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1. Introduction

1.1. Motivation and Results

Suppose a monopolist has invented a new durable product, and is deciding how to set prices over
time to maximize pro�t. Since the product is new, consumers could become more familiar with
it as they learn more about it. For example, when the Apple Watch, Amazon Echo, and Google
Glass were released, most consumers had li�le prior experience to inform their willingness-to-pay.
In such a situation, the monopolist might suspect that purchase decisions will depend on the
available information–e.g., journalist reviews about the product–which may in turn depend on
pricing. �e possibility of information arrival and its potential to delay consumer purchase present
challenges to the monopolist’s problem.

Some prior work on intertemporal pricing has studied how �uctuations in buyer willingness-
to-pay can in�uence a monopolist’s optimal selling strategy—see Deb (2014) and Pavan, Segal and
Toikka (2014) among others. As we discuss in Section 1.2, this literature has traditionally assumed
that the seller knows exactly how a buyer’s willingness-to-pay evolves. Under this approach, a
general lesson is that the optimal selling strategy should leverage the evolution of buyer (expected)
values. But depending on the environment, di�erent conclusions emerge regarding whether
information arrival would favor increasing or decreasing price paths. In this paper, we di�er by
considering the case where the seller may not exactly know how buyers receive information,
which is especially relevant for new products.

In our model, buyers arrive exogenously and observe signals of their values over time, each
according to some information structure (or more precisely, information arrival process). A feature
of our model is that we allow information to depend on past and current prices—for example,
if consumers see more about products that are cheaper. However, this information structure is
unknown to the seller. With limited knowledge of how buyers learn, the seller commits to a pricing
strategy to maximize his pro�t guarantee against all possible information structures. For instance,
the seller may be aware that there are a large number of product review websites. But if the
information consumers seek relates to their idiosyncratic needs, the seller may not know which
buyers have access to which websites (and when). He may therefore prefer a pricing strategy that
performs well in a variety of informational environments, rather than just one.

Our main result is that, under the robust objective, the seller optimally uses a constant price
path. For this price path, buyers do not delay purchase in the worst-case information structure. �e
striking feature is that the intertemporal incentives of buyers, suggested by the prior literature to be
an important determinant of optimal pricing, do not ma�er if the seller adopts an informationally
robust objective. We note that constant price paths are known to be optimal in se�ings without
buyer learning, as in Stokey (1979) or Conlisk, Gerstner and Sobel (1984). But their results rely
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upon the observation that buyers with known values never gain from purchasing later at the
same price. In our se�ing, however, future information arrival can encourage delay even against a
constant price path. �us a key part of our analysis is to show that such delay would only improve
the seller’s pro�t. �e rough intuition is that when prices are held constant, a buyer is only
willing to delay if he expects (at least) the same discounted probability of purchase in the future.
�is necessarily translates into (weakly) higher pro�t for the seller from delayed sale. We also
emphasize that the optimal price itself di�ers from the known value case. So while intertemporal
incentives play no role, the possibility of information arrival does in�uence the price.

Why does the seller not bene�t from intertemporal price discrimination? We �rst recall the
classic intuition from the known value case: Although lowering prices over time increases the sale
to low-value buyers, it also causes some high-value buyers to delay purchase, leading to a negative
net e�ect on pro�t. �is argument does not immediately extend to our se�ing, since the net e�ect
on pro�t may be positive for a �xed information arrival process.1 However, it does generalize
under the robust objective, meaning that worst-case information always entails greater loss from
delayed purchase than the bene�t from increased sale. We show this by focusing on the class of
partitional information arrival processes, which informs the buyer in each period whether her value
is above or below a threshold. We consider thresholds so that a buyer with value below the current
threshold is indi�erent between buying now or waiting. �is particular information structure
makes the seller’s problem separable across time, eliminating potential gains from intertemporal
price discrimination.

Our analysis echoes others in the robust mechanism design literature, which highlight that
simple strategies can be optimal given su�cient uncertainty over the environment. Constant
price paths are “simple” because the optimum can be achieved without knowing the buyers’
arrival times or even the time horizon. Obtaining a result of this form in our se�ing provides
justi�cation for �rms to eschew sophisticated pricing strategies, even when consumer learning is
signi�cant. We �nd it reassuring that the worst-case information structure is always partitional
(as introduced above). Partitional information structures have been studied in se�ings without
the robust approach, as in Kolotilin (2015).2 So long as the seller seeks robustness against this
restricted class of processes, our analysis is una�ected.

�e constant price path result serves as a benchmark that can be used to explain how features
of the seller’s problem translate into certain pricing pa�erns. While the possibility of buyer

1See Appendix D.2 for an example.
2Also related are Bergemann and Wambach (2015) and Li and Shi (2017). �ese papers discuss that partitional
information arrival may arise via comparisons to past products for which buyer values are known. In the case of the
iPhone, for instance, consumers may compare the most recent iteration to past cell phone purchases. Partitional
processes may also arise if the product has several a�ributes revealed to the buyer sequentially, with lexicographic
preferences over these a�ributes.
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learning does not by itself favor price dynamics, economically meaningful restrictions on the
learning environment may cause decreasing or increasing price paths to become optimal. We
explore several extensions of our main model in this spirit: First, we consider cases where buyers
receive information infrequently. We show that a declining price path out-performs a constant (or
increasing) price path. Second, we study a situation where buyers have access to at least some
initial information. Price dynamics can arise if this initial information di�ers across buyers who
arrive at di�erent times. Finally, we present a variant of our model with common values and
public signals. We characterize the optimal pricing strategy in the patient limit, which involves
prices that increase over time. �is is true even though information in our model is not generated
by previous sales, so our result o�ers a new justi�cation for introductory pricing. In light of
these possible departures from constant pricing, our main result says that a constant policy is
nonetheless optimal in the presence of very rich informational uncertainty.

Relative to the existing literature on robust (static) mechanism design, dynamic information
arrival presents certain conceptual modeling challenges. One such challenge we highlight in
the paper is that when information is revealed over time, there are potentially many ways to
model the interaction between information and prices. Our main model considers the case where
information in each period can depend on prices up to and including that period. We view this
generality as desirable, since in practice prices can in�uence information availability (see further
discussion in Section 2.3). An alternative would have been to disallow such price-dependence, as
studied by Du (2018) in a one-period model, building on the earlier work of Roesler and Szentes
(2017). In Section 5, we extend their analysis to the dynamic se�ing and resolve whether constant
price paths can still deliver the robustly optimal pro�t without price-dependent information.

