
FREQUENT PATTERN SPACE MAINTENANCE:

THEORIES & ALGORITHMS

FENG MENGLING

SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING

NANYANG TECHNOLOGICAL UNIVERSITY

2009

FREQUENT PATTERN SPACE MAINTENANCE:

THEORIES & ALGORITHMS

FENG MENGLING

SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING

NANYANG TECHNOLOGICAL UNIVERSITY

A thesis submitted to Nanyang Technological University

in fulfilment of the requirement for the Degree of

Doctor of Philosophy

2009

Acknowledgement

My supervisors, Limsoon Wong and Yap-Peng Tan, have been an inspiration through-

out my Ph.D study. I would like to thank them for their patience, their encourage-

ment and their guidance; they have greatly helped me throughout my study. I would

like to thank Nanyang Technological University and National University of Singapore

for providing me with both hardware and software support. I would like to thank

A*STAR for providing me with a scholarship and an opportunity to pursue my Ph.D

degree. I would also like to thank Guozhu Dong and Jinyan Li for their valuable

advices and inspiring ideas. I am immensely grateful to JianFei Zhu, Mohammed

Javeed Zaki, Bart Goethals and Yun Chi for their kindness in sharing their source

codes with me. I am deeply grateful to all the staffs, technicians and students in both

Nanyang Technological University and National University of Singapore for their help

and support. Special thanks to Lian Naixiang, Guimei Liu, Haiquan Li and all my

colleagues and friends in the Computational Biology Lab. Last but not least, I would

like to thank my father and wife for their understanding, their kindness, their advices

and their unceasing support and encouragement.

i

Abstract

This Thesis explores the theories and algorithms for frequent pattern space mainte-

nance. Frequent pattern maintenance is essential for various data mining applications,

ranging from database management to hypothetical query answering and interactive

trend analysis. Through our survey, we observe that most existing maintenance al-

gorithms are proposed as an extension of certain pattern discovery algorithms or the

data structures they used. But, we believe that, to develop effective maintenance

algorithms, it is necessary to understand how the space of frequent patterns evolves

under the updates. We investigate the evolution of frequent pattern space using

the concept of equivalence classes. This space evolution analysis lays a theoretical

foundation for the construction of efficient algorithms. Based on the space evolution

analysis, novel “maintainers” for the frequent pattern space, “Transaction Removal

Update Maintainer” (TRUM) and “Pattern Space Maintainer” (PSM), are proposed.

TRUM effectively addresses the decremental maintenance of frequent pattern space.

PSM is a “complete maintainer” that effectively maintains the space of frequent pat-

terns for incremental updates, decremental updates and support threshold adjust-

ments. Experimental results demonstrate that both TRUM and PSM outperform the

state-of-the-art discovery and maintenance algorithms by significant margins.

ii

Contents

Acknowledgement i

Abstract ii

Table Of Contents iii

List Of Figures vii

List Of Tables xii

I INTRODUCTION 1

1 Introduction & Motivation 2

1.1 Applications . 3

1.2 Types of Maintenance . 8

1.3 Challenges in Maintenance . 10

1.4 Contributions . 11

1.5 Thesis Organization . 12

2 Background and Problem Definition 15

2.1 Background on Frequent Patterns . 15

2.1.1 Concise Representation of Frequent Patterns 17

iii

2.1.2 Discovery of Frequent Patterns 19

2.2 Problem Definition . 24

3 Existing Maintenance Algorithms: A Survey 26

3.1 Algorithmic Studies . 27

3.1.1 Apriori-based Algorithms . 27

3.1.2 Partition-based Algorithms . 31

3.1.3 Prefix-tree-based Algorithms 32

3.1.4 Concise-representation-based Algorithms 35

3.2 Experimental Studies . 38

3.3 Summary & Discussion . 43

II THEORIES 47

4 Frequent Pattern Space Evolution: A Theoretical Analysis 48

4.1 Structural Decomposition of Pattern Space 49

4.2 Space Evolution under Incremental Updates 54

4.3 Space Evolution under Decremental Updates 63

4.4 Space Evolution under Threshold Adjustments 68

4.5 Summary . 70

iv

III ALGORITHMS 71

5 Transaction Removal Update Maintainer (TRUM): A Decremental
Maintainer 72

5.1 Transaction Removal Update Maintainer (TRUM) 73

5.2 Maintenance Data Structure:

Transaction-ID Tree (TID-tree) . 80

5.3 Experimental Studies . 83

5.3.1 Comparison with Discovery Algorithms 86

5.3.2 Comparison with Maintenance Algorithms 90

5.4 Generalization & Extension . 92

5.4.1 Extension for Percentage Support Threshold 92

5.4.2 Generalization to Incremental Updates 93

5.5 Summary . 95

6 Pattern Space Maintainer (PSM): A Complete Maintainer 96

6.1 Incremental Maintenance . 97

6.1.1 Evolution of Pattern Space . 97

6.1.2 Maintenance Data Structure:

Generator-Enumeration Tree (GE-tree) 105

6.1.3 Proposed Algorithm: PSM+ 113

6.1.4 Experimental Studies . 124

6.2 Decremental Maintenance . 129

v

6.2.1 Evolution of Pattern Space . 129

6.2.2 Maintenance of Pattern Space 135

6.2.3 Proposed Algorithm: PSM- 137

6.2.4 Experimental Studies . 142

6.3 Threshold Adjustment Maintenance: PSM∆ 146

6.4 Summary . 149

IV CONCLUSION 151

7 Publications 152

8 Conclusion 154

8.1 Summary . 154

8.2 Future Directions . 157

Bibliography 159

vi

List of Figures

1.1 (a) The naive approach and (b) the pattern space maintenance ap-

proach for answering the hypothetical “what if ” queries. 5

1.2 Retrospective and prospective trend analysis. 7

2.1 (a) An example of transactional dataset, which has 4 transactions, and

(b) the frequent pattern space for the sample dataset in (a) and its

concise representations (ms% = 25%, msa = 1). 16

2.2 (a) The original dataset, (b) the projected dataset when ms% = 50%

and (c) the construction process of FP-tree. 22

3.1 (a) The original dataset, (b) the construction process of CATS-tree

and (c) the construction process of CanTree, where, in this case, items

are sorted in lexicographic order. 33

3.2 (a) Sample dataset and (b) the backtracking tree of the sample dataset

when ms% = 40%. In (b), bolded nodes are the frequent maximal pat-

terns, nodes that are crossed out are enumeration termination points,

and nodes that are linked with dotted arrows are skipped candidates. 36

vii

3.3 An example of Closed Enumeration Tree (CET). Patterns in solid line

boxes are closed patterns, and patterns in dotted line boxes are bound-

ary patterns. 37

3.4 Performance of FUP2H, Borders and SWF over various update intervals.

Notation: ∆+ = |Dinc|/|Dorg|. 40

3.5 Performance of CanTree, ZIGZAG and moment over various update in-

tervals. Notation: ∆+ = |Dinc|/|Dorg|. 41

4.1 Demonstration of the structural decomposition of the frequent pattern

space. (a)The sample dataset; (b) decomposition of the frequent pat-

tern space of the sample dataset into 5 equivalence classes; and (c) the

“border” of an equivalence class. 53

4.2 Evolution of equivalence classes under incremental updates. 55

4.3 Splitting of equivalence classes. 56

4.4 Evolution of equivalence classes under decremental updates. 64

5.1 An example of TID-tree. (a) The original dataset; (b) the frequent

equivalence classes of original dataset when msa = 2; and (c) the

corresponding TID-tree. 81

5.2 Update of TID-tree. (a) The original TID-tree; (b) the updated TID-

tree after removing transaction 3; and (c) the updated TID-tree after

removing also transaction 4. 82

viii

5.3 Performance comparison of TRUM and the pattern discovery algo-

rithms, FPgrowth* and GC-growth, under batch maintenance. Nota-

tions: ∆− = |Ddec|/|Dorg|. 85

5.4 Performance comparison of TRUM and the discovery algorithms, FP-

growth* and GC-growth, under eager maintenance. Notations: ∆− =

|Ddec|/|Dorg|. 88

5.5 Performance comparison of TRUM and the pattern maintenance algo-

rithms: FUP2H, ZIGZAG and moment . Notations: ∆− = |Ddec|/|Dorg|. 89

5.6 TID-tree for incremental updates. (a) The existing frequent equiva-

lence classes; (b) the original TID-tree; and (c) the updated TID-tree

after inserting transaction 6: {b, d, e}. 93

6.1 (a) Split up of the existing equivalence class ECorg by intersecting with

ECinc, an equivalence class in the incremental dataset, and (b) split

up of ECorg by intersecting with a single incremental transaction t+. 98

6.2 The Set-Enumeration Tree with item order: d <0 c <0 b <0 a. The

number on the left top corner of each node indicates the order at which

the node is visited. 106

6.3 (a) The GE-tree for the original dataset. (b) The updated GE-tree

when new transaction {b, c, d} is inserted. (c) The updated GE-tree

when new transaction {a, f} is inserted. 108

ix

6.4 (a) Showcase of a GE-tree node. (b) The frequent equivalence class

table, highlighting the corresponding equivalence class of the GE-tree

node in (a). 121

6.5 (a) A sample data set with ms% = 20% and msa = 2. (b) The mP-tree

for the dataset in (a). (c) The updated mP-tree after the insertion of

transaction {b, c, d}. 123

6.6 Performance comparison of PSM+ and the pattern discovery algo-

rithms: FPgrowth* and GC-growth. Notations: ∆+ = |Dinc|/|Dorg|. . . 125

6.7 Performance comparison of PSM+ and the pattern maintenance al-

gorithms, Borders, CanTree, ZIGZAG and moment. Notations: ∆+ =

|Dinc|/|Dorg|. 127

6.8 (a) The GE-tree for the original dataset. (b) The updated GE-tree

after the existing transaction {a, f} is removed. (c) The updated GE-

tree after the existing transaction {b, c, d} is also removed. 138

6.9 (a) Performance comparison of PSM- and the pattern discovery algo-

rithms: FPgrowth* and GC-growth. (b) Performance comparison of

PSM- and the pattern maintenance algorithms: ZIGZAG, moment and

TRUM. Notations: ∆− = |Ddec|/|Dorg|. 143

6.10 Performance comparison of PSM∆ and the discovery algorithms,

FPgrowth* and GC-growth. Notations: ∆ms denotes the difference be-

tween the original support threshold and the updated support threshold.147

x

6.11 Performance comparison of PSM∆ and the maintenance algorithms,

Borders and ZIGZAG. Notations: ∆ms denotes the difference between

the original support threshold and the updated support threshold. . . 148

xi

List of Tables

3.1 Characteristics of datasets: BMS-WEBVIEW-1, mushroom,

pumsb star, T10I4D100K. Notations: #Trans denotes the total

number of transactions in the dataset, #Items denotes the total

number of distinct items, maxTL denotes the maximal transaction

length and aveTL is the average transaction length. 39

3.2 Summary of Apriori-based and Partition-based maintenance algorithms. 44

3.3 Summary of Prefix-tree-based maintenance algorithms. 45

3.4 Summary of Concise-representation-based maintenance algorithms. . 46

5.1 Characteristics of testing datasets [49]. Notations: #Trans denotes

the total number of transactions in the dataset, #Items denotes the

total number of distinct items, maxTL denotes the maximal transaction

length and aveTL is the average transaction length. 84

5.2 Average speed up of TRUM over benchmark datasets for batch main-

tenance (when ∆− ≤ 10%). 91

xii

6.1 Comparison of the number of patterns enumerated by PSM+, FP-

growth* and GC-growth. Notations: #PSM+, #FPgrowth* and #GC-

growth denote the approximated number of patterns enumerated by

the respectively algorithms. 120

6.2 Average speed up of PSM+ over benchmark datasets for batch main-

tenance (when ∆+ ≤ 10%). 128

6.3 Average speed up of PSM- over benchmark datasets for batch mainte-

nance (when ∆− ≤ 10%). 145

xiii

Part I

INTRODUCTION

1

Chapter 1

Introduction & Motivation

This Thesis discusses the theories and algorithms for the maintenance of frequent

pattern space. “Frequent patterns”, also known as frequent itemsets, refer to patterns

that appear frequently in a particular dataset [2]. Frequent patterns are defined based

on a user-defined threshold, called the “support threshold”. Given a dataset, we say a

pattern is a frequent pattern if and only if its occurrence frequency is above or equals

to the support threshold. We also define the collection of all frequent patterns as

the “frequent pattern space” or “the space of frequent patterns”. Frequent patterns

are a very important type of patterns in data mining [32]. Frequent patterns play an

essential role in various knowledge discovery tasks, such as the discovery of association

rules [3], correlations [8], causality [65], sequential patterns [4], partial periodicity [30],

emerging patterns [21], etc. In the last decade, the discovery of frequent patterns

has attracted tremendous research attention, and a phenomenal number of discovery

algorithms, such as [1, 2, 3, 35, 52, 56, 64, 75], are proposed.

2

The maintenance of the frequent pattern space is as crucial as the discovery of

the pattern space. This is because data is dynamic in nature. Due to the advance in

data generation and collection technologies, databases are constantly updated with

newly collected data. Data updates are also used as a means in interactive data

mining, to gauge the impact caused by hypothetical changes to the data and to

detect emergence and disappearance of trends. When a database is often updated or

modified for interactive mining, repeating the pattern discovery process from scratch

causes significant computational and I/O overheads. Therefore, effective maintenance

algorithms are needed to update and maintain the frequent pattern space. This Thesis

focuses on the maintenance of frequent pattern space for transactional datasets [68].

We observe that most of the prior works in frequent pattern maintenance are

proposed as an extension of certain frequent pattern discovery algorithms or the data

structures they used. Unlike the prior works, this Thesis lays a theoretical foundation

for the development of effective maintenance algorithms by analyzing the evolution of

frequent pattern space in response to data changes. We study the evolution of pattern

space using the concept of equivalence classes [20, 47]. Inspired by the evolution

analysis, novel maintenance algorithms are proposed to handle various data updates.

1.1 Applications

Frequent pattern space maintenance is desirable for many data mining applications.

We here list a few major ones.

3

Data update

The most obvious application of frequent pattern space maintenance is to address

data updates. Data updates are a fundamental aspect of database management [13,

61]. Data updates allow new records to be inserted, obsolete records to be removed,

and errors in the databases to be amended. Data updates directly cause the frequent

pattern space to change, and thus efficient methods are needed to maintain the pattern

space.

Support threshold adjustment

Frequent pattern space maintenance is also a useful tool for various interactive

mining applications. Support threshold adjustment is one of the most common oper-

ations in interactive mining of frequent patterns. Setting the right support threshold

is crucial in frequent pattern mining. An inadequate support threshold may produce

too few patterns to be meaningful or too many to be processed. It is unlikely to set

the appropriate threshold at the first time. Therefore, data analyzers often adjust

the support threshold interactively to obtain the desirable set of patterns. Since the

frequent pattern space is defined based on the support threshold, support threshold

adjustments may invalidate existing frequent patterns or may induce new frequent

patterns. Regenerating the frequent pattern space every time the support threshold

is adjusted involves considerable amount of redundancy. In this case, pattern space

maintenance methods can be employed to reduce redundancy and improve efficiency.

4

(a)

Data Modification

Discovery of

Frequent

Patterns

Original Frequent

Pattern Space

Comparison of

Pattern Spaces

Answer to

Query

Hypothetical

what if Query
Updated

Dataset

Updated Frequent

Pattern Space

Frequent Pattern

Space Maintainer

Original Frequent
Pattern Space

Answer to

Query

Hypothetical

what if Query Data
Changes

(b)

Figure 1.1: (a) The naive approach and (b) the pattern space maintenance approach
for answering the hypothetical “what if ” queries.

Hypothetical queries

Another potential application of frequent pattern maintenance in interactive min-

ing is to answer hypothetical queries. In particular, the “what if ” queries. Data

analyzers are often interested to find out “what” might happen to the pattern space

“if ”: some new transactions were inserted to the dataset, some existing transac-

tions were removed, or a group of existing transactions were replaced with some new

transactions, etc.

Given a dataset and the original frequent pattern space, the naive approach to

answer the hypothetical what if queries is presented in Figure 1.1 (a). In the naive

approach, one first needs to update the dataset according to the hypothetical query.

Then, a frequent pattern mining algorithm is employed to generate the updated fre-

quent pattern space based on the updated dataset. Finally, the original and updated

frequent pattern spaces are compared to determine the impact of the hypothetical

changes to the data. The naive approach is obviously inefficient. In general, the

5

original and updated pattern spaces will be highly overlapped. Therefore, the naive

approach involves a large amount of redundancy. Moreover, the size of frequent

pattern spaces is usually very large [32], thus comparing the original and updated

patterns is computationally expensive. Pattern space maintenance can be used to

avoid these redundancy and inefficiency.

Figure 1.1 (b) illustrates how frequent pattern space maintenance can help to

simplify the query answering process. The “Pattern Space Maintainer”, as shown in

Figure 1.1 (b), takes both the exiting pattern space and hypothetical data changes

as input. It then maintains the pattern space according to the data changes. As it

is updating the pattern space, the maintainer at the same time detects the impacts

of the hypothetical data changes. The pattern space maintainer can directly provide

answers to hypothetical queries by reporting information such as how many existing

patterns are affected by the hypothetical data changes, what these patterns are,

which patterns have become infrequent, what patterns have newly emerged, etc. As

a result, by employing pattern space maintenance, the pattern discovery and pattern

space comparison steps in the naive approach are avoided.

Trend analysis

Trend analysis is another important application of pattern space maintenance.

In trend analysis, different from the conventional frequent pattern applications, each

transaction is associated with a time stamp, which can be the time, the date, the

month or the year of the transaction.

To illustrate the details of trend analysis, let us use the well-known “supermarket

6

CurrentPast

Time

Retrospective analysis

Emergence of
new trend

Prospective analysis
Current Future

Figure 1.2: Retrospective and prospective trend analysis.

basket” case as an example. Suppose we have the transaction records of a supermar-

ket, and each transaction record is associated with its date of purchase. Now the

supermarket manager wants to study the buying trends of his customers. In this

case, buying trends are actually equivalent to frequent patterns in the transactions.

Thus emergence of new frequent patterns implies emergence of new buying trends,

and disappearance of existing frequent patterns implies some existing trends have

vanished.

Trend analysis can be both retrospective and prospective. In the retrospective

scenario, the supermarket manager already knew that a new trend has emerged in

the near past; but he/she does not know when the emergence happened. Suppose the

manager would like to find out exactly when so that he/she can further investigate

the causes of the new trend. In this case, the emergence of the new trend can be de-

tected by comparing the current and past frequent pattern spaces as we slowly move

backwards in time. Figure 1.2 graphically illustrates this retrospective process, and

we call it the “retrospective trend analysis”. On the other hand, in the prospective

scenario, the manager has no idea whether any new trend will emerge, and he wants

to know if there is any. In this case, the manager needs to update the data continu-

ally with the latest transactions and the compare the existing and updated frequent

7

pattern space to find out whether any new trend has emerged. We call this case the

“prospective trend analysis”, and it is also demonstrated in Figure 1.2.

In real life applications, retrospective trend analysis is often employed to study

customer buying trends and market trends as illustrated in the example above. Ret-

rospective trend analysis is also applied to sensor data to detect faults and unusual

readings. On the other hand, prospective trend analysis is then used to detect abnor-

mal and unexpected behavior from databases like web log and money transactions.

Although the example above only mentions the detection of new trends, trend analysis

can also be employed to detect the disappearance of existing trends.

Trend analysis is a type of “before vs. after” analysis, which requires intensive

pattern discovery and comparison computation. Pattern maintenance is the best

option to avoid redundancy and thus to achieve high efficiency.

1.2 Types of Maintenance

This Thesis focuses on two major types of updates in data management and interac-

tive mining:

The first type of update, where new transactions are inserted into the original

dataset, is called an incremental update. The associated maintenance process is

called incremental maintenance. Incremental maintenance is employed in Data-Base

Management System (DBMS) to allow data users to update databases with new

records. Incremental maintenance is also an effective tool for hypothetical tests to

study how the pattern space may evolve if some hypothetical transactions are inserted.

8

In addition, as discussed in the previous section, incremental maintenance is necessary

for “prospective trend analysis”.

The second type of update, where some transactions are removed from the orig-

inal dataset, is called a decremental update. The associated maintenance process is

called decremental maintenance. Opposite of incremental maintenance, decremental

maintenance is used in DBMS to remove obsolete and incorrect records; decremental

maintenance is employed in hypothetical tests to investigate the “what if” effects on

pattern space when some exiting records are hypothetically removed; and decremental

maintenance can also be applied in “retrospective trend analysis”.

Incremental and decremental maintenance of frequent pattern space can be done

in two different manners: eager maintenance and batch maintenance. Take

incremental maintenance as an example. Eager maintenance refers to the case where

the dataset is updated constantly with new data, and the frequent pattern space needs

to be updated as each new data arrives. Eager maintenance is suitable for applications

that require instant updates of the pattern space, such as web monitoring, production

line monitoring, etc. Eager maintenance is also required in the applications of trend

analysis. On the other hand, batch maintenance refers to the case where new data

comes in as a batch, and the frequent pattern space only needs to be updated when

the whole batch of incremental data arrives. Batch maintenance is often applied

in applications that are not as urgent, e.g. update of sales data. The proposed

algorithms in this Thesis are able to effectively handle both eager maintenance and

batch maintenance.

In addition, we also maintain the frequent pattern space for support threshold

9

adjustment — an important operation of interactive mining.

1.3 Challenges in Maintenance

Data updates and support threshold adjustment may invalidate existing frequent

patterns and induce new frequent patterns to emerge. As a result, the maintenance

of frequent pattern space, in general, consists of two major computational tasks: one

is to update existing patterns and the other is to generate newly emerged frequent

patterns.

Without loss of generality, suppose the dataset is incrementally updated with m

new records. The naive way to update the existing patterns is to scan through all

the existing patterns for each new record to find out which patterns are affected by

the record and then update the patterns accordingly. The computational complexity

of this naive approach is O(NFP ×m), where NFP refers to the size of the existing

pattern space and m refers to the number of new records. Frequent pattern spaces

are usually huge, meaning that NFP is very large. As a result, the naive approach is

in general computationally too expensive to be practically feasible. Therefore, how

to update the existing frequent patterns effectively is one of the major challenges in

frequent pattern maintenance.

The other major challenge in frequent pattern maintenance is the generation of

newly emerged frequent patterns. In theory, the number of possible candidates for the

newly emerged frequent patterns equals to (2n −NFP), where n is the total number

of attributes in the dataset. This implies that the search space for the new patterns

10

is extremely sparse and unpleasantly large. Thus efficient techniques are required to

generate newly emerged frequent patterns.

1.4 Contributions

This Thesis makes the following contributes in the field of frequent pattern space

maintenance.

• A detailed survey on previously proposed frequent pattern maintenance algo-

rithms is conducted. The existing algorithms are classified into four major

categories, viz. Apriori -based, partition-based, prefix-tree-based and concise-

representation-based algorithms. The advantages and limitations of these algo-

rithms are investigated from both theoretical and experimental perspectives.

• A theoretical foundation for the development of effective frequent pattern main-

tenance algorithms is laid by analyzing the evolution of the frequent pattern

space under data updates. The evolution of the frequent pattern space is stud-

ied using the concept of equivalence classes. It is demonstrated that equivalence

classes of the updated frequent pattern space can be derived based on existing

frequent equivalence classes and the data updates.

• Inspired by the space evolution analysis, an effective and exact algorithm —

Transaction Removal Update Maintainer (TRUM) — is proposed to maintain

the frequent pattern space for decremental updates. A novel data structure,

Transaction-ID Tree (TID-tree), is developed to facilitate the decremental main-

11

tenance of frequent patterns. The effectiveness of TRUM is validated by exper-

imental evaluations.

• A complete frequent pattern space maintainer, Pattern Space Maintainer

(PSM), is proposed. PSM is made up of three maintenance components: PSM+,

PSM- and PSM∆. PSM+ handles the incremental maintenance of frequent pat-

terns, PSM- handles the decremental maintenance, and PSM∆ addresses the

maintenance of frequent pattern space for support threshold adjustment. All

three components of PSM are developed based a new data structure, Generator-

Enumeration Tree (GE-tree). GE-tree is a tree structure that allows compact

storage of frequent pattern space and, more importantly, facilitates fast update

of existing patterns and efficient generation of new frequent patterns.

1.5 Thesis Organization

This Thesis is composed of four parts: an introduction, a discussion on the theoret-

ical foundation for effective frequent pattern space maintenance, introduction to our

proposed maintenance algorithms, and a final conclusion with some future research

directions.

Part I Introduction

Chapter 2 recaps the fundamental definitions of frequent pattern mining and

formally defines the problem of frequent pattern space maintenance. Notations used

in frequent pattern mining and maintenance are introduced. Basic properties and

concise representations of frequent patterns are discussed. Related works in frequent

12

pattern mining are also reviewed.

Chapter 3 surveys previously proposed maintenance algorithms. The previously

proposed algorithms are classified into four categories based on their characteristics.

The advantages and limitations of these four types of maintenance algorithms are

investigated theoretically and experimentally.

Part II Theories

Chapter 4 analyzes how the frequent pattern space evolves under incremental

updates, decremental updates and support threshold adjustments. The evolution of

pattern space is studied based on the concept of equivalence classes. This evolution

analysis lays the theoretical foundation for the development of effective maintenance

algorithms.

Part III Algorithms

Chapter 5 introduces our proposed decremental maintenance algorithm — Trans-

action Removal Update Maintainer (TRUM). A novel data structure, Transaction-ID

Tree (TID-tree), is proposed to optimize the efficient of TRUM. The construction and

update of TID-tree is discussed. At the end of the chapter, the effectiveness of TRUM

is evaluated with experimental studies, and the limitations and possible extensions of

TRUM are also explored.

Chapter 6 proposes a complete frequent pattern space maintainer, named Pattern

Space Maintainer (PSM). PSM consists of three maintenance components: PSM+,

the incremental maintenance component, PSM-, the decremental maintenance com-

ponent, and PSM∆, the support threshold maintenance component. All these three

13

components are developed based on the newly introduced data structure, Generator-

Enumeration Tree (GE-tree). The characteristics and advantages of GE-tree are first

discussed. Then the three maintenance components are introduced. The effectiveness

of the three maintenance components is also justified with experimental results.

Part IV Conclusion

Chapter 7 lists my publications during my Ph.D study and declares the relations

between these publications and the results shown in the Thesis.

Chapter 8 summarizes the results of the Thesis. Some potential future research

directions are also discussed.

14

Chapter 2

Background and Problem

Definition

2.1 Background on Frequent Patterns

Let I = {i1, i2, ..., im} be a set of distinct literals called “items”, and also let D =

{t1, t2, ..., tn} be a transactional “dataset”, where ti (i ∈ [1, n]) is a “transaction”

that contains a non-empty set of items. Each non-empty subset of I is called a

“pattern” or an “itemset”. The “support” of a pattern P in a dataset D is defined

as sup(P,D) = |{t|t ∈ D ∧P ⊆ t}|. A pre-specified support threshold is necessary to

define frequent patterns. The support threshold can be defined in terms of percentage

and absolute count. For a dataset D, the “percentage support threshold”, ms%, and

the “absolute support threshold”, msa, can be interchanged via equation msa =

dms%× |D|e. Given ms% or msa, a pattern P is said to be frequent in a dataset D iff

sup(P,D) ≥ msa = dms%× |D|e. When ms% is used, for simplicity of discussion, we

15

{}

a : 3 c : 3 d : 3 b : 2

a c : 3 a d : 2 c d : 2 b d : 2

a c d : 2

 a b : 1 b c : 1

a b c : 1 b c d : 1

a b c d : 1

a b d : 1

Maximal

Pattern

Closed

Pattern

Key

Pattern

(b)

a, b, c, d

b, d

a, c, d

a, c

Sample Dataset

(ms% = 25%� msa = 1)

(a)

Figure 2.1: (a) An example of transactional dataset, which has 4 transactions, and (b)
the frequent pattern space for the sample dataset in (a) and its concise representations
(ms% = 25%, msa = 1).

say the support of a pattern P is greater or equals to ms% if sup(P,D) ≥ dms%×|D|e.

The collection of all frequent patterns in D is called the “space of frequent patterns” or

the “frequent pattern space” and is denoted as F(D,ms%) or F(D,msa). Figure 2.1

shows an example of a transactional dataset and the frequent pattern space of the

dataset when ms% = 25% (msa = 1).

The most important property of frequent patterns is the “a priori” property,

which is also known as the “anti-monotonicity” property. The “a priori” property

not only guides the discovery of frequent patterns, and it also inspires the concise

representations of the pattern space.

Fact 2.1 (A priori Property [32]). All non-empty subsets of a frequent pattern are

also frequent, and every superset of an infrequent pattern is also infrequent.

16

2.1.1 Concise Representation of Frequent Patterns

Frequent pattern space is usually very large. Moreover, the space grows exponentially

as the support threshold drops. Take the mushroom dataset [25] as an example.

The dataset consists of about 8 thousand transactions and about 100 distinct items.

The corresponding frequent pattern space already contains almost 600 thousands

patterns when the support threshold ms% = 10%, and the space grows to 90 million

patterns when the support threshold drops to 1%. Therefore, concise representations

[7, 10, 35, 38, 49, 58] are proposed to summarize the frequent pattern space.

The commonly used concise representations of frequent patterns are the max-

imal patterns [35], closed patterns [57] and generators (also know as key pat-

terns) [57]. Figure 2.1 (b) graphically illustrates how the concise representations can

be used to summarize the frequent pattern space.

Maximal patterns are first introduced in [35]. Maximal frequent patterns (in

short maximal patterns) refer to the longest patterns that are frequent, and they are

formally defined as follows.

Definition 2.2 (Maximal Pattern). Given a dataset D and the minimum support

threshold ms%, a pattern P is a “maximal frequent pattern” iff sup(P,D) ≥ ms%

and, for every Q ⊃ P , it is the case that sup(Q,D) < ms%.

Maximal patterns are the most compact representation of frequent pattern space.

As shown in Figure 2.1 (b), a single maximal pattern is already sufficient to represent

the entire pattern space, which consists of 15 patterns in total. Maximal patterns can

be used to enumerate the complete set of frequent patterns. According to the a priori

17

property, all subsets of maximal patterns are frequent. However, maximal patterns

lack the information to derive the exact support of all frequent patterns. Therefore,

maximal patterns are a lossy1 representation.

Closed patterns and generators are both defined by N. Pasquier et al. in

[57]. Unlike maximal patterns, the closed pattern and generator representations are

lossless1 concise representations of frequent pattern space.

Definition 2.3 (Closed Pattern & Generator). Given a dataset D, a pattern P is a

“closed pattern” iff for every Q ⊃ P , it is the case that sup(Q,D) < sup(P,D). A

pattern P is a “generator” or a “key pattern” iff for every Q ⊂ P , it is the case that

sup(Q,D) > sup(P,D).

Closed patterns are the most specific patterns that have a particular support.

The closed pattern representation is composed of the set of frequent closed patterns

annotated with their support values. Given a dataset D and a minimum support

threshold ms%, we denote the closed pattern representation as FC(D,ms%). As can

be observed from Figure 2.1 (b), closed pattern representation is not as compact as

maximal patterns. However, the representation is lossless. The representation can be

used to generate all frequent patterns based on the a priori property, and it can also

be used to derive the exact support of all frequent patterns. For any frequent pattern

P in dataset D, sup(P,D) = max{sup(C,D)|C ⊇ P,C ∈ FC(D,ms%)}.

Generators, on the other hand, are the most general patterns that have a par-

ticular support. The generator representation is made up with the set of frequent

1We say a concise representation of frequent pattern space is lossless if it is sufficient to derive
the complete set of frequent patterns and their exact support values; and we say a representation is
lossy if otherwise.

18

generators and their support values. Given a dataset D and a minimum sup-

port threshold ms%, we denote the generator representation as FG(D,ms%). Gen-

erator representation is also lossless. For any frequent pattern P in dataset D,

sup(P,D) = min{sup(G,D)|G ⊆ P,G ∈ FG(D,ms%)}.

