterns. Apriori-TFP enumerates and generates pat-
terns with the T-tree. A T-tree is basically a set-enumeration tree; it ensures
a complete and non-redundant enumeration of patterns. Apriori-TFP (Total
From Partial) efficiently constructs the Total Support Tree, T-tree, based on
the Partial Support Tree, P-tree. P-tree is a summarized set-enumeration tree
with partial support information of patterns [11]. Benefiting from the “Total
From Partial” idea, Apriori-TFP achieves a good balance between time and
memory efficiency. However, tree based algorithms still suffer from the unde-
sirably large size of the pattern space.

To break this bottleneck, concise representations of the frequent pattern
space are proposed. The commonly used representations include “maximal
patterns” [2], “closed patterns” [?] and “equivalence classes” [8]. Algorithms,
such as Moment [5], ZIGZAG [15] and PSM (Pattern Space Maintainer) [8]
have been proposed to maintain these concise representations.

Concise representations are also employed to summarize the pattern space
of emerging patterns. The concept of border was first introduced in [7] to
summarize the the emerging pattern space with its left and right bounds —
its border. Based the concept of border, an effective method for incremental
maintenance of emerging patterns is proposed in [13]. This method has been
discussed in Section 1.3 and 1.4. Reference [?] further extended the method
to address the maintenance of emerging patterns for data streams. Since a
data stream is a continuous stream of data, emerging pattern discovery in
data streams, as defined in [?], is to contrast the updated data with the obso-
lete data. As illustrated in Figure 1.12, the contrasting positive dataset, DP ,
refers to the relatively newer segment of the data stream, and the contrast-
ing negative dataset, DN , refers to the more obsolete segment. Suppose the
data stream is updated in a sliding window manner. We can observe from
Figure 1.12 that: newly updated data, ∆+

P , will be included in the updated
positive dataset, D′P ; some originally positive data, ∆−P , will become obsolete
and will be converted into the negative dataset, D′N ; and, according to the
concept of sliding window, the most obsolete data, ∆−N , will be removed.

Incremental Maintenance of Emerging Patterns 19

+
∆
N

-
=∆

P
+
∆
P

Sliding Window

D
N

D
P

D'
N

D'
P

-
∆
N

FIGURE 1.12: Maintenance of emerging patterns over data streams. Note:
∆+

P = ∆−P = ∆+
N = ∆−N

1.6 Closing Remarks

In the current era of data explosion, data is dynamically updated all the
time. In addition, data is also often modified to perform interactive mining. Re-
generating emerging patterns every time when the underlying data is updated
or modified involves large amount of redundancy and is practically infeasible.
The practical solution is to incrementally maintain the discovered emerging
patterns.

The pattern space of emerging patterns is usually very large. Updating
every single pattern in the pattern space can be computationally expensive.
This bottleneck can be addressed by summarizing the emerging pattern space
with its concise representation. Compared with the entire pattern space, the
concise representation consists of a much smaller number of patterns, thus it
can be maintained in a much lower computational cost.

To illustrate the concept, we focused on the jumping emerging patterns
— the most discriminative emerging patterns. In Section 1.3, we discussed
how the jumping emerging pattern space can be summarized with its concise
representation, its border. In Section 1.4, we further discussed how the border
of the jumping emerging pattern space can be effectively maintained under
various data updates. The types of data updates that we have addressed in-
clude: insertion of new instances, removal of existing instances, expansion and
shrinkage of the query item space.

20 Book title goes here

Bibliography

[1] AMEinfo. Website: http://www.ameinfo.com/231603.html.

[2] Roberto J. Bayardo. Efficiently mining long patterns from databases. In
ACM SIGMOD International Conference on Management of Data, pages
85–93, 1998.

[3] BeyeNetwork. Website: http://www.b-eye-network.com/view/7188.

[4] David Wai-Lok Cheung, Jiawei Han, Vincent T. Y. Ng, and C. Y. Wong.
Maintenance of discovered association rules in large databases: an incre-
mental updating technique. In Twelfth International Conference On Data
Engineering (ICDE), pages 106–114, 1996.

[5] Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the
moment: maintaining closed frequent itemsets over a data stream sliding
window. Knowledge and Information Systems, 10(3):265–294, 2006.

[6] Frans Coenen, Paul H. Leng, and Shakil Ahmed. Data structure for asso-
ciation rule mining: T-trees and p-trees. IEEE Transaction on Knowledge
and Data Engineering, 16(6):774–778, 2004.

[7] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Dis-
covering trends and differences. In ACM International Conference on
Knowledge Discovery and Data Mining (KDD), pages 43–52, 1999.

[8] Mengling Feng, Guozhu Dong, Jinyan Li, Yap-Peng Tan, and Limsoon
Wong. Pattern space maintenance for data updates and interactive min-
ing. Computational Intelligence, 26(3):282–317, 2010.

[9] Mengling Feng, Jinyan Li, Guozhu Dong, and Limsoon Wong. Mainte-
nance of Frequent Patterns: A Survey. 2009.

[10] Chang-Hung Lee, Cheng-Ru Lin, and Ming-Syan Chen. Sliding window
filtering: an efficient method for incremental mining on a time-variant
database. Information Systems, 30(3):227–244, 2005.

[11] Jong Bum Lee, Minghao Piao, and Keun Ho Ryu. Incremental emerg-
ing patterns mining for identifying safe and non-safe power load lines.
In 10th IEEE International Conference on Computer and Information
Technology, pages 1424–1429, 2010.

21

22 Book title goes here

[12] Haiquan Li, Jinyan Li, Limsoon Wong, Mengling Feng, and Yap-Peng
Tan. Relative risk and odds ratio: a data mining perspective. In ACM
Symposium on Principles of Database Systems (PODS), pages 368–377,
2005.

[13] Jinyan Li, Thomas Manoukian, Guozhu Dong, and Kotagiri Ramamoha-
narao. Incremental maintenance on the border of the space of emerging
patterns. Data Min. Knowl. Discov., 9(1):89–116, 2004.

[14] Jin Hyoung Park, Heon Gyu Lee, and Jong Heung Park. Real-time di-
agnosis system using incremental emerging pattern mining. In 5th Inter-
national Conference on Ubiquitous Information Technologies and Appli-
cations (CUTE), pages 1–5, 2010.

[15] Adriano Veloso, Wagner Meira Jr., Márcio de Carvalho, Bruno Pôssas,
Srinivasan Parthasarathy, and Mohammed Javeed Zaki. Mining frequent
itemsets in evolving databases. In Second SIAM International Conference
on Data Mining, 2002.

Index

border operation, 11
border operaton

intersection, 12
subtraction, 11
union, 11

contrasting datasets, 5
negative, 5
positive, 5

data update, 4, 6
insertion of new instances, 6, 13
insertion of new items, 7, 16
remobal of existing instances, 15
removal of existing instances, 6
removal of existing items, 7, 17

emerging pattern, 5
incremental maintenance of, 3, 4,

10, 17
pattern space of, 3

hypothetical queries, 5
“what if” queries, 5

interactive mining, 5

jumping emerging pattern, 8
space of, 8

pattern space, 6
border of, 3, 9
concise representation of, 3, 8
convex space, 9
expression of, 10
incremental maintenance of, 3, 4,

10, 17

23