We brie�y discuss the technical innovations that underly our results, as they may be applicable
to related problems, particularly those that involve dynamic Bayesian persuasion. �e connection
to the persuasion literature (Kamenica and Gentzkow (2011) and many that follow) arises since our
seller is worried about an “adversarial nature” who a�empts to persuade buyers not to purchase
the product. Viewed from this perspective, our results provide a characterization of optimal
persuasion (i.e., worst-case information structure) by nature given a pricing strategy. In particular,
our Proposition 2 shows it is always without loss to restrict a�ention to partitional information
structures. �is is a dynamic version of the optimality of interval persuasion previously established
for static models, such as in Kolotilin (2015) and Dworczak and Martini (2018).

Another useful tool in our analysis is the Replacement Lemma, stated variously as Lemma 1,
Lemma 3 and Lemma 4 for di�erent variations of our model. �is set of lemmata gives su�cient
conditions on prices to guarantee that the worst-case information structure does not involve
dynamics. Our technique is as follows: By modifying the timing and probability of nature’s
“recommendation to purchase,” we can replace an arbitrary dynamic information structure with

4



a static one while reducing the seller’s pro�t. When such a result obtains, buyers do not delay
purchase in the worst case, and our dynamic analysis simpli�es to a static problem. �e method of
replacement we develop here is not limited to the worst-case objective and may be applied more
broadly.

Below we �rst review the literature, and then proceed to present the main model. Section 3
analyzes the one-period model, and we show the optimality of constant price paths in Section
4. Section 5 discusses our assumption regarding price-dependent information, while Section 6
presents other extensions of our model. Section 7 concludes.

1.2. Related Literature

�is paper is part of an active literature that studies pricing under robustness concerns, where
the seller may be unsure of some parameters of the buyer’s problem. Informational robustness
is a special case, and one that has been studied in static se�ings. �e most similar to our one-
period model is the single-buyer case in Du (2018). He considers a se�ing like ours, where the
buyer’s value comes from some commonly known distribution, but the seller does not know the
information structure that informs the buyer of her value. However, Du (2018) assumes that
nature’s choice of information structure is independent of the price. �e one-period version of our
model di�ers by assuming that the seller �rst posts a price, and then nature can reveal information
depending on the realized price. �is timing di�erence (regarding whether nature moves a�er, or
simultaneous to, the seller) is further discussed in Section 2.3. By studying a dynamic model, our
focus is on robustness of the seller’s pricing strategy to potential buyer delay, which is absent
from Du (2018).

�e worst-case information structure in Du (2018) �rst appears in Roesler and Szentes (2017),
who study a related model where the buyer chooses her optimal information structure, a�er
which the seller posts a price to maximize pro�t (without facing uncertainty). Roesler and Szentes
(2017) show that the solution also minimizes the seller’s pro�t. In Appendix D.3, we provide a
related Bayesian interpretation of our model and results. See also Section 5.2 for the role of the
Roesler-Szentes information structure in a dynamic generalization of Du (2018)’s model.

Other papers have studied the case where the value distribution itself is unknown to the
seller.3 For instance, Carrasco et al. (2018) consider a seller who does not know the distribution
of the buyer’s value, but who may know some of its moments.4 We note that knowing the
mean and the range of the value distribution is equivalent to our model with a prior distribution
having two-point support. In this sense, informational uncertainty nests value uncertainty when
3Related to Roesler and Szentes (2017), Condorelli and Szentes (2018) study the problem where the buyer chooses her
optimal value distribution.

4Randomized pricing is optimal in Carrasco et al. (2018) precisely because their timing assumption coincides with Du
(2018), as described in the previous paragraph.
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only the �rst moment is considered. But in general, even in the static se�ing, assuming a prior
distribution constrains the possible posterior distributions nature can induce beyond any set
of moment conditions.5 Prior literature has also studied pricing under value uncertainty with
di�erent non-Bayesian objectives, such as minimax regret—see Bergemann and Schlag (2011),
Handel and Misra (2014), Caldentey, Liu and Lobel (2016), Liu (2016) and Chen and Farias (2018).

Our use of the informationally robust objective is inspired in part by Bergemann, Brooks
and Morris (2017), Brooks and Du (2018) and Du (2018). �e goal of this line of research is to
move away from speci�c assumptions about the informational environment, which (as we discuss
below) may imply optimal mechanisms that depend sensitively on these assumptions. Relative to
these existing work, we introduce dynamic informational robustness and illustrate conceptual
issues that arise in formalizing this notion.6 Within the broader literature on robust mechanism
design, our constant price path result �ts the general agenda of providing optimality foundations
for certain simple mechanisms observed in practice. For instance, Carroll (2017) shows how
uncertainty over the correlation between a buyer’s demand for di�erent goods leads the seller to
price the goods independently.7 A similar theme runs through many other papers as well; see
Chung and Ely (2007), Frankel (2014), Carroll (2015) and Yamashita (2015).

As mentioned above, the existing literature on intertemporal pricing suggests that changes
in buyer willingness-to-pay may lead to gains to non-constant pricing policies. Stokey (1979)
shows that the optimal price decreases over time if high-value consumers lose more from waiting.
�is complements another (perhaps be�er-known) result in Stokey (1979) that constant prices
would be optimal if all consumers were to know their values and discount equally, a result which
we generalize in Proposition 4. Deb (2014) assumes the value is independently redrawn upon
Poisson shocks and obtains increasing prices as optimal.8 Garre� (2016) �nds cyclical pricing to
be optimal in a model with arriving buyers whose values follow a two-type Markov-switching
process. More generally, recent work on dynamic mechanism design (Courty and Li (2000); Pavan,

5�e working paper version of Carrasco et al. (2018) contains an extension to multiple periods and repeated sales.
While they also �nd repetition of the static pricing rule to be optimal, this is because in their se�ing buyer demand
is reset every period. In contrast, we focus on the case of durable goods, so that buyers face intertemporal tradeo�s.
As we discuss below, intertemporal incentives by themselves may lead to gains to non-constant pricing. �us our
result is distinguished from Carrasco et al. (2018).

6As far as we are aware, Chassang (2013) and Penta (2015) are among the few papers that study a dynamic robust
objective, but these are both rather di�erent from our se�ing. Penta (2015) considers the dynamic implementation of
social choice functions, and Chassang (2013) shows how dynamics enable a principal to approximate robust contracts
that may be infeasible under liability constraints.

7�e general link between dynamic allocations and multi-dimensional screening has been noted in Bayesian mecha-
nism design se�ings (see e.g. Pavan, Segal and Toikka (2014)). While it is interesting that we obtain a result similar
to Carroll (2017), our focus on information arrival and single-object purchase distinguishes from that work.