Besides the maximal patterns, closed patterns and generators, other frequent

pattern concise representations include the free-sets [7], disjunction-free generators

[38] and positive border patterns [49]. However, these three representations are rarely

used in frequent pattern applications. This is because they all involve complicated

procedures and calculations when inferring the support values of frequent patterns.

As a result, we will not discuss them in detail in this Thesis.

2.1.2 Discovery of Frequent Patterns

The discovery of frequent patterns in transactional datasets has been studied popu-

larly in data mining research. In this section, we discuss the representative algorithms.

Apriori-based algorithms

Apriori [3] is the most influential algorithm for frequent pattern discovery. Many

discovery algorithms [1, 36, 41, 52, 54, 56, 63] are inspired by Apriori. Apriori employs

a “candidate-generation-verification” framework. The algorithm generates its candi-

date patterns using a “level-wise” search. The essential idea of the level-wise search

is to iteratively enumerate the set of candidate patterns of length (k + 1) from the

set of frequent patterns of length k. The support of candidate patterns will then be

counted by scanning the dataset.

19

One major drawback of Apriori is that it leads to the enumeration of a huge

number of candidate patterns. For example, if a dataset has 100 items, Apriori may

need to generate 2100 ≈ 1030 candidates. Another drawback of Apriori is that it

requires multiple scans of the dataset to count the support of candidate patterns.

Different variations of Apriori are proposed to address these limitations. E.g. J. S.

Park et al. introduced a hash-based technique in [56] to reduce the size of candidate

patterns. J. Han et al. [31] proposed to speed up the support counting process by

reducing the number of transactions scanned in future iterations. The idea of [31]

is that a transaction that does not contain any frequent pattern of length k cannot

contain any frequent pattern with length greater than k. Therefore, such transactions

can be ignored for subsequent iterations.

Partition-based algorithms

Partition-based algorithms are another type of discovery algorithms. Similar to

Apriori, partition-based algorithms follow the candidate-generation-verification frame-

work. However, partition-based algorithms generate candidate patterns in a different

manner. The partitioning candidate generation technique is first introduced in [64].

Given a dataset D and a support threshold ms%, the candidate patterns are generated

in two phases. In phase I, the dataset D is divided into n partitions D1,D2, · · · ,Dn,

where D1 ∪ D2 ∪ · · · ∪ Dn = D and Di ∩ Dj = ∅ for 1 ≤ i < j ≤ n. The frequent

patterns of each partition are first generated. These patterns are referred as “local

frequent patterns”. In phase II, the dataset is scanned to determine “global frequent

patterns” from the set of local frequent patterns. Partition-based algorithms are de-

veloped based on the fact that: any global frequent pattern must be locally frequent

20

in at least one of the partitions.

Both Apriori-based and partition-based algorithms employ the candidate-

generation-verification framework. Their computational complexity is proportionally

related to the number of enumerated candidate patterns. Although various pruning

techniques [1, 31, 56] have been proposed to reduce the number of candidate patterns,

a large number of unnecessary candidate patterns are still enumerated. This greatly

reduces the performance of both Apriori-based and partition-based algorithms.

Prefix-tree-based algorithms

To address the shortcoming of the candidate-generation-verification framework,

prefix-tree-based algorithms, which involve no candidate generation, are proposed.

Examples of prefix-tree-based algorithms include [28, 33, 50, 59].

FP-growth described in [33] is the state-of-the-art prefix-tree-based discovery al-

gorithm. FP-growth mines frequent patterns based on a prefix-tree structure, Frequent

Pattern Tree (FP-tree).

FP-tree is a compact representation of all relevant frequency information in a

database. Every branch of the FP-tree represents a “projected transaction” and also

a candidate pattern. The nodes along the branches are stored in descending order of

the support values of corresponding items, so leaves are representing the least frequent

items. Compression is achieved by building the tree in such a way that overlapping

transactions share prefixes of the corresponding branches. Figure 2.2 demonstrates

how FP-tree is constructed for the sample dataset given a support threshold ms%.

First, the dataset is transformed into the “projected dataset”. In the “projected

21

Root

a : 1

b : 1

d : 1

e : 1

Root

a : 2

b : 2

d : 2

e : 2

Root

a : 3

b : 2

d : 2

e : 2

a, d, c, e, b, g

a, f, d, e, b
a
b, d, a

Original Dataset
ms% = 50%

Item_list

t1
t2

t4

t3

a, b, d, e

a, b, d, e
a
a, b, d

Projected Dataset

Item_list

t1
t2

t4

t3

Add t1 Add t2 Add t3

Root

a : 4

b : 3

d : 3

e : 2

Add t4

(a) (b) (c)

Figure 2.2: (a) The original dataset, (b) the projected dataset when ms% = 50% and
(c) the construction process of FP-tree.

dataset”, all the infrequent items are removed, and items in each transaction are

sorted in descending order of their support values. Transactions in the “projected

dataset” are named the “projected transactions”. The “projected transactions” are

then inserted into the prefix-tree structure one by one, as shown in Figure 2.2 (c). It

can be seen that the FP-tree effectively represents the sample dataset with only four

nodes.

With FP-tree, FP-growth generates frequent patterns using a “fragment growth

technique”. The fragment growth technique enumerates frequent patterns based on

the support information stored in FP-tree, which effectively avoids the generation

of unnecessary candidate patterns. Inspired by the idea of divide-and-conquer, the

fragment growth technique decomposes the mining tasks into subtasks that mines

frequent patterns for conditional datasets, which greatly reduces the search space.

Details of the technique can be referred to [33].

FP-growth significantly outperforms both the Apriori-based and partition-based

algorithms. The advantages of FP-growth are: first, FP-tree effectively compresses

and summarizes the dataset so that multiple scans of dataset is no longer needed to

22

obtain the support of patterns; second, the fragment growth technique ensures no un-

necessary candidate patterns are enumerated; lastly, the search task is simplified with

a divide-and-conquer method. However, FP-growth, like other prefix-tree based algo-

rithms, still suffers from the undesirable large size of the frequent pattern space. To

break this bottleneck, algorithms are proposed to discover the concise representations

of frequent pattern space.

Concise-representation-based algorithms

Instead of mining the whole frequent pattern space, concise-representation-based

algorithms aim to generate only the concise representation patterns, such as maximal

patterns, closed patterns and generators.

In the literature, algorithms Max-miner [35], MAFIA [9], FPmax* [28] and GEN-

MAX [26] are proposed to discover maximal patterns. Among these algorithms, FP-

max* is, in general, the fastest algorithm [25]. FPmax* is an extension of FP-growth,

and FPmax* is also developed based on the FP-tree structure. Extra pruning tech-

niques are used in FPmax* to remove non-maximal patterns in the early stage of

mining.

Closed patterns are the most popular concise representation in the literature. A

large number of algorithms are proposed to mine closed patterns. Algorithms A-close

[57], CHARM [74], CLOSET [60], CLOSET+ [72], LCM [69] and FPclose [28] are the

representative ones. Most of the closed pattern mining algorithms made use of the

following two properties of closed patterns to prune away non-closed patterns.

Fact 2.4 (Cf. [53]). Given a dataset D and pattern C as a closed pattern. A pattern

23

P is definitely not a closed pattern if P ⊂ C and sup(P,D) = sup(C,D).

Fact 2.5 (Cf. [53]). Let the filter, f(P,D), of a pattern P in dataset D be defined as

f(P,D) = {t ∈ D|P ⊆ t}. For any two patterns P and Q, if f(P,D) ⊆ f(Q,D) and

P 6⊃ Q, then P and all P ’s supersets are not closed patterns.

Generators did not receive much attention from data mining research [48]. Very

few works have discussed the discovery of generators. Some algorithms, e.g. A-close

and GC-growth [47], discover frequent generators as they enumerate closed patterns.

2.2 Problem Definition

This section formally defines the problem of frequent pattern space maintenance.

For incremental maintenance, we use the following notations: Dorg is the original

dataset, Dinc is the set of new transactions to be added to Dorg, and Dupd+ = Dorg ∪

Dinc is the updated dataset. We assume without loss of generality that Dorg 6= ∅ and

Dorg ∩ Dinc = ∅. This leads to the conclusion that |Dupd+| = |Dorg| + |Dinc|. Given

ms%, the task of incremental maintenance is to obtain the updated frequent pattern

space F(Dupd+,ms%) by updating the original pattern space F(Dorg,ms%). Note

that, in this Thesis, we focus on maintenance methods that generate the complete

set of frequent patterns along with their exact support values.

Analogously, we use the following notations for decremental maintenance: Ddec

is the set of old transactions to be removed, and Dupd− = Dorg −Ddec is the updated

dataset. We assume without loss of generality that Dorg 6= ∅ and Ddec ⊆ Dorg. Thus

24

|Dupd−| = |Dorg| − |Ddec|. Given ms%, the task of decremental maintenance is to

obtain the updated frequent pattern space F(Dupd−,ms%) by updating the original

pattern space F(Dorg,ms%).

For the scenario of support threshold adjustment, let msorg be the original min-

imum support threshold and msupd be the updated support threshold. The mainte-

nance task is to obtain the updated frequent pattern space F(D,msupd) based on the

original pattern space F(D,msorg).

25

Chapter 3

Existing Maintenance Algorithms:

A Survey

This section surveys previously proposed frequent pattern maintenance algorithms.

We investigate the advantages and limitations of existing maintenance algorithms

from both algorithmic and experimental perspectives. We observe that most existing

algorithms are proposed as an extension of certain frequent pattern discovery algo-

rithms or the data structure they used. Therefore, same as frequent pattern discovery

algorithms, existing maintenance algorithms can be mainly classified into 4 categories:

Apriori-based, Partition-based, Prefix-tree-based and Concise-representation-based al-

gorithms. Representative algorithms for all 4 categories are discussed. This chapter

should not be taken as an exhaustive account as there are too many existing ap-

proaches to be included.

26

3.1 Algorithmic Studies

We first study the mechanisms of existing algorithms from an algorithmic point of

view. The pros and cons of existing algorithms are theoretically compared and illus-

trated.

3.1.1 Apriori-based Algorithms

Apriori-based algorithms [6, 14, 15, 77], as the name suggests, are inspired by the

well-known frequent pattern discovery algorithm, Apriori [3].

FUP [14] is the representative Apriori-based maintenance algorithm. It is pro-

posed to address the incremental maintenance of frequent patterns. FUP updates the

space of frequent patterns based on the candidate-generation-verification framework

of Apriori. Different from Apriori, FUP makes use of the support information of the

previously discovered frequent patterns to reduce the number of candidate patterns.

FUP effectively prunes unnecessary candidate patterns based on the following two

observations.

Fact 3.1. Let Dorg be the original dataset, Dinc be the incremental dataset, Dupd+ =

Dorg ∪ Dinc be the updated dataset and ms% be the support threshold. Also let P

be a frequent pattern in F(Dorg,ms%). For every Q ⊃ P , Q 6∈ F(Dupd+,ms%), if

P 6∈ F(Dupd+,ms%).

Fact 3.1 is an extension of the a priori property. It is to say that, if a previously

frequent pattern becomes infrequent in the updated dataset, then all its supersets

are definitely infrequent in the updated dataset and thus should not be included as

27

candidate patterns. FACT 3.1 facilitates us to discard existing frequent patterns

that are no longer frequent. FACT 3.2 then provides us a guideline to eliminate

unnecessary candidates for newly emerged frequent patterns.

Fact 3.2. Let Dorg be the original dataset, Dinc be the incremental dataset, Dupd+ =

Dorg ∪ Dinc be the updated dataset and ms% be the support threshold. For any pat-

tern P , sup(P,Dupd+) < ms% and P 6∈ F(Dupd+,ms%), if sup(P,Dorg) < ms% and

sup(P,Dinc) < ms%.

Fact 3.2 states that, if a pattern is infrequent in both the original dataset and the

incremental dataset, it is definitely infrequent in the updated dataset. This allows us

to eliminate unqualified candidates of newly emerged frequent patterns based on their

support values in the incremental dataset. These support values can be obtained by

scanning only the incremental dataset, which is in general much smaller. This greatly

reduces the number of scans of the original dataset and thus improves the effectiveness

of the algorithm.

FUP is generalized in [15] to also maintain the frequent pattern space for decre-

mental updates and support threshold adjustments. The generalized version of FUP

is called FUP2H. Both FUP and FUP2H generate a much smaller set of candidate pat-

terns compared to Apriori, and thus they are more effective. But both FUP and FUP2H

still suffer from two major drawbacks: (1) they require multiple scans of the origi-

nal and incremental/decremental datasets to obtain the support values of candidate

patterns, which leads to high I/O overheads; and (2) they repeat the enumeration

of previously discovered frequent patterns. To address Point (2), Aumann et al [5]

proposed a new algorithm — Borders.

28

Borders is inspired by the concept of the “border pattern”, introduced by Man-

nila and Toivonen [51]. In the context of frequent patterns, the “border pattern” is

formally defined as follows.

Definition 3.3 (Border Pattern). Given a dataset D and minimum support threshold

ms%, a pattern P is “border pattern” iff for every Q ⊂ P , Q ∈ F(D,ms%) but

P 6∈ F(D,ms%).

The border patterns are basically the shortest infrequent patterns. The collec-

tion of border patterns defines a borderline between the frequent patterns and the

infrequent ones. Different from FUP, Borders makes use of not only the support in-

formation of previously discovered patterns but also the support information of the

border patterns.

When the original dataset Dorg is updated with incremental dataset Dinc, Borders

first updates the support values of existing frequent patterns and border patterns. If

no border patterns emerge to be frequent after the update, the maintenance process

is finished. Otherwise, if some border patterns become frequent after the update, new

frequent patterns need to be enumerated. Border patterns that emerge to be frequent

after the update are called the ”promoted border patterns”. The new pattern enu-

meration process follows the Apriori candidate-generation-verification method. But,

distinct from Apriori and FUP, Borders resumes the pattern enumeration from the

“promoted border patterns” onwards and thus avoids the enumeration of previously

discovered frequent patterns.

Since Borders successfully avoids unnecessary enumeration of previously discov-

29

ered patters, it is more effective than FUP. However, similar to FUP, Borders requires

multiple scans of original and incremental/decremental datasets to obtain the sup-

port values of newly emerged frequent pattern and border patterns. Thus Borders

still suffers from heavy I/O overheads.

On the other hand, to avoid unnecessary updates, Lee et al [40] extended the

idea of FUP2H with sampling techniques and proposed a new algorithm — DELI.

FUP2H obtains the exact support values of frequent patterns through multiple scans

of the original and incremental/decremental datasets. Different from FUP2H, DELI

estimates the support values of frequent patterns through sampling the datasets.

Based on the estimated support values, DELI then calculates an approximate upper

bound on how much change is introduced by the data updates to the existing frequent

pattern space. “If the change is not significant, we can ignore it and wait until more

is accumulated, contenting with the old” pattern space “as a good approximation.”

[40] Otherwise, FUP2H is applied to update the frequent pattern space.

With sampling techniques and statistical approximations, DELI avoids unneces-

sary scans of datasets and trivial updates of existing patterns. As a result, compared

with FUP2H, DELI is more effective, especially when data updates have introduced

negligible changes to the existing pattern space. However, the performance of DELI

greatly depends on the sampling size and the error tolerance level. If the error tol-

erance level is zero, DELI will basically perform like FUP2H. Moreover, DELI only

generates a set of frequent patterns that “approximate” the actual frequent pattern

space, and DELI can only obtain the “estimated” support values of frequent patterns.

As mentioned, this Thesis focuses on algorithms that generate the “complete” set of

30

frequent patterns along with their “exact” support values. Therefore, DELI is not our

focus and is not included in our experimental studies.

3.1.2 Partition-based Algorithms

Partition-based maintenance algorithms [12, 39, 55] are developed based on the “par-

titioning heuristic”, which is first described in [64]. Given a dataset D that is divided

into n non-overlapping partitions D1,D2, · · · ,Dn, the “partitioning heuristic” states

that if a pattern P is frequent in D then P must be frequent in at lease one of the n

partitions of D.

Sliding Window Filtering (SWF) [39] is a recently proposed partition-based main-

tenance algorithm. SWF focuses on the pattern maintenance of time-variant datasets.

In time-variant datasets, data updates involve both the insertion of the most recent

transactions (incremental update) and the deletion of the most obsolete transactions

(decremental update).

Given a time-variant dataset D, similar to partition-based frequent pattern dis-

covery algorithms, SWF first generates the locally frequent patterns for each partition

as candidate patterns and then scan the entire dataset to determine which candidate

patterns are globally frequent. For incremental maintenance, SWF treats the incre-

mental dataset Dinc as a new partition, and the locally frequent patterns in Dinc are

included as candidate patterns. For decremental maintenance, to facilitate the up-

date of candidate patterns, SWF records not only the support information but also the

“start partition” of each candidate pattern. The “start partition” of a candidate pat-

31

tern refers to the first partition that the candidate pattern is first introduced. When

the obsolete transactions (or partitions) are removed, the “start partition” attribute

allows us to easily determine and update the candidate patterns that are involved in

the removed transactions (or partitions).

The major advantage of SWF is that, based on the “partitioning heuristic”, SWF

prunes most of the false candidate patterns in the early stage of the maintenance pro-

cess. This greatly reduces the computational and memory overhead. Moreover, SWF

requires only one scan of the entire time-variant dataset to verify the set of candi-

date patterns. However, since SWF also follows the “candidate-generation-verification

framework”, even with all the candidate pruning techniques, SWF still produces a

large number of unnecessary candidates. This drawback is the bottleneck for all

candidate-generation-verification based algorithms.

3.1.3 Prefix-tree-based Algorithms

We have described in Section 2.1.2 how prefix-tree structures, e.g. the FP-tree, can be

used to mine the frequent pattern space effectively when the dataset is static. In this

section, we discuss how prefix-tree structures can be applied to maintain the frequent

pattern space when the dataset is updated.

Koh and Shieh [37] developed an algorithm, AFPIM (Adjusting FP-tree for Incre-

mental Mining), to update the FP-tree and frequent pattern space when the dataset

is incrementally updated. AFPIM aims to update the previously constructed FP-tree

by scanning only the incremental dataset. Recall that, in FP-tree, frequent items are

32

Root

a : 2

d : 2

e : 2

b : 2

g : 1

c : 1 f : 1

Root

a : 4

d : 3

d : 3

e : 2

g : 1

c : 1 f : 1

Root

a : 1

d : 1

c : 1

e : 1

g : 1

b : 1

Root

a : 3

d : 2

e : 2

b : 2

g : 1

c : 1 f : 1

Root

a : 1

b : 1

c : 1

d : 1

g : 1

e : 1

Root

a : 3

b : 2

c : 1

d : 1

g : 1

e : 1

d : 1

f : 1

e : 1

(a) (b)

a, d, c, e, b, g

a, f, d, e, b
a
b, d, a

Original Dataset

ms% = 50%

Item_list

t1
t2

t4

t3

(c)

Root

a : 2

b : 2

c : 1

d : 1

g : 1

e : 1

d : 1

f : 1

e : 1

Root

a : 4

b : 3

c : 1

d : 1

g : 1

e : 1

d : 2

f : 1

e : 1

Figure 3.1: (a) The original dataset, (b) the construction process of CATS-tree and
(c) the construction process of CanTree, where, in this case, items are sorted in
lexicographic order.

arranged in descending order of their support values. Insertion of transactions may

affect the support values and thus the ordering of items in the FP-tree. Therfore,

when the ordering is changed, items in the FP-tree need to be adjusted. In AFPIM,

this adjustment is accomplished by re-sorting the items through “bubble sort”. Bub-

ble sort involves recursively exchanges of adjacent items and thus is computational

expensive, especially when the ordering of items are dramatically affected by the data

updates. In addition, incremental update may induce new frequent items to emerge.

In this case, the FP-tree can no longer be adjusted using AFPIM. AFPIM then has to

scan the updated dataset to construct a new FP-tree.

CATS tree (Compressed and Arranged Transaction Sequences tree), a novel

prefix-tree proposed by Cheung and Zäıane [16], on the other hand, does not suf-

fer from the limitations of AFPIM. The CATS tree introduces a few new features.

First, the CATS tree stores all the items in the transactions, regardless whether the

items are frequent or not. This feature of CATS tree allows us to update CATS tree

even when new frequent items have emerged. Second, to achieve high compactness,

33

CATS tree arranges nodes based on their local support values. Figure 3.1 (b) illus-

trates how the CATS tree of the dataset in Figure 3.1 (a) is constructed and how the

nodes in the tree are locally sorted. In the case of incremental updates, the CATS

tree is updated by merging the new transactions one by one into the existing tree

branches. This requires traversing the entire CATS tree to find the right path for the

new transaction to merge in. In addition, since nodes in CATS tree are locally sorted,

swapping and merging of nodes, as shown in Figure 3.1 (b), are required during the

update of the CATS tree.

CanTree [43, 44], Canonical-order Tree, is another prefix-tree designed for the

maintenance of frequent patterns. The CanTree is constructed in a similar manner

as the CATS tree, as shown in Figure 3.1 (c). But in CanTree, items are arranged

according to some canonical order, which is determined by the user prior to the mining

process. For example, items can be arranged in lexicographic order, or, alternatively,

items can be arranged based on certain property values of items (e.g. their prices,

their priority values, etc.). Note that, in CanTree, once the ordering of items is fixed,

items will follow this ordering for all the subsequent updates. To handle data updates,

CanTree allows new transactions to be inserted easily. Unlike CATS tree, transaction

insertions in CanTree require no extensive searching for merge-able paths. Also since

the canonical order is fixed, any changes in the support values of items caused by data

updates have no effect on the ordering of items. As a result, swapping/merging nodes

are not required in the update of CanTree. The simplicity of CanTree makes it a very

powerful prefix-tree structure for frequent pattern maintenance. Therefore, in our

experimental studies, we choose algorithm CanTree to represent the prefix-tree-based

34

maintenance algorithms.

In summary, the advantages of Prefix-tree-based maintenance algorithms are: (1)

they concisely summarize the datasets into a prefix tree, which can be constructed

with only two data scans; and (2) they effectively updates the frequent pattern space

without enumeration of false candidates. On the other hand, the major drawback of

the Prefix-tree-based algorithms is: they aim to maintain the entire frequent pattern

space, which is huge in general. To address this drawback, algorithms are proposed

to maintain only the concise representations of frequent pattern space.

3.1.4 Concise-representation-based Algorithms

Algorithms are proposed to maintain the concise representations of frequent pattern

space. ZIGZAG [70] and moment [17, 18] are representative examples.

ZIGZAG maintains the maximal frequent patterns. ZIGZAG updates the maximal

frequent patterns with a backtracking search, which is guided by the outcomes of the

previous mining iterations. The backtracking search method in ZIGZAG is inspired

by its related work GENMAX [27]. ZIGZAG conceptually enumerates the candidates

of maximal frequent patterns with a “backtracking tree”. Figure 3.2 (b) shows an

example of backtracking tree. In the backtracking tree, each node is associated with

a frequent pattern and its “combination set”. For a particular frequent pattern P ,

the “combination set” refers to the set of items that form potential candidates by

combining with P . Take the backtracking tree in Figure 3.2 (b) as an example. Node

{a} is associated with combination set {b, c, d}. This implies that the union of {a}

35

{} (a, b,c,d) : 5

a (b,c,d) : 3 b (c,d) : 3 c (d) : 3 d : 3

ab (c,d) : 1 ac (d) : 3 ad

acd : 2

bc (d) : 1 bd : 2 cd

Maximal

patterns

a, b, c, d
b, d
a, c, d
a, c

Sample Dataset

ms% = 40%

b

Item_list

(a) (b)

t1
t2

t4

t3

t5

Figure 3.2: (a) Sample dataset and (b) the backtracking tree of the sample dataset
when ms% = 40%. In (b), bolded nodes are the frequent maximal patterns, nodes
that are crossed out are enumeration termination points, and nodes that are linked
with dotted arrows are skipped candidates.

and the items in the combination set, which are {a, b}, {a, c} and {a, d}, are potential

candidates for maximal frequent patterns.

ZIGZAG also employs certain pruning techniques to reduce the number of gen-

erated false candidates. First, ZIGZAG prunes false candidates based on the a priori

property of frequent patterns. If a node in the backtracking tree is not frequent,

then all the children of the node are not frequent, and thus candidate enumeration of

the current branch can be terminated. In Figure 3.2 (b), crossed out nodes are the

enumeration termination points that fall in this scenario. Second, ZIGZAG further

eliminates false candidates based on the following fact.

Fact 3.4. Given a dataset D and the support threshold ms%, let P be a maximal

frequent pattern. It is true for every Q ⊂ P that Q is not a maximal frequent pattern.

It is also true for every Q′ ⊃ P that Q′ is not a maximal frequent pattern.

Fact 3.4 follows the definition of the maximal frequent pattern. In Figure 3.2 (b),

nodes, which are pointed with a dotted line, are those pruned based on this criterion.

36

{}

a : 3 b : 3 c : 3 d : 1

ab : 3 ac : 2

abc : 2

a, b
c, d

a, b, c
a, b, c

Item_list

t1
t2

t4

t3

Closed Pattern

Boundary Pattern

Figure 3.3: An example of Closed Enumeration Tree (CET). Patterns in solid line
boxes are closed patterns, and patterns in dotted line boxes are boundary patterns.

Algorithm moment, on the other hand, maintains the frequent closed patterns.

Algorithm moment focuses on the scenario when the dataset is updated in a sliding

window manner, where, at each update, only one new transaction is inserted and

only one existing transaction is removed. Algorithm moment is developed based on

the hypothesis that there are only small changes to the frequent closed patterns in

sliding window updates, because there is only a small amount of updates.

Algorithm moment employs a novel compact data structure, the Closed Enumer-

ation Tree (CET), to facilitate the maintenance process. CET is a tree structure

that compactly stores the frequent closed patterns and “boundary patterns”. Fig-

ure 3.3 shows an example of CET. In Figure 3.3, patterns in solid boxes are frequent

closed patterns, and patterns in dotted line boxes are boundary patterns. In moment,

boundary patterns refer to patterns that are likely to emerge as frequent closed pat-

terns after the update. According to the hypothesis of moment, the set of boundary

patterns is believed to be relatively stable and requires little update. In addition,

moment also applies rules in Facts 2.4 and 2.5 to prune non-closed candidates from

CET.

It is demonstrated in [17, 18] that moment outperforms the frequent closed pat-

tern discovery algorithm, CHARM, by multiple orders of magnitude. Moreover, mo-

37

ment can be generalized to handle batch updates. However, when the size of update

gets large, the hypothesis of moment no longer holds, and therefore the performance

of moment degrades dramatically.

3.2 Experimental Studies

In this section, we justify our theoretical observations with empirical results. Ex-

periments were run on a PC with 2.4GHz CPU and 3.2G of memory. The per-

formance of previously proposed maintenance algorithms is tested with a group of

benchmark datasets in [25]. The testing datasets include BMS-WEBVIEW-1, mush-

room, pumsb star and T10I4D100K. These datasets form a good representative of

both synthetic and real datasets. The detailed characteristics of the datasets are

presented in Table 3.1.

The performance of previously proposed maintenance algorithms is tested with

incremental updates. This is because most of previous algorithms can only handle

incremental updates but not decremental updates and support threshold adjustment.

The processing time of previous algorithms is measured under the setting of batch

maintenance. The efficiency of previous algorithms is tested over various update

intervals. The incremental update interval, denoted as ∆+, refers to the ratio between

the sizes of the incremental dataset and original dataset. ∆+ = |Dinc|/|Dorg|.

38

Dataset Size #Trans #Items maxTL aveTL

BMS-WEBVIEW-1 0.99MB 59,602 497 268 2.51

mushroom 0.56MB 8,124 119 23 23

pumsb star 11.03MB 49,046 2,088 63 50.48

T10I4D100K 3.93MB 100,000 870 30 10.10

Table 3.1: Characteristics of datasets: BMS-WEBVIEW-1, mushroom, pumsb star,
T10I4D100K. Notations: #Trans denotes the total number of transactions in the
dataset, #Items denotes the total number of distinct items, maxTL denotes the max-
imal transaction length and aveTL is the average transaction length.

The effectiveness of previous algorithms is compared with two representative

frequent pattern discovery algorithms — Apriori and FP-growth. In this thesis, the

implementation of Apriori by Bart Goethals [24] is used, and FPgrowth* [28], one of

the fastest implementation of FP-growth [25], is used. Given an incremental dataset

Dinc, we first obtain the updated dataset Dupd+ by merging Dorg and Dinc. Apriori and

FPgrowth* are then applied to re-discover the frequent pattern space of Dupd+. In this

study, we assume the time for dataset merging is trivial compared to the discovery

time and thus can be ignored.

Figure 3.4 illustrates the performance of Apriori-based maintenance algorithms,

FUP2H and Borders, and partition-based maintenance algorithm, SWF. It is observed

that maintenance algorithms outperform discovery algorithm Apriori over various up-

date intervals. In particular, FUP2H is on average twice faster than Apriori, and,

especially for dataset mushroom, FUP2H is up to 5 times faster than Apriori . Bor-

ders is much more effective compared with FUP2H. Borders, on average, outperforms

Apriori by an order of magnitude. This experimentally justified that the “border

pattern” is a useful concept that helps to avoid redundant enumeration of existing

frequent patterns. The performance of SWF falls in between FUP2H and Borders.

39

10
−2

10
−1

10
0

10
1

10
−1

10
0

∆+ (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
%

 = 0.5%

Apriori
FPgrwoth*
FUP2H
Borders
SWF

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

∆+ (%)

T
im

e
(s

ec
.)

mushroom, ms
%

 = 10%

Apriori
FPgrwoth*
FUP2H
Borders
SWF

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

∆+ (%)

T
im

e
(s

ec
.)

pumsb_star, ms
%

 = 40%

Apriori
FPgrwoth*
FUP2H
Borders
SWF

10
−2

10
−1

10
0

10
1

10
0

∆+ (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
%

 = 1%

Apriori
FPgrwoth*
FUP2H
Borders
SWF

Figure 3.4: Performance of FUP2H, Borders and SWF over various update intervals.
Notation: ∆+ = |Dinc|/|Dorg|.

SWF is around 6 times faster than Apriori in general. However, FUP2H, Borders and

SWF are much slower compared with FPgrowth*, the prefix-tree based discovery al-

gorithm. FUP2H, Borders and SWF all employs the candidate-generation-verification

framework. Although equipped with certain candidate pruning techniques, they all

inevitably generate unnecessary candidates. On the other hand, as illustrated in

Chapter 2, FPgrowth* effectively discovers the frequent pattern space without gener-

ation candidate patterns.

Figure 3.5 summarizes the performance of prefix-tree based maintenance algo-

rithm, CanTree, and concise-representation based maintenance algorithms, ZIGZAG

and moment. It can be seen in Figure 3.5 that CanTree, ZIGZAG and moment are

more effective maintenance algorithms compared with FUP2H, Borders and SWF.

40

10
−2

10
−1

10
0

10
1

10
−1

10
0

∆+ (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
%

 = 0.5%

Apriori
FPgrwoth*
CanTree
ZIGZAG
moment

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

∆+ (%)

T
im

e
(s

ec
.)

mushroom, ms
%

 = 10%

Apriori
FPgrwoth*
CanTree
ZIGZAG
moment

10
−2

10
−1

10
0

10
0

10
1

10
2

∆+ (%)

T
im

e
(s

ec
.)

pumsb_star, ms
%

 = 40%

Apriori
FPgrwoth*
CanTree
ZIGZAG
moment

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

∆+ (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
%

 = 1%

Apriori
FPgrwoth*
CanTree
ZIGZAG
moment

Figure 3.5: Performance of CanTree, ZIGZAG and moment over various update inter-
vals. Notation: ∆+ = |Dinc|/|Dorg|.

CanTree, on average, outperforms Apriori by an order of magnitude. CanTree

performs the best for dataset mushroom, where it is almost one thousand times faster

than Apriori. Moreover, we observe that the performance of CanTree is very closed

to but slightly slower the one of FPgrowth* (an implementation of FP-growth). This

observation is contrary to the one in [44]. In [44], it is shown that CanTree outperforms

FP-growth, and the advantage of CanTree gets larger as the update interval increases.

The differences between our observation and the observation in [44] may mainly due

to two reasons. First, we may use a different implementation of FP-growth from [44].