8�e earlier work of Conlisk (1984) considers a two-period model where buyer values have binary support and are
redrawn in the second period. �e result there is that decreasing prices are optimal for some parameters, in contrast
to Deb (2014).
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Segal and Toikka (2014)) has explicitly characterized optimal selling mechanisms when the seller
knows how buyer values evolve. �e solution o�en depends sensitively on assumptions regarding
how buyers learn about their values (i.e., how their expected values evolve). We are primarily
interested in the case where the seller faces uncertainty over how buyers receive information, and
consequently our �ndings are in contrast to these results.

In relation to the Bayesian persuasion literature (Kamenica and Gentzkow (2011), Ely (2017)),
we also allow general information structures to inform the buyers of their values. But we di�er
from persuasion models by looking at the strategic interaction between information and pricing.
We develop new tools such as the Replacement Lemma to characterize worst-case information
processes for forward-looking buyers. We then use this characterization as an intermediate step
toward solving the optimal pricing strategy.

2. Model

Our baseline model adds buyer learning to an otherwise straightforward dynamic pricing se�ing.
Justi�cation of our modeling choices can be found in Section 2.3. A seller (he) sells a durable good
at times t = 1, 2, . . . , T , where T ≤ ∞. In each period t, a single buyer (she) arrives.9 We let t
denote calendar time, and let a index a buyer’s arrival time. All parties have discount factor δ. �e
product is costless for the seller to produce,10 while each buyer has unit demand. We assume that
each buyer has (undiscounted) lifetime value va from purchasing the object, where va is drawn
from a distribution F and �xed over time; when there is no confusion, we will omit the subscript
and simply write the value as v. �e prior distribution F is common knowledge, with support on
R+ and 0 < E[v] <∞. Until Section 6.3, we assume di�erent buyers have independent values.

At time 0, the seller commits to a pricing strategy σ, which is a distribution over possible price
paths pT = (pt)

T
t=1 ∈ RT

+. Note that the price the seller posts at time t must be the same for all
buyers that have arrived and not yet purchased (see Section 2.3 for discussion). When a buyer
arrives, she decides when to purchase based on her knowledge of the seller’s strategy, the price in
that period, as well as her belief about her value and what she expects to learn about her value in the
future. �e next subsection formalizes the learning process. A buyer who never purchases the
object obtains a payo� of 0.

9Buyer arrivals have been studied elsewhere in the dynamic pricing literature; see Conlisk, Gerstner and Sobel (1984),
Board (2008) and Garre� (2016). Our analysis is unchanged if the number of arriving buyers varies over time, so long
as the value distribution is �xed.

10Introducing a cost of c per unit does not change the results for our main model. It is as if the prior distribution F
were “shi�ed down” by c, and the buyer might have a negative value. �e pressed distribution G in De�nition 1
below would simply be shi�ed down by c as well.
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2.1. Dynamic Information Structures

Buyers do not directly know their v; instead, they learn about it through signals that arrive over
time, via some information structure. To be precise, a dynamic information structure (or information
arrival process) Ia for the buyer arriving at time a consists of:

• A set of possible signals for every time t ≥ a, i.e., a sequence of sets (St)
T
t=a, and

• Probability distributions given by Ia,t : R+ × St−1
a × P t → ∆(St), for all t with a ≤ t ≤ T .

Without loss of generality, we assume that all buyers are endowed with the same signal sets St,
although each one privately observes any particular signal realization. To be fully rigorous, there
should be a σ-�eld associated with each St, and the mappings Ia,t are required to be measurable.
We will however omit these technical details, which do not a�ect the analysis.

To interpret the above de�nition, note that the distribution of the signal st at time t could
depend on the buyer’s true value va ∈ R+, the history of her previous signal realizations
st−1
a = (sa, sa+1, . . . , st−1) ∈ St−1

a , as well as the history of all previous and current prices
pt = (p1, p2, . . . , pt) ∈ P t. �e possibility for information to �exibly depend on realized prices
distinguishes our model from most existing literature, and we discuss this important assumption
more thoroughly in Section 2.3 below. For now, we simply point out that if the seller were to use a
deterministic price path, our de�nition would reduce to a standard de�nition of dynamic informa-
tion structures. �e signal st would occur with probability Ia,t(st | va, st−1

a ), where we can omit
the dependence on (pt)

T
t=1 since it is the only possible realization.11 Allowing for price-dependent

information only has bite when the seller randomizes.12

2.2. Seller’s Objective

Given the pricing strategy σ and the information structure Ia, the buyer arriving at time a faces
an optimal stopping problem. Speci�cally, she chooses a stopping time τ ∗a adapted to the joint
process of prices and signals, so as to maximize the expected discounted value less price:

τ ∗a ∈ argmax
τ≥a

E
[
δτ−a(E[va|sτa, pτ ]− pτ )

]
.

�e inner expectation E[va|sτa, pτ ] represents the buyer’s expected value conditional on realized
prices and signals up to and including period τ . �e outer expectation is taken with respect to the
11Even though in this case information revelation will not depend on the particular price path, the worst-case

information structure generally will.
12Since a deterministic (constant) price path is optimal in our main model, an alternative model where information

can further condition on future price realizations would yield the same result.
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evolution of prices and signals. We allow the stopping time τa to take any positive integer value
≤ T , or τa =∞ to mean the buyer never buys.

�e seller evaluates payo�s as if the information structures chosen by nature were the worst
possible, given his pricing strategy σ and buyers’ optimizing behavior. Hence the seller’s payo� is:

sup
σ∈∆(pT )

inf
(Ia),(τ∗a )

T∑
a=1

E[δτ
∗
a−apτ∗a ] s.t. for each a, τ ∗a is optimal given σ and Ia.

Note that when a buyer faces indi�erence, ties are broken against the seller. It will follow from our
analysis that sup inf is achieved as max min. Breaking indi�erence in favor of the seller would
not change our results, but would add cumbersome details due to max min not being achieved.

2.3. Discussion of Assumptions

In this subsection we comment on several of our key modeling assumptions.

Bayesian buyers and uncertain seller. We assume that each buyer knows her information
arrival process, and is Bayesian about what information will be received in the future. �e seller,
on the other hand, knows only that there are many possible ways buyers can learn. In line with
the robust mechanism literature, we �nd it reasonable that buyers are much be�er informed than
the seller about the informational environment. In our se�ing, for instance, who tends to watch
which commercials or visit which product review websites is o�en idiosyncratic and beyond the
seller’s knowledge.

It may seem unrealistic that buyers perfectly know the signal distribution far into the future.
However, we mention that due to the stopping time nature of buyer decision, our analysis is
unchanged if buyers also face uncertainty (and are maxmin) over future information, so long as
they can interpret signals in the current period.13 In this sense, our results do not rely on extra
rationality of the buyers beyond what is typically assumed in static robust mechanism design.

Although our main model assumes extreme uncertainty faced by the seller, Section 6.2 considers
an extension where the seller believes that buyers have at least some information (on top of the
common prior F ). A constant price path (with a potentially di�erent price) remains optimal,
strictly generalizing the qualitative �nding of Stokey (1979) in the known value se�ing.