Second, we employ a different re-discovery approach. In [44], two FP-trees, one for

the original dataset Dorg and the other for the updated dataset Dupd+, need to be

constructed to re-discover the frequent pattern space. However, in our re-discovery

41

approach, only one FP-tree for the updated dataset Dupd+ is required. We believe

that our re-discovery approach is more straightforward and computationally effective.

ZIGZAG maintains only the maximal frequent patterns, where the number of

involved patterns is much smaller than the size of frequent pattern space. Therefore,

ZIGZAG is much more effective compared with Apriori. ZIGZAG outperforms Aprirori

on average more than an order of magnitude. However, comparing with FPgrowth*,

the speed up gained by ZIGZAG varies from dataset to dataset. For example, ZIGZAG

is approximately 3 times faster FPgrowth* for dataset mushroom, but ZIGZAG is twice

slower for dataset pumsb star.

Algorithm moment maintains the frequent closed patterns. The set of frequent

closed patterns, similar to frequent maximal patterns, is much smaller than the entire

space of frequent patterns. As a result, as graphically demonstrated in Figure 3.5,

moment is much faster than the discovery algorithms when the update interval is small

(∆+ < 0.1%). Take dataset mushroom as an example: moment outperforms Apriori

up to 3 orders of magnitude, and it is more than an order of magnitude faster than

FPgrowth* for the best cases. Nevertheless, we also observe that the performance

of moment degrades dramatically as the update interval increases. This observation

is consistent with our algorithmic analysis in the previous section. As the update

interval gets large, the hypothesis of moment becomes no longer valid, and thus the

efficiency of moment drops significantly.

42

3.3 Summary & Discussion

This chapter reviewed the representative maintenance algorithms for frequent pat-

terns. The strengths and weaknesses of these algorithms are summarized and com-

pared in Table 3.2-3.4.

We observe that most existing algorithms are proposed as an extension of certain

frequent pattern discovery algorithms or the data structure they used. No prior

work has investigated in details how the frequent pattern space evolves in response

to updates. We believe that understanding the space evolution is necessary and

important for the development of effective maintenance algorithms. As a result, the

evolution of frequent pattern space under various update scenarios is theoretically

studied in the following chapter.

43

Algorithm Strengths Weakness

Apriori-

based

FUP &

FUP2H

Make use of the support infor-

mation of the previously dis-

covered frequent patterns to

reduce the number of candi-

date patterns.

(1) Generate a large amount of

unnecessary candidates.

(2) Require multiple scans of

datasets.

Borders (1) Avoids enumeration of pre-

vious discovered patterns.

(2) Enumerates new frequent

patterns efficiently from the

border patterns.

(1) Generates a large amount

of unnecessary candidates.

(2) Requires multiple scans of

datasets.

DELI Estimates the impact of data

updates on the frequent pat-

tern space via sampling and

statistical methods. Avoids

unnecessary updates, if the

impact is negligible.

Generates only an approxi-

mate set of frequent patterns

with estimated support values

(not the focus of this Thesis).

Partition-

based

SWF (1) Prunes most of the false

candidates in the early stage

based on the “partitioning

heuristic”.

(2) Requires only one full scan

of dataset.

Generates unnecessary candi-

dates.

Table 3.2: Summary of Apriori-based and Partition-based maintenance algorithms.

44

Algorithm Strengths Weakness

Prefix-

tree-

based

AFPIM (1) Summarizes dataset into a

prefix-tree and requires only

two scans of the dataset.

(2) Enumerates no false candi-

dates.

(1) Requires re-organization of

the entire tree for each update.

(2) Has to rebuild the prefix-

tree if new frequent items

emerge.

CATS

Tree

(1) Point (1) & (2) of AFPIM.

(2) Sorts items locally, which

allows the tree to be locally

updated.

(3) Allows newly emerged

items to be included easily.

Requires node swapping and

merging, which are computa-

tional expensive, for the local

update of prefix-tree.

CanTree (1) Point (1) & (2) of AFPIM.

(2) Arranges items in a

canonical-order, which will

not be affected by the data

update, so that no re-sorting,

node swapping and node

merging are needed.

Less compact compared to

CATS tree.

Table 3.3: Summary of Prefix-tree-based maintenance algorithms.

45

Algorithm Strengths Weakness

Concise-

repre-

sentation-

based

ZIGZAG (1) Updates the maximal fre-

quent patterns with a back-

tracking search.

(2) Prunes infrequent and non-

maximal patterns in the early

stage.

Maximal patterns are lossy

representations of frequent

patterns.

moment (1) Maintains only the fre-

quent closed patterns.

(2) Employs a novel data

structure, CET, to effectively

store and update the frequent

closed patterns and boundary

patterns.

(3) Prunes non-closed candi-

date patterns in the early

stage.

Restricted by the hypothesis

that there is only a small

amount of data updates and

thus small changes to frequent

closed patterns.

Table 3.4: Summary of Concise-representation-based maintenance algorithms.

46

Part II

THEORIES

47

Chapter 4

Frequent Pattern Space Evolution:

A Theoretical Analysis

This chapter analyzes how the space of frequent patterns evolves in response to various

updates. However, due to the vast size of the frequent pattern space, direct analysis

on the pattern space is extremely difficult. To solve this problem, we propose to

structurally decompose the frequent pattern space into sub-spaces — equivalence

classes. We then study the space evolution based on the concept of equivalence

classes. We investigate the space evolution under three update scenarios: incremental

updates, decremental updates and support threshold adjustment.

48

4.1 Structural Decomposition of Pattern Space

The space of frequent patterns can be large. However, this space possesses the nice

convexity property, which is very helpful when it comes to concise and lossless repre-

sentation of the space and its subspaces.

Definition 4.1 (Convexity). A space S is convex if, for all X,Y ∈ S such that

X ⊆ Y , it is the case that Z ∈ S whenever X ⊆ Z ⊆ Y .

For a convex space S, we define the collection of all “most general” patterns in

S as the “left bound” of S, denoted L. A pattern X is most general in S if there is

no proper subset of X in S. Similarly, we define the collection of all “most specific”

patterns as the “right bound” of S, denoted R. A pattern X is most specific in S

if there is no proper superset of X in S. We call the pair of left and right bound

the “border” of S, which is denoted by 〈L,R〉. We also define [L,R] = {Z | there is

X ∈ L, there is Y ∈ R, X ⊆ Z ⊆ Y }. 〈L,R〉 and [L,R] are two different notions.

Specifically, [L,R] = S, but 〈L,R〉 is only a concise representation of the whole space

S in a lossless way.

Fact 4.2 (Cf. [21]). F(D,ms%) is convex. Furthermore, its border is of the form

〈{∅},R〉 for some R.

Algorithms Max-Miner [35] and GENMAX [27] were proposed to discover frequent

maximal patterns — the R in Fact 4.2.

We further discover that convex frequent pattern spaces can be further decom-

posed systematically into convex sub-spaces based on the concept of equivalence

classes.

49

Definition 4.3 (Equivalence class). Let the “filter”, f(P,D), of a pattern P in a

dataset D be defined as f(P,D) = {T ∈ D | P ⊆ T}. Then the “equivalence class”

[P]D of P in a dataset D is the collection of patterns defined as [P]D = {Q | f(P,D) =

f(Q,D)}.

Fact 4.4 (Cf. [47]). Given a dataset D and minimum support threshold ms%, the

frequent pattern space F(ms%,D) =
⋃n

i=1[Pi]D, where [Pi]∩[Pj] = ∅ for 1 ≤ i < j ≤ n.

According to Definition 4.3, two patterns are “equivalent” in the context of a

dataset D iff they are included in exactly the same transactions in D. Thus the

patterns in the same equivalence class have the same support. So we extend our

notations and write sup(P,D) to denote the support of equivalence class [P]D and P ∈

F(D,ms%) to mean the equivalence class is frequent. A nice property of equivalence

classes of patterns is that they are convex.

Fact 4.5 (Cf. [47]). Equivalence class [P]D is convex, and the right bound of its

border is singleton set.

Together with equivalence classes, frequent “closed patterns” and frequent “gen-

erators” (also called “key patterns”) have been widely studied in the data mining field.

We discuss next the relationship between equivalence classes and closed patterns and

generators.

As discussed, every equivalence class is convex, and its right bound is the most

specific pattern in the class. Thus all supersets of its right bound necessarily have

lesser support. Therefore, the most specific pattern in an equivalence class is a closed

pattern (Definition 2.3). Conversely, all supersets of a closed pattern necessarily have

50

lesser support. Therefore a closed pattern is the right bound of its equivalence class.

Similarly, the left bound of an equivalence class are all the most general patterns

in the class. Thus every subset of each of these most general patterns necessarily

has higher support. Therefore, the most general patterns in an equivalence class are

all generators (Definition 2.3). Conversely, the subsets of a generator have higher

support by definition. So these subsets are not in the same equivalence class as the

generator. Hence, a generator is one of the left bound patterns of its equivalence

class. So we have the following alternative equivalent definitions for generators and

closed patterns.

Fact 4.6. A pattern P is a generator or key pattern in a dataset D iff P is a most

general pattern in [P]D. A pattern P is a closed pattern in a dataset D iff P is the

most specific pattern in [P]D.

Every subset of a frequent pattern is also a frequent pattern. This is the well-

known “a priori” property. Generators of equivalence classes also enjoy the “a priori”

property.

Fact 4.7. Let P be a pattern in D. If P is frequent, then every subset of P is

also frequent. If P is a generator (or key pattern), then every subset of P is also a

generator (or key pattern) in D. Thus, if P is a frequent generator (or key pattern),

then every subset of P is also a frequent generator (or key pattern) in D.

Proof. Suppose P is frequent. Since every subset of P must occur in every transaction

that P occurs in, it is clear that every subset of P has a support at least that of P .

So every subset of P is also frequent.

51

Suppose P is a generator in D. Suppose Q ⊆ P . We want to show Q is also a

generator. Suppose there is a R ⊆ Q in [Q]D. So there is an S such that R = Q− S,

and S ⊆ Q. Let T = P − S. Let D be a transaction having T . We have R ⊆ T , as

Q ⊆ P and thus Q−S ⊆ P −S. Then D has R as well, as R ⊆ T . Then D has Q as

well, as R ∈ [Q]D. Then D has S also, as S ⊆ Q. Then D has P . This means every

transaction having T also has P . We already know that every transaction having P

also has T . So, P and T are in the same equivalence class. Since P is a generator,

and T = P − S, it must be the case that S = {}. Since R = Q − S, we conclude

R = Q. Hence Q is a generator.

On the other hand, closed patterns also enjoy certain “anti-monotonicity” prop-

erty, in the sense that a closed pattern is a subset of another closed pattern whenever

the filter of the latter is a subset of the former. Similarly, equivalence classes of

patterns enjoy the “anti-monotonicity” property.

Fact 4.8. 1. Let P and Q be closed patterns in D. Then P ⊆ Q iff f(Q,D) ⊆

f(P,D).

2. Suppose D′ ⊆ D. Then [P]D ⊆ [P]D′ iff f(P,D′) ⊆ f(P,D).

The most useful feature of closed patterns and generators is that they form the

borders of corresponding equivalence classes. Therefore, they uniquely define the

corresponding equivalence class. This implies that, to mine or maintain generators

and closed patterns, it is sufficient to mine or maintain the borders of equivalence

classes, and vice versa. Figure 4.1 graphically demonstrates how the pattern space

can be structurally decomposed into equivalence classes and how an equivalence class

52

Sample Dataset

ms% = 25%

a, b, c, d
b, d
a, c, d
a, c

{}

a : 3 c : 3 d : 3 b : 2

a c : 3 a d : 2 c d : 2 b d : 2

a c d : 2

 a b : 1 b c : 1

a b c : 1 b c d : 1

a b c d : 1

a b d : 1

 a b : 1 b c : 1

a b c : 1 a b d : 1 b c d : 1

a b c d : 1

Generator

Closed Pattern

(a) (b) (c)

Figure 4.1: Demonstration of the structural decomposition of the frequent pattern
space. (a)The sample dataset; (b) decomposition of the frequent pattern space of
the sample dataset into 5 equivalence classes; and (c) the “border” of an equivalence
class.

can be concisely represented by its border.

The equivalence class is an effective concise representation for pattern spaces. In

the literature, the equivalence class has been used to summarize cells in data cubes

[45, 46]. Here we use equivalence classes to concisely represent the space of frequent

patterns. Structurally decomposing the pattern space into equivalence classes allows

us to investigate the evolution of the pattern space via studying the evolution of equiv-

alence classes, which is much smaller and easier to study. Moreover, the structural

decomposition simplifies the maintenance problem from updating the entire space to

the update of equivalence classes, and it also allows us to maintain the pattern space

in a divide-and-conquer manner.

53

4.2 Space Evolution under Incremental Updates

We investigate in this section how the space of frequent patterns, the equivalence

classes, and their support values evolve when a dataset is incrementally updated with

multiple new transactions. For this section, we use the following notations: Dorg

is the original dataset, Dinc is the set of new transactions to be added to Dorg, and

Dupd+ = Dorg∪ Dinc is the updated dataset. We assume without loss of generality that

Dorg 6= ∅ and Dorg ∩ Dinc = ∅. This leads to the conclusion that, for any pattern P ,

f(P,Dupd+) = f(P,Dorg)∪f(P,Dinc) and sup(P,Dupd+) = sup(P,Dorg)+sup(P,Dinc).

We first show that a pattern that is a generator, or is a closed pattern, remains to

be a generator, or closed pattern respectively when multiple transactions are added

to the underlying dataset.

Proposition 4.9. Let P be a pattern in Dorg. If P is a generator in Dorg, then P is

a generator in Dupd+. If P is a closed pattern in Dorg, then P is a closed pattern in

Dupd+.

Proof. Suppose P is a generator in Dorg. Let Q be any pattern that Q ⊂ P .

Then sup(Q,Dorg) > sup(P,Dorg), and sup(Q,Dinc) ≥ sup(P , Dinc). Hence

sup(Q,Dupd+) = sup(Q,Dorg) + sup(Q,Dinc) > sup(P,Dorg) + sup(P,Dinc) =

sup(P,Dupd+). Thus, P is a generator in Dupd+ as desired.

Next, suppose P is a closed pattern in Dorg. Let Q be any pattern that

Q ⊃ P . Then sup(Q,Dorg) < sup(P,Dorg), and sup(Q,Dinc) ≤ sup(P , Dinc).

Hence sup(Q,Dupd+) = sup(Q,Dorg) + sup(Q,Dinc) < sup(P,Dorg) + sup(P,Dinc) =

sup(P,Dupd+). Thus, P is a closed pattern in Dupd+ as desired.

54

Incremental
Dataset, Dinc

a, e
b, d, e+

Frequent equivalence classes:

EC1: { {a}, {c}, {a, c} } : 3

EC2: { {a, d}, {c, d}, {a, c, d} } : 2

EC3: { {b}, {b, d} } : 2

Frequent equivalence classes:

EC2': { {c}, {a, c} } : 3

EC1': { {a} } : 4

Updated Dataset
(ms% = 50%,msa = 3)

a, b, c, d, e
b, d
a, c, d
a, c
a, e
b, d, e

EC5': { {e} } : 3

unchanged

support

increase

newly emerged

Notation: {.} : x refers to an equivalence class with x as support value and consists of patterns {.}.

Original Dataset
(ms% = 50%,msa = 2)

a, b, c, d, e
b, d
a, c, d
a, c

EC4: { {d} } : 3

EC2: { {a, d}, {c, d}, {a, c, d} } : 2

EC3': { {b}, {b, d} } : 3

EC4': { {d} } : 4

split

Note: Due to the increase in msa, EC2 has become infrequent and thus is removed.

Figure 4.2: Evolution of equivalence classes under incremental updates.

Generators and closed patterns are preserved by incremental updates. This im-

plies that some equivalence classes, as identified by their unique closed patterns, are

also preserved by incremental updates. We observe that an existing equivalence class

can evolve in exactly three ways under incremental updates, as shown in Figure 4.2.

The first way is to remain unchanged without any change in support. The second way

is to remain unchanged but with an increased support. The third way is to shrink—

by splitting into two or more classes, where at most one of the resulting classes has

the same closed pattern and same support as the original equivalence class and all

other resulting classes have higher support. In short, after an incremental update,

the support of an equivalence class can only increase and the size of an equivalence

class can only shrink by splitting.

55

EC2

C2

EC1

C1
C3

EC3ECinc

C2

ECorg

C1 intersection

Closed

Pattern

Key

Pattern
Notations:

Figure 4.3: Splitting of equivalence classes.

Proposition 4.10. Let P be a pattern in Dorg. Then [P]Dupd+
⊆ [P]Dorg and

sup(P,Dupd+) ≥ sup(P,Dorg).

Proof. Suppose Q ∈ [P]Dupd+
. Then f(Q,Dupd+) = f(Q,Dorg) ∪ f(Q,Dinc) =

f(P,Dupd+) = f(P,Dorg) ∪ f(P,Dinc). Since Dinc ∪ Dorg = ∅, we have f(Q,Dorg) =

f(P,Dorg). Then Q ∈ [P]Dorg for every Q ∈ [P]Dupd+
. Thus we can conclude [P]Dupd+

⊆ [P]Dorg . Also, sup(P,Dupd+) = sup(P , Dorg) + sup(P,Dinc) ≥ sup(P , Dorg).

Let us now illustrate the splitting of an equivalence class in more detail. As

shown in Figure 4.3, an equivalence class ECorg in the original dataset overlaps with

an equivalence class ECinc in the incremental dataset. Therefore, after the update,

ECorg is split into two parts, denoted as EC1 and EC3. EC3 is an equivalence

class in Dupd+, which has a newly emerged closed pattern C3 and a newly emerged

generator. The messy parts are EC1 and EC2. This is because EC1 and EC2 are

not convex spaces, as shown in Figure 4.3. However, as we will see in Theorem 4.11

and Corollary 4.15, EC1 and EC2 will further split into multiple convex equivalence

classes.

56

Theorem 4.11. Let P be a pattern in Dorg. Then [P]Dorg splits into n classes

[Q1]Dupd+
, ..., [Qn]Dupd+

iff f(Qi,Dinc) 6= f(Qj,Dinc) for 1 ≤ i < j ≤ n, where

Qi ∈ [P]Dorg for 1 ≤ i ≤ n, and n is the largest such integer. Furthermore,

[Qi]Dupd+
= [Qi]Dinc

∩ [P]Dorg for 1 ≤ i ≤ n. Moreover, there is at most one Qi

among Q1, ..., Qn, such that Qi does not occur in Dinc and Qi ∈ [C]Dupd+
, where C

is the closed pattern of [P]Dorg .

Proof. We first prove [Qi]Dupd+
= [Qi]Dinc

∩ [P]Dorg for 1 ≤ i ≤ n. Recall that

[Qi]Dupd+
= {Q|f(Q,Dupd+) = f(Qi,Dupd+)} = {Q|f(Q,Dorg) ∪ f(Q,Dinc) =

f(Qi,Dorg) ∪ f(Qi,Dinc)} for 1 ≤ i ≤ n. Since Dorg ∩ Dinc = ∅, we can alternatively

define that [Qi]Dupd+
= {Q|f(Q,Dorg) = f(Qi,Dorg) ∧ f(Q,Dinc) = f(Qi,Dinc)} =

{Q|Q ∈ [Qi]Dorg∧Q ∈ [Qi]Dinc
} for 1 ≤ i ≤ n. Therefore, [Qi]Dupd+

= [Qi]Dinc
∩[P]Dorg ,

for 1 ≤ i ≤ n , as desired.

Second, we prove the left-to-right direction of the theorem. Suppose [P]Dorg

splits into [Q1]Dupd+
, ..., [Qn]Dupd+

. By the usual definition of splits, we have [P]Dorg =

⋃
1≤i≤n[Qi]Dupd+

, [Qi]Dupd+
∩ [Qj]Dupd+

= ∅ for 1 ≤ i < j ≤ n, and Qi ∈ [P]Dorg for

1 ≤ i ≤ n. Since [Qi]Dupd+
∩ [Qj]Dupd+

= ∅ for 1 ≤ i < j ≤ n, then f(Qi,Dupd+) =

f(Qi,Dorg) ∪ f(Qi,Dinc) 6= f(Qj,Dupd+) = f(Qj,Dorg) ∪ f(Qj,Dinc) for 1 ≤ i < j ≤

n. Also since Qi ∈ [P]Dorg for 1 ≤ i ≤ n, we have f(Qi,Dorg) = f(Qj,Dorg) for

1 ≤ i < j ≤ n. Thus it must be true that f(Qi,Dinc) 6= f(Qj,Dinc) for 1 ≤ i <

j ≤ n. This n is also the largest integer having this property. Otherwise, there is

a Q 6∈ ⋃
1≤i≤n[Qi]Dupd+ such that Q ∈ [P]Dorg, contradicting the definition of splits.

This proves the left-to-right direction.

57

Third, we prove the right-to-left direction of the theorem. Suppose f(Qi,Dinc) 6=

f(Qj,Dinc) for 1 ≤ i < j ≤ n, where Qi ∈ [P]Dorg for 1 ≤ i ≤ n. This implies

that [Qi]Dinc
∩ [Qj]Dinc

= ∅ for 1 ≤ i < j ≤ n. Then based on the definition

of Qi and Qj for 1 ≤ i < j ≤ n (n is the largest such integer), it is clear that

[P]Dorg ⊆
⋃

1≤i≤n[Qi]Dinc
. Thus we can formulate [P]Dorg =

⋃
1≤i≤n[Qi]Dinc

∩ [P]Dorg =

⋃
1≤i≤n([Qi]Dinc

∩ [P]Dorg) =
⋃

1≤i≤n[Qi]Dupd+
as desired.

It remains to show that there is at most one Qi among Q1, ..., Qn, such that

Qi does not occur in Dinc. Let C be the closed pattern of [P]Dorg . It is clear that

if C occurs in Dinc, then all of Q1, ..., Qn occur in Dinc. So we can assume without

loss of generality that C does not occur in Dinc and that C ∈ [Q1]Dupd+
. Thus

[Q1]Dupd+
= {Q ∈ [P]Dorg |f(Q,Dinc) = ∅}. Then we assume there is one Qj among

Q2, · · · , Qn such that Qj does not occur in Dinc neither. So we have [Qj]Dupd+
=

{Q ∈ [P]Dorg |f(Q,Dinc) = ∅} = [Q1]Dupd+
. This contradicts to the condition that

[Qi]Dupd+
∩ [Qj]Dupd+

= ∅. Thus we can conclude that Q1 is the unique one that does

not occur in Dinc. It is also clear that Q1 ∈ [C]Dupd+
.

It follows from Theorem 4.11 that [P]Dorg is split into a number of equivalence

classes in Dupd+, one for each group of patterns in [P]Dorg that appear in the same

transactions in Dinc. Each resulting new equivalence class [Qi]Dupd+
has a higher

support if Qi occurs in Dinc, and has the same support if Qi does not occur in Dinc.

Consequently, if all patterns in [P]Dorg occur in exactly the same transactions in Dinc,

then [P]Dupd+
= [P]Dorg with higher support. On the other hand, if no pattern in

[P]Dorg occurs in any transaction in Dinc, then [P]Dupd+
= [P]Dorg with no change in

support.

58

Corollary 4.12. Let P be a pattern in Dorg. Then [P]Dupd+
= [P]Dorg and

sup(P,Dupd+) = sup(P,Dorg) iff f(Q,Dinc) = ∅ for every pattern Q ∈ [P]Dorg .

Corollary 4.13. Let P be a pattern in Dorg. Then [P]Dupd+
= [P]Dorg and sup(P ,

Dupd+) > sup(P,Dorg) iff f(Q,Dinc) = f(P,Dinc) 6= ∅ for every Q ∈ [P]Dorg .

Incremental updates also induce new equivalence classes to emerge. It is worth

noting a symmetry between Dorg and Dinc. Specifically, it is equally reasonable to

think of Dupd+ as being obtained by adding Dorg to Dinc, exchanging the roles of

Dorg and Dinc. Thus we can describe the emergence of new equivalence classes with

the following corollaries, which are indeed the counterparts of Corollary 4.12 and

Theorem 4.11.

Corollary 4.14. Let P be a pattern in Dinc. Then [P]Dupd+
= [P]Dinc

and

sup(P,Dupd+) = sup(P,Dinc) iff f(Q,Dorg) = ∅ for every pattern Q ∈ [P]Dinc
.

Corollary 4.15. Let P be a pattern in Dinc. Then [P]Dinc
splits into n classes

[Q1]Dupd+
, ..., [Qn]Dupd+

iff f(Qi,Dorg) 6= f(Qj,Dorg) for 1 ≤ i < j ≤ n, where

Qi ∈ [P]Dinc
for 1 ≤ i ≤ n, and n is the largest such integer. Furthermore, [Qi]Dupd+

=

[Qi]Dorg ∩ [P]Dinc
for 1 ≤ i ≤ n. Moreover, there is at most one Qi among Q1, ...,

Qn, such that Qi does not occur in Dorg, meaning [Qi]Dupd+
consists of entirely new

patterns, and furthermore Qi ∈ [C]Dupd+
, where C is the closed pattern of [P]Dinc

.

Combining Corollaries 4.15, 4.14, 4.13, 4.12, and Theorem 4.11, we can charac-

terize the evolution of the frequent pattern space under incremental updates based

on equivalence classes in Dinc as follows. We use Close(X) and Keys(X) to denote

the closed pattern and generators (key patterns) of the equivalence class X.

59

Theorem 4.16. For every equivalence class [P]Dupd+
in Dupd+, exactly one of the 6

scenarios below holds:

1. P is in Dinc, P is not in Dorg, and Q is not in Dorg for all Q ∈ [P]Dinc
,

corresponding to the scenario where an equivalence class comprising entirely

of new patterns has emerged. In this case, [P]Dupd+
= [P]Dinc

, sup(P,Dupd+)

= sup(P,Dinc), Close([P]Dupd+
) = Close([P]Dinc

) and Keys([P]Dupd+
) =

Keys([P]Dinc
).

2. P is in Dinc, P is not in Dorg, and Q is in Dorg for some Q ∈

[P]Dinc
, corresponding to the scenario where [P]Dinc

has to be split, and

an equivalence class comprising entirely of new patterns has emerged, as

stated in Corollar 4.15. Then, [P]Dupd+
= [P]Dinc

− ⋃{[Q]Dorg | Q ∈

[P]Dinc
}, sup(P,Dupd+) = sup(P,Dinc), Close([P]Dupd+

) = Close([P]Dinc
), and

Keys([P]Dupd+
) = min {{K ∈ Keys([P]Dinc

)|K is not in Dorg}
⋃{K ′∪{x}|K ′ ∈

Keys([P]Dinc
) ∧K ′ is in Dorg and x ∈ Close([P]Dinc

) ∧ x is not in Dorg}}.

3. P is in Dinc, P is in Dorg, and f(Q,Dinc) = f(P,Dinc) for every Q ∈ [P]Dorg ,

corresponding to the scenario where an equivalence class has remained un-

changed but with increased support. In this case, [P]Dupd+
= [P]Dorg , sup(P ,

Dupd+) = sup(P,Dorg) + sup(P,Dinc), Close([P]Dupd+
) = Close([P]Dorg) and

Keys([P]Dupd+
) = Keys([P]Dorg).

4. P is in Dinc, P is in Dorg, and f(Q,Dinc) 6= f(P,Dinc) for some Q ∈

[P]Dorg , corresponding to the scenario where an equivalence class has split and

P is in one of the resulting equivalence classes that has increased in sup-

60

port, e.g. EC3 in Figure 4.3. In this case, [P]Dupd+
= [P]Dinc

∩ [P]Dorg ,

sup(P,Dupd+) = sup(P,Dorg)+sup(P,Dinc), Close([P]Dupd+
) = Close([P]Dorg)∩

Close([P]Dinc
) and Keys([P]Dupd+

) = min{K ∪ K ′|K ∈ Keys([P]Dorg) ∧ K ⊆

Close([P]Dinc
) and K ′ ∈ Keys([P]Dinc

) ∧K ′ ⊆ Close([P]Dorg)}.

5. P is not in Dinc, P is in Dorg, and Q is not in Dinc for all Q ∈ [P]Dorg ,

corresponding to the scenario where an equivalence class has remain unchanged

in size and in support.

6. P is not in Dinc, P is in Dorg, and Q is in Dinc for some Q ∈ [P]Dorg ,

corresponding to the scenario where [P]Dorg has to split, as stated in Theo-

rem 4.11, and [P]Dupd+
is the unique resulting equivalence that does not have

increased in support. In this case, [P]Dupd+
= [P]Dorg −

⋃{[Q]Dinc
| Q ∈

[P]org}, sup(P,Dupd+) = sup(P , Dorg), Close([P]Dupd+
) = Close([P]Dorg), and

Keys([P]Dupd+
) = min {{K ∈ Keys([P]Dorg)|K is not in Dinc}

⋃{K ′∪{x}|K ′ ∈

Keys([P]Dorg) ∧K ′ is in Dinc and x ∈ Close([P]Dorg) ∧ x is not in Dinc}}.

Proof. Scenario 1 follows from Corollary 4.14. Scenario 2 follows from Corollary 4.15

in a manner that is symmetric to Scenario 6. Scenario 3 follows from Corollary 4.13.

Scenario 4 follows from Theorem 4.11. Scenario 5 follows from Corollary 4.12.

The formulas of closed and key patterns (generators) in Scenarios 2, 4 and 6

follow from Definition 2.3 and Fact 4.6. However, the derivation of the key patterns

formula in Scenario 4 is not so straight-forward. So we explain it here. In Sce-

nario 4, [P]Dupd+
= [P]Dorg ∩ [P]Dinc

. Let L = min{K ∪K ′|K ∈ Keys([P]Dorg)∧K ⊆

Close([P]Dinc
) and K ′ ∈ Keys([P]Dinc

) ∧ K ′ ⊆ Close([P]Dorg)}. We first prove

61

Q ∈ [P]Dupd+
for every Q ∈ L. Without loss of generality, assume Q ∈ L

and Q = K ∪ K ′, where K ∈ Keys([P]Dorg) ∧ K ⊆ Close([P]Dinc
) and K ′ ∈

Keys([P]Dinc
) ∧ K ′ ⊆ Close([P]Dorg). Since K ⊆ Close([P]Dinc

) and K ′ ⊆

Close([P]Dinc
) (since K ′ ∈ [P]Dinc

), we have K ∪K ′ ⊆ Close([P]Dinc
). This implies

that K ′ ⊆ Q(= K ∪ K ′) ⊆ Close([P]Dinc
) and thus Q ∈ [P]Dinc

(Fact 4.5 & Def-

inition 4.1). With a similar logic, we can show that Q ∈ [P]Dorg as well. There-

fore, we have Q ∈ [P]Dupd+
as desired. Next, we prove that L is the complete set

of the most general patterns (key patterns) in [P]Dupd+
. We assume that there

exists Q 6∈ L that Q ∈ [P]Dupd+
and Q is most general. Q ∈ [P]Dupd+

implies

that Q ∈ [P]Dorg and Q ∈ [P]Dinc
(for [P]Dupd+

= [P]Dorg ∩ [P]Dinc
). According to

Fact 4.5, this implies that K1 ⊆ Q ⊆ Close([P]Dorg) and K2 ⊆ Q ⊆ Close([P]Dinc
),

for some K1 ∈ Keys([P]Dorg) and K2 ∈ Keys([P]Dinc
). This further implies that

K1 ⊆ Close([P]Dinc
), K2 ⊆ Close([P]Dorg) and Q ⊇ K1 ∪K2. This means that either

Q ∈ L or ∃Q′ ∈ L that Q ⊇ Q′. This contradicts with the assumption that Q 6∈ L

and Q is most general in [P]Dupd+
. Therefore, the assumption is not true, and L is

the complete set of key patterns of [P]Dupd+
.

Theorem 4.16 describes how the equivalence classes of the frequent pattern space

evolves under incremental updates. Theorem 4.16 enumerates all possible evolution

scenarios, and it also summarizes the exact conditions for each evolution scenarios

to occur. More importantly, the theorem demonstrates how to update the frequent

pattern space based on the equivalence classes in Dinc, which is typically smaller and

faster to compute. This result has significant implications for the design of efficient

algorithms for maintaining frequent pattern spaces and their equivalence classes.

62

In addition, if the support threshold is defined in terms of percentage, ms%, an

incremental update affects the absolute support threshold, msa. Recall that msa =

dms% × |D|e. Since |Dupd+| > |Dorg|, the updated absolute support threshold ms′a =

dms% × |Dupd+|e ≥ msa = dms% × |Dorg|e. Thus, in this case, the absolute support

threshold, msa, increases after an incremental update. Moreover, this increase in msa

may cause some existing frequent equivalence classes to become infrequent. EC2 in

Figure 4.2 is an example.

4.3 Space Evolution under Decremental Updates

We investigate in this section how the frequent pattern space, equivalence classes, and

their support values evolve when multiple transactions are removed from an existing

dataset. For this section, we use the following notations: Dorg is the original dataset,

Ddec is the set of old transactions to be removed, and Dupd− = Dorg − Ddec is the

updated dataset. We assume without loss of generality thatDorg 6= ∅ andDdec ⊆ Dorg.

Thus we can conclude that, for any pattern P , f(P,Dupd−) = f(P,Dorg)− f(P,Ddec)

and sup(P,Dupd−) = sup(P,Dorg)− sup(P,Ddec).

There is an obvious duality between incremental updates and decremental up-

dates. In particular, if we first increment a dataset with Dinc and then decrement

the result with Ddec = Dinc, we get back the original dataset. Conversely, if we first

decrement a dataset with Ddec and then increment the result with Dinc = Ddec, we

get back the original dataset.

Under incremental updates, new equivalence classes may emerge; in contrast,

63

-

unchanged

support
decrease

Notation: {.} : x refers to an equivalence class with x as support value and consists of patterns {.}.

Original Dataset

(ms% = 50%,msa = 3)

a, b, c, d, e
b, d
a, c, d
a, c
a, e
b, d, e

Decremental

Dataset, Ddec

b, d, e
a, e

Original Dataset

(ms% = 50%,msa = 2)

a, b, c, d, e
b, d
a, c, d
a, c

Frequent equivalence classes:

EC2: { {c}, {a, c} } : 3

EC1: { {a} } : 4

EC6: { {e} } : 3

EC2': { {a, d}, {c, d}, {a, c, d} } : 2

EC4: { {b}, {b, d} } : 3

EC5: { {d} } : 4

Frequent equivalence classes:

EC1': { {a}, {c}, {a, c} } : 3

EC2': { {a, d}, {c, d}, {a, c, d} } : 2

EC4': { {b}, {b, d} } : 2

EC5': { {d} } : 3

discarded

merged

Note: Due to the decrease in msa, EC2' has emerged to be frequent and thus is included.

Figure 4.4: Evolution of equivalence classes under decremental updates.

existing equivalence classes may disappear under decremental updates. Moreover, for

those existing equivalence classes that still exist after the decremental update, they

may evolve in also three different ways, as demonstrated in Figure 4.4. The first

way is to remain unchanged without any change in support. The second way is to

remain unchanged but with an decreased support. The third way is to expand—by

merging with other classes. We know from Proposition 4.10 that an equivalence class

may shrink in size and increase in support after incremental updates. It follows by

duality that an equivalence class may increase in size and decrease in support after

decremental updates.

Corollary 4.17. Let P be a pattern in Dupd−. Then [P]Dupd− ⊇ [P]Dorg , and

sup(P,Dupd−) ≤ sup(P,Dorg).

While an equivalence class may be split into multiple classes by an incremental

update, multiple classes may be merged by a decremental update. In short, the

following dual of Theorem 4.11 holds:

64

Corollary 4.18. Let P be a pattern in Dorg, and Q1, ..., Qn be n unique patterns

in Dorg such that Qi 6∈ [P]Dorg for 1 ≤ i ≤ n and [Qi]Dorg ∩ [Qj]Dorg = ∅ for 1 ≤ i 6=

j ≤ n. Then [P]Dorg , [Q1]Dorg , · · · , [Qn]Dorg merge to form [P]Dupd− iff f(P,Dupd−) =

f(Qi,Dupd−) for 1 ≤ i ≤ n, and n is the largest such integer. Furthermore, [Qi]Dorg =

[Qi]Ddec
∩ [P]Dupd− for 1 ≤ i ≤ n. Moreover, there is at most one Qi among Q1,

..., Qn, such that Qi does not occur in Ddec and Qi ∈ [C]Dorg , where C is the closed

pattern of [P]Dupd−.

Corollary 4.18 describes the exact conditions for equivalence classes to merge

under decremental updates. It also implies that an existing equivalence class will

remain structurally unchanged if there is no pattern Qi satisfying the conditions in

Corollary 4.18.

Corollary 4.19. Let P be a pattern in Dorg. [P]Dupd− = [P]Dorg iff f(Q,Dupd−) 6=

f(P,Dupd−) for all Q 6∈ [P]Dorg . Furthermore, if P is not in Ddec, then

sup(P,Dupd−) = sup(P,Dorg). Otherwise, sup(P,Dupd−) = sup(P,Dorg) −

sup(P,Ddec).

To have a deeper understanding on how the frequent pattern space evolves under

decremental updates, we investigate the exact conditions for each evolution scenario

to occur. Notation Close(X) denotes the closed pattern of equivalence class X and

Keys(X) refers to the generators of X.

Theorem 4.20. For every equivalence class [P]Dorg in Dorg, exactly one of the 6

scenarios below holds:

1. P is not in Ddec, and f(P,Dorg) 6= f(Q,Dupd−) for all Q in Ddec, cor-

65

responding to the scenario where an equivalence class has remained to-

tally unchanged after the decremental update. In this case, [P]Dupd− =

[P]Dorg , sup(P,Dupd−) = sup(P,Dorg), Close([P]Dupd−) = Close([P]Dorg) and

Keys([P]Dupd−) = Keys([P]Dorg).

2. P is not in Ddec, and f(P,Dorg) = f(Q,Dupd−) for some Q occurring in

Ddec, corresponding to the scenario where the equivalence class of Q has to

be merged into the equivalence class of P . In this case, let all such Q’s in

Ddec be grouped into n distinct equivalence classes [Q1]Ddec
, · · · , [Qn]Ddec

, having

representatives Q1, · · · , Qn satisfying the condition on Q. Then [P]Dupd− =

[P]Dorg ∪
⋃

1≤i≤n[Qi]Dorg , sup(P,Dupd−) = sup(P,Dorg), Close([P]Dupd−) =

Close([P]Dorg) and Keys([P]Dupd−) = min{K|K ∈ Keys([P]Dorg) or K ∈

Keys([Qi]Dorg) for 1 ≤ i ≤ n}. Furthermore, [Qi]Dupd− = [P]Dupd− for

1 ≤ i ≤ n.

3. P is in Ddec, and f(P,Dorg) = f(P,Ddec), corresponding to the scenario where

the equivalence class has disappeared.

4. P is in Ddec, f(P,Dorg) 6= f(P,Ddec) and f(P,Dupd−) = f(Q,Dorg) for some

Q in Dorg but not in Ddec, corresponding to the scenario where the equivalence

class of P has to be merged into the equivalence class of Q. This scenario is

complement to Scenario 2. In this case, the equivalence class, support, closed

pattern and generators of [P]Dupd− is same as that of [Q]Dupd−, as computed in

Scenario 2.

66

5. P is in Ddec, f(P,Dorg) 6= f(P,Ddec), f(P,Dupd−) 6= f(Q,Dupd−) for all

Q 6∈ [P]Dorg , corresponding to the situation where the equivalence class has re-

mained unchanged but has decreased in support. In this case, [P]Dupd− = [P]Dorg ,

sup(P,Dupd−) = sup(P,Dorg)− sup(P,Ddec), Close([P]Dupd−) = Close([P]Dorg)

and Keys([P]Dupd−) = Keys([P]Dorg).

6. P is in Ddec, f(P,Dorg) 6= f(P,Ddec), and f(P,Dupd−) = f(Q,Dupd−) for

some Q in both Dorg and Ddec but Q 6∈ [P]Dorg , corresponding to the situ-

ation where the equivalence classes of P and Q have to be merged. In this

case, let all such Q’s in Dorg be grouped into n distinct equivalence classes

[Q1]Dorg , ..., [Qn]Dorg , having representatives Q1, ..., Qn satisfying the condition

on Q. Then [P]Dupd− = [P]Dorg∪
⋃

1≤i≤n[Qi]Dorg , sup(P,Dupd−) = sup(P,Dorg)−

sup(P , Ddec). Close([P]Dupd−) = max{C|C = Close([P]Dorg) or C =

Close([Qi]Dorg) for 1 ≤ i ≤ n} and Keys([P]Dupd−) = min{K|K ∈

Keys([P]Dorg) or K ∈ Keys([Qi]Dorg) for 1 ≤ i ≤ n}. Furthermore,

[Qi]Dupd− = [P]Dupd− for 1 ≤ i ≤ n.

Proof. Scenario 3 is obvious. Scenario 1 and Scenario 5 follow from Corollary 4.19,

and Scenarios 2, 4 and 6 follow from Corollary 4.18.

Moreover, the formulas of closed and generators in Scenario 2 and Scenario 6

extend from Definition 2.3 and Fact 4.6.

Theorem 4.20 summarizes all possible scenarios on how the frequent pattern

space can evolve after a decremental update. The theorem also describes how the up-

dated frequent equivalence classes in Dupd− can be derived from the existing frequent

67

equivalence classes of Dorg. Similar to Theorem 4.16, Theorem 4.20 lays a theoretical

foundation for the development of effective decremental maintenance algorithms.

In addition, opposite to the incremental update, the decremental update de-

creases the absolute support threshold if the support threshold is initially defined

in terms of percentage. Let the original absolute support msa = dms% × |Dorg|e.

Since |Dupd−| = |Dorg| − |Ddec|, the updated absolute support threshold ms′a =

dms% × |Dupd−|e < msa. This decrease in the absolute support threshold induces

new frequent equivalence classes to emerge, e.g. EC2′ in Figure 4.4.

4.4 Space Evolution under Threshold Adjust-

ments

This section discusses how the space of frequent patterns and equivalence classes

evolve when the minimum support threshold is adjusted. We use the following no-

tations: D is the dataset, msorg is the original support threshold, msupd is the up-

dated support threshold. The minimum support threshold can be defined in terms

of either percentage or absolute count, and they are interchangeable via formula

msa = dms%×|D|e. For simplicity of discussion, we assume here the support thresh-

old is defined in terms of absolute count. We further assume without loss of generality

that D and |D| remain unchanged for support threshold adjustments.

Under threshold adjustments, since the datasetD remains unchanged, most prop-

erties of patterns are preserved. In particular, all closed and key (generator) patterns

68

remain to be closed and key, and, conversely, all non-closed and non-key patterns

remain to be non-closed and non-key, meaning that no new closed and key patterns

will emerge. In addition, the support values of all patterns remain unchange. As a

result, all equivalence classes in the pattern space will remain structurally unchanged,

and their support values will also remain the same.

Support threshold adjustment, however, may invalidate existing frequent pat-

terns and their equivalence classes and may also induce new frequent patterns and

equivalence classes to emerge. When the support threshold is adjusted up, existing

frequent patterns and equivalence classes may become infrequent. In this case, the fre-

quent pattern space shrinks. The updated frequent pattern space can be obtained by

removing existing equivalence classes that are no longer frequent. On the other hand,

when the support threshold is adjusted down, new frequent patterns and equivalence

classes may emerge. In this case, the frequent pattern space expands. The updated

pattern space can be obtained by including newly frequent equivalence classes.

Proposition 4.21. Let D be the dataset, msorg be the original minimum support

threshold and msupd be the updated support threshold. Then the updated frequent pat-

tern space F(D,msupd) = {P |sup(P,D) ≥ msupd}. Furthermore, if msupd ≥ msorg,

F(D,msupd) ⊆ F(D,msorg); and if msupd ≤ msorg, F(D,msupd) ⊇ F(D,msorg)

Proof. This proposition follows from the definition of frequent pattern space (Sec-

tion 2.1).

69

4.5 Summary

This chapter has analyzed the evolution of the frequent pattern space under incre-

mental updates, decremental updates and support threshold adjustments. Since the

pattern space is too large to be analyzed directly, we proposed to structurally decom-

pose the pattern space into convex sub-spaces — equivalence classes. The evolution of

the frequent pattern space is then studied based on the concept of equivalence classes.

We demonstrated that: for incremental and decremental updates, equivalence classes

of the frequent pattern space can be updated based on equivalence classes in the incre-

mental or decremental dataset, which are much smaller in terms of number and much

faster to compute in terms of time; and, for support threshold adjustment, the up-

dated frequent pattern space can be obtained based on existing frequent equivalence

classes. These results lay a theoretical foundation for the development of effective

maintenance algorithms.

70

Part III

ALGORITHMS

71

Chapter 5

Transaction Removal Update

Maintainer (TRUM): A

Decremental Maintainer

Decremental updates are one of the most common operations in Data-Base Manage-

ment Systems (DBMS) [76]. Decremental updates allow data users to remove obsolete

transactions that are no longer in interest and to remove incorrect transactions. In

addition, decremental updates are also necessary for hypothesis test and retrospective

trend analysis. Therefore, effective decremental maintenance algorithms are required

to update the frequent pattern space. However, in the literature, decremental mainte-

nance has not received as much research attention as incremental maintenance. Only

a few incremental maintenance algorithms, such as FUP2H, ZIGZAG and moment, are

generalized to address also decremental maintenance.

72

In this chapter, we propose a novel decremental maintenance algorithm to up-

date the frequent pattern space. The proposed algorithm is named as Transaction

Removal Update Maintainer (TRUM). TRUM is developed based on the space

evolution analysis in Chapter 4. TRUM maintains the pattern space effectively by

updating only the affected equivalence classes. Furthermore, we introduce a new

data structure — “Transaction-ID Tree” (TID-tree) — to facilitate the maintenance

operations involved in TRUM.

5.1 Transaction Removal Update Maintainer

(TRUM)

In this section, inspired by the space evolution analysis, we propose a novel algorithm

to effective maintain the frequent pattern space for decremental updates.

Recall that, we can structurally decompose the frequent pattern space into con-

vex equivalence classes. This structural decomposition of the pattern space allows us

to address the pattern space maintenance in a divide-and-conquer manner. In par-

ticular, we can maintain the space of frequent patterns by maintaining the frequent

equivalence classes. Moreover, equivalence classes can be concisely represented by

their borders — the corresponding closed patterns and generators. This allows us to

further simply the maintenance problem to the update of equivalence class borders.

73

According to the space evolution analysis, in particular Proposition 4.17, the

size of equivalence classes may grow after decremental updates, and the support of

equivalence classes will decrease. This implies that some existing frequent equivalence

classes may become no longer frequent after decremental updates. To be more precise,

existing (frequent) equivalence classes may evolve in three different ways under decre-

mental updates: one existing equivalence class may remain structurally unchanged

and has the same support; or one existing equivalence class may remain structurally

unchanged but with a decreased support; or one existing equivalence class may ex-

pand by merging with other equivalence classes. Exact conditions for each evolution

scenario are illustrated in Theorem 4.20.

Based on Proposition 4.17 and Theorem 4.20, we summarize the decremental

maintenance of frequent pattern space into 3 major computational tasks. The first

task is to update the support of existing frequent equivalence classes. After decremen-

tal updates, it is necessary to update the support values of all “involved” equivalence

classes. The “involved” equivalence classes are those that satisfy scenarios 2 to 5 in

Theorem 4.20. We name this computational task the Support Update task. The

second task is to merge equivalence classes that satisfy scenarios 2, 4 and 6 in Theo-

rem 4.20. We name this task the Class Merging task. Since some existing frequent

equivalence classes may become infrequent after the update, the third task is to re-

move these equivalence classes from the pattern space. We name this task the Class

Removal task. To address these 3 computational tasks, we proposed an effective

algorithm.

74

Algorithm 1 TRUM
Input: Ddec, the decremental dataset; Forg, the frequent pattern space of Dorg represented

with borders of equivalence classes; msa, absolute count minimum support threshold.
Output: Fupd−, the updated frequent pattern space.
Method:
1: Fupd− := Forg; {Initialization.}
2: for all transaction T ∈ Ddec, and all equivalence classes EC ∈ Fupd− do
3: if EC.closed ⊆ T then
4: EC.support := EC.support− 1;

{Update the support of existing frequent equivalence classes.}
5: end if
6: end for
7: for all EC ∈ Fupd− do
8: if EC.support < msa then
9: Remove EC from Fupd−, continue;

{Remove existing equivalence classes that are no longer frequent.}
10: end if
11: for all EC ′ ∈ Fupd− that EC ′ 6= EC do
12: if f(EC ′,Dupd−) = f(EC,Dupd−) & EC ′.closed ⊂ EC.closed then
13: EC.keys := min{K|K ∈ EC.keys or K ∈ EC ′.keys}
14: Remove EC ′ from Fupd−, continue;

{Merge EC ′ into EC.}
15: end if
16: if f(EC ′,Dupd−) = f(EC,Dupd−) & EC ′.closed ⊃ EC.closed then
17: EC ′.keys := min{K|K ∈ EC.keys or K ∈ EC ′.keys}
18: Remove EC from Fupd−, break;

{Merge EC into EC ′.}
19: end if
20: end for
21: end for

return Fupd−;

The proposed algorithm is called the “Transaction Removal Update Maintainer”,

in short TRUM. TRUM effectively maintains the frequent pattern space by updating

the borders of equivalence classes instead of the entire pattern space. The pseudo-

code of TRUM is presented in Algorithm 1. In TRUM, we assume that the minimum

support threshold is defined in terms of absolute counts. Absolute count threshold is

often applied in bioinfomatic applications, such as structural motif finding [71]. In the

case, where absolute count threshold is used, the support threshold remains constant

after decremental updates. In Algorithm 1, we use notations X.closed to denote

75

the closed pattern of an equivalence class, X.keys to denote the set of generators

(key patterns) of an equivalence class, X.support to denote the support value of an

equivalence class, and f(., .) to denote the filter defined in Definition 4.3.

Theorem 5.1. TRUM, given in Algorithm 1, maintains the borders and support

values of equivalence classes correctly and completely for decremental updates.

Proof. According to Theorem 4.20, for any equivalence class [P]Dorg in Dorg, there are only

6 possible scenarios . We prove the correctness and completeness of the proposed algorithm

according to these 6 scenarios.

For Scenario 1, suppose (i) P is frequent in Dorg, (ii) P is not in Ddec, and (iii)

f(P,Dorg) 6= f(Q,Dupd−) for all Q in Ddec. Let ECP denote the equivalence class of P

in Forg, the original pattern space. During initialization, ECP is included into Fupd− by

Line 1 as default. Point (ii) implies ECP .closed is not in any transaction of Ddec. Thus

Line 3 cannot hold on ECP . Therefore, the support of ECP remains unchanged as desired.

Point (i) further implies ECP .support ≥ msa. Thus Line 8 cannot hold, and Lines 9 and 10

are skipped as desired. Next, we consider those EC ′ ∈ Fupd−, where EC ′ 6= ECP . Point (iii)

directly implies that Line 12 and Line 16 cannot hold. Therefore, ECP remains totally

unchanged as desired. This proves Scenario 1.

For Scenario 2, suppose (i) P is frequent in Dorg, (ii) P is not in Ddec, and (iii)

f(P,Dorg) = f(Q,Dupd−) for some Q in Ddec. Let ECP denote the equivalence class of P

in Forg. Similar to Scenario 1, ECP is included into Fupd− by Line 1 as default. Point (ii)

implies ECP .closed is not in any transaction of Ddec. Thus Line 3 cannot hold on ECP .

Therefore, the support of ECP remains unchanged as desired. Also, Point (i) further implies

ECP .support ≥ msa. Thus Line 8 cannot hold, and Lines 9 and 10 are skipped as desired.

76

Next, we consider those EC ′ ∈ Fupd−, where EC ′ 6= ECP . First, we show that, for

each EC ′, Line 16 cannot hold. To prove this, we first assume that there exists EC ′ that

satisfies Line 16. For this particular EC ′, we have (1) f(EC ′,Dupd−) = f(ECP ,Dupd−) and

(2) EC ′.closed ⊃ ECP .closed. Point (iii) implies that EC ′.closed is in Ddec. Then since

EC ′.closed ⊃ ECP .closed (Point (2)), we have ECP .closed is in Ddec, which means P is

also in Ddec. This contradicts with Point (ii), and thus our assumption is not valid. As

desired, Line 16 cannot hold for all EC ′ in this case.

Second, we show that Line 12 holds for some EC ′. Point (iii) implies that there

exists Q 6∈ ECP such that f(ECP ,Dorg) = f(Q,Dupd−) and Q is in Ddec. Let

ECQ denote the equivalence class of Q in Forg. Then we have: (1) ECQ 6= ECP ,

(2) f(ECP ,Dorg) = f(ECQ,Dupd−) and (3) patterns of ECQ, including ECQ.closed,

are in Ddec. Point (2) directly implies the first condition in Line 12 is satisfied.

For the second condition of Line 12, Point (3) implies that f(ECQ.closed,Dupd−) =

f(ECQ.closed,Dorg)−f(ECQ.closed,Ddec). Also since f(ECP ,Dorg) = f(ECQ,Dupd−), we

have f(ECP .closed,Dorg) = f(ECQ.closed,Dorg) − f(ECQ.closed,Ddec). This further im-

plies f(ECP .closed,Dorg) ⊂ f(ECQ.closed,Dorg). This means ECP .closed ⊃ ECQ.closed

(Fact 4.8). With this, we show that ∃ECQ such that ECQ 6= ECP and ECQ satisfies

Line 12. All such ECQs will be merged into ECP by Lines 13 and 14 as desired. This

proves Scenario 2.

For Scenario 3, suppose (i) P is frequent in Dorg, (ii) P is in Ddec, and

(iii) |f(P,Dupd−)| < msa. Let ECP denote the equivalence class of P in Forg. ECP is

included into Fupd− by Line 1 as default. Point (ii) implies that ∃T ∈ Ddec such that

ECP .closed ⊆ T . Thus Line 3 will be satisfied for such T s, and ECP .support is iteratively

updated by Line 4. Next, Point (iii) directly implies that Line 8 will be satisfied. Therefore,

77

ECP is correctly removed from the pattern space as described in Scenario 3.

Scenario 4 is complementary to Scenario 2. So we do not repeat the proof here.

For Scenario 5, suppose (i) P is frequent in Dorg, (ii) P is in Ddec, (iii) |f(P,Dupd−)| ≥

msa, (iv) f(P,Dupd−) 6= f(Q,Dupd−) for all Q 6∈ [P]Dorg . Let ECP denote [P]Dorg . ECP

is included into Fupd− by Line 1 as default. Point (ii) implies that ∃T ∈ Ddec such that

ECP .closed ⊆ T . Thus Line 3 will be satisfied for such T s, and ECP .support is iteratively

updated by Line 4. Point (iii) then directly implies that Line 8 will not be satisfied. Thus

Lines 9 and 10 are skipped. Next, Point (iv) ensures that Lines 12 and 16 will not be

satisfied for all EC ′ 6= ECP . Therefore, ECP remains unchanged but with a decreased

support as desired.

For Scenario 6, suppose (i) P is frequent in Dorg, (ii) P is in Ddec, (iii) |f(P,Dupd−)| ≥

msa, (iv) f(P,Dupd−) = f(Q,Dupd−) for some Q in both Dorg and Ddec but Q 6∈ [P]Dorg .

Let ECP denote the equivalence class of P in Forg. ECP is included into Fupd− by Line 1

as default. Point (ii) implies that ∃T ∈ Ddec such that ECP .closed ⊆ T . Thus Line 3 will

be satisfied for such T s, and ECP .support is iteratively updated by Line 4. Point (iii) then

directly implies that Line 8 will not be satisfied. Thus Lines 9 and 10 are skipped. Next,

Point (iv) means that Line 12 and 16 will be satisfied for some EC ′ 6= ECP . All such EC ′

will merge with ECP by Lines 13 & 14 or Lines 17 & 18 as desired. Thus equivalence classes

under Scenario 6 are correctly maintained. This completes the proof.

We have demonstrated in Theorem 5.1 the correctness and completeness of our

proposed algorithm TRUM. We now investigate the computational complexity of

TRUM. As shown in Algorithm 1, TRUM addresses all three computational tasks

of decremental maintenance. The Support Update task is handled by Lines 3 to 5 in

78

Algorithm 1. According to Algorithm 1, the straightforward approach for the Sup-

port Update task is to have a full scan of all existing frequent equivalence classes for

each transaction T in the decremental dataset Ddec. In this approach, the computa-

tional complexity to accomplish this task is O(NEC×|Ddec|), where NEC refers to the

number of existing frequent equivalence classes. The Class Merging task is handled

by Lines 11 to 20. For this task, the most straightforward approach is to have a

pairwise comparison among all existing equivalence classes. This pairwise compari-

son is computationally expensive, and its computational complexity is O(N2
EC). The

Class Removal task is handled by Lines 8 to 10. This task is comparatively simpler.

It requires only one scan of the existing equivalence classes, and its computational

complexity is O(NEC).

We observe that the Support Update and Class Merging tasks are the major con-

tributors to the computational costs of TRUM. The complexity of the straightforward

approaches for these two tasks is O(NEC×|Ddec|) and O(N2
EC) respectively. Although

NEC , the number of existing frequent equivalence classes, is much smaller than the

number of frequent patterns, NEC is still very large in general. Therefore, the Support

Update and Class Merging tasks are computational challenging. Effective techniques

are required to complete these two tasks. To address this, we develop a novel main-

tenance data structure. We name the data structure “Transaction-ID Tree”, in short

TID-tree.

79

5.2 Maintenance Data Structure:

Transaction-ID Tree (TID-tree)

Transaction-ID Tree (TID-tree) is proposed to facilitate the computational tasks in

TRUM. TID-tree is developed based on the concept of Transaction Identifier List, in

short TID-list. Thus we first recap the basic properties of TID-list.

TID-list is a very popular concept in the literature of frequent pattern mining

[27, 66, 67, 70]. For a pattern P , its TID-list is a list of IDs of those transactions

that contain pattern P . TID-lists, serve as the vertical projections of items, greatly

facilitate the discovery of frequent patterns and the counting of their support. In our

proposed data structure TID-tree, a new feature of TID-list is exploited. TID-lists

are utilized as identifers of equivalence classes. As shown in Figure 5.1 (b), each

frequent equivalence class in the pattern space is associated with a TID-list. In this

case, the TID-list records the transactions that the corresponding equivalence class

appears in. To construct TID-lists for equivalence classes, we need to assign a unique

“Transaction ID” (TID) to each transaction as shown in Figure 5.1 (a). According to

the definition of equivalence class (Definition 4.3), each equivalence class corresponds

to a unique TID-list and so can be identified by it. This observation inspires the

development of TID-tree.

80

Notation: EC_i: {.} : x (y) refers to an equivalence class EC_i, where EC_i

consists patterns {.}, the TID-list of EC_i is x, and the support of EC_i is y .

Frequent equivalence classes:

EC_1: { {a}, {c}, {a, c} } : 1, 3, 4 (3)

EC_5: { {a, d}, {c, d}, {a, c, d} } : 1, 3 (2)

EC_2: { {b, d} } : 1, 2 (2)

EC_3: { {d} } : 1, 2, 3 (3)

EC_4: { {b} } : 1, 2, 5 (3)

Discovery of

Equivalence

Classes
Construction of

TID-tree

(a) (b) (c)

Original Dataset

(msa =2)

a, b, c, d

b, d
a, c, d

a, c

b

Transactions

Root

1

3
2

EC_2

3

EC_5

5

EC_4

3

EC_3

4

EC_1

TID

header

table

1

2

3

4

5

Figure 5.1: An example of TID-tree. (a) The original dataset; (b) the frequent
equivalence classes of original dataset when msa = 2; and (c) the corresponding
TID-tree.

TID-tree is a prefix tree of TID-lists of equivalence classes. Prefix trees have

been widely used as concise storages of frequent patterns [33] and closed patterns [28].

In TRUM, TID-tree serves as a concise storage of TID-lists of the existing frequent

equivalence classes. Figure 5.1 (c) shows how TID-lists of frequent equivalence classes

in (b) can be compressed into a TID-tree. Details of the construction of a prefix tree

can be referred to [28]. Here, we emphasize two features of TID-tree: (1) Each node in

the TID-tree stores a TID. If TID of the node is the last TID of an equivalence class’s

TID-list, the node then points to the corresponding equivalence class. Moreover, the

depth of the node reflects the support of the corresponding equivalence class. For

example, equivalence class EC 1 in Figure 5.1 is associated with the leaf node of

TID-tree, whose TID value is 4. The depth of this particular leaf node is 3, and thus

the support of EC 1 is 3. (2) TID-tree has a header table, where each slot stores a

linked list that connects all the nodes with the same TID. This header table allows

us to efficiently retrieve nodes with identical TIDs.

81

Remove

Transation 3

Root

1

3
2

EC_2

3

EC_5

5

EC_4

3

EC_3

4

EC_1

TID

header

table

1

2

3

4

5

Root

2

EC_2'

5

EC_4

4

EC_1

TID

header

table

1

2

4

5

1

EC_5

EC_2' = EC_2 U EC_3

(a) (b)

Root

2

EC_2'

5

EC_4

TID

header

table

1

2

5

EC_1' = EC_1 U EC_5

EC_2' = EC_2 U EC_3

1

EC_1'

(c)

Remove

Transation 4

Figure 5.2: Update of TID-tree. (a) The original TID-tree; (b) the updated TID-
tree after removing transaction 3; and (c) the updated TID-tree after removing also
transaction 4.

Figure 5.1 demonstrates that TID-tree is a compact data structure that records

existing equivalence classes, their support values and their TID-lists. The next ques-

tion is: how TID-tree can be employed to facilitate the maintenance computational

tasks? How TID-tree can be efficiently updated under decremental updates?

When transactions are removed from the original dataset, the corresponding

TID-tree is updated by removing all the nodes that include the TIDs of deleted

transactions. This can be accomplished effectively with the help of the TID header

table. As demonstrated in Figure 5.2, after a node is removed, its children re-link to

its parent to maintain the tree structure. If the node points to an equivalence class,

the pointer is passed to its parent. When two or more equivalence class pointers

collide into one node, according to the definition of TID-tree, it means that they

appear in the same set of transactions after the update. Therefore, these equivalence

classes will be merge together. This effectively addresses the Class Merging task

of TRUM. In Figure 5.2, equivalence classes EC 2 and EC 3 of the original dataset

merge into EC 2’ after removing transaction 3, and EC 1 and EC 5 merge into EC 1’

82

after removing also transaction 4. In addition, since the depth of an equivalence

class node in the TID-tree indicates the support of the class, updating the TID-tree

simultaneously updates the support of equivalence classes. This conveniently solves

the Support Update task.

As illustrated in Figure 5.2, TID-tree allows TRUM to effectively maintain the

frequent pattern space by updating only the equivalence classes that are affected

by the update. Recall that, with the straightforward approaches, the computational

complexity of Support Update and Class Merging tasks is O(NEC×|Ddec|) and O(N2
EC)

respectively, where NEC refers to the number of existing frequent equivalence classes

and |Ddec| denotes the size of the decremental dataset. With TID-tree, these two

maintenance tasks of TRUM are accomplished in one step as we remove TIDs from

the TID-tree. The TID linked lists need to be removed one by one. Therefore, the

computational complexity of these two maintenance tasks is significantly reduced to

O(|Ddec|).

Based on this complexity analysis, we conclude that: with TID-tree, TRUM is

much more computationally effective compared to previous works, such as [27, 70],

whose computational complexity is O(NFP), where NFP refers to the number of

frequent patterns. This is because |Ddec| ¿ NFP .

5.3 Experimental Studies

Extensive experiments were performed to evaluate the efficiency of TRUM. Experi-

ments were conducted with the benchmark datasets from the FIMI Repository [25].