Price-dependent information. Our key assumption in de�ning dynamic information structures
is that information in each period can depend on realized prices up to and including that period.
In reality, such price-dependence occurs through a number of channels: Ordered display on
product websites, selective coverage by reviewers and rational ina�ention of buyers. �us we

13Formally developing that extension requires a di�erent modeling framework, so we omit the details.
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view the above setup as the most natural speci�cation of our model. Allowing nature to provide
price-dependent information also delivers the most robust pro�t guarantee for the seller.

In Section 5, we consider a variant of our model without price-dependence. In one period,
that model reduces to the static problem studied in Du (2018). We solve a dynamic version of his
single-buyer problem and show that a randomization over constant price paths is optimal. We
also discuss the case of limited price dependence.

On the conceptual level, any assumption on how information interacts with prices is related
to the seller’s subjective model of the timing of nature’s moves relative to his own randomization.
�is point is further discussed and formalized in the sequential decision theory framework in
Ke and Zhang (2018). In our explicitly dynamic se�ing, the timing issue is more salient because
there are many more ways one could model the timing of nature’s moves. For example, our
main model takes the most pessimistic perspective that nature moves in each period, a�er the
seller’s randomization. A contribution of this paper is to delineate various timing assumptions
and highlight their implications.

Private signals. Other than price-dependence, our main model assumes that buyers receive
information privately. �is is without loss when buyer values are independent, in which case
pro�t can (at worst) be minimized on a per buyer basis.14 However, if buyer values were correlated,
requiring information to be publicly released would limit nature’s ability to damage pro�ts. See
Section 6.3 for such a model and further discussion.

Commitment. We believe that many �rms are able to credibly announce and stick to consistent
pricing strategies, due to reputational concerns. And while some strategies may be di�cult
for a seller to commit to, constant price paths are simple to implement since deviations are
straightforward to detect. Dropping commitment from the model would also introduce technical
di�culties related to formalizing learning under ambiguity; see Epstein and Schneider (2007).

More complex pricing strategies. In some markets, the seller may be able to discriminate buyers
based on their identity (i.e., arrival time) and charge personalized prices. While personalized
pricing may have bene�ts in general, such strategies turn out to not improve the seller’s pro�t
guarantee in our main model.15 Similarly, pricing strategies that condition on the sales history
have no bene�ts in our model.

�at said, we do restrict the seller to using pricing mechanisms, and rule out for instance
14To be more speci�c, in our main model there is no need for nature to correlate information across buyers, or to

condition a buyer’s signal on the purchase history of other buyers.
15To see this, �rst observe that nature can release information to simultaneously minimize the seller’s pro�t from

each buyer. So the total pro�t guarantee cannot exceed the sum of what can be ensured from individual buyers.
(�is holds unless buyer values are correlated and information is public, which is studied in Section 6.3.) On the
other hand, this upper-bound is achieved by a constant price path, which makes the problem stationary across
buyers. �us our main result suggests that the seller need not use personalized pricing, as we assumed above.
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mechanisms that randomly allocate the object as a function of each buyer’s report. We view this as
a restriction on the environment, but one that is natural in our applications of interest. For online
and in-store shopping, for instance, buyers typically observe a posted price rather than a general
mechanism (see Dilmé and Garre� (2018) for further discussion). �is restriction also allows
us to avoid di�culties in working with general dynamic mechanisms, where agent types must
capture all future information.16 We note that whether a general mechanism may improve upon
posted prices is closely related to whether information can be price-dependent. �is connection is
discussed in Section 5.

3. One-period Analysis

We start by analyzing the one-period problem (with a single buyer). To solve this problem, we
will de�ne a transformed distribution of the prior F . For expositional simplicity, the following
de�nition assumes F is continuous. All of our results in this paper extend to discrete distributions,
though the general de�nition requires additional care and is relegated to Appendix A.

De�nition 1. Given a continuous distribution F , its “pressed version” G is another distribution
de�ned as follows. For y ∈ R+, let L(y) = EF [v | v ≤ y] denote the expected value conditional
on the value not exceeding y. �en G(·) = F (L−1(·)) is the distribution of L(y) when y is drawn
according to F .

�e pressed distributionG is useful because for any realized price p, nature can only ensure that
the object remains unsold with probability G(p). To see this, �rst observe that any information
structure is outcome-equivalent to another that directly recommends one of two actions: To
purchase the good or not. Given this simpli�cation, the worse-case information structure must
have the following property. As long as the buyer is recommended to purchase with positive
probability, the buyer who is recommended not to purchase has expected value exactly p. Otherwise
nature could adjust its recommendation to further decrease the probability of sale.

Moreover, subject to the constraint that a buyer who does not buy has �xed expected value (in
our case, p), one can show that partitional information structures maximize the probability of this
recommendation (see e.g. Kolotilin (2015)). In a partitional information structure, the buyer is
told whether her value is above or below a certain threshold. By the above de�nition of G, this
threshold must be F−1(G(p)) = L−1(p), making 1−G(p) the probability of sale.

�ese remarks give us the following proposition:

16�e technical issues involved are perhaps magni�ed under the robust approach, since the seller may additionally
ask buyers to report their information structures. How to formulate and study such mechanisms is an interesting
direction for future work.

11



Proposition 1. In the one-period model, a maxmin optimal pricing strategy is to charge a determin-
istic price p∗ that solves the following maximization problem:

p∗ ∈ argmax
p

p(1−G(p)). (1)

We call p∗ the one-period maxmin optimal price and similarly Π∗ = p∗(1−G(p∗)) the one-period
maxmin pro�t.

It is worth comparing the optimization problem (1) to the standard known value model. If the
buyer knew her value, the seller would maximize p(1− F (p)). In our se�ing with informational
uncertainty, the di�erence is that the pressed distribution G takes the place of F . �is analogy
will be useful for the subsequent analysis.

�e following example illustrates:

Example 1. Let v ∼ Uniform[0,1], so that G(p) = min{2p, 1}. �en p∗ = 1
4
and Π∗ = 1

8
. With

only one period to sell the object, the seller charges a deterministic price 1/4. In response, nature
chooses an information structure that tells the buyer whether or not v > 1/2.

We mention that there are other information structures that induce the same worst-case pro�t for
the seller. For instance, nature can fully reveal the value when it is above the threshold 1/2, since
such a buyer will purchase in any event. Nonetheless, the lowest element of the partition cannot be
further re�ned. �at is, a buyer whose value is below the critical threshold will be told only this in
every worst-case information structure.

In this example, relative to the known value case, the seller charges a lower price and obtains
a lower pro�t under informational uncertainty. In Appendix D.1, we show that these comparative
statics hold for general distributions F .

4. Main Results

With multiple periods and arriving buyers, recall that 1−δT
1−δ is the discounted number of arrivals.

�e main result of this paper is now stated.

�eorem 1. �e seller can guarantee Π∗ · 1−δT
1−δ with a constant price path charging p∗ in every

period. �is deterministic pricing strategy is maxmin optimal, and it is uniquely optimal whenever
the one-period maxmin optimal price p∗ is unique.

To interpret this result, recall that the dynamic pricing literature has shown that when values
are known, �uctuations in buyer values can lead to corresponding �uctuations in prices.17 �is
17See Stokey (1979), Deb (2014) and Garret (2016), as discussed in the introduction.
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insight applies to our se�ing with buyer learning, since information arrival causes the buyer’s
expected value for the product to �uctuate. In fact, for a �xed information arrival process that is
known to the seller, optimal prices can increase or decrease over time, depending on how one
speci�es the learning process (see Appendix D.2). �e lesson is that the seller would in general
want to adapt his pricing strategy to how buyer values evolve, if he knew this evolution.

In contrast, �eorem 1 suggests that when facing uncertainty over how buyers learn and
adopting a robust objective, the seller is best o� commi�ing to the simple strategy of a constant
price. �e underlying mechanism for our result is more involved than the case of known (and
constant) values, where the optimality of constant prices follows from Stokey (1979). Indeed,
information arrival may cause buyers to delay purchase when facing a constant price path—but
we show this does not occur in the worst case. One may worry that constant price paths perform
well because they guard against some contrived information processes. As we explain later in this
section, this is not a concern for our problem. Our result is unchanged so long as the seller seeks
robustness against the intuitive class of “partitional information structures.”

Finally, while we believe it is of theoretical interest to generalize the classic result of Stokey
(1979), perhaps more important are the assumptions that give rise to it.18 In this sense, our constant
price path result provides a benchmark to understand if and when restrictions on the informational
environment can lead to price dynamics. In Section 6, we present some results of this form, where
dynamic pricing out-performs constant pricing.

4.1. Proof Sketch of �eorem 1

Here we outline the arguments we use to prove �eorem 1; the detailed proofs can be found in
Appendix A. Our proof separately establishes a lower-bound and an upper-bound on the seller’s
pro�t guarantee. For the lower-bound, we argue that by using a constant price path, the seller can
guarantee (undiscounted pro�t) Π∗ from each buyer regardless of nature’s choice of information
structures. �is follows from our Replacement Lemma, which shows that any dynamic information
structure can be replaced with a static one while weakly lowering pro�t. We then demonstrate a
matching upper-bound: No ma�er how the seller sets prices, nature can hold pro�t to at most Π∗

per buyer. �is part of the argument takes advantage of the intuition from the one-period analysis
and generalizes the partitional information structure appropriately to the dynamic se�ing. Below
we provide some details of these two parts of our proof, respectively.

18We note that �eorem 1 is in itself a separate result from Stokey (1979), as our main model is disjoint from the
known value se�ing. However, in Section 6.2 we present an extension that embeds our main model as well as
known values. A constant price path remains optimal in that extension (see the discussion a�er Proposition 4),
thereby generalizing both Stokey’s result and �eorem 1.
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4.1.1. Lower-bound

Under known values, any buyer facing a constant price path would buy immediately or never, due
to impatience. In contrast, the promise of future information in our se�ing may induce the buyer
to delay, even with constant prices. A priori, such delay may hurt the seller’s pro�t. Nonetheless,
in the following lemma, we show that against non-decreasing price paths, nature cannot hurt the
seller more than providing information only upon arrival. Applying this lemma to each buyer
with prices held constant at p∗, we derive Π∗ · 1−δT

1−δ as a lower-bound on the seller’s total pro�t
guarantee.

Lemma 1 (Replacement Lemma). Suppose that the seller uses a deterministic price path (pt)
T
t=1

satisfying p1 ≤ pt,∀t. �en the seller’s pro�t from the �rst buyer is minimized by an information
structure that only provides information in the �rst period.

We call it the “Replacement Lemma” because it shows that when prices increase over time,
any dynamic information structure can be replaced with a static information structure that weakly
decreases the seller’s pro�t (from the �rst buyer). Since delay does not occur under a static
information structure and a non-decreasing price path, our previous one-period analysis shows
that the seller obtains pro�t at least p1(1−G(p1)).

To construct such a replacement, we view the original dynamic information structure as
providing recommendations to the �rst buyer to purchase or not at di�erent times. Whenever
this buyer was recommended to purchase in period t, in the replacement information structure
we have nature recommend her to purchase in period 1 with probability δt−1. In other words, we
“push and discount” nature’s recommendation to the buyer’s arrival time. �e key technical step is
to show that the buyer is still willing to follow nature’s recommendation; we do this by using her
incentive compatibility under the original information structure. Once this is proved, it follows
that the discounted probability of sale is unchanged, so that pro�t can only decrease (since prices
are higher in future periods).

Looking ahead, we mention that similar methods of replacement play an important role for
analyzing two variations of our model. See Lemma 3 and Lemma 4 in later sections.

4.1.2. Upper-bound

�e second half of the proof of �eorem 1 involves constructing information structures that ensure
the seller does not gain more per buyer with a longer horizon. Before ge�ing to the proof, we �rst
introduce a de�nition of partitional information arrival processes that generalize the partitional
information structures in the one-period problem.
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De�nition 2. A partitional information arrival process (for the �rst buyer) involves a descending
sequence of (possibly randomized) cuto�s v1 ≥ v2 ≥ · · · ≥ vT , where each vt is measurable with
respect to realized prices p1, . . . , pt. Under this process, in each period t the buyer is told whether or
not v ≤ vt.

With a single period, we have shown that the worst-case information structure is partitional.
�e following proposition extends this result to the dynamic se�ing, suggesting that the seller
need only worry about partitional information arrival processes.

Proposition 2 (Worst-case is Partitional). Given any pricing strategy σ, there exists a partitional
information arrival process that minimizes the seller’s pro�t from the �rst buyer.

�e basic intuition is familiar from the one-period analysis: To hurt the seller, it is best to
maximize the buyer’s expected value when she is recommended to purchase, so as to minimize
the probability of such an event. �is is achieved by providing partitional information. �at
said, dynamics does introduce a new challenge since nature needs to trade o� minimizing the
probabilities of sale in di�erent periods. Our proof in the appendix gets around this issue by
replacing an arbitrary information structure with a partitional one, such that the buyer’s purchase
times are weakly later than before. �is stochastic dominance property implies a lower pro�t.