83

Dataset Size #Trans #Items maxTL aveTL

accidents 34.68MB 340,183 468 52 33.81

BMS-POS 11.62MB 515,597 1,657 165 6.53

BMS-WEBVIEW-1 0.99MB 59,602 497 268 2.51

BMS-WEBVIEW-2 2.34MB 77,513 3,340 162 4.62

chess 0.34MB 3,196 75 37 37.00

connect-4 9.11MB 67,557 129 43 43.00

mushroom 0.56MB 8,124 119 23 23.00

pumsb 16.30MB 49,046 2,113 74 74.00

pumsb star 11.03MB 49,046 2,088 63 50.48

retail 4.07MB 88,162 16,470 77 10.31

T10I4D100K 3.93MB 100,000 870 30 10.10

T40I10D100K 15.13MB 100,000 942 78 39.61

Table 5.1: Characteristics of testing datasets [49]. Notations: #Trans denotes the
total number of transactions in the dataset, #Items denotes the total number of dis-
tinct items, maxTL denotes the maximal transaction length and aveTL is the average
transaction length.

The statistical information of the benchmark datasets is summarized in Table 5.1.

The benchmark datasets include both real-world and synthetic datasets. Experi-

ments were run on a PC with 2.4GHz CPU and 3.2G of memory.

TRUM is tested under various updated intervals. Here, the update interval is de-

fined as ∆− = |Ddec|/|Dorg|. In applications of database management and interactive

mining, the size of decremental dataset Ddec, meaning the number of transactions

to be removed, is generally much smaller than the size of original dataset Dorg. It

is not common for a data user to remove more than 10% of data at one single up-

date. Therefore, tests were run for ∆− ≤ 10%. TRUM is also tested under various

minimum support thresholds. In addition, we observe that the performance of the

84

algorithm varies slightly when different sets of transactions are removed. To have a

stable performance measure, for each update interval, 5 random sets of transactions

were removed, and the average performance of the algorithm was recorded. NOTE:

this averaging strategy is applied in all experimental studies of the Thesis.

To justify the effectiveness of TRUM, the performance of TRUM is compared

with both frequent pattern discovery and maintenance algorithms.

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
a
 = 100

FPgrowth*
GC−growth
TRUM

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

∆− (%)

T
im

e
(s

ec
.)

mushroom, ms
a
 = 1000

FPgrowth*
GC−growth
TRUM

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

∆− (%)

T
im

e
(s

ec
.)

pumsb_star, ms
a
 = 20k

FPgrowth*
GC−growth
TRUM

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e
(s

ec
.)

retail, ms
a
 = 200

FPgrowth*
GC−growth
TRUM

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
a
 = 100

FPgrowth*
GC−growth
TRUM

10
−2

10
−1

10
0

10
1

10
−1

10
0

∆− (%)

T
im

e
(s

ec
.)

T40I10D100K, ms
a
 = 10k

FPgrowth*
GC−growth
TRUM

Figure 5.3: Performance comparison of TRUM and the pattern discovery algorithms,
FPgrowth* and GC-growth, under batch maintenance. Notations: ∆− = |Ddec|/|Dorg|.

85

5.3.1 Comparison with Discovery Algorithms

TRUM is compared with state-of-the-art discovery algorithm FPgrowth* [28], which

is the fastest implementation of FP-growth [33]. TRUM is also compared with the

recently proposed algorithm GC-growth [47], which is the fastest discovery algorithm

for frequent equivalence classes. The effectiveness of TRUM is compared with the

discovery algorithms under the settings of both batch maintenance, which is common

in data management, and eager maintenance, which is necessary for some interactive

mining applications, e.g. trend analysis.

Batch Maintenance

In batch maintenance, decremental transactions in Ddec are first removed, as a

batch, from the original dataset Dorg to obtain the updated dataset Dupd−. Then,

discovery algorithms are applied to re-discover the updated frequent pattern space

based on Dupd−.

Figure 5.3 graphically compares the batch maintenance performance of TRUM

with the discovery algorithms FPgrowth* and GC-growth. It can be seen that, com-

pared with re-generating the frequent pattern space with the most effective discovery

algorithms, it is more effective to maintain the pattern space with TRUM. The aver-

age computational “speed up” of TRUM compared with the discovery algorithms is

summarized in Table 5.2. The computational speed up is calculated as:1

SpeedUp(Algotarget, Algocompare) = Tcompare/Ttarget (5.1)

where SpeedUp(Algotarget, Algocompare) refers the speed up achieved by the target

1This speed up formula is used through out the Thesis

86

algorithm, Algotarget, against the comparing algorithm, Algocompare; and Ttarget and

Tcompare denotes the execution time of the target algorithm and comparing algorithm

respectively. Here, the target algorithm is TRUM. As shown in Table 5.2, TRUM

outperforms FPgrowth*, on average, 2 orders of magnitude. For the best scenarios,

e.g. dataset mushroom, TRUM runs faster than FPgrowth* by more than 3 orders of

magnitude. For the worst scenarios, like dataset T40I10D100K, TRUM is still 5 times

faster than FPgrowth*. Compared with GC-growth, the average speed up of TRUM

is almost 80. TRUM achieves the best speed ups in datasets pumsb star, retail and

T10I4D100K, where TRUM outperforms GC-growth by 2 orders of magnitude.

In addition, we observe that, in batch maintenance, the execution time of dis-

covery algorithms decreases slightly as the update interval increases. This is because,

when more transactions are removed, the dataset becomes smaller. Thus it takes less

time to discover patterns from it. More importantly, we also observe that the advan-

tage of TRUM over discovery algorithms diminishes as the size of update increases.

This is because larger update size logically leads to more dramatic changes to the

frequent pattern space and makes the pattern space computationally more expensive

to be maintained. In batch maintenance, it is inevitable that when the amount of

update increases to a certain extent, the changes induced to the pattern space become

so significant that it becomes more efficient to re-discover the pattern space than to

maintain and update it.

The next question is: when should one switch from maintaining the frequent pat-

tern space with TRUM to re-discovering the pattern space with discovery algorithms?

Experiments were conducted to investigate this and to identify the “switching point”.

87

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

10
4

∆− (%)

T
im

e
(s

ec
.)

retail, ms
a
 = 200

FPgrowth*
GC−growth
TRUM

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

10
4

∆− (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
a
 = 100

FPgrowth*
GC−growth
TRUM

Figure 5.4: Performance comparison of TRUM and the discovery algorithms, FP-
growth* and GC-growth, under eager maintenance. Notations: ∆− = |Ddec|/|Dorg|.

Here, the “switching point” refers to the point of update inteval, ∆−, at which re-

discovery algorithms start to outperform TRUM. We discover that the “switching

points” vary across different datasets, and, even for a particular dataset, different

“switching points” are observed under different minimum support thresholds. As a

result, it is impossible to suggest a universal “switching point” for various datasets

and minimum support thresholds. However, through our experimental studies, as

demonstrated in Figure 5.3, we conclude that TRUM is a more effective option com-

pared to re-discovering the frequent pattern space as far as ∆− ≤ 10%.

Eager Maintenance

In eager maintenance, decremental transactions in Ddec are removed from the

original dataset Dorg one by one. Discovery algorithms need to be applied to re-

discover the frequent pattern space for each removal. It is obvious that, in eager

maintenance, rediscovery the pattern space involves high redundancy and is hence

extremely “costly”. Maintaining the pattern space with TRUM is a much more effec-

tive solution. Some experimental results are presented in Figure 5.4 as examples.

As can be seen in Figure 5.4, in eager maintenance, the execution time of the

88

discovery algorithms grows steeply as the update interval increases. The advantage

of TRUM gets more and more significant as more transactions are removed from the

original dataset in an “eager” manner.

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

∆− (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
a
 = 200

FUP2H
ZIGZAG
moment
TRUM

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

∆− (%)
T

im
e

(s
ec

.)

mushroom, ms
a
 = 1000

FUP2H
ZIGZAG
moment
TRUM

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

∆− (%)

T
im

e
(s

ec
.)

pumsb_star, ms
a
 = 20k

FUP2H
ZIGZAG
moment
TRUM

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

∆− (%)

T
im

e
(s

ec
.)

retail, ms
a
 = 200

FUP2H
ZIGZAG
moment
TRUM

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

∆− (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
a
 = 100

FUP2H
ZIGZAG
moment
TRUM

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

∆− (%)

T
im

e
(s

ec
.)

T40I10D100K, ms
a
 = 10k

FUP2H
ZIGZAG
moment
TRUM

Figure 5.5: Performance comparison of TRUM and the pattern maintenance algo-
rithms: FUP2H, ZIGZAG and moment . Notations: ∆− = |Ddec|/|Dorg|.

89

5.3.2 Comparison with Maintenance Algorithms

TRUM is also compared with the representative maintenance algorithms FUP2H [15],

ZIGZAG [70] and moment [18]. FUP2H, which is the generalized version of FUP [14],

maintains all frequent patterns. ZIGZAG and moment are recently proposed main-

tenance algorithms. ZIGZAG maintains the maximal frequent patterns, and moment

maintains the closed patterns. Pattern maintenance algorithms, unlike discovery algo-

rithms, do not suffer from large extra overheads in eager maintenance. Therefore, we

compare the efficiency of TRUM and maintenance algorithms only under the setting

of batch maintenance.

Figure 5.5 graphically compares the performance of TRUM with the representa-

tive maintenance algorithms. TRUM outperforms the other maintenance algorithms

significantly. As summarized in Table 5.2, on average, TRUM is almost 6000 times

faster than FUP2H, more than 100 times faster than ZIGZAG and almost 3000 times

faster moment. For the best cases, TRUM outperforms ZIGZAG by almost 3 orders of

magnitude and outperforms both FUP2H and moment more than 4 orders of magni-

tude.

90

Dataset
Discovery Algorithms Discovery Algorithms

FPgrowth* GC-growth FUP2H ZIGZAG moment

BMS-WEBVIEW-1 (msa = 200) 7 53 14 5.5 192

BMS-WEBVIEW-1 (msa = 100) 9 69 33 20 227

BMS-WEBVIEW-2 (msa = 200) 18 32 57 69 248

BMS-WEBVIEW-2 (msa = 100) 17 32 51 174 175

chess (msa = 2k) 43 11 870 62 3,520

chess (msa = 1.5k) 130 13 3,640 28 10,600

connect-4 (msa = 40k) 130 3 30,000 140 1,180

connect-4 (msa = 30k) 24 1.5 4,600 10 182

mushroom (msa = 1k) 128 30 1,325 122 6,200

mushroom (msa = 500) 1,240 31 17,000 486 10,700

pumsb (msa = 40k) 8 9.2 1,420 1.5 585

pumsb (msa = 35k) 77 12 28,000 2 14,600

pumsb star (msa = 20k) 78 127 2,084 348 3,071

pumsb star (msa = 15k) 255 72 29,000 375 7,950

retail (msa = 200) 60 186 100 314 184

retail (msa = 100) 58 306 178 818 208

T10I4D100K (msa = 500) 64 113 87 90 1,288

T10I4D100K (msa = 100) 80 400 410 413 1,800

T40I10D100K (msa = 10k) 9 7 9 1.5 69

T40I10D100K (msa = 5k) 5 3 6 1.5 6

Average 119 79.6 5,944 174 2,848

Table 5.2: Average speed up of TRUM over benchmark datasets for batch maintenance
(when ∆− ≤ 10%).

91

5.4 Generalization & Extension

5.4.1 Extension for Percentage Support Threshold

TRUM is developed under the setting, where minimum support threshold, msa, is

defined in terms of absolute counts. However, in some applications, the minimum

support threshold may be defined in terms of percentages, ms%. When the minimum

support threshold is defined in terms of percentage, the absolute support threshold,

msa, will actually drop after decremental updates. Thus new frequent patterns and

equivalence classes may emerge. TRUM cannot be directly applied to this case, and

some extension to the algorithm is required.

We here introduce one possible way of extension. Suppose the percentage thresh-

old ms% = x%. In the extended version of TRUM, the TID-tree not only stores the

frequent equivalence classes, and the TID-tree also includes the “buffer equivalence

classes”, whose supports are above (x−4)%. In this way, we actually build a “buffer”

in the TID-tree, which contains a group of infrequent equivalence classes that are likely

to become frequent after some existing transactions are removed. This means that,

so long as the total number of deletions does not exceed |Dorg| × 4%, all the “new”

equivalence classes that may emerge are already kept in the “buffer” of the extended

TID-tree. With the extended TID-tree, TRUM can now be employed for multiple

rounds of decremental maintenance, as long as the accumulated amount of deletion

is less than |Dorg|×4%. The size of the 4% buffer can be adjusted based on specific

application requirements.

92

Notation: EC_i: {.} : x (y) refers to an equivalence class EC_i, where EC_i

consists patterns {.}, the TID-list of EC_i is x, and the support of EC_i is y .

Frequent equivalence classes:

1: { {a}, {c}, {a, c} } : 1, 3, 4 (3)

5: { {a, d}, {c, d}, {a, c, d} } : 1, 3 (2)

2: { {b, d} } : 1, 2 (2)

3: { {d} } : 1, 2, 3 (3)

4: { {b} } : 1, 2, 5 (3)

Root

1

3
2

EC_2

3

EC_5

5

EC_4

3

EC_3

4

EC_1

TID

header

table

1

2

3

4

5

Root

1

3

2

EC_2

3

EC_5

5

EC_4

3

EC_3

4

EC_1

6

Insert Transation 6:

{b,d,e}

Original TID-tree

(a) (b) (c)

Figure 5.6: TID-tree for incremental updates. (a) The existing frequent equivalence
classes; (b) the original TID-tree; and (c) the updated TID-tree after inserting trans-
action 6: {b, d, e}.

The above extension of TRUM is not a perfect solution, and it has its limitation.

As the amount of deletion gets close to the limit |Dorg| ×4%, we have to re-discover

the frequent pattern space and rebuild the buffer. To solve the problem completely,

extra data structure, e.g. GE-tree (which will be introduced in next chapter), is

required.

5.4.2 Generalization to Incremental Updates

TID-tree is demonstrated to be an effective data structure for decremental mainte-

nance of frequent patterns. Under decremental updates, TID-tree can be efficiently

updated by removing the nodes corresponds to the deleted transactions. It is very

tempting to generalize TID-tree to address also incremental updates. However, we

found that it is computationally expensive to update TID-tree under incremental

updates.

93

Let us illustrate this with the example shown in Figure 5.1. Suppose a new

transaction {b, d, e} is inserted to the dataset, and, as shown in Figure 5.6, we name

the new transaction with a unique ID 6. To insert transaction 6 into the TID-tree,

we first need to scan through all existing equivalence classes and compare them with

the new transaction. This step is to determine which equivalence classes are affected

by the incremental update. In this case, equivalence classes EC 2, EC 3 and EC 4

are affected. We then compare equivalence classes EC 2, EC 3 and EC 4 again to

determine where the new node/nodes of transaction 6 should be inserted into the

tree. In this example, it requires 8 comparisons of equivalence classes to insert a

single transaction to the TID-tree. We observe that the insertion of new transactions

into TID-tree is a much more complicated process than the removal one. Therefore,

we believe TID-tree is not an effective data structure for incremental maintenance.

94

5.5 Summary

In this chapter, we have proposed a novel algorithm — TRUM — to maintain the

frequent pattern space for decremental updates. TRUM is inspired by the space evolu-

tion analysis discussed in Chapter 4. TRUM addresses the decremental maintenance

problem in a divide-and-conquer manner by decomposing the frequent pattern space

into equivalence classes. We have also developed a new data structure, TID-tree, to

facilitate the computational tasks involved in TRUM. With TID-tree, TRUM effec-

tively maintains the pattern space by updating only the equivalence classes that are

affected by the decremental update.

Extensive experiments are conducted to evaluate the effectiveness of TRUM. Ac-

cording to the empirical results, TRUM significantly outperforms the representation

frequent pattern discovery and maintenance algorithms.

In addition, we demonstrated that: although TRUM is developed for the case,

where the minimum support threshold is defined in terms of absolute count, TRUM

can be extended to address also the case, where the threshold is defined in terms

of percentage. We also discovered that the idea of TID-tree cannot be effectively

generalized to incremental updates.

95

Chapter 6

Pattern Space Maintainer (PSM):

A Complete Maintainer

This chapter proposes a complete maintainer for the space of frequent patterns. The

proposed maintainer is called the “Pattern Space Maintainer”, in short PSM. PSM ad-

dresses the incremental maintenance, decremental maintenance and support threshold

adjustment maintenance of frequent pattern space. Since PSM addresses all 3 differ-

ent update scenarios, it is composed of 3 maintenance components: the incremental

maintenance component, PSM+, the decremental maintenance component, PSM- and

the threshold adjustment maintenance component, PSM∆. All three components are

proposed based on the pattern space evolution analysis in Chapter 4 Based on the

space evolution analysis, we summarize the major computational tasks involved in

the maintenance components. To effectively perform the maintenance computational

tasks, we devlope a new maintenance data structure — “Generator-Enumeration

Tree” (GE-tree). The three maintenance components are all constructed based on

96

GE-tree, and thus they can be easily integrated together. However, for ease of presen-

tation, we introduce the three maintenance components separately in this chapter.

6.1 Incremental Maintenance

This section introduces the incremental maintenance component of PSM — PSM+.

In the incremental update, a set of new transactions Dinc are inserted into the original

dataset Dorg, and thus the updated dataset Dupd+ = Dorg ∪ Dinc. Given a support

threshold, the task of incremental maintenance is to obtain the updated pattern space

by maintaining the original pattern space.

PSM+ is proposed based on the pattern space evolution analysis. Thus we first

recap how the space of frequent patterns evolves under incremental updates. Based

on the evolution analysis, we further summarize the major computational tasks of

incremental maintenance. We then define the concept of “Generator-Enumeration

Tree” (GE-tree), and we also illustrate how GE-tree helps PSM+ to complete the

computational tasks efficiently. Lastly, the correctness and effectiveness of PSM+ are

demonstrated through both complexity analysis and experimental studies.

6.1.1 Evolution of Pattern Space

Under incremental updates, one existing equivalence class may evolve in three differ-

ent ways: it may remain unchanged without any change in support; or it may remain

unchanged but with an increased support; or it may split into multiple classes. The

exact conditions for each evolution scenarios are described in Theorem 4.16.

97

EC2

C2

EC1

C1
C3

EC3ECinc

C2

ECorg

C1 intersection

(a)

t+: incremental

 transaction

C t+

EC'

EC''

C'

ECorg

C t+
intersection

(b)
closed
patterns

GeneratorsNotations:

Figure 6.1: (a) Split up of the existing equivalence class ECorg by intersecting with
ECinc, an equivalence class in the incremental dataset, and (b) split up of ECorg by
intersecting with a single incremental transaction t+.

Among all evolution scenarios, the splitting scenarios are the most complicated

ones. As demonstrated in Figure 6.1 (a), the splitting up of an existing equiva-

lence class can be achieved by intersecting the existing class with the classes in the

incremental dataset. However, this intersection process can be pretty “messy”. Fig-

ure 6.1 (a) shows an example. After the intersection, equivalence classes ECorg and

ECinc split into three parts, EC1, EC2 and EC3. The messiness comes from the fact

that EC1 and EC2 are not convex. Although we have demonstrated in theory that

EC1 and EC2 will further split into multiple convex equivalence classes, it is compu-

tational challenging in practice to complete the spilt up. Moreover, since EC1 and

EC2 are not convex, we can no longer concisely represent them using their borders,

which makes it extremely difficult to store and identify them for further split ups.

To simplify the split up situation, we propose to address the update problem

in a divide-and-conquer manner. In particular, we propose to update the frequent

98

pattern space iteratively by considering only one incremental transaction at a time.

As illustrated in Figure 6.1 (b), if we consider only one incremental transaction t+,

the existing equivalence class ECorg splits into only two parts: EC ′ and EC ′′. More

importantly, both EC ′ and EC ′′ are convex equivalence classes. This observation

is formally summarized in Proposition 6.1. In Proposition 6.1, we use Close(X)

and Keys(X) to indicate the closed pattern and generators (key patterns) of an

equivalence class X.

Proposition 6.1. Let [P]Dorg be an existing equivalence class in Dorg. Also let

Dupd+ = Dorg ∪ t+, where t+ is an incremental transaction. Then, in Dupd+, [P]Dorg

splits into two equivalence classes, iff ∃Q ∈ [P]Dorg such that Q 6⊆ t+ and ∃Q′ ∈ [P]Dorg

such that Q′ ⊆ t+. In particular, [P]Dorg splits into class [Q]Dupd+
(corresponds to EC ′

in Figure 6.1) and class [Q′]Dupd+
(corresponds to EC ′′ in Figure 6.1).

Moreover, [Q]Dupd+
= {X|X ∈ [P]Dorg ∧X 6⊆ t+}, sup(Q,Dupd+) = sup(P,Dorg),

Close([Q]Dupd+
) = Close([P]Dorg) and Keys([Q]Dupd+

) = min{{K|K ∈

Keys([P]Dorg)∧K 6⊆ t+}∪{K ′∪{xi}, i = 1, 2, · · ·|K ′ ∈ Keys([P]Dorg)∧K ′ ⊆ t+, xi ∈

Close([P]Dorg)∧xi 6∈ t+}}. On the other hand, [Q′]Dupd+
= {Y |Y ∈ [P]Dorg∧Y ⊆ t+},

sup(Q′,Dupd+) = sup(Q′,Dorg) + 1, Close([Q]Dupd+
) = Close([P]Dorg) ∩ t+ and

Keys([Q′]Dupd+
) = {K|K ∈ Keys([P]Dorg) ∧K ⊆ t+}.

Proof. We first prove the left-to-right direction of the first part of the proposition.

Suppose [P]Dorg splits into [Q]Dupd+
and [Q′]Dupd+

in Dupd+. This means [Q]Dupd+
∪

[Q′]Dupd+
= [P]Dorg and [Q]Dupd+

∩ [Q′]Dupd+
= ∅. It is obvious that Q & Q′ ∈ [P]Dorg .

Thus, according to the definition of equivalence class (Definition 4.3), f(Q,Dorg) =

99

f(Q′,Dorg). Also since [Q]Dupd+
∩ [Q′]Dupd+

= ∅, f(Q,Dupd+) 6= f(Q′,Dupd+). Let

us assume without loss of generality that f(Q,Dupd+) ⊂ f(Q′,Dupd+). Since we

only insert one incremental transaction t+ to Dorg, the only possibility is that

f(Q,Dupd+) = f(Q,Dorg) and f(Q′,Dupd+) = f(Q′,Dorg) ∪ {t+} ⊃ f(Q,Dupd+).

This implies that Q 6⊆ t+ and Q′ ⊆ t+. The left-to-right direction is proven.

For the right-to-left direction, suppose ∃Q ∈ [P]Dorg that Q 6⊆ t+ and ∃Q′ ∈

[P]Dorg that Q′ ⊆ t+. This implies f(Q,Dupd+) = f(Q,Dorg) and f(Q′,Dupd+) =

f(Q′,Dorg) ∪ {t+}. Moreover, according to Proposition 4.10, equivalence classes will

only shrink after incremental updates. Thus [Q]Dupd+
⊂ [P]Dorg and [Q′]Dupd+

⊂

[P]Dorg . Combining this with the definition of equivalence class, we then have

[Q]Dupd+
= {X|X ∈ [P]Dorg ∧ f(X,Dupd+) = f(Q,Dupd+)} = {X|X ∈ [P]Dorg ∧X 6⊆

t+} and [Q′]Dupd+
= {Y |Y ∈ [P]Dorg∧f(Y,Dupd+) = f(Q′,Dupd+)} = {Y |Y ∈ [P]Dorg∧

Y ⊆ t+}. It is obvious that [Q]Dupd+
∩ [Q′]Dupd+

= ∅ and [Q]Dupd+
∪ [Q′]Dupd+

= [P]Dorg .

The right-to-left direction is proven.

We now prove the second part of the proposition. It has already been proven

in the last paragraph that [Q]Dupd+
= {X|X ∈ [P]Dorg ∧ X 6⊆ t+} and [Q′]Dupd+

=

{Y |Y ∈ [P]Dorg ∧ Y ⊆ t+}.

For [Q]Dupd+
, since Q 6⊆ t+, f(Q,Dupd+) = f(Q,Dorg). Thus sup(Q,Dupd+) =

sup(Q,Dorg). Next, we prove that Close([Q]Dupd+
) = Close([P]Dorg). Let C =

Close([P]Dorg). Then we have C ⊇ Q and, thus, C 6⊆ t+. This implies that

C ∈ [Q]Dupd+
. Also since C is the closed pattern in [P]Dorg , C is the most specific pat-

tern in [P]Dorg (Definition 4.6). This further implies that C is also the most specific

pattern in [Q]Dupd+
for [Q]Dupd+

⊂ [P]Dorg . Therefore, C is also the closed pattern of

100

[Q]Dupd+
, and Close([Q]Dupd+

) = Close([P]Dorg). For the formula of Keys([Q]Dupd+
),

it basically refers to the set of minimum (most general) patterns in [Q]Dupd+
. This

follows directly from Definition 4.6.

For [Q′]Dupd+
, since Q′ ⊆ t+, f(Q′,Dupd+) = f(Q′,Dorg) ∪ {t+}. Thus

sup(Q′,Dupd+) = |f(Q′,Dupd+)| = sup(Q′,Dorg) + 1.

Next, we prove Close([Q′]Dupd+
) = Close([P]Dorg)∩ t+. Let C = Close([P]Dorg)∩

t+. It is obvious that (1) C ⊆ Close([P]Dorg) and (2) C ⊆ t+. According to the

definition of Q′, Q′ ⊆ t+ and Q′ ⊆ Close([P]Dorg) (for Q′ ∈ [P]Dorg), thus Q′ ⊆

Close([P]Dorg)∩ t+, meaning (3) Q′ ⊆ C. According to the definition of convex space,

point (1) & (3) imply that C ∈ [P]Dorg . Combining the facts that C ∈ [P]Dorg and

C ⊆ t+, we have C ∈ [Q′]Dupd+
. We then assume that there exists C ′ such that C ′ ⊃ C

and C ′ ∈ [Q′]Dupd+
. C ′ ∈ [Q′]Dupd+

implies that C ′ ∈ [P]Dorg and C ′ ⊆ t+. C ′ ∈ [P]Dorg

further implies that C ′ ⊆ Close([P]Dorg). Then we have C ′ ⊆ Close([P]Dorg) and

C ′ ⊆ t+, and thus C ′ ⊆ C (for C = Close([P]Dorg) ∩ t+). This contradicts with

the initial assumption. Therefore, C ∈ [Q′]Dupd+
and 6 ∃C ′ such that C ′ ⊃ C and

C ′ ∈ [P]Dupd+
. According to Definition 4.6, C is the closed pattern of [Q′]Dupd+

.

Then we prove Keys([Q′]Dupd+
) = {K|K ∈ Keys([P]Dorg) ∧K ⊆ t+}. First, let

K = {K|K ∈ Keys([P]Dorg) ∧K ⊆ t+} and let pattern X be any pattern such that

X ∈ K. X ∈ K implies that X ∈ [P]Dorg and X ⊆ t+. This means X ∈ [Q′]Dupd+
.

X ∈ K also means X ∈ Keys([P]Dorg), i.e. X is one of the most “general” patterns in

[P]Dorg (Definition 4.6). Moreover, [P]Dupd+
⊂ [P]Dorg . Therefore, X must also be one

of the most “general” patterns in [Q′]Dupd+
. This means that X ∈ Keys([Q′]Dupd+

) for

every X ∈ K. Thus we have (A) K ⊆ Keys([P]Dupd+
). Second, we assume that there

101

exists a pattern Y such that Y ∈ Keys([Q′]Dupd+
) but Y 6∈ K. Y ∈ Keys([Q′]Dupd+

)

means Y ∈ [Q′]Dupd+
. According to the definition of [Q′]Dupd+

, we know Y ∈ [P]Dorg

and Y ⊆ t+. Y ⊆ t+ and Y 6∈ K imply that Y 6∈ Keys([P]Dorg). This means there

exists pattern K ′ ⊂ Y such that K ′ ∈ [P]Dorg (Definition 4.6). Since K ′ ⊂ Y and

Y ⊆ t+, K ′ ⊂ t+, which implies K ′ ∈ [Q′]Dupd+
. Thus, according to Definition 4.6,

Y 6∈ Keys([P]Dupd+
). This contradicts with the initial assumption. Thus there does

not exists pattern Y such that Y ∈ Keys([Q′]Dupd+
) but Y 6∈ K. Therefore, we have

(B) K ⊇ Keys([P]Dupd+
). Combining results (A) and (B), we have Keys([P]Dupd+

) =

K = {K|K ∈ Keys([P]Dorg) ∧K ⊆ t+}. The proposition is proven.

Furthermore, we can also simplify Theorem 4.16 by considering only one incre-

mental transaction at a time.

Theorem 6.2. Let Dorg be the original dataset, t+ be the incremental transaction,

Dupd+ = Dorg∪{t+} and ms% be the support threshold. For every frequent equivalence

class [P]Dupd+
in F(ms%,Dupd+), exactly one of the 5 scenarios below holds:

1. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q 6⊆ t+ for all Q ∈ [P]Dorg , corresponding

to the scenario where the equivalence class remains totally unchanged. In this

case, [P]Dupd+
= [P]Dorg and sup(P,Dupd+) = sup(P,Dorg).

2. P ∈ F(ms%,Dorg), P ⊆ t+ and Q ⊆ t+ for all Q ∈ [P]Dorg , corresponding to the

scenario where the equivalence class has remained unchanged but with increased

support. In this case, [P]Dupd+
= [P]Dorg and sup(P,Dupd+) = sup(P,Dorg) + 1.

3. P ∈ F(ms%,Dorg), P ⊆ t+ and Q 6⊆ t+ for some Q ∈ [P]Dorg , corresponding

to the scenario where the equivalence class splits. In this case, [P]Dorg splits

102

into two new equivalence classes, and [P]Dupd+
is one of them. [P]Dupd+

=

{Q|Q ∈ [P]Dorg ∧Q ⊆ t+}, sup(P,Dupd+) = sup(P,Dorg)+1, Close([P]Dupd+
) =

Close([P]Dorg) ∩ t+ and Keys([P]Dupd+
) = {K|K ∈ Keys([P]Dorg) ∧K ⊆ t+}.

4. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q ⊆ t+ for some Q ∈ [P]Dorg , also correspond-

ing to the scenario where the equivalence class splits. This scenario is comple-

ment to Scenario 3. [P]Dorg splits into two new equivalence classes, [P]Dupd+

is one of them, and the other one has been described in Scenario 3. In this

case, [P]Dupd+
= {Q|Q ∈ [P]Dorg ∧ Q 6⊆ t+}, sup(P,Dupd+) = sup(P,Dorg),

Close([P]Dupd+
) = Close([P]Dorg) and Keys([P]Dupd+

) = min{{K|K ∈

Keys([P]Dorg) ∧K 6⊆ t+} ∪ {K ′ ∪ {xi}, i = 1, 2, · · ·|K ′ ∈ Keys([P]Dorg) ∧K ′ ⊆

t+, xi ∈ Close([P]Dorg) ∧ xi 6∈ t+}}.

5. P 6∈ F(ms%,Dorg), P ⊆ t+ and Sup(P,Dupd+) ≥ dms% × |Dupd+|e, corre-

sponding to the scenario where a new frequent equivalence class has emerged.

In this case, [P]Dupd+
= {Q|Q ∈ [P]Dorg ∧ Q ⊆ t+} and sup(P,Dupd+) =

sup(P,Dorg) + 1.

Proof. Scenarios 1 and 5 are obvious. Scenario 3 follows Proposition 6.1. [P]Dupd+
in

Scenario 3 is equivalent to [Q′]Dupd+
in Proposition 6.1. Scenario 4 is complementary

to Scenario 3, and it also follows Proposition 6.1. [P]Dupd+
in Scenario 4 is equivalent

to [Q]Dupd+
in Proposition 6.1.

To prove Scenario 2, suppose (i) P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii) Q ⊆ t+

for all Q ∈ [P]Dorg . Point (ii) implies that f(P,Dupd+) = f(P,Dorg) ∪ {t+}, and

point (iii) implies that, for all Q ∈ [P]Dorg , f(Q,Dupd+) = f(Q,Dorg)∪{t+}. Accord-

103

ing to the definition of equivalence class (Definition 4.3), f(P,Dorg) = f(Q,Dorg).

Thus f(P,Dupd+) = f(P,Dorg)∪{t+} = f(Q,Dorg)∪{t+} = f(Q,Dupd+). This means

that, for all Q ∈ [P]Dorg , Q ∈ [P]upd+. Therefore, the equivalence [P]Dorg remains the

same after the update, but sup(P,Dupd+) = |f(P,Dupd+)| = sup(P,Dorg) + 1.