However, there are two reasons that Proposition 2 is of limited direct use. First, given an
arbitrary pricing strategy, it remains challenging to solve for the exact worst case (partitional)
information process.19 �is is due to di�culties with determining buyer optimal stopping under
arbitrary prices and information. Second and perhaps more important, �nding the information
structure with minimal pro�t is only helpful insofar as this translates into a pro�t upper-bound.
But the seller’s pro�t is not easily computable in general.

So instead of focusing on the worst case, we appeal to further economic intuitions for our
environment to �nd a particular partitional information process that allows for relatively easy
computation of pro�t. �is process will allow us to prove the following lemma:

Lemma 2 (Pro�t Upper-bound). For any pricing strategy, there exists a dynamic information
structure (for the �rst buyer) and a corresponding optimal stopping time that lead to pro�t ≤ Π∗.20

To explain our construction, we assume for simplicity that the seller charges a deterministic
price path (pt)

T
t=1. If the �rst buyer knew her value, then we could �nd time periods 1 ≤

t1 < t2 < · · · ≤ T and value cuto�s wt1 > wt2 > · · · ≥ 0, such that the buyer with value
v ∈ [wtj , wtj−1

] would optimally buy in period tj . Here wtj is de�ned by the indi�erence condition
19�e challenge arises primarily when prices decrease over time. With non-decreasing prices, the worst case has been

characterized in the Replacement Lemma.
20It is crucial for this result that nature can provide information dynamically; see Section 6.1.
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wtj − ptj = δtj+1−tj · (wtj − ptj+1
), and the fact that higher-value buyers purchase earlier is the

well-known “sorting property” established for example in Stokey (1979). �is implies that under
known values, the object would be sold with probability F (wtj−1

)− F (wtj) in period tj .

In our se�ing, we �nd a dynamic information structure such that in period tj , the object is sold
with probability G(wtj−1

)− G(wtj) (that is, where the pressed distribution G replaces F ). �e
following partitional information arrival process has this property: In each period tj , the buyer is
told whether or not her value is in the lowest G(wtj)-percentile, while no information is revealed
in other periods. �is construction generalizes the one-period analysis, in that thresholds of the
partition are chosen to make the buyer indi�erent between purchasing and continuing without
further information. �e buyer therefore prefers to delay purchase when her value is below the
threshold. On the other hand, a buyer whose value is above the threshold does not expect to
receive further information, and hence purchases immediately.

�e above observations show that G(wtj−1
) − G(wtj) is the probability of sale in period tj .

We can then compute the seller’s pro�t as follows:

Π =
∑
j≥1

δtj−1ptj ·
(
G(wtj−1

)−G(wtj)
)

=
∑
j≥1

(δtj−1ptj − δtj+1−1ptj+1
) · (1−G(wtj))

=
∑
j≥1

(δtj−1 − δtj+1−1)wtj · (1−G(wtj))

≤ δt1−1 · Π∗,

(2)

where we assumed T =∞ for ease of illustration. �e second line above is by Abel summation,21

the third line uses type wtj ’s indi�erence between buying in period tj or tj+1, and the last
inequality holds because wtj(1−G(wtj)) ≤ Π∗ for each j. �is proves Lemma 2 when prices are
deterministic.

When prices are random, the indi�erence types wtj will be random variables. A technical
di�culty arises because they may not be decreasing over time. When such non-monotonicity
occurs, the seller’s discounted pro�t cannot be wri�en as a convex sum of one-period pro�ts, and
the pro�t bound in (2) will not be valid. In Appendix A, we develop additional tools to generalize
the above construction. In short, we keep track of the binding indi�erence types, above which the
buyer has already purchased. �is focus ensures monotonicity, and we can use the re-de�ned wt
to specify the partitional information process. �e proof of Lemma 2 then extends.

21Abel summation says that
∑
j≥1 ajbj =

∑
j≥1

(
(aj − aj+1)

∑j
i=1 bi

)
for any two sequences {aj}∞j=1, {bj}∞j=1

such that aj → 0 and
∑j
i=1 bi is bounded. We take aj = δtj−1ptj and bj = G(wtj−1

)−G(wtj ).
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To conclude this section, we mention that the above analysis is unchanged if any buyer
with value above the current threshold perfectly learns her true value, since she will purchase
immediately regardless (as in Example 1). In this sense, the partitional information process we
construct is outcome-equivalent to one where higher-value buyers discover their true values earlier.

We also reiterate that the information structure considered in this proof is generally not the
worst case (see Example 2 in Appendix A). It is only one process for which buyer’s optimal stopping
time as well as pro�t can be tractably determined. Solving for the exact worst-case (partitional)
process against a decreasing price path is an open question we hope to address in the future.

5. Price-dependence: Relation to Du (2018)/Roesler-Szentes (2017)

So far in our baseline model, we allow nature to provide information depending on all realized
prices. �e �exibility in nature’s choice delivers the most pessimistic pro�t guarantee for the seller.
In this section, however, we study variants of our model where information does not signi�cantly
vary with prices. �is alternative assumption is appropriate if, for instance, the seller is widely
followed by product reviewers. In that case the seller may think that whether he charges 99 dollars
or 89 dollars will not impact the amount of information buyers have access to.

Formally, we change the de�nition of dynamic information structures in Section 2.1 to limit
how information depends on realized prices, but we maintain the rest of the setup in Section 2.
With a single period, this modi�cation returns the recent model of Du (2018) and connects also
to Roesler and Szentes (2017). Below we �rst review and recast their results in our framework.
Moving to the dynamic se�ing, we then show that when information is price-independent, the
seller’s optimal strategy can be implemented as a randomization over constant price paths. We
also comment on the intermediate case where information exhibits limited price-dependence.

5.1. Static Model without Price-dependence

�is section describes the modi�cation for our one-period model. To model the alternative
assumption that information does not depend on realized price, we assume the distribution over
signals is determined by some function I : R+ → ∆(S), which is price-independent. �e seller
still has a maxmin objective, but he only worries about this smaller class of information structures.

Our earlier analysis provides some intuition for why randomization strictly helps the seller.
To illustrate, suppose v ∼ Uniform[0,1] as in Example 1. We have shown that the seller’s optimal
deterministic price is p∗ = 1

4
. Now consider a strategy that randomizes between 1

4
and 1

4
+ ε,

pu�ing a small probability on the la�er. We claim this strategy achieves a higher pro�t guarantee
than Π∗ = 1

8
against any partitional information structure (that is independent of the realized

price). Indeed, if the threshold of the partition is 1
2

or smaller, the seller sells at both realized
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prices to buyers with value above the threshold. Pro�t in this case is seen to be > 1
8
, thanks to the

higher price 1
4

+ ε. But if the threshold is larger than 1
2
, then sale would occur with probability one

when the price is realized as 1
4
, again leading to pro�t > 1

8
. A similar but more involved argument

shows that such a randomization guarantees pro�t more than 1
8

against all price-independent
information structures, not just partitional ones.