Finally, we prove that the theorem is complete. For patterns P ∈ F(ms%,Dorg),

it is obvious that Scenario 1 to 4 enumerated all possible cases. For pattern P 6∈

F(ms%,Dorg), Scenario 5 corresponds to the case where P ⊆ t+ and Sup(P,Dupd+) ≥

dms% × |Dupd+|e. The cases where P 6⊆ t+ or Sup(P,Dupd+) < dms% × |Dupd+|e are

not enumerated, because, in these cases, it is clear that P 6∈ F(ms%,Dupd+). As a

result, we can conclude that this theorem is sound and complete.

Theorem 6.2 summarizes how the frequent pattern space evolves when one in-

cremental transaction is inserted. More importantly, the theorem describes how the

borders of existing frequent equivalence classes can be updated after the insertion of

the incremental transaction.

In addition, recall that if the support threshold is defined in terms of percent-

age, ms%, an incremental update may cause the absolute support threshold msa to

increase. This increase in msa may invalidate existing frequent equivalence classes.

Combining all the above observations, we summarize that the incremental main-

tenance of the frequent pattern space involves four major computational tasks: (1)

update the support of existing frequent equivalence classes; (2) split up equivalence

classes that satisfy Scenario 3 and 4 of Theorem 6.2; (3) discover newly emerged fre-

quent equivalence classes; and (4) remove existing frequent equivalence classes that

104

are no longer frequent. Task (4) is not required if the support threshold is defined

in terms of absolute count. For the case where percentage support threshold is used,

Task (4) can be accomplished by filtering out the infrequent equivalence classes when

outputting them. This filtering step is very straightforward, and thus we will not

elaborate its details. We here focus on the first three tasks, and we name them re-

spectively as the Support Update task, Class Splitting task and New Class

Discovery task. To efficiently complete these three tasks, a new data structure,

Generator-Enumeration Tree (GE-tree), is developed.

6.1.2 Maintenance Data Structure:

Generator-Enumeration Tree (GE-tree)

The Generator-Enumeration Tree (GE-tree) is a data structure inspired by the idea

of the Set-Enumeration Tree (SE-tree). Thus we first recap the concept of SE-tree.

We then introduce the characteristics of GE-tree, and we further demonstrate how

the GE-tree can help to efficiently complete the computational tasks of incremental

maintenance.

6.1.2.1 Set-Enumeration Tree

Set-Enumeration Tree (SE-tree), as shown in Figure 6.2, is a conceptual data structure

that guides the systematic enumeration of patterns.

Let the set I = {i1, ..., im} of items be ordered according to an arbitrary ordering

<0 so that i1 <0 i2 <0 · · · <0 im. For itemsets X, Y ⊆ I, we write X <0 Y iff X

105

{}

1a 2
b

8d 4c

3
ba 5

ca
6
cb

7
cba

9
da 10

db
12

dc

11
dba 13

dca
14

dcb

15
dcba

Item-ordering: d <0 c <0 b <0 a

Figure 6.2: The Set-Enumeration Tree with item order: d <0 c <0 b <0 a. The
number on the left top corner of each node indicates the order at which the node is
visited.

is lexicographically “before” Y according to the order <0. E.g. {i1} <0 {i1, i2} <0

{i1, i3}. We say an itemset X is a “prefix” of an itemset Y iff X ⊆ Y and X <0 Y .

We write last(X) for the item α ∈ X, if the items in X are α1 <0 α2 <0 · · · <0 α.

We say an itemset X is the “precedent” of an itemset Y iff X = Y − last(Y). E.g.

pattern {d, c} in Figure 6.2 (a) is the precedent of pattern {d, c, b}.

A SE-tree is a conceptual organization on the subsets of I so that {} is its root

node; for each node X such that Y1, ..., Yk are all its children from left to right,

then Yk <0 · · · <0 Y1; for each node X in the set-enumeration tree such that X1,

..., Xk are siblings to its left, we make X ∪ X1, ..., X ∪ Xk the children of X;

|X ∪ Xi| = |X| + 1 = |Xi| + 1; and |X| = |Xi| = |X ∩ Xi| + 1. We also induce an

enumeration ordering on the nodes of the SE-tree so that given two nodes X and Y ,

we say X <1 Y iff X would be visited before Y when we visit the set-enumeration

tree in a left-to-right top-down manner. Since this visit order is a bit unusual, we

illustrate it in Figure 6.2. Here, the number besides the node indicates the order at

which the node is visited.

106

The SE-tree is an effective structure for pattern enumeration. Its left-to-right top-

down enumeration order effectively ensures complete pattern enumeration without

redundancy.

6.1.2.2 Generator-Enumeration Tree

The Generator-Enumeration Tree (GE-tree) is developed from the SE-tree. As shown

in Figure 6.3 (a), GE-tree is constructed in a similar way as SE-tree, and GE-tree also

follows the left-to-right top-down enumeration order to ensure complete and efficient

pattern enumeration.

New features have been introduced to the GE-tree to facilitate incremental main-

tenance of frequent patterns. In the literature, SE-tree has been used to enumerate

frequent patterns [73], closed patterns [72] and maximal patterns [35]. However,

GE-tree, as the name suggested, is employed here to enumerate frequent generators.

Moreover, unlike SE-tree, in which the items are arranged according to some arbitrary

order, items in GE-tree is arranged based on the support of the items. This means

items i1 <0 i2 if sup({i1},D) < sup({i2},D). This item ordering effectively minimizes

the size of the GE-tree. Also, different from SE-tree, which only acts as a conceptual

data structure, GE-tree acts as a compact storage structure for frequent generators.

As shown in Figure 6.3, each node in GE-tree represents a generator, and each fre-

quent generator is linked to its corresponding equivalence class. This feature allows

frequent generators and their corresponding equivalence classes to be easily updated

in response to updates. The most important feature of GE-tree is that: it stores

the “negative generator border” in addition to frequent generators. For the GE-tree

107

{}

a : 4 c : 3

ca : 2 da : 2 dc : 2

d : 3 b : 3

ba : 1 bc : 1 bd : 1

Original Dataset
(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: e <0 b <0 d <0 c <0 a

(a)

EC1: <a , a>: 4

EC4: <b , b>:3

EC2: <c , c>:3

EC3: <d , d>:3

EC5: <ca da dc , dca>:2

Frequent Equivalence
Class Table

Insert {b,c,d}

{}

a : 4 c : 4

ca : 2 da : 2 dc : 3

d : 4 b : 4

ba : 1 bc : 2

Updated Dataset
(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: e <0 b <0 d <0 c <0 a

(b)

b,c,d

bd : 2

bdc : 1

EC1: <a , a>: 4

EC4: <b , b>:4

EC2: <c , c>:4

EC3: <d , d>:4

EC6': <ca da, dca>:2

Frequent Equivalence
Class Table

EC5': <dc, dc>:3

EC7: <bc, bc>:2

EC8: <bd, bd>:2

bca : 0

bda : 0

Insert {a,f}

{}

a : 5 c : 4

ca : 2 da : 2 dc : 3

d : 4 b : 4

ba : 1 bc : 2

Updated Dataset

(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: f <0 e <0 b <0 d <0 c <0 a

(c)

b,c,d

bd : 2

EC1: <a , a>: 5

EC4: <b , b>:4

EC2: <c , c>:4

EC3: <d , d>:4

EC6': <ca da, dca>:2

Frequent Equivalence
Class Table

EC5': <dc, dc>:3

EC7: <bc, bc>:2

EC8: <bd, bd>:2

a, f
bdc : 1

f : 1

bca : 0

bda : 0

Figure 6.3: (a) The GE-tree for the original dataset. (b) The updated GE-tree when
new transaction {b, c, d} is inserted. (c) The updated GE-tree when new transaction
{a, f} is inserted.

108

in Figure 6.3, the “negative generator border” refers to the collection of generators

under the solid line. The “negative generator border” is a newly defined concept for

effective enumeration of new frequent generator and equivalence classes.

More details of these new features will be discussed as we demonstrate how GE-

tree can help to effectively complete the computational tasks of incremental mainte-

nance. Recall that the major computational tasks in the incremental maintenance of

the frequent pattern space include the Support Update task, Class Splitting task and

New Class Discovery task.

Support Update of existing frequent equivalence classes can be efficiently ac-

complished with GE-tree. The main idea is to update only the frequent equivalence

classes that need to be updated. We call these equivalence classes the “affected

classes”, and we need a fast way to locate these affected classes.

Since generators are the right bound of equivalence classes, finding frequent gen-

erators that need to be updated is equivalent to finding the equivalence classes. GE-

tree can help us to locate these generators effectively. Suppose a new transaction

t+ is inserted. We will traverse the GE-tree in the left-to-right top-down manner.

However, we usually do not need to traverse the whole tree. For any generator X in

the GE-tree, X needs to be updated iff X ⊆ t+. If X 6⊆ t+, according to Scenario 1

in Theorem 6.2, no update action is needed for X and its corresponding equivalence

class. Furthermore, according to the “a priori” property of generators (Fact 4.7), all

the children of X can be skipped for the traversal. For example, in Figure 6.3 (c),

when transaction {a, f} is inserted, only node {a} needs to be updated and all the

other nodes are skipped.

109

Class Splitting task can also be completed efficiently with the help of GE-tree.

The key here is to effectively locate existing frequent equivalence classes that need to

be split. Extended from Proposition 6.1, we have the following corollary.

Corollary 6.3. Suppose a new transaction t+ is inserted into the original dataset

Dorg. An existing frequent equivalence class [P]Dorg splits into two iff P ⊆ t+ but

Close([P]Dorg) 6⊆ t+, where Close([P]Dorg) is the closed pattern of [P]Dorg .

Therefore, for an affected class X that has been identified in the support update

step, X splits into two iff Close(X) 6⊆ t+. In Figure 6.3, equivalence class EC5

splits into two, EC5′ & EC6′, after the insertion of {b, c, d}. This is because pattern

{c, d}(∈ EC5) ⊂ {b, c, d} but Close(EC5) = {a, c, d} 6⊆ {b, c, d}.

New Class Discovery task is the most challenging computational task involved

in the incremental maintenance of the frequent pattern space. This is because, unlike

the existing frequent equivalence classes, we have little information about the newly

emerged frequent equivalence classes. To address this challenge, a new concept —

the “negative generator border” is introduced.

6.1.2.3 Negative Generator Border

The “negative generator border” is defined based on the idea of “negative border”.

The notion of negative border is first introduced in [51]. The negative border of

frequent patterns refers to the set of minimal infrequent patterns. On the other hand,

the negative generator border, as formally defined in Definition 6.4, refers to the set

of infrequent generators that have frequent precedents in the GE-tree. In Figure 6.3,

110

the generators immediately under the solid line are “negative border generators”, and

the collection of all these generators forms the “negative generator border”.

Definition 6.4 (Negative Generator Border). Given a dataset D, support threshold

ms% and the GE-tree, a pattern P is a “negative border generator” iff (1) P is a

generator, (2) P is infrequent, (3) the precedent of P in the GE-tree is frequent. The

set of all negative border generators is called the “negative generator border”.

As can be seen in Figure 6.3, the negative generator border records the nodes,

where the previous enumeration stops. It thus serves as a convenient starting point for

further enumeration of newly emerged frequent generators. This allows us to utilize

previously obtained information to avoid redundant generation of existing generator

and enumeration of unnecessary candidates.

When new transactions are inserted, the negative generator border is updated

along with the frequent generators. Take Figure 6.3 (b) as an example. After the in-

sertion of {b, c, d}, two negative border generators {b, c} and {b, d} become frequent.

As a result, these two generators will be promoted as frequent generators, and their

corresponding equivalence classes EC7 and EC8 will also be included into the fre-

quent pattern space. Moreover, these two newly emerged frequent generators now

act as starting pointing for further enumeration of generators. Following the SE-tree

enumeration manner, the children of {b, c} and {b, d} are enumerated by combining

{b, c} and {b, d} with their left hand side siblings, as demonstrated in Figure 6.3 (b).

We discover that, after new transactions are added, the negative generator border

expands and moves away from the root of GE-tree.

111

Procedure 2 enumNewEC
Input: NG, a starting point for enumeration; F the set of frequent equivalence classes;

msa the absolute support threshold and GE-tree.
Output: F and the updated GE-tree.
Method:
1: if NG.support ≥ msa then
2: //Newly emerged frequent generator and equivalence class.
3: Let C be the corresponding closed pattern of NG;
4: if ∃EC ∈ F such that EC.close = C then
5: NG → EC.keys;

{The corresponding equivalence class already exists.}
6: else
7: Create new equivalence class EC ′;
8: EC ′.close = C;
9: NG → EC ′.keys;

10: EC ′ → F ;
11: end if

{Enumerate new generators from NG}
12: for all X, where X is the left hand side sibling of NG in GE-tree do
13: NG′ := NG ∪X;
14: if NG′ is a generator then
15: enumNewEC(NG′, F , msa, GE-tree);
16: end if
17: end for
18: else
19: NG → GE-tree.ngb; {New negative generator border.}
20: end if

return F and GE-tree;

The detailed enumeration process is presented in Procedure 2. In Procedure 2

the following notations are used: NG.support denotes the support of generator NG;

EC.close refers to the closed pattern of the equivalence class EC; EC.keys refers to

the generators of EC and GE-tree.ngb refers to the negative generator border of the

GE-tree.

In summary, GE-tree is an effective data structure that not only compactly stores

the frequent generators but also guides efficient enumeration of generators. We have

demonstrated with examples that the GE-tree greatly facilitate the incremental main-

tenance of the frequent pattern space.

112

Algorithm 3 PSM+
Input: Dinc the incremental dataset; |Dupd+| the size of the updated dataset; Forg the

original frequent pattern space represented using equivalence classes; GE-tree and ms%

the support threshold.
Output: Fupd+ the update frequent pattern space represented using equivalence classes

and the updated GE-tree.
Method:
1: F := Forg; {Initialization.}
2: msa = dms% × |Dupd+|e;
3: for all transaction t in Dinc do
4: for all items xi ∈ t that {xi} is not a generator in GE-tree do
5: Gnew := {xi}, Gnew.support := 0, Gnew → GE-tree;

{Include new items into GE-tree}
6: end for
7: for all generator G in GE-tree that G ⊆ t do
8: G.support := G.support + 1;
9: if G is an existing frequent generator then

10: Let EC be the equivalence class of G in F ;
11: if EC.close ⊆ t then
12: EC.support = G.support;{Corresponds to Scenario 2 of Theorem 6.2.}
13: else
14: splitEC(F , t, G); {split up equivalence class EC. (Procedure 4)}

{Corresponds to Scenario 3 & 4 of Theorem 6.2.}
15: end if
16: else if G.support ≥ msa then
17: enumNewEC(G, F , msa, GE-tree); {Corresponds to Scenario 5 of Theorem 6.2.

(Procedure 2)}
18: end if
19: end for
20: end for
21: Include the frequent equivalence classes in F into Fupd+;

return Fupd+ and the updated GE-tree;

6.1.3 Proposed Algorithm: PSM+

A novel incremental maintenance algorithm, Pattern Space Maintenance+ (PSM+),

is proposed based on the GE-tree. The pseudo-code of PSM+ is presented in Algo-

rithm 3, Procedures 2 and 4. In Algorithm 3, Procedures 2 and 4, we use X.support

to denote the support of pattern X or equivalence class X; we use X.close to denote

the closed pattern of equivalence class X and we use X.keys to denote the set of

generators of equivalence class X. We have also proven the correctness of PSM+.

113

Procedure 4 splitEC
Input: F the set of frequent equivalence classes; t the incremental transaction; and G the

updating generator.
Output: The updated F .
Method:
1: Let EC be the equivalence class of G in F ;
{First split out:}

2: EC.keys = min{{K|K ∈ EC.keys∧K 6⊆ t}∪{K ′∪{xi}|K ′ ∈ EC.keys∧K ′ ⊆ t, xi ∈
EC.close ∧ xi 6∈ t}}; {EC.close remains the same.}
{Second split out:}

3: Cnew = EC.close ∩ t;
4: if ∃EC ′′ ∈ F such that EC ′′.close = Cnew then
5: EC ′′.support = G.support; {EC ′′ already exists.}
6: G → EC ′′.keys;
7: else
8: Create new equivalence class EC ′;
9: EC ′.close = Cnew, EC ′.support = G.support, G → EC ′.keys;

10: EC ′ → F ;
11: end if

return F ;

Theorem 6.5. PSM+ presented in Algorithm 3 correctly maintains the frequent pat-

tern space, which is represented using equivalence classes, for incremental updates.

Proof. According to Theorem 4.16, after the insertion of each new transaction t+,

there are only 5 scenarios for any frequent equivalence class [P]Dupd+
. We prove the

correctness of our algorithm according to these 5 scenarios.

For Scenario 1, suppose (i)P ∈ F(ms%,Dorg), (ii) P 6⊆ t+ and (iii) Q 6⊆ t+ for

all Q ∈ [P]Dorg . Point (i) implies that [P]Dorg is an existing frequent equivalence

class. Then Point (iii) implies that none of the generators of [P]Dorg will satisfy the

condition in Line 7. As a result, [P]Dorg will skip all the maintenance actions and

remain unchanged as desired.

For Scenario 2, suppose (i)P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii) Q ⊆ t+ for

all Q ∈ [P]Dorg . Point (iii) implies that the generators of [P]Dorg satisfy the condition

114

in Line 7, and the support of the generators will be updated by Line 8. Point (i)

implies that [P]Dorg is an existing frequent equivalence class. Thus the generators of

[P]Dorg are existing frequent generators, which satisfy the condition in Line 9. Then

Point (iii) also implies that the closed pattern of [P]Dorg satisfies the condition in

Line 11. Therefore, the support of [P]Dorg will be updated in Line 12, but [P]Dorg

remains unchanged as desired.

For Scenario 3, suppose (i) P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii) Q 6⊆ t+ for

some Q ∈ [P]Dorg . Point (ii) implies that some generators of [P]Dorg will satisfy the

condition in Line 7, and Point (i) implies the condition in Line 9 is also satisfied. Then

Point (iii) implies that the condition in Line 11 is not satisfied. Thus the equivalence

class will be split into two by Line 14 (Procedure 4) as desired. In particular, [P]Dupd+

described in Scenario 3 is updated in Line 3 to 11 of Procedure 4.

For Scenario 4, suppose (i) P ∈ F(ms%,Dorg), (ii) P 6⊆ t+ and (iii) Q ⊆ t+ for

some Q ∈ [P]Dorg . Point (iii) implies that some generators of [P]Dorg will satisfy the

condition in Line 7, and Point (i) implies the condition in Line 9 is also satisfied. Then

Point (ii) implies that the condition in Line 11 is not satisfied. Thus the equivalence

class will be split into two by Line 14 (Procedure 4) as desired. Being complement

to Scenario 3, [P]Dupd+
described in Scenario 4 is updated in Line 2 of Procedure 4.

For Scenario 5, suppose (i) P 6∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii)

Sup(P,Dupd+) ≥ dms% × |Dupd+|. For this scenario, we have two cases. In the

first case, P is in Dorg. In this case, the generators of [P]Dorg are already included

in the GE-tree. Therefore, Point (ii) implies that the condition in Line 7 is satisfied.

Point (i) then implies that Line 9 is not satisfied. Then we check Line 16. Point (iii)

115

implies that the generators of [P]Dupd+
satisfy the condition in Line 16. Therefore, we

will go to Line 17 and go into Procedure 2. In Line 3 to 11 of Procedure 2, [P]Dupd+

is then constructed and included as a newly emerged frequent equivalence class as

desired. In the second case, P is not in Dorg. In this case, the generators of [P]Dorg

are not in GE-tree yet. Therefore, the new generators will be included by Line 5.

Then the generators and the equivalence class are then updated in the same way as

in the first case.

Finally, since an incremental update induces the data size and the absolute sup-

port threshold to increase, Line 21 is put in to remove equivalence classes that are no

longer frequent. With that, the theorem is proven.

6.1.3.1 A Running Example

We demonstrate how PSM+ (presented in Algorithm 3) updates the frequent pattern

space with the example shown in Figure 6.3. In Figure 6.3, the original dataset, Dorg,

consists of 6 transactions; the minimum support threshold ms% = 20%; and two

incremental transactions {b, c, d} and {a, f} are to be inserted. Therefore, |Dupd+| =

|Dorg| + |Dinc| = 8, and the absolute support threshold is updated by Line 2 of

Algorithm 3 as msa = dms% × |Dupd+|e = 2. For each incremental transaction,

PSM+ updates the affected equivalence classes through updating their corresponding

generators. In Figure 6.3 (b) and (c), the affected generators and equivalence classes

are highlighted in bold.

We further illustrate in details how PSM+ addresses different maintenance sce-

narios with a few representative examples. First, we investigate the scenario, where

116

the support of the updating equivalence class needs to be increased. Suppose incre-

mental transaction {b, c, d} is inserted. Since {b, c, d} contains no new items, it does

not satisfy the condition of Line 4 in Algorithm 3. Thus, Line 5 is skipped. Then,

according to the top-down left-right enumeration and traverse order of GE-tree, pat-

tern {c} is the first generator that satisfies Line 7 of Algorithm 3 (for {c} ⊆ {b, c, d}).

Thus {c} is an affected generator. The support of {c} is then updated by Line 8.

Since {c} is an existing frequent generator, Line 9 is satisfied. We then update the

corresponding equivalence class of {c}, EC2. As shown in Figure 6.3 (b), the closed

pattern of EC2 is also {c}. Thus, we have EC2.close ⊆ {b, c, d}, and Line 11 is

satisfied. The support of EC2 is then updated by Line 12, and EC2 skips all other

update actions as desired.

Second, we investigate the scenario, where the updating equivalence class needs to

be split. Still consider the case, where the incremental transaction {b, c, d} is inserted.

In this case, we use generator {d, c} as an example. The support of {d, c} is updated

in the same way as generator {c} in the above example. However, different from

generator {c}, the corresponding equivalence class of {d, c} is EC5 in Figure 6.3 (a),

and, more importantly, EC5.closed = {d, c, a} 6⊆ {b, c, d}. Therefore, Line 11 of

Algorithm 3 is not satisfied. Thus, as desired, EC5 will be split into two as described

in Procedure 4. As shown in Figure 6.3 (b), EC5 splits into EC5′ and EC6′. In

Procedure 4, EC6′ is considered as the first split out of EC5, and it is updated by

Line 2 of Procedure 4. On the other hand, EC5′ is considered as the second split out,

and it is constructed by Line 3 to 11.

Third, we investigate the scenario, where new frequent generator and equivalence

117

class have emerged. In this case, negative border generator {b, c} in Figure 6.3 (a) is

used as an example. After the insertion of {b, c, d}, the support of {b, c} is updated in

the same manner as the previous two examples. Different from the previous examples,

{b, c} is not a frequent generator but a negative border generator. As a result, Line 9 in

Algorithm 3 is not satisfied. However, as highlighted in Figure 6.3 (b), generator {b, c}

becomes frequent after the update. Thus, Line 16 is satisfied, and the corresponding

equivalence class EC7 is then included as frequent equivalence class by Line 1 to 11 of

Procedure 2. Furthermore, {b, c} also acts as a starting point for further enumeration

of new generators as stated in Line 12 to 19 of Procedure 2.

Lastly, we investigate the scenario, where new items are introduced. Incremental

transaction {a, f} is an good example for this scenario. Different from transaction

{b, c, d}, transaction {a, f} consists of new item f . This implies the condition in

Line 4 of Algorithm 3 is satisfied. Therefore, as illustrated in Figure 6.3 (c), after the

insertion of transaction {a, f}, generator {f} is inserted to the GE-tree by Line 5 of

Algorithm 3 as desired. Note that the support of {f} is first initiated to 0. This is

because the support of {f} will be then updated by Line 8 as the update goes on.

6.1.3.2 Time Complexity

We have justified the correctness of PSM+ with a theoretical proof and a running

example. We now demonstrate that PSM+ is also computationally effective.

The computational complexity of an incremental algorithm is generally measured

as a function of the size of areas affected by the data update [62]. In the case of

frequent pattern maintenance, the size of affected areas is equivalent to the number

118

of equivalence classes that are affected by the data update. Recall that the major

strength of PSM+ is that, with GE-tree, PSM+ is able to effectively identify and

update only the equivalence classes that are affected by the data update. Equivalence

classes that are not affected by the update will be skipped, and thus no unnecessary

updates are involved. As a result, the computation involved in PSM+ is proportional

to the number of affected equivalence class, Naffected, and the computation complexity

of PSM+ can be expressed as O(Naffected).

According to Theorem 6.2, the affected equivalence classes can be categorized

into three main types: (I) existing frequent equivalence classes that require only sup-

port update; (II) existing frequent equivalence classes that split after the update;

and (III) newly frequent equivalence classes that emerge after the update. We ob-

serve that the computation required to update these 3 types of affected equivalence

classes are very different from one and other. With the help of GE-tree, the update of

type (I) and type (II) equivalence classes, as demonstrated in Section 6.1.2.2, can be

efficiently completed with little computational overhead. On the other hand, the gen-

eration of type (III) equivalence classes involves computational expensive processes,

which include enumeration and verification of newly frequent generators, generation

of corresponding closed patterns and formation of new equivalence classes. There-

fore, the generation of type (III) equivalence classes is much more computationally

expensive compared to types (I) & (II) equivalence classes, and the computational

complexity of PSM+ is mainly contributed by the generation of type (III) equiva-

lence classes. Moreover, in PSM+, the computation required to generate type (III)

equivalence classes is proportional to the number of generators enumerated, Nenum.

119

dataset #PSM+ #FPgrowth* #GC-growth

BMS-POS (ms% = 0.1%) 80 110K 110K
BMS-WEBVIEW-1 (ms% = 0.1%) 250 3K 3K

chess (ms% = 40%) 350K 6M 1M
connect-4 (ms% = 20%) 80K 1800M 1M

mushroom (ms% = 0.5%) 10K 300M 165K
pumsb star (ms% = 30%) 2K 400K 27K

retail (ms% = 0.1%) 270 8K 8K
T10I4D100K (ms% = 0.5%) 11 1K 1K
T40I10D100K (ms% = 10%) 7K 70K 55K

Table 6.1: Comparison of the number of patterns enumerated by PSM+, FPgrowth*
and GC-growth. Notations: #PSM+, #FPgrowth* and #GC-growth denote the ap-
proximated number of patterns enumerated by the respectively algorithms.

Thus, we can approximate the complexity of PSM+ as O(Nenum).

We have conducted some experiments to compare the number of patterns enu-

merated by PSM+ with the ones of FPgrowth* and GC-growth. In the experiment,

the number of patterns enumerated is recorded for the scenario where the size of

new transactions Dinc is 10% of the original data size. The comparison results are

summarized in Table 6.1. We observe that the number of patterns enumerated by

PSM+ is smaller than the other two by a few orders of magnitude. Therefore, based

on computational complexity, PSM+ is much more effective than FPgrowth* and GC-

growth.

6.1.3.3 Implementation Details

This section discusses the crucial implementation details of PSM+. Note that:

although the following implementation techniques are discussed in the context of

PSM+, they are also employed in PSM- and PSM∆ to facilitate the maintenance

process.

120

Generator

Support

Parent

First Child

Right

Sibling

Corresponding

Equivalence Class

Pointers to

Generators

(a) (b)

121

122

...

- Closed Pattern

- Support

Frequent Equivalence

Class Table

...

...

... ...

Figure 6.4: (a) Showcase of a GE-tree node. (b) The frequent equivalence class table,
highlighting the corresponding equivalence class of the GE-tree node in (a).

Storage of Frequent Pattern Space

PSM+ takes the original frequent pattern space as input and obtains the updated

pattern space by maintaining the original space based on the incremental updates.

The frequent pattern space is usually huge. Therefore, effective data structures are

needed to compactly store the original and updated pattern spaces. We propose to

concisely represent the frequent pattern space with the borders of equivalence classes

— closed patterns and generators.

We develop GE-tree to compactly store the frequent generators and negative

border generators. As shown in Figure 6.3 and 6.4 (a), each node in GE-tree stores

a generator, and, if the generator is frequent, the node is also linked with its corre-

sponding equivalence class. Frequent equivalence classes, as graphically illustrated

in Figure 6.4 (b), are stored in a hash table to achieve fast retrieval. Since each

equivalence class is uniquely associated with one closed pattern, frequent equivalence

classes are indexed based on their closed patterns. Each bucket in the hash table

records the closed pattern and the support value of the associated equivalence class,

121

and it also points to the corresponding generators in the GE-tree. Both GE-tree and

the frequent equivalence class table can be simply constructed with a single scan of

the existing frequent equivalence classes, which are represented by its closed patterns

and generators.

We employ GC-growth [47] to generate the original frequent pattern space rep-

resented in frequent closed patterns and generators. Note that, besides frequent

generators, PSM+ also needs the information on negative border generators. As a

result, the implementation of GC-growth is modified slightly to generate also the neg-

ative border generators. The modification is straightforward: GC-growth just needs

to output the points, where the enumeration stops.

Generation of Closed Patterns

GE-tree, with negative border generators, enables effective enumeration of newly

emerged frequent generators. To complete the border of equivalence classes, the

generation of corresponding closed patterns is required. A prefix tree structure, named

mP-tree, is developed for this task.

mP-tree is a modification of P-tree [34]. P-tree, similar to FP-tree [33], is a

prefix tree that compactly stores transactional datasets. However, unlike FP-tree,

which contains only frequent items, P-tree stores all items in the dataset. mP-tree

also follows this characteristic. E.g. in Figure 6.5 (b), although item e is not a

frequent item, it is still recorded in the mP-tree.

The initial mP-tree is generated in the same manner as P-tree. (Details of the

construction of P-tree can be referred to [34].) However, mP-tree is updated in a

122

Original Dataset

(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

(a)

Header

Table

a : 4

c : 3

d : 3

b : 3
e : 1

b : 1

{}

c : 2

a : 4 d : 1

d : 2

e : 1

b : 1 b : 1

c : 1

Insert

{b,c,d}

(b) (c)

b : 1

{}

c : 2

a : 4 d : 1

d : 2

e : 1

b : 1 b : 1

c : 2

b : 1

d : 1

Header

Table

a : 4

c : 4

d : 4

b : 4
e : 1

Figure 6.5: (a) A sample data set with ms% = 20% and msa = 2. (b) The mP-tree
for the dataset in (a). (c) The updated mP-tree after the insertion of transaction
{b, c, d}.

different manner. In P-tree, new transactions are first inserted into the original tree

based on the original item ordering, and, at the same time, the support values of

individual items are updated. After that, P-tree re-sorts the ordering of items based

on their updated support values and restructures the tree based on the updated item

ordering. This re-sorting and restructuring process ensures the compactness of P-tree,

but this process is computational expensive. On the other hand, in mP-tree, items

are sorted based on their support values in the original dataset. More importantly,

the ordering of items remains unchanged for all subsequent updates. This fix ordering

of items, as demonstrated in Figure 6.5 (c), allows new transactions to be inserted

into mP-tree easily without any re-sorting and swapping of tree nodes.

With mP-tree, the generation of closed patterns for newly emerged frequent gen-

erators becomes straightforward. We use the mP-tree in Figure 6.5 (c) as an example.

Suppose we want to find out the closed pattern of generator {b}. We first extract all

the branches that consist of generator {b} by traversing through the horizontal links

(dotted lines in the figure). We then accumulate the counts for all items involved in

these branches. In the example, we have item a with count 1, item c with 2, item d

123

with 2 and item b itself with 4. Since no items have the same count as item b, we can

derive that none of them appears in the same transaction as b. Therefore, the closed

pattern of generator {b} is also {b}.

In addition, the mP-tree is constantly updated as the incremental transactions

are inserted. As a result, closed patterns for newly emerged frequent generators can

be generated with the mP-tree without re-visiting the original dataset.

6.1.4 Experimental Studies

The effectiveness of the incremental maintenance component, PSM+, is experimental

tested on the benchmark datasets from the FIMI Repository [25]. The statistical

information of the benchmark datasets can be referred to Table 5.1. Experiential

studies in this chapter are conducted on a PC with 2.4GHz CPU and 3.2G of memory.