�e above discussion pre�gures the results of Du (2018) and Roesler and Szentes (2017), who
characterize the optimal price randomization as well as the corresponding worst-case information
structure for this one-period model. We proceed to summarize their solutions.

Du (2018) considers a seller who shares our robust objective, but who can use more general
mechanisms that prescribe allocation probabilities based on the buyer’s reported type. However, it
turns out that with a single agent, the same outcome (i.e., pro�le of interim purchase probabilities)
can be implemented using the following random price mechanism: �e seller charges a random
price with c.d.f.

D(x) =


0 x < W
log x

W

log S
W

x ∈ [W,S)

1 x ≥ S

(3)

for some numbers W and S that depend on the prior distribution F . �is mechanism guarantees
pro�t at least W (see Appendix B.1), and it generalizes Proposition 5 in Carrasco et al. (2018), who
focus on prior distributions F with binary support.

Roesler and Szentes (2017) consider a related problem where the buyer chooses the information
structure to maximize her surplus. �e buyer-optimal information structure they identify turns out
to be the minmax information structure in Du (2018)’s problem. �e Roesler-Szentes information
structure induces posterior expected values distributed as follows:

FB
W (x) =


0 x < W

1− W
x

x ∈ [W,B)

1 x ≥ B

(4)

where W and B are parameters such that F is a mean-preserving spread of FB
W , and W is smallest

possible subject to this constraint. �is is the same W that shows up in Du’s price distribution.

Taken together, W is the seller’s maxmin pro�t in the one-period problem without price-
dependence. For future reference, we denote W by ΠRSD, a�er the authors of those papers. It
is clear that ΠRSD is weakly larger than Π∗, and in Appendix D.5 we characterize when the
comparison is strict.
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5.2. Dynamic Model without Price-dependence

With multiple periods, we �rst consider a variant of our main model that completely rules out
price-dependent information. Formally, we rede�ne a dynamic information structure Ia for the
buyer arriving at time a to be

• A sequence of signal sets (St)
T
t=a, and

• Probability distributions given by Ia,t : R+ × St−1
a → ∆(St), for all t with a ≤ t ≤ T .

For this model, we characterize the seller’s optimal pricing strategy and nature’s worst-case
information structure in the following theorem:

�eorem 2. Suppose that information is independent of realized prices. �en for any T and δ,
maxmin average pro�t per buyer is ΠRSD. �e seller can achieve this by randomizing over constant
price paths drawn from Du’s price distribution D(x) in (3). Nature can force this pro�t upper-bound
by providing the Roesler-Szentes information structure to each buyer upon arrival.

It is not di�cult to understand nature’s information choice. By providing the static Roesler-
Szentes information structure, nature makes each buyer “know her value” to be drawn from FB

W .
By the result of Stokey (1979), this holds pro�t below ΠRSD from each buyer.

�e more striking feature of �eorem 2 is that the seller can guarantee ΠRSD via a random-
ization over constant price paths. We highlight that the presence of randomization allows for
many possible ways to correlate prices across time while maintaining the same marginal price
distribution in each individual period. In this sense, it is notable that the seller’s optimal strategy
involves extreme correlation in the form of perfectly persistent prices.

To prove that a random constant price delivers the pro�t guarantee of ΠRSD, we demonstrate
the following generalization of the Replacement Lemma in Section 4.1.1.

Lemma 3 (Replacement Lemma for Randomized Constant Price Paths). Suppose that the seller uses
a strategy that randomizes over constant price paths, while nature provides information independently
of the realized price. �en the seller’s pro�t can be minimized by information structures that only
provide information to each buyer upon her arrival.

�is result embeds a special case of the previous Lemma 1 when the seller charges a deter-
ministic constant price. However, the “push and discount” argument we used there to �nd a
replacement information structure does not readily extend to the current se�ing. �is is because
with random prices, nature’s recommendation in a given period is not just a binary decision to
purchase or not; rather, any signal suggests a set of prices at which the buyer should purchase.
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Such information is higher-dimensional than in the deterministic case, and we need new tools to
generalize the previous argument.

In our proof of Lemma 3, we introduce the concept of “cuto� prices” for a given price-
independent information arrival process. �ese cuto� prices are the dual notion of “cuto� values”
used in the proof of Lemma 2, and they capture when the buyer should purchase, and at which
prices. Moreover, analogous to (2), the seller’s total pro�t is a weighted sum of one-period pro�ts
from a buyer who knows her value to be a cuto� price. We complete the proof by showing that
these cuto� prices are less dispersed (in the sense of SOSD) than the buyer’s expected values at the
end of T periods. �us there exists a static information structure that induces these cuto� prices
as posterior expected values, and it yields the same pro�t as the original dynamic information
process.22

We mention that ΠRSD per buyer can no longer be guaranteed when information exhibits
limited price-dependence.23 We derive this result in Appendix B.4 by considering another variant
of our main model, where information depends on past (but not current) prices. More generally,
note that limited price-dependence is only one kind of restriction on nature’s choice of information
structures. In the next section we consider several other reasonable restrictions and characterize
the corresponding optimal pricing strategies.

6. Price Dynamics under Restrictions on Information Processes

Our main result provides a clear prescription for a monopolist who is completely uncertain about
how consumers will learn about his product: Keep the price �xed over time at the single-period
optimum. As mentioned in the introduction, one motivation for such a result is to use it as a
benchmark, so that we can explain certain selling strategies as arising optimally from additional
qualitative features of the environment. We view this as an advantage of the robust modeling
approach, since carrying out the same exercise under a standard Bayesian objective would (at
least) require a tractable description of prior beliefs over dynamic information structures.

In this section, we consider several modi�cations of our main model, where the seller seeks
robustness against a subset of information arrival processes (with the whole set described in Section
2.1). We �nd that certain reasonable restrictions on the environment lead to dynamic pricing
strategies.24 In Section 6.1, we show how declining prices out-perform constant prices when

22When the seller charges a deterministic constant price p, the cuto� price �rst exceeds p precisely in the period
when the buyer would purchase under the original dynamic information structure. �us in that special case, the
current proof reduces to the “push and discount” argument in Section 4.1.1.

23�is impossibility result suggests that the seller strictly bene�ts from personalized pricing.
24�at said, not all restrictions a�ect the optimality of constant price paths. As discussed, constant prices remain

optimal if the only restriction is that buyers learn according to a partitional information structure.
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the seller believes that buyers do not learn in every period (e.g., when information is somewhat
rare). In Section 6.2, we consider buyers who arrive with some additional information beyond
the knowledge of the prior value distribution. Increasing prices can be optimal if later buyers
have be�er information to begin with. Finally, in Section 6.3 we show that introductory pricing is
favored when buyer values are common and information is publicly observed.