In real applications, the size of the incremental dataset Dinc is usually much

smaller than the size of the original dataset Dorg, e.g. a daily sales data vs. an annual

sales data, an hourly stock transaction vs. a daily transaction, etc. As a result, the

performance of PSM+ is evaluated for ∆+ ≤ 10%, where ∆+ = |Dinc|/|Dorg|.

PSM+ is compared with the representative frequent pattern discovery algorithms,

FPgrowth* [28] and GC-growth [47]. Recall that, depends on the applications, pattern

maintenance can be conducted in two manners: batch maintenance or eager main-

tenance. As discussed, in eager maintenance, since the pattern space needs to be

updated for every update transaction, re-generating the pattern space with discovery

algorithms involves heavy redundancy and thus is extremely inefficient. Therefore,

124

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

∆+ (%)

T
im

e
(s

ec
.)

BMS−POS, ms
%

 = 0.1%

FPgrowth*
GC−growth
PSM+

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

∆+ (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
%

 = 0.1%

FPgrowth*
GC−growth
PSM+

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

∆+ (%)

T
im

e
(s

ec
.)

chess, ms
%

 = 40%

FPgrowth*
GC−growth
PSM+

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

∆+ (%)

T
im

e
(s

ec
.)

mushroom, ms
%

 = 0.05%

FPgrowth*
GC−growth
PSM+

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

∆+ (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
%

 = 0.5%

FPgrowth*
GC−growth
PSM+

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

∆+ (%)

T
im

e
(s

ec
.)

T40I10D100K, ms
%

 = 10%

FPgrowth*
GC−growth
PSM+

Figure 6.6: Performance comparison of PSM+ and the pattern discovery algorithms:
FPgrowth* and GC-growth. Notations: ∆+ = |Dinc|/|Dorg|.

updating the pattern space with our proposed algorithm is definitely a better option.

Thus, in our experimental studies, we focus only on the batch maintenance scenario.

Figure 6.6 graphically compares the performance of PSM+, FPgrowth* and GC-

growth. It can be seen that PSM+ is much faster than both discovery algorithms, es-

pecially when the update interval is small. When ∆+ is below 1%, PSM+ outperforms

the discovery algorithms by about 3 orders of magnitude. When ∆+ is up to 10%,

125

PSM+ is still at least twice faster, and, for the particular dataset BMS-WEBVIEW-1,

PSM+ is still more than 10 times faster. On the other hand, as can be observed from

Figure 6.6, it is inevitable that the advantage of PSM+ shrinks gradually as the

update interval increases.

The detailed “speed up” achieved by PSM+ (Equation 5.1) is summarized in

Table 6.2. As shown in the table, in the best scenarios, PSM+ is faster than FPgrowth*

by more than 3000 times and faster than GC-growth by almost 2000 times; in the

worst cases, PSM+ is still about twice faster; and, on average, PSM+ outperforms

both discovery algorithms by more than 2 orders of magnitude. In addition, through

our experimental studies, we conclude that PSM+ is, in general, more effective than

the discovery algorithms as far as the update interval ∆+ ≤ 10%.

PSM+ is also compared with the state-of-the-art maintenance algorithms, which

includes Borders [5], CanTree [44], moment [18] and ZIGZAG [70]. Some representative

results are graphically presented in Figure 6.7. According to the empirical results,

PSM+ is the most effective algorithm among all. Take dataset mushroom as an ex-

ample. PSM+ is more than 2 order of magnitude faster than CanTree, and, compared

with Borders, moment and ZIGZAG, it is faster by 4 orders of magnitude. The aver-

age “speed up” of PSM+ against the maintenance algorithms is also summarized in

Table 6.2. PSM+, on average, outperforms Borders by more than 4 orders of mag-

nitude, outperforms moment and ZIGZAG by more than 3 orders of magnitude and

outperforms CanTree by over 700 times.

126

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

10
4

∆+ (%)

T
im

e
(s

ec
.)

BMS−POS, ms
%

 = 0.1%

Borders
CanTree
ZIGZAG
moment
PSM+

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

∆+ (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
%

 = 0.1%

Borders
CanTree
ZIGZAG
moment
PSM+

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

10
4

∆+ (%)

T
im

e
(s

ec
.)

chess, ms
%

 = 40%

Borders
CanTree
ZIGZAG
moment
PSM+

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

10
4

∆+ (%)

T
im

e
(s

ec
.)

mushroom, ms
%

 = 0.05%

Borders
CanTree
ZIGZAG
moment
PSM+

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

∆+ (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
%

 = 0.5%

Borders
CanTree
ZIGZAG
moment
PSM+

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

∆+ (%)

T
im

e
(s

ec
.)

T40I10D100K, ms
%

 = 10%

Borders
CanTree
ZIGZAG
moment
PSM+

Figure 6.7: Performance comparison of PSM+ and the pattern maintenance algo-
rithms, Borders, CanTree, ZIGZAG and moment. Notations: ∆+ = |Dinc|/|Dorg|.

127

Dataset
Discovery Algorithms Maintenance Algorithms

FPgrowth* GC-growth Borders CanTree ZIGZAG moment

accidents (ms% = 50%) 12.5 76 490 15 270 22

accidents (ms% = 40%) 1.6 9.5 135 2 56.5 6.2

BMS-POS (ms% = 0.1%) 43 155 11,900 55 5,880 14,400

BMS-POS (ms% = 0.5%) 126 390 21,000 130 13,500 23,000

BMS-WEBVIEW-1 (ms% = 0.1%) 136 125 1,360 152 588 741

BMS-WEBVIEW-1 (ms% = 0.05%) 963 370 5,200 1,015 672 75

BMS-WEBVIEW-2 (ms% = 0.05%) 35 96 4,300 40 1,900 715

BMS-WEBVIEW-2 (ms% = 0.01%) 1,300 316 32,200 1,420 13,000 615

chess (ms% = 50%) 590 96 3,400 620 1,395 13,000

chess (ms% = 40%) 169 18 640 180 172 18,100

connect-4 (ms% = 50%) 2,280 8.2 5,200 2,340 1,400 826

connect-4 (ms% = 45%) 2,740 5.6 5,300 2,810 1,800 824

mushroom (ms% = 0.1%) 3,085 380 67,000 3,121 47,800 3,216

mushroom (ms% = 0.05%) 2,457 81 45,000 2,630 15,000 2,960

pumsb (ms% = 70%) 1.6 1.5 32 1.8 6.9 1,662

pumsb (ms% = 60%) 3.5 23.5 56 3.8 16.5 640

pumsb star (ms% = 50%) 101 420 273 123 25.7 7,540

pumsb star (ms% = 40%) 3.6 20 22 7.2 16 2,970

retail (ms% = 0.1%) 640 247 36,000 735 27,100 18,210

retail (ms% = 0.05%) 985 98.5 61,000 1,050 38,500 28,340

T10I4D100K (ms% = 0.5%) 150 374 1,540 200 261 609

T10I4D100K (ms% = 0.05%) 41 64 360 45.5 120 81

T40I10D100K (ms% = 10%) 140 1,145 2,600 955 102 1,415

T40I10D100K (ms% = 5%) 138 1,777 2,160 269 36 1,118

Average 672 262 12,800 746 7,067 5,878

Table 6.2: Average speed up of PSM+ over benchmark datasets for batch maintenance
(when ∆+ ≤ 10%).

128

6.2 Decremental Maintenance

This section discusses the decremental maintenance component, PSM-. In the decre-

mental update, some old transactions Ddec are removed from the original dataset

Dorg, and thus the updated dataset Dupd− = Dorg − Ddec. Given a support thresh-

old, the task of decremental maintenance is to obtain the updated pattern space by

maintaining the original pattern space.

We first recap how the space of frequent patterns, which is represented using

equivalence classes, evolves under decremental updates. Similar to incremental main-

tenance, we simplify the update scenarios by considering one decremental transaction

at a time. Based on the space evolution study, we then summarize the major com-

putational tasks in decremental maintenance. We further demonstrate how these

computational tasks can also be completed efficiently using GE-tree. PSM- is then

studied both algorithmically and experimentally.

6.2.1 Evolution of Pattern Space

There is an obvious duality between incremental and decremental updates. They are

basically reverse operations of each other. Therefore, similar to incremental updates,

existing equivalence classes may also evolves in three different ways under decremental

updates: existing classes may remain unchanged without any change in support; or

they may remain unchanged but with an decreased support; or they may expand by

merging with other classes. Since the support of equivalence classes may decrease

after an decremental update, some existing frequent equivalence classes may become

129

infrequent.

Under incremental updates, one existing equivalence class may split into multiple

classes, and, reversely, multiple classes may merge into one under decremental up-

dates. We have successfully simplified the class splitting scenarios under incremental

updates by considering one incremental transaction at a time. Similarly, the class

merging scenarios under decremental updates can also be simplified using the same

strategy.

Proposition 6.6. Let [P]Dorg and [Q]Dorg be two existing equivalence classes in Dorg,

where [P]Dorg ∩ [Q]Dorg = ∅. Also let t− be a decremental transaction and Dupd− =

Dorg − {t−}. In Dupd−, [P]Dorg and [Q]Dorg merge into [P]Dupd−, only if (i) P 6⊆

t− ∧ Q ⊆ t− or (ii) P ⊆ t− ∧ Q 6⊆ t−.

Proof. By normal definition, [P]Dorg and [Q]Dorg merge into [P]Dupd− means [P]Dorg ⊂

[P]Dupd− and [Q]Dorg ⊂ [P]Dupd− . This further means f(P,Dupd−) = f(Q,Dupd−).

Since [P]Dorg ∩ [Q]Dorg = ∅, we have f(P,Dorg) 6= f(Q,Dorg). For any pattern P

and Q, there are 4 possibilities: (1) P 6⊆ t−, Q 6⊆ t−, (2) P 6⊆ t−, Q ⊆ t−, (3)

P ⊆ t−, Q 6⊆ t−, and (4) P ⊆ t−, Q ⊆ t−. Case (2) and (3) correspond to

conditions (i) and (ii) in the proposition. Moreover, Case (2) and (3) are equiva-

lent, because any assignment for P and Q in Case (2) can be oppositely assigned

in Case (3). For both Case (1) and (4), we have f(P,Ddec) = f(Q,Ddec). Since

f(P,Dorg) 6= f(Q,Dorg), this implies that f(P,Dorg) − f(P,Ddec) 6= f(Q,Dorg) −

(Q,Ddec). Therefore, f(P,Dupd−) 6= f(Q,Dupd−) for Case (1) and (4). This proves

that, for f(P,Dupd−) = f(Q,Dupd−) and [P]Dorg and [Q]Dorg merge into [P]Dupd− , one

130

of Case (2) and (3) must be true.

Since conditions (i) and (ii) in Proposition 6.6 are equivalent, without loss of

generality, we assume condition (i) is true for the following discussion. Following

Proposition 6.6, we have Proposition 6.7, as the duality of Proposition 6.1, for decre-

mental updates. We use Close(X) to denote the closed pattern of equivalence class

X and Keys(X) to denote the generators of the class.

Proposition 6.7. Let [P]Dorg and [Q]Dorg be two existing equivalence classes in Dorg,

where [P]Dorg ∩ [Q]Dorg = ∅ ∧ P 6⊆ t − ∧ Q ⊆ t− . Also let t− be a decremental

transaction and Dupd− = Dorg − {t−}. In Dupd−, [P]Dorg and [Q]Dorg merge into

[P]Dupd− iff f(P,Dupd−) = f(Q,Dupd−).

Moreover, f(P,Dupd−) = f(Q,Dupd−) iff f(Q,Dorg)− f(P,Dorg) = {t−}.

Then, [P]Dupd− = [P]Dorg ∪ [Q]Dorg , sup(P,Dupd−) = sup(P,Dorg),

Close([P]Dupd−) = Close([P]Dorg) and Keys([P]Dupd−) = min{K|K ∈ Keys([P]Dorg)∨

K ∈ Keys([Q]Dorg)}

Proof. The first part of the proposition is obvious given the definition of equivalence

class (Definition 4.3).

Next, we prove the second part. For the left-to-right direction, suppose

f(P,Dupd−) = f(Q,Dupd−). Since P 6⊆ t−, f(P,Dupd−) = f(P,Dorg). Also

since Q ⊆ t−, f(Q,Dupd−) = f(Q,Dorg) − {t−}. This implies that f(P,Dorg) =

f(Q,Dorg) − {t−}. Thus f(Q,Dorg) − f(P,Dorg) = {t−}. The left-to-right direc-

tion is proven. For the right-to-left direction, suppose (i) P 6⊆ t− and Q ⊆ t−

and (ii) f(Q,Dorg) − f(P,Dorg) = {t−}. Point (i) and (ii) directly implies that

131

f(Q,Dorg) − {t−} = f(Q,Dupd−) = f(P,Dorg) = f(P,Dupd−). The right-to-left di-

rection is proven.

For the last part of the proposition, we first prove [P]Dupd− = [P]Dorg ∪ [Q]Dorg .

Suppose f(P,Dupd−) = f(Q,Dupd−). Then, according to the definition of equivalence

class, [P]Dupd− = [Q]Dupd− . Also according to Corollary 4.17, we have [P]Dorg ⊆

[P]Dupd− and [Q]Dorg ⊆ [Q]Dupd− = [P]Dupd− . Therefore, we have [P]Dupd− ⊇ [P]Dorg ∪

[Q]Dorg . Let O = [P]Dorg ∪ [Q]Dorg and assume ∃X 6∈ O but X ∈ [P]Dupd− . Since X ∈

[P]Dupd− , f(P,Dupd−) = f(X,Dupd−). According to the second part of the proposition,

we have f(X,Dorg) − f(P,Dorg) = {t−}. This further implies that f(X,Dorg) =

f(Q,Dorg) and X ∈ [Q]Dorg . This contradicts with our initial assumption. Thus

6 ∃X 6∈ O but X ∈ [P]Dupd− . Therefore [P]Dupd− = O = [P]Dorg ∪ [Q]Dorg .

Next we prove Close([P]Dupd−) = Close([P]Dorg). Let C = Close([P]Dorg) and

assume that there exists pattern C ′ ⊃ C that C ′ ∈ [P]Dupd− . Since C is the closed

pattern of [P]Dorg and C ′ ⊃ C, according to Definition 2.3, we know C ′ 6∈ [P]Dorg

and f(C ′,Dorg) 6= f(P,Dorg). Also since P 6⊆ t−, C 6⊆ t− (C ∈ [P]Dorg) and

C ′ 6⊆ t− (C ′ ⊃ C). Therefore, f(C ′,Dupd−) = f(C ′,Dorg). Combining the facts that

f(C ′,Dorg) 6= f(P,Dorg), f(P,Dorg) = f(P,Dupd−) and f(C ′,Dupd−) = f(C ′,Dorg),

we have f(C ′,Dupd−) 6= f(P,Dupd−) and C ′ 6∈ [P]Dupd− . This contradicts with the ini-

tial assumption. Thus we can conclude that C ′ 6∈ [P]Dupd− for all C ′ ⊃ C. According

to Fact 4.6, C is the closed pattern of [P]Dupd− .

For Keys([P]Dupd−), the formula basically follows the definition of generator in

Fact 4.6. Also since P 6⊆ t−, we have sup(P,Dupd−) = sup(P,Dorg).

132

We can also simplify the evolution scenarios in Theorem 4.20 as follows.

Theorem 6.8. Let Dorg be the original dataset, t− be the decremental transaction,

Dupd− = Dorg − {t−} be the updated dataset and ms% be the support threshold. For

every frequent equivalence class [P]Dorg in F(ms%,Dorg), exactly one of the 5 scenarios

below holds:

1. P 6⊆ t− and there does not exists Q such that Q 6∈ [P]Dorg but f(Q,Dupd−) =

f(P,Dupd−), corresponding to the scenario where the equivalence class re-

mains totally unchanged. In this case, [P]Dupd− = [P]Dorg , sup(P,Dupd−) =

sup(P,Dorg) and [P]Dupd− ∈ F(Dupd−,ms%).

2. P 6⊆ t− and f(Q,Dupd−) = f(P,Dupd−) for some Q 6∈ [P]Dorg , corre-

sponding to the scenario where the equivalence class of Q has to merge into

the equivalence class of P . Moreover, [P]Dupd− = [Q]Dupd− = [P]Dorg ∪

[Q]Dorg , sup(P,Dupd−) = sup(P,Dorg), Close([P]Dupd−) = Close([P]Dorg) and

Keys([P]Dupd−) = min{K|K ∈ Keys([P]Dorg) ∨K ∈ Keys([Q]Dorg)}. Further-

more, [P]Dupd− ∈ F(Dupd−,ms%).

3. P ⊆ t− and sup(P,Dupd−) < dms% × |Dupd−|e, corresponding to the scenario

where an existing frequent equivalence class becomes infrequent. In this case,

[P]Dorg 6∈ F(Dupd−,ms%).

4. P ⊆ t−, sup(P,Dupd−) ≥ dms% × |Dupd−|e and there does not exists Q such

that Q 6∈ [P]Dorg but f(Q,Dupd−) = f(P,Dupd−), corresponding to the scenario

where the equivalence class remains the same but with decreased support. In

133

this case, [P]Dupd− = [P]Dorg , sup(P,Dupd−) = sup(P,Dorg) − 1 and [P]Dupd− ∈

F(Dupd−,ms%).

5. P ⊆ t−, sup(P,Dupd−) ≥ dms% × |Dupd−|e and f(Q,Dupd−) = f(P,Dupd−) for

some Q 6∈ [P]Dorg , corresponding to the scenario where the equivalence class of

P has to merge into the equivalence class of Q. This scenario is complement to

Scenario 2. In this case, the equivalence class, support, generators, and closed

pattern of [P]Dupd− is same as that of [Q]Dupd−, as computed in Scenario 2.

Proof. Scenarios 1 and 3 are obvious. Scenario 2 follows Proposition 6.7, and [P]Dorg

in Scenario 2 is equivalent to [P]Dorg in Proposition 6.7. Scenario 5 is the comple-

mentary of Scenario 2. Scenario 5 is also extended from Proposition 6.7, and [P]Dorg

in Scenario 5 is equivalent to [Q]Dorg in Proposition 6.7.

We then prove Scenario 4. Suppose (i) P ⊆ t−, (ii) sup(P,Dupd−) ≥ dms% ×

|Dupd−|e and (iii) there does not exists Q such that Q 6∈ [P]Dorg but f(Q,Dupd−) =

f(P,Dupd−). Point (ii) implies that [P]Dupd− ∈ F(Dupd−,ms%). According to Corol-

lary 4.17, every member of [P]Dorg remains to be in [P]Dupd− after the update. More-

over, point (iii) implies that f(Q,Dupd−) 6= f(P,Dupd−) for every pattern Q 6∈ [P]Dorg .

This means no new members will be included into [P]Dupd− . Therefore, [P]Dupd− =

[P]Dorg and sup(P,Dupd−) = |f(P,Dupd−)| = |f(P,Dorg)− {t−}| = sup(P,Dorg)− 1.

Last we prove that the theorem is complete. For patterns P 6⊆ t−, it is obvious

that Scenario 1 and 2 enumerated all possible cases. For patterns P ⊆ t−, it is also

obvious that Scenarios 3 to 5 enumerated all possible cases. Therefore, the theorem

is complete and correct.

134

Theorem 6.8 summarizes how the frequent pattern space evolves after one existing

transaction is removed from the original dataset. The theorem also describes how

the updated frequent equivalence classes can be derived from the existing frequent

equivalence classes.

In addition, opposite to the incremental update, the decremental update de-

creases the absolute support threshold if the support threshold is initially defined in

terms of percentage. This decrease in the absolute support threshold induces new

frequent equivalence classes to emerge.

Combining all the above observations, we summarize that the decremental main-

tenance of the frequent pattern space involves four computational tasks: (1) update

the support of existing frequent equivalence classes; (2) merge equivalence classes that

satisfy Scenarios 2 and 5 of Theorem 6.8; (3) discover newly emerged frequent equiv-

alence classes; and (4) remove existing frequent equivalence classes that are no longer

frequent. Task (3) is not needed if the minimum support threshold is defined in

terms of absolute count. Task (4) is excluded from our discussion, for its solution is

straightforward. Assume that the support threshold is defined in terms of percentage,

we here focus on the first three tasks, and we name them respectively as the Support

Update task, Class Merging task and New Class Discovery task.

6.2.2 Maintenance of Pattern Space

Decremental updates are the reverse operation of incremental updates, and, analo-

gously, decremental maintenance is the reverse process of incremental maintenance.

135

As a result, the maintenance data structure GE-tree can also be employed to address

the computational tasks in decremental maintenance.

For the Support Update task in decremental maintenance, it is basically the

reverse operation of the one in incremental maintenance. Therefore, the support of

existing frequent equivalence classes can be updated using GE-tree in the same man-

ner described in Section 6.1.2.2. Except that, as shown in Figure 6.8, in decremental

maintenance, the support is decremented instead.

For the New Class Discovery task, newly emerged frequent equivalence classes

and generators can also be effectively enumerated based on the concept of negative

generator border. Details of the enumeration method is presented in Procedure 2 in

Section 6.1.2.3. Same as in incremental maintenance, the negative generator border

is updated after the removal of each old transactions. However, as illustrated in

Figure 6.8 (c), different from incremental updates, when old transactions are removed,

the negative generator border shrinks and move towards the root of GE-tree.

For the Class Merging task, unfortunately, it can not be handled in the same

way as the Class Splitting task in incremental maintenance. However, extended from

Proposition 6.7, we have the following corollary.

Corollary 6.9. Let [P]Dorg and [Q]Dorg be two equivalence classes in Dorg such that

[P]Dorg ∩ [Q]Dorg = ∅, P 6∈ Ddec but Q ∈ Ddec. Then f(P,Dupd−) = f(Q,Dupd−),

meaning [P]Dorg merges with [Q]Dorg in Dupd−, iff (1) sup(P,Dupd−) = sup(Q,Dupd−)

and (2) Close([P]Dorg) ⊃ Close([Q]Dorg).

Proof. We first prove the left-to-right direction. Suppose (i) P 6∈ Ddec, (ii) Q ∈

136

Ddec and (iii) f(P,Dupd−) = f(Q,Dupd−). Point (iii) implies that sup(P,Dupd−) =

sup(Q,Dupd−). Combining Point (i),(ii) and (iii), we have f(P,Dorg) = f(P,Dupd−) =

f(Q,Dupd−) = f(Q,Dorg) − f(Q,Ddec). This implies that f(P,Dorg) ⊂ f(Q,Dorg).

Therefore, Close([P]Dorg) ⊃ Close([Q]Dorg) (Fact 4.8).

We then prove the right-to-left direction. Suppose (i) sup(P,Dupd−) =

sup(Q,Dupd−) and (ii) Close([P]Dorg) ⊃ Close([Q]Dorg). Point (ii) implies that

f(P,Dupd−) ⊆ f(Q,Dupd−) (Fact 4.8). Combining this with Point (i), we have

f(P,Dupd−) = f(Q,Dupd−) as desired. The corollary is proven.

Corollary 6.9 provides us a means to determine which two equivalence classes

need to be merged after a decremental update. Based on Corollary 6.9, one way

to handle the Class Merging task effectively is to first group the equivalence classes

based on their support. This can be done efficiently using a hash table with support

values as hash keys. Then, within the group of equivalence classes that shared the

same support, we further compare their closed patterns. two equivalence classes are

to be merged together, if their closed patterns are superset and subset to each other.

6.2.3 Proposed Algorithm: PSM-

The pseudo-code of PSM- is presented in Algorithm 5 and Procedure 2. In

Algorithm 5 and Procedure 2, we use X.support to denote the support of pattern X

or equivalence class X; we use X.close to denote the closed pattern of equivalence

class X and we use X.keys to denote the set of generators of equivalence class X.

We have also proven the correctness of PSM-.

137

Remove {a,f}

{}

a : 5 c : 4

ca : 2 da : 2 dc : 3

d : 4 b : 4

ba : 1 bc : 2

Original Dataset
(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: f <0 e <0 b <0 d <0 c <0 a

(a)

b,c,d

bd : 2

EC1: <a , a>: 5

EC4: <b , b>:4

EC2: <c , c>:4

EC3: <d , d>:4

EC6: <ca da, dca>:2

Frequent Equivalence

Class Table

EC5: <dc, dc>:3

EC7: <bc, bc>:2

EC8: <bd, bd>:2

a, f
bdc : 1

f : 1

bca : 0

bda : 0

(b)

{}

a : 4 c : 4

ca : 2 da : 2 dc : 3

d : 4 b : 4

ba : 1 bc : 2

Updated Dataset
(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: e <0 b <0 d <0 c <0 a

b,c,d

bd : 2

bdc : 1

EC1: <a , a>: 4

EC4: <b , b>:4

EC2: <c , c>:4

EC3: <d , d>:4

EC6: <ca da, dca>:2

Frequent Equivalence

Class Table

EC5: <dc, dc>:3

EC7: <bc, bc>:2

EC8: <bd, bd>:2

bca : 0

bda : 0

Remove {b,c,d}

{}

a : 4 c : 3

ca : 2 da : 2 dc : 2

d : 3 b : 3

ba : 1 bc : 1 bd : 1

Original Dataset
(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: e <0 b <0 d <0 c <0 a

(c)

EC1: <a , a>: 4

EC4: <b , b>:3

EC2: <c , c>:3

EC3: <d , d>:3

EC5': <ca da dc , dca>:2

Frequent Equivalence

Class Table

EC7: <bc, bc>:1

EC8: <bd, bd>:1

Figure 6.8: (a) The GE-tree for the original dataset. (b) The updated GE-tree after
the existing transaction {a, f} is removed. (c) The updated GE-tree after the existing
transaction {b, c, d} is also removed.

138

Algorithm 5 PSM-
Input: Ddec the decremental dataset; |Dupd−| the size of the updated dataset; Forg the

original frequent pattern space represented using equivalence classes ; GE-tree and ms%

the support threshold.
Output: Fupd− the updated frequent pattern space represented using equivalence classes

and the updated GE-tree.
Method:
1: F := Forg; {Initialization.}
2: msa = dms% × |Dupd−|e;
3: for all transaction t in Ddec do
4: for all generator G in GE-tree that G ⊆ t do
5: G.support := G.support− 1;
6: if G is an existing frequent generator then
7: Let EC be the equivalence class of G in F ;

{Update the support of existing frequent equivalence classes.}
8: EC.support := G.support;
9: end if

10: if G.support < msa then
11: G → GE-tree.ngb; {Update the negative generator border.}
12: Remove all children of G from GE-tree.ngb;
13: end if
14: end for
15: end for
16: for all NG ∈ GE-tree.ngb that NG.support ≥ msa do
17: enumNewEC(NG, F , msa, GE-tree); {Enumerate new frequent equivalence classes.}
18: end for
19: for all equivalence class EC ∈ F do
20: if EC.support ≥ msa then
21: if ∃EC ′ such that EC ′.support = EC.support and EC.close ⊂ EC ′.close then
22: EC ′.keys = min{K|K ∈ EC.keys ∧K ∈ EC ′.keys};

{Merging of equivalence classes.}
23: Remove EC from F ;
24: end if
25: else
26: Remove EC from F ;
27: end if
28: end for
29: Fupd− := F

return Fupd− and the updated GE-tree;

139

Theorem 6.10. PSM- presented in Algorithm 5 correctly maintains the frequent pat-

tern space, which is represented using equivalence classes, for decremental updates.

Proof. According to Theorem 6.8, after removing an existing transaction t−, an ex-

isting frequent equivalence class [P]Dorg may evolve in only 5 scenarios. We prove the

correctness of our algorithm according to these 5 scenarios.

For Scenario 1, suppose (i) P 6⊆ t− and (ii) there does not exists Q such that

Q 6∈ [P]Dorg but f(Q,Dupd−) = f(P,Dupd−). In Line 1, [P]Dorg is included into F as

initialization. Then Point (i) implies that the condition in Line 4 will not be satisfied.

Thus, Lines 5 to 15 will be skipped, and the support of [P]Dorg remains unchanged as

desired. Also since [P]Dorg ∈ F(Dorg,ms%), sup(P,Dupd−) = sup(P,Dorg) ≥ dms% ×

|Dorg|e ≥ dms%× |Dupd−|e. Therefore, the condition in Line 20 is satisfied. Point (ii)

implies that Line 21 can not be true (Corollary 6.9). As a result, [P]Dorg is included

in Fupd− unchanged in Line 29 as desired.

For Scenario 2, suppose (i) P 6⊆ t− and (ii) f(Q,Dupd−) = f(P,Dupd−) for some

Q 6∈ [P]Dorg . In Line 1, [P]Dorg is included into F as initialization. Same as in

Scenario 1, because of Point (i), the condition in Line 4 is not satisfied, and thus

Lines 5 to 15 are skipped. The support of [P]Dorg remains unchanged as desired.

With the same reasoning in Scenario 1, Line 20 will be true. Point (i) also implies

that Line 21 cannot be true. However, Point (ii) implies that there exists equivalence

class EC ′ that satisfies Line 21 and will merge with [P]Dorg . For the case when more

than one transaction is removed, the for-loop between Lines 19 to 28 iteratively merge

all such EC ′s with [P]Dorg to form [P]Dupd− as desired. Finally, [P]Dupd− is included

140

in Fupd− in Line 29 as desired.

For Scenario 3, suppose (i) P 6⊆ t− and (ii) sup(P,Dupd−) < dms% × |Dupd−|e.

As usual, [P]Dorg is included into F as initialization. Point (ii) implies that Line 20

will not be true. Therefore, [P]Dorg will be removed from F in Line 26, and it will

not be included in Fupd− as desired.

For Scenario 4, suppose (i) P ⊆ t−, (ii) sup(P,Dupd−) ≥ dms% × |Dupd−|e and

(iii) there does not exists Q such that Q 6∈ [P]Dorg but f(Q,Dupd−) = f(P,Dupd−). As

usual, [P]Dorg is included into F as initialization. Point (i) implies that the condition

in Line 4 will be satisfied. Thus the support of [P]Dorg will be updated as desired by

Line 8. Point (ii) then implies that Line 10 is not true, and thus Lines 11 to 12 are

skipped. Point (ii) and (iii) also implies that Line 20 will be true but Line 21 will not

be true (Corollary 6.9). As a result, [P]Dorg will be include in Fupd− with a updated

support as desired.

For Scenario 5, since it is complement to Scenario 2, patterns of Scenario 5 will

also be correctly updated as explained in Scenario 2.

Finally, since a decremental update causes the data size and the absolute support

threshold to drop, new frequent equivalence classes may emerge. In PSM-, all the

newly emerged frequent equivalence classes will be enumerated from the negative

generator border by Line 17. With that, the theorem is proven.

Similar to PSM+, the major contribution to the time complexity of PSM- comes

from the New Class Discovery task. For the New Class Discovery task, the com-

putational complexity is proportional to the number of patterns enumerated. As a

141

result, the time complexity of PSM- can also be approximated as O(Nenum), where

Nenum is the number of patterns enumerated. Moreover, the number of patterns need

to be enumerated is proportional to the number of newly emerged frequent equiva-

lence classes. In general, under decremental updates, the number of newly emerged

frequent equivalence classes is much smaller than the total number of frequent equiv-

alence classes. This theoretically demonstrates that maintaining the frequent pattern

space with PSM- is definitely much more effective than re-discovering the pattern

space.

6.2.4 Experimental Studies

The effectiveness of PSM- is evaluated through experimental studies. Similar to in-

cremental updates, in real applications, the size of decremental updates is usually

much smaller compared to the size of the original dataset. Therefore, in our ex-

perimental studies, the performance of PSM- is evaluated for ∆− ≤ 10% , where

∆− = |Ddec|/|Dorg|. PSM- is compared with the representative pattern discovery al-

gorithms, FPgrowth* [28] and GC-growth [47], for batch maintenance. PSM- is also

compared with the state-of-the-art maintenance algorithms that address decremental

updates. These algorithms include moment [18] and ZIGZAG [70]. In addition, the

performance of PSM- is also compared with our proposed algorithm, TRUM. The

representative results are summarized in Figure 6.9.

142

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
%

 = 0.1%

FPgrowth*
GC−growth
PSM−

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

∆− (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
%

 = 0.1%

ZIGZAG
moment
TRUM
PSM−

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e
(s

ec
.)

mushroom, ms
%

 = 0.5%

FPgrowth*
GC−growth
PSM−

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

∆− (%)

T
im

e
(s

ec
.)

mushroom, ms
%

 = 0.5%

ZIGZAG
moment
TRUM
PSM−

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
%

 = 0.1%

FPgrowth*
GC−growth
PSM−

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

∆− (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
%

 = 0.1%

ZIGZAG
moment
TRUM
PSM−

(a) (b)

Figure 6.9: (a) Performance comparison of PSM- and the pattern discovery algo-
rithms: FPgrowth* and GC-growth. (b) Performance comparison of PSM- and the
pattern maintenance algorithms: ZIGZAG, moment and TRUM. Notations: ∆− =
|Ddec|/|Dorg|.

As illustrated in Figure 6.9 (a), PSM- is much more efficient than the discovery

algorithms. When the update interval, ∆−, is below 1%, PSM- outperforms the dis-

covery algorithms by around 2 orders of magnitude; and, when ∆− is up to 10%, PSM-

is still 5 times more efficient. Table 6.3 summarizes the average “speed up” achieved

143

by PSM- (Equation 5.1). Compared with FPgrowth*, PSM- achieves the highest speed

up over dataset mushroom, where PSM- runs almost 2000 times faster. Compared

with GC-growth, PSM- tops on datasets BMS-POS and T10I4D100K, where PSM-

runs over 300 times faster. On average, PSM- outperforms both discovery algorithms

by around 2 orders of magnitude. Moreover, similar to other maintenance case, we

also observe that the advantage of PSM- diminishes slowly as more transactions are

removed from the original dataset. However, based on our experimental results, we

are confident that PSM- is more effective compared to the discovery algorithms as far

as ∆− ≤ 10%.

Figure 6.9 (b) graphically compares PSM- with other maintenance algorithms.

Compared with moment and ZIGZAG, PSM-, in most cases, is at least 10 times faster.

According to Table 6.3, PSM- outperforms ZIGZAG by almost 800 times and outper-

forms moment by almost 4 orders of magnitude. However, it is also observed that

PSM- is not as fast as our proposed decremental maintainer, TRUM. This shows that

the TID-tree in TRUM is a more effective data structure for decremental maintenance

than the GE-tree in PSM-. However, GE-tree is a more versatile structure that can

be applied to various types of updates.

144

Dataset
Discovery Algorithms Discovery Algorithms

FPgrowth* GC-growth ZIGZAG moment

accidents (ms% = 50%) 8.5 65 180 15

accidents (ms% = 40%) 1.5 9 44 4.7

BMS-POS (ms% = 0.1%) 40 98 5,100 12,000

BMS-POS (ms% = 0.01%) 105 326 10,500 21,000

BMS-WEBVIEW-1 (ms% = 0.1%) 4.6 40 3.8 150

BMS-WEBVIEW-1 (ms% = 0.05%) 5.3 45 14.6 187

BMS-WEBVIEW-2 (ms% = 0.05%) 11.8 24 53 210

BMS-WEBVIEW-2 (ms% = 0.01%) 9.5 22 48 198

chess (ms% = 50%) 37 7.6 50 2,800

chess (ms% = 40%) 102 10 22 88,000

connect-4 (ms% = 50%) 110 2.1 116 1,080

connect-4 (ms% = 45%) 18 1.3 7.5 170

mushroom (ms% = 0.5%) 135 44 140 7,200

mushroom (ms% = 0.1%) 1,850 69 432 23,400

pumsb (ms% = 70%) 4.5 6.6 1.3 510

pumsb (ms% = 60%) 43 15 1.5 10,400

pumsb star (ms% = 50%) 58 111 277 2,300

pumsb star (ms% = 40%) 180 56 310 6,700

retail (ms% = 0.1%) 42 143 270 143

retail (ms% = 0.05%) 34 266 720 155

T10I4D100K (ms% = 0.5%) 47 80 75 1,120

T10I4D100K (ms% = 0.1%) 60 320 380 1,450

T40I10D100K (ms% = 10%) 7 5 1.3 63

T40I10D100K (ms% = 5%) 5 4 1.4 9

Average 121 73 780 7,470

Table 6.3: Average speed up of PSM- over benchmark datasets for batch maintenance
(when ∆− ≤ 10%).

145

Algorithm 6 PSM∆

Input: Forg the original frequent pattern space represented using equivalence classes; GE-
tree; msorg and msupd, the original and updated support threshold.

Output: Fupd∆ the updated frequent pattern space represented using equivalence classes
and the updated GE-tree.

Method:
1: F := Forg; {Initialization.}
2: if msupd > msorg then
3: for all EC ∈ F do
4: if EC.support < msupd then
5: Remove EC from F ;
6: end if
7: end for
8: else if msupd < msorg then
9: for all NG ∈ GE-tree.ngb that NG.support ≥ msupd do

10: enumNewEC(NG, F , msupd, GE-tree); {Enumerate new equivalence classes.}
11: end for
12: end if
13: Fupd∆ = F

return Fupd∆ and the updated GE-tree;

6.3 Threshold Adjustment Maintenance: PSM∆

This section introduces PSM∆, the support threshold adjustment maintenance com-

ponent of PSM.

Under support threshold adjustment, there are two possible scenarios. When the

support threshold is adjusted up, no new frequent patterns and equivalence classes

may emerge. Moreover, some existing frequent patterns and equivalence classes may

become infrequent. To maintain the pattern space under this scenario, PSM∆ ba-

sically scans through the existing equivalence classes and remove those that are no

longer frequent. On the other hand, when the support threshold is adjusted down, all

existing frequent patterns and equivalence classes remain to be frequent. Moreover,

new (unknown) frequent patterns and equivalence classes may emerge. The mainte-

146

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

BMS−POS, ms
org

 = 0.5%

FPgrowth*
GC−growth
PSM∆

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
org

 = 0.5%

FPgrowth*
GC−growth
PSM∆

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

10
2

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

mushroom, ms
org

 = 0.5%

FPgrowth*
GC−growth
PSM∆

5 10 15 20 25
10

−1

10
0

10
1

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
org

 = 0.1%

FPgrowth*
GC−growth
PSM∆

Figure 6.10: Performance comparison of PSM∆ and the discovery algorithms,
FPgrowth* and GC-growth. Notations: ∆ms denotes the difference between the origi-
nal support threshold and the updated support threshold.

nance for this scenario is much more challenging, for we have little information on

the newly emerged patterns. In this case, PSM∆ efficiently enumerates the newly

emerged equivalence classes based on the concepts of GE-tree and negative generator

border. Details of the enumeration technique can be referred to Section 6.1.2.3 and

Procedure 2.

The pseudo-code of PSM∆ is presented in Algorithm 6, in which the

enumNewEC() function is defined in Procedure 2. For the case, where the updated

threshold is greater than the original one, Line 4 of PSM∆ filters out all infrequent

equivalence classes, and Line 5 then removes them from the pattern space. For the

case, where the updated threshold is less than the original one, PSM∆ first searches

147

5 10 15 20 25

10
−2

10
0

10
2

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

BMS−POS, ms
org

 = 0.5%

Borders
ZIGZAG
PSM∆

5 10 15 20 25

10
−3

10
−2

10
−1

10
0

10
1

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

BMS−WEBVIEW−1, ms
org

 = 0.5%

Borders
ZIGZAG
PSM∆

5 10 15 20 25
10

−4

10
−2

10
0

10
2

10
4

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

mushroom, ms
org

 = 0.5%

Borders
ZIGZAG
PSM∆

5 10 15 20 25
10

−1

10
0

10
1

10
2

10
3

∆
ms

/ms
org

 (%)

T
im

e
(s

ec
.)

T10I4D100K, ms
org

 = 0.1%

Borders
ZIGZAG
PSM∆

Figure 6.11: Performance comparison of PSM∆ and the maintenance algorithms,
Borders and ZIGZAG. Notations: ∆ms denotes the difference between the original
support threshold and the updated support threshold.

for the newly frequent negative border generators (Line 9). We call these generators

the “newly promoted generators”. PSM∆ then uses these newly promoted generators

as starting points and enumerates the newly frequent equivalence classes (Line 10).

As discussed, the enumeration strategy of GE-tree ensures the enumeration is cor-

rect and complete. As a result, we can conclude that PSM∆ correctly maintains the

frequent pattern space for support threshold adjustments.

We have also evaluated the effectiveness of PSM∆ through experimental studies.

When the threshold is adjusted up, the maintenance process is very straightforward,

thus we ignored it in our experimental studies. We focus on the case, where the

threshold is adjusted down. PSM∆ is tested with various degrees of threshold ad-

148

justment. Representative experimental results are presented in Figure 6.10 and 6.11.

As can been seen from Figure 6.10 and 6.11, PSM∆ outperforms both the pattern

discovery and pattern maintenance algorithms significantly. Moreover, we observe

that, for various datasets and initial support thresholds, PSM∆ is at least twice faster

than the discovery algorithms for ∆ms ≤ 20%.

6.4 Summary

This chapter has introduced a novel “maintainer” for the frequent pattern space

— Pattern Space Maintainer (PSM). PSM is a “complete maintainer”. It address

the maintenance of frequent pattern space under incremental updates, decremental

updates and support threshold adjustments. PSM is composed of three maintenance

components: the incremental component, PSM+, the decremental component, PSM-,

and the support threshold adjustment component, PSM∆.

The three maintenance components of PSM are developed based on the pattern

space evolution analysis. We have investigated the evolution of frequent pattern

space under various updates in Chapter 4. In this chapter, we further simplified the

evolution scenarios for incremental and decremental updates by considering only one

updating transaction at a time. This simplification greatly reduced the complexity

of the maintenance problem and allowed more effective algorithms to be developed.

Based on the simplified evolution scenarios, we summarized the major computational

tasks involved in the maintenance.

We then developed a new data structure, GE-tree, to facilitate the maintenance

149

computational tasks. GE-tree has many useful features. First, GE-tree acts as a

compact storage for frequent generators, which are linked with their corresponding

equivalence classes. This feature allows the existing equivalence classes to be effi-

ciently updated. Second, GE-tree, inspired by SE-tree, enumerates new generators in

an efficient way that ensures the enumeration is complete and involves no redundancy.

Moreover, GE-tree stores also the “negative border generators”, which conveniently

act as starting points to resume the enumeration of new generators. With GE-tree, the

maintenance components effectively updates the frequent pattern space by updating

only the equivalence classes that are affected by the data or threshold updates.

Extensive experiments are conducted to justify the effectiveness of the mainte-

nance components of PSM. PSM is compared with the state-of-the-art frequent pat-

tern discovery and maintenance algorithms. Empirical results have shown that PSM

outperforms both the discovery and maintenance algorithms by significant margins.

150

Part IV

CONCLUSION

151

Chapter 7

Publications

This chapter lists my publications during my Ph.D. study. Theories and algorithms

discussed in this Thesis are derived from these publications. In particular, the survey

in Chapter 3 has been published in Publication III. Theories discussed in Chapter 4

are extended from Publication I and VI. Algorithms and some of the results reported

in Chapter 5 have been published in Publication V. Chapter 6 then combines the

results from Publication II and IV.

Publication List:

I. Mengling Feng, Guozhu Dong, Jinyan Li, Yap-Peng Tan, Limsoon Wong. Pat-

tern space maintenance for data updates & interactive mining. Computational

Intelligence, an International Journal, submitted (Invited paper).

II. Mengling Feng, Guozhu Dong, Jinyan Li, Yap-Peng Tan, Limsoon Wong. Evo-

lution of frequent pattern space. Information Processing Letters, submitted.

III. Mengling Feng, Jinyan Li, Yap-Peng Tan, Guozhu Dong, Limsoon Wong. Main-

152

tenance of frequent patterns: a survey. (Book Chapter) Post-Mining of Asso-

ciation Rules: Techniques for Effective Knowledge Extraction. Edited by Dr.

Yanchang Zhao, Prof. Chengqi Zhang and Dr. Longbing Cao, IGI Global, 2009.

IV. Mengling Feng, Jinyan Li, Yap-Peng Tan, Limsoon Wong. Negative generator

border for effective pattern maintenance. International Conference on Advanced

Data Mining and Applications 2008: 217-228 (Best Paper Award 1st runner-

up).

V. Mengling Feng, Guozhu Dong, Jinyan Li, Yap-Peng Tan, Limsoon Wong. Evo-

lution and maintenance of frequent pattern space when transactions are re-

moved. Pacific-Asia Conference on Knowledge Discovery and Data Mining 2007:

489-497.

VI. Haiquan Li, Jinyan Li, Limsoon Wong, Mengling Feng and Yap-Peng Tan.

Relative risk and odds ratio: a data mining perspective. Symposium on Princi-

ples of Database Systems 2005: 368-377 (Bi-annual Best Paper Award by I2R

A*STAR).

VII. Mengling Feng and Yap-Peng Tan. Adaptive binarization method for document

image analysis. IEEE International Conference on Multimedia & Expo 2004:

339-342.

VIII. Mengling Feng and Yap-Peng Tan. Contrast adaptive binarization of low quality

document images. IEICE Electronic Express 1(16): 501- 506, 2004.

153

Chapter 8

Conclusion

This chapter summarizes the theories and algorithms reported in this Thesis. The

future research directions are also identified.

8.1 Summary

Frequent pattern space maintenance is essential for various data mining applications.

Pattern maintenance is necessary for database management systems to update the

space of frequent patterns in response to various data updates. Pattern maintenance

is also an effective solution to answer the hypothetical “what if” queries. In addi-

tion, frequent pattern maintenance can also be employed to interactively analyze the

development of trends. This Thesis addressed the maintenance of frequent pattern

space under three major types of updates: incremental updates, decremental updates

and support threshold adjustments.

154

To better understand the maintenance problem, we conducted a survey on the

representative existing maintenance algorithms. The strengths and weaknesses of the

existing algorithms have been investigated both algorithmically and experimentally.

Through the survey, we observed that most existing algorithms are proposed as an

extension of certain pattern discovery algorithms or the data structures they used.

But, we believe that, to develop effective maintenance algorithms, it is necessary to

understand how the space of frequent patterns evolves under the updates.

We then analyzed how the space of frequent patterns evolve under various types of

updates. Since the pattern space is too large to be analyzed directly, we structurally

decomposed the pattern space into convex sub-spaces — equivalence classes. We

then investigated the evolution of frequent pattern space based on the concept of

equivalence classes. The space evolution analysis lays a theoretical foundation for the

development of effective maintenance algorithms.

Inspired by the space evolution analysis, we proposed a novel algorithm —

“Transaction Removal Update Maintainer” (TRUM) — to maintain the frequent pat-

tern space for decremental updates. A new data structure, Transaction-ID Tree

(TID-tree), has also been developed to facilitate the computational tasks involved

in TRUM. With TID-tree, TRUM effectively maintains the pattern space by updat-

ing only the equivalence classes that are affected by the decremental update. The

effectiveness of TRUM was justified through experimental evaluations.

155

Since TRUM only addresses the decremental maintenance, we further proposed a

“complete maintainer” for the space of frequent patterns. The maintainer is called the

“Pattern Space Maintainer”, in short PSM. It is called the “complete maintainer” for

it addresses three different types updates: incremental updates, decremental updates

and support threshold adjustments. PSM, thus, is composed of three maintenance

components: the incremental component, PSM+, the decremental component, PSM-

, and the support threshold adjustment component, PSM∆. The three maintenance

components of PSM are also developed based on the pattern space evolution analysis.

Inspired by the evolution analysis, we introduced a new maintenance data structure,

Generator-Enumeration Tree (GE-tree). GE-tree effectively assists both the update

of existing equivalence classes and the generation newly emerged classes. Our exper-

imental studies have shown that PSM outperforms the state-of-the-art discovery and

maintenance algorithms by significant margins.

156

8.2 Future Directions

Three avenues of future research are presented here. The first is to apply our proposed

“maintainers”, TRUM and PSM, to discover and analyze trends in real applications.

The second is to explore the maintenance of frequent patterns over data steams. The

third is to generalize our maintenance framework to other types of patterns.

The first avenue is to apply our proposed maintenance methods to solve real

problems in trend analysis applications. Trends that are always around are usually

neither useful nor interesting. On the other hand, newly emerged trends and trends

that just disappeared are more interesting and meaningful ones. When a new trend

has emerged or an existing trend has vanished, TRUM can be used to analyze the

trend development in a retrospective manner. For PSM, since it addresses both

incremental and decremental maintenance, it can be employed to analyze the trend

in both retrospective and prospective manners. With the proposed maintenance

methods, we can effectively find out exactly when the emergence or disappearance of

the trend happens, which allows us to further investigate the causes behind the trend

development.

The second avenue is to explore the maintenance of frequent patterns over “data

streams”. A “data stream” is an ordered sequence of transactions that arrives in

timely order. Data streams are involved in many applications, e.g. sensor network

monitoring [29], internet packet frequency estimation [19], web failure analysis [11],

etc. Compared with the conventional transaction dataset, the frequent pattern main-

tenance in data streams is more challenging due to the following factors. First, data

157

streams are continuous and unbounded [42]. While handling data streams, we no

longer have the luxury of performing multiple data scans. Once the streams flow

through, we lose them. Second, data in streams are not necessarily uniformly dis-

tributed [42]. That is to say patterns that are currently infrequent may emerge to

be frequent in the future, and vice versa. Therefore, we can no longer simply prune

out infrequent patterns. Third, data streams can be collected in various manners,

e.g. the “sliding widow” manner and the “damped” manner [42]. Therefore, to han-

dle frequent pattern space maintenance for data streams, an efficient and versatile

algorithm is needed.

The third avenue is to generalize our maintenance framework to address the

maintenance of other types of patterns, e.g. conditional functional dependent rules

[22], matching rules [23], odds ratio patterns [47], emerging patterns [21] and discrim-

inative emerging patterns [48]. The migration of our maintenance framework to other

types of pattern space is not an easy task. Unlike frequent patterns, many types of

patterns in data mining do not enjoy the a priori property, and, more importantly,

their pattern space is not convex. For those non-convex pattern spaces, our mainte-

nance method cannot be directly applied. Possible solutions to this problem are: (1)

decompose the pattern space into sub-spaces that are convex, or (2) approximate the

pattern space to a convex space.

158

Bibliography

[1] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A tree projection

algorithm for generation of frequent item sets. Journal of Parallel and Distributed

Computing, 61(3):350–371, 2001.

[2] Rakesh Agrawal and Tomasz Imielinski. Mining association rules between sets of

items in large databases. In Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, pages 207–216, 1993.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ-

ation rules in large databases. In Proceedings of 20th International Conference

on Very Large Data Bases, pages 487–499, 1994.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In

Proceedings of the 11th International Conference on Data Engineering, pages

3–14, 1995.

[5] Yonatan Aumann, Ronen Feldman, Orly Lipshtat, and Heikki Manilla. Borders:

an efficient algorithm for association generation in dynamic databases. Journal

of Intelligent Information System, 12(1):61–73, 1999.

159

[6] Necip Fazil Ayan, Abdullah Uz Tansel, and M. Erol Arkun. An efficient algorithm

to update large itemsets with early pruning. In Proceedings of the 5th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 287–291, 1999.

[7] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-sets: a

condensed representation of boolean data for the approximation of frequency

queries. Data Mining and Knowledge Discovery, 7(1):5–22, 2003.

[8] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets:

generalizing association rules to correlations. In Proceedings of ACM SIGMOD

International Conference on Management of Data, pages 265–276, 1997.

[9] Douglas Burdick, Manuel Calimlim, Jason Flannick, Johannes Gehrke, and Tomi

Yiu. Mafia: a maximal frequent itemset algorithm. IEEE Transactions on

Knowledge and Data Engineering, 17(11):1490–1504, 2005.

[10] Artur Bykowski and Christophe Rigotti. A condensed representation to find

frequent patterns. In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 267–273, 2001.

[11] Y. Dora Cai, David Clutter, Greg Pape, Jiawei Han, Michael Welge, and Loretta

Auvil. Maids: mining alarming incidents from data streams. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, pages

919–920, 2004.

[12] Chia-Hui Chang and Shi-Hsan Yang. Enhancing SWF for incremental associ-

ation mining by itemset maintenance. In Proceedings of 7th Pacific-Asia Con-

160

ference on Advances in Knowledge Discovery and Data Mining, pages 301–312,

2003.

[13] Lee Chao. Database Development and Management (Foundations of Database

Design). Auerbach Publications, 2006.

[14] David Wai-Lok Cheung, Jiawei Han, Vincent T. Y. Ng, and C. Y. Wong. Mainte-

nance of discovered association rules in large databases: an incremental updating

technique. In Proceedings of the 12th International Conference On Data Engi-

neering, pages 106–114, 1996.

[15] David Wai-Lok Cheung, Sau Dan Lee, and Ben Kao. A general incremental

technique for maintaining discovered association rules. In Proceedings of the 5th

International Conference on Database Systems for Advanced Applications, pages

185–194, 1997.

[16] William Cheung and Osmar R. Zäıane. Incremental mining of frequent patterns

without candidate generation or support constraint. In Proceedings of 7th In-

ternational Database Engineering and Applications Symposium, pages 111–116,

2003.

[17] Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Moment: main-

taining closed frequent itemsets over a stream sliding window. In Proceedings of

the 4th IEEE International Conference on Data Mining, pages 59–66, 2004.

[18] Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the mo-

ment: maintaining closed frequent itemsets over a data stream sliding window.

Knowledge and Information Systems, 10(3):265–294, 2006.

161

[19] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estima-

tion of internet packet streams with limited space. In Proceedings of 10th Annual

European Symposium on Algorithms, pages 348–360, 2002.

[20] Guozhu Dong, Chunyu Jiang, Jian Pei, Jinyan Li, and Limsoon Wong. Mining

succinct systems of minimal generators of formal concepts. In Proceedings of

10th International Conference on Database Systems for Advanced Applications,

pages 175–187, 2005.

[21] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: discovering

trends and differences. In Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 43–52, 1999.

[22] Wenfei Fan, Floris Geerts, Laks V. S. Lakshmanan, and Ming Xiong. Discovering

conditional functional dependencies. In Proceedings of the 25th International

Conference on Data Engineering, pages 1231–1234, 2009.

[23] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record

matching rules. Proceedings of the VLDB Endowment, 2(1):407–418, 2009.

[24] Bart Goethals. http://www.adrem.ua.ac.be/~goethals/software/.

[25] Bart Goethals and Mohammed Javeed Zaki, editors. FIMI ’03, Frequent Itemset

Mining Implementations, 2003.

[26] Karam Gouda and Mohammed Javeed Zaki. Efficiently mining maximal frequent

itemsets. In Proceedings of the 2001 IEEE International Conference on Data

Mining, pages 163–170, 2001.

162

http://www.adrem.ua.ac.be/~goethals/software/�

[27] Karam Gouda and Mohammed Javeed Zaki. Genmax: an efficient algorithm

for mining maximal frequent itemsets. Data Mining and Knowledge Discovery,

11(3):223–242, 2005.

[28] Gösta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent

itemsets. In Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining

Implementations, 2003.

[29] Mihail Halatchev and Le Gruenwald. Estimating missing values in related sensor

data streams. In Proceedings of the 11th International Conference on Manage-

ment of Data, pages 83–94, 2005.

[30] Jiawei Han, Guozhu Dong, and Yiwen Yin. Efficient mining of partial peri-

odic patterns in time series database. In Proceedings of the 15th International

Conference on Data Engineering, pages 106–115, 1999.

[31] Jiawei Han and Yongjian Fu. Discovery of multiple-level association rules from

large databases. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio,

editors, Proceedings of 21th International Conference on Very Large Data Bases,

pages 420–431, 1995.

[32] Jiawei Han and Micheline Kamber. Data mining: concepts and techniques. Mor-

gan Kaufmann Publishers, 2001.

[33] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candi-

date generation. In Proceedings of the 2000 ACM SIGMOD International Con-

ference on Management of Data, pages 1–12, 2000.

163

[34] Hao Huang, Xindong Wu, and Richard Relue. Association analysis with one

scan of databases. In Proceedings of the 2002 IEEE International Conference on

Data Mining, pages 629–632, 2002.

[35] Roberto J. Bayardo Jr. Efficiently mining long patterns from databases. In

Proceedings of 1998 ACM SIGMOD International Conference on Management

of Data, pages 85–93, 1998.

[36] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and

A. Inkeri Verkamo. Finding interesting rules from large sets of discovered asso-

ciation rules. In Proceedings of the 3rd International Conference on Information

and Knowledge Management, pages 401–407, 1994.

[37] Jia-Ling Koh and Shui-Feng Shieh. An efficient approach for maintaining as-

sociation rules based on adjusting fp-tree structures. In Proceedings of the 9th

International Conference on Database Systems for Advanced Applications, pages

417–424, 2004.

[38] Marzena Kryszkiewicz and Marcin Gajek. Concise representation of frequent

patterns based on generalized disjunction-free generators. In Proceedings of 6th

Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,

pages 159–171, 2002.

[39] Chang-Hung Lee, Cheng-Ru Lin, and Ming-Syan Chen. Sliding window filtering:

an efficient method for incremental mining on a time-variant database. Informa-

tion Systems, 30(3):227–244, 2005.

164

[40] Sau Dan Lee, David Wai-Lok Cheung, and Ben Kao. Is sampling useful in data

mining? a case in the maintenance of discovered association rules. Data Mining

and Knowledge Discovery, 2(3):233–262, 1998.

[41] Brian Lent, Arun Swami, and Jennifer Widom. Clustering association rules. In

Proceedings of 13th International Conference on Data Engineering, pages 220–

231, 1997.

[42] Carson Kai-Sang Leung and Quamrul I. Khan. Dstree: a tree structure for

the mining of frequent sets from data streams. In Proceedings of the 6th IEEE

International Conference on Data Mining, pages 928–932, 2006.

[43] Carson Kai-Sang Leung, Quamrul I. Khan, and Tariqul Hoque. Cantree: a tree

structure for efficient incremental mining of frequent patterns. In Proceedings of

the 5th IEEE International Conference on Data Mining, pages 274–281, 2005.

[44] Carson Kai-Sang Leung, Quamrul I. Khan, Zhan Li, and Tariqul Hoque. Cantree:

a canonical-order tree for incremental frequent-pattern mining. Knowledge and

Information Systems, 11(3):287–311, 2007.

[45] Cuiping Li, Gao Cong, Anthony K. H. Tung, and Shan Wang. Incremental main-

tenance of quotient cube for median. In Proceedings of the 10th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 226–

235, 2004.

[46] Cuiping Li, Kum-Hoe Tung, and Shan Wang. Incremental maintenance of quo-

tient cube based on galois lattice. Journal of Computer Science and Technology,

19(3):302–308, 2004.

165

[47] Haiquan Li, Jinyan Li, Limsoon Wong, Mengling Feng, and Yap-Peng Tan. Rel-

ative risk and odds ratio: a data mining perspective. In Proceedings of the

24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pages 368–377, 2005.

[48] Jinyan Li, Guimei Liu, and Limsoon Wong. Mining statistically important equiv-

alence classes and delta-discriminative emerging patterns. In Proceedings of the

13th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 430–439, 2007.

[49] Guimei Liu, Jinyan Li, and Limsoon Wong. A new concise representation of

frequent itemsets using generators and a positive border. Knowledge and Infor-

mation Systems, 17(1):35–56, 2008.

[50] Junqiang Liu, Yunhe Pan, Ke Wang, and Jiawei Han. Mining frequent item

sets by opportunistic projection. In Proceedings of the 8th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 229–238,

2002.

[51] Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories

in knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–258,

1997.

[52] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algorithms for

discovering association rules. In Proceedings of AAAI’94 Workshop Knowldege

Discovery in Databases, pages 181–192, 1994.

166

[53] H. D. K. Moonesinghe, Samah Jamal Fodeh, and Pang-Ning Tan. Frequent closed

itemset mining using prefix graphs with an efficient flow-based pruning strategy.

In Proceedings of the 6th IEEE International Conference on Data Mining, pages

426–435, 2006.

[54] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Ex-

ploratory mining and pruning optimizations of constrained association rules. In

Proceedings ACM SIGMOD International Conference on Management of Data,

pages 13–24, 1998.

[55] Edward Omiecinski and Ashok Savasere. Efficient mining of association rules in

large dynamic databases. In Proceedings of 16th British National Conferenc on

Databases Advances in Databases, pages 49–63, 1998.

[56] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An effective hash based

algorithm for mining association rules. In Proceedings of the 1995 ACM SIGMOD

International Conference on Management of Data, pages 175–186, 1995.

[57] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering

frequent closed itemsets for association rules. In Proceedings of 7th International

Conference on Database Theory, pages 398–416, 1999.

[58] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining

of association rules using closed itemset lattices. Information Systems, 24(1):25–

46, 1999.

[59] Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and Dongqing

Yang. H-mine: hyper-structure mining of frequent patterns in large databases. In

167

Proceedings of the 2001 IEEE International Conference on Data Mining, pages

441–448, 2001.

[60] Jian Pei, Jiawei Han, and Runying Mao. Closet: an efficient algorithm for mining

frequent closed itemsets. In Proceedings of 2000 ACM SIGMOD Workshop on

Research Issues in Data Mining and Knowledge Discovery, pages 21–30, 2000.

[61] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill Science/Engineering/Math, 2002.

[62] G. Ramalingam. Bounded Incremental Computation, volume 1089 of Lecture

Notes in Computer Science. Springer, 1996.

[63] Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating mining with

relational database systems: alternatives and implications. In Proceedings ACM

SIGMOD International Conference on Management of Data, pages 343–354,

1998.

[64] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient

algorithm for mining association rules in large databases. In Proceedings of 21th

International Conference on Very Large Data Bases, pages 432–444, 1995.

[65] Craig Silverstein, Sergey Brin, Rajeev Motwani, and Jeffrey D. Ullman. Scalable

techniques for mining causal structures. In Proceedings of 24rd International

Conference on Very Large Data Bases, pages 594–605, 1998.

168

[66] Mingjun Song and Sanguthevar Rajasekaran. Finding frequent itemsets by trans-

action mapping. In Proceedings of the 2005 ACM Symposium on Applied Com-

puting, pages 488–492, 2005.

[67] Mingjun Song and Sanguthevar Rajasekaran. A transaction mapping algorithm

for frequent itemsets mining. IEEE Transactions on Knowledge and Data Engi-

neering, 18(4):472–481, 2006.

[68] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data

Mining. Addison Wesley, 2005.

[69] Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. Lcm: an efficient

algorithm for enumerating frequent closed item sets. In Proceedings of the ICDM

2003 Workshop on Frequent Itemset Mining Implementations, 2003.

[70] Adriano Veloso, Wagner Meira Jr., Márcio de Carvalho, Bruno Pôssas, Srini-

vasan Parthasarathy, and Mohammed Javeed Zaki. Mining frequent itemsets in

evolving databases. In Proceedings of the 2nd SIAM International Conference

on Data Mining, 2002.

[71] Chao Wang and Srinivasan Parthasarathy. Parallel algorithms for mining fre-

quent structural motifs in scientific data. In Proceedings of the 18th Annual

International Conference on Supercomputing, pages 31–40, 2004.

[72] Jianyong Wang, Jiawei Han, and Jian Pei. Closet+: searching for the best

strategies for mining frequent closed itemsets. In Proceedings of the 9th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 236–245, 2003.

169

[73] Ke Wang, Yu He, and Jiawei Han. Mining frequent itemsets using support

constraints. In Proceedings of 26th International Conference on Very Large Data

Bases, pages 43–52, 2000.

[74] Mohammed Javeed Zaki and Ching-Jiu Hsiao. Charm: an efficient algorithm for

closed itemset mining. In Proceedings of the 2nd SIAM International Conference

on Data Mining, 2002.

[75] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei

Li. New algorithms for fast discovery of association rules. In Proceedings of the

3rd International Conference on Knowledge Discovery and Data Mining, pages

283–286, 1997.

[76] Shichao Zhang, Xindong Wu, Jilian Zhang, and Chengqi Zhang. A decremental

algorithm for maintaining frequent itemsets in dynamic databases. In Proceedings

of 7th International Conference on Data Warehousing and Knowledge Discovery,

pages 305–314, 2005.

[77] Zequn Zhou and C. I. Ezeife. A low-scan incremental association rule mainte-

nance method based on the apriori property. In Proceedings of 14th Biennial

Conference of the Canadian Society for Computational Studies of Intelligence,

pages 26–35, 2001.

170