6.1. Infrequent Information

In our main model information can arrive in each period. Here we study a stylized variant where
T = 2 and information (for the �rst buyer) is constrained to only arrive in one of the two periods.
Formally, we restrict to dynamic information structures (as de�ned in Section 2.1) with either
signal set S1 or S2 being a singleton. �is captures a se�ing where information is infrequent: If
the product is complicated or marketed on a small scale, buyers may only learn about it from a
few particular sources (e.g., in person with a technology expert). In this case, learning may not
occur every period.

�e following result shows that the seller can now obtain a higher pro�t guarantee with a
decreasing price path. As a corollary, the optimal deterministic pricing strategy involves decreasing
prices.

Proposition 3. Suppose that T = 2 and that the �rst buyer either receives information in period
one or period two, but not both. Further suppose G(p∗) > 0. �en for any δ ∈ (0, 1), there exists a
price path p1 > p2 = p∗ that guarantees pro�t strictly greater than Π∗ from the �rst buyer.

Since p2 = p∗ is optimal for the second buyer, the seller’s total pro�t exceeds (1 + δ)Π∗.
�e intuition for this proposition goes back to the upper-bound argument (Lemma 2) in Section

4.1.2. �ere we showed how nature can use a partitional information arrival process to hold pro�t
below Π∗. Against a decreasing price path, the constructed process involved two thresholds, one
in each period. However, only one threshold is allowed in the current se�ing. If nature were to
remove the threshold in the �rst period, then the buyer would purchase at the slightly higher
price p1 to avoid the cost of discounting.25 But if nature were to remove the threshold in the
second period, then sale would jump up in that period unless G(p∗) = 0. Either way, pro�t would
strictly exceed Π∗, suggesting that nature can only hold the seller to the single-period pro�t level
by utilizing dynamic information.

25Note that any worst-case static information structure induces the same amount of buyer surplus as no information.
So in this problem, when p1 is equal to p2, the buyer strictly prefers to purchase in period one (without any
information) than to purchase later (facing worst-case information). By continuity, the same holds for p1 slightly
larger than p2.
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6.2. Initial Information

So far we have assumed that the seller has zero knowledge over what information buyers receive.
But in practice, he may know that buyers necessarily observe certain signals. For example, the
seller may himself conduct an advertising campaign and understand its informational impact.26

�is situation can be modeled by assuming that the buyer who arrives at time a observes
signal sa according to some initial information structure Ha, in addition to knowing the prior F .
�e seller knows this information structure (i.e., how sa is distributed given va), but does not
observe the realization of sa. We maintain all aspects of the main model, except that we allow
nature to provide information conditional on sa.27

To solve this extension, we �rst study the static problem with a single buyer. Let Fsa be buyer
a’s posterior value distribution upon observing signal sa. �e same analysis shows that for this
“prior” value distribution, the worst-case static information structure is partitional. Hence, if we
let Gsa be the pressed distribution of Fsa , we have the following result:

Proposition 1’. In the one-period model where the buyer observes initial information structureHa,
the seller’s maxmin optimal price p∗Ha

is given by:

p∗Ha
∈ argmax

p
p(1− E[Gsa(p)]), (5)

where the expectation is taken with respect to di�erent realizations of the initial signal sa.

In the dynamic model, we obtain a partial characterization of the optimal pricing strategy.

Proposition 4. Suppose that each buyer a arrives with initial information structure Ha. Further
suppose that the one-period optimal prices p∗Ha

de�ned by (5) increase with a. �en the seller’s optimal
selling strategy is to charge p∗Ha

in each period a, resulting in a (weakly) increasing price path.

Note that a special case of the model considered here involves the same initial information structure
for all buyers. Proposition 4 implies that a constant price path remains optimal. �is generalizes
our �eorem 1 as well as Stokey’s constant price result, since the known value se�ing corresponds
to perfectly informative initial information.

Another extreme case is as follows: All buyers who arrive prior to some period A have no
initial information, while those arriving in period A or a�erwards know their values. Here the
26If the seller could freely disclose any information, he would provide a perfectly informative signal to minimize the

residual uncertainty. A more interesting application would be to study costly information disclosure by a seller
who is concerned that buyers may receive additional information a�erwards. Proposition 4 below would provide a
useful �rst step of the analysis. We mention that Terstiege and Wasser (2018) have studied a related model: Building
on Roesler and Szentes (2017), they consider optimal buyer information acquisition that is robust to potentially
more information provided by the seller.

27Alternatively, we may think of the initial information structureHa as a constraint on nature’s information choice,
meaning that nature’s signal in period a must be more informative than sa in the sense of Blackwell (1953).
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one-period optimal price for buyer a is either p∗ when a < A, or the known value monopoly price
p̂ when a ≥ A. Since p∗ ≤ p̂ by Lemma 10 in the appendix, Proposition 4 applies and suggests a
(discrete) price increase in period A.

6.3. Common Values and Public Information

�is section modi�es the main model by considering common values and publicly observed signals.
Notice that making one change without the other would leave the problem unaltered.28 Here we
argue that with both modi�cations, the seller is able to guarantee higher pro�ts. Optimal pricing
when information is conveyed across buyers has been studied using the Bayesian approach, such
as in Bose et al. (2006, 2008). A key distinction is that we allow buyers to delay purchase.

We will study the stylized case of pure common values and perfectly correlated signals. Speci�-
cally, we impose that all buyers have the same value v, which is drawn from F at t = 0. Moreover,
nature chooses a single information arrival process I that consists of signal sets (St)1≤t≤T and
signal distributions It : R+ × St−1 × P t → ∆(St). As in our main model, signals can depend on
past and current prices. However, signals are public, so all buyers in the market have the same
information. In particular, a buyer who arrives at time a observes all signals prior to and including
period a.29 Each buyer decides when to purchase based on the signals she observes.30

We characterize the seller’s pro�t guarantee per buyer in the patient limit, which establishes
an interesting connection to the results in Section 5.

Proposition 5. Consider the model with common values and public signals. Let ΠC(δ, T ) be the
seller’s maxmin discounted total pro�t with discount factor δ and time horizon T . We have:

lim
δ→1,T→∞

(1− δ) · ΠC(δ, T ) = ΠRSD.

�is pro�t can be approximated by a sequence of strictly increasing price paths.

Figure 1 below illustrates the price paths we use for this approximation, in the case of a uniform
prior. Starting o� at ΠRSD, prices increase and eventually �a�en at a level that converges as δ → 1

to the number S from (3). Prices also increase more slowly in the patient limit.

28To see this, note that a constant price path makes the problem stationary across buyers. So the seller can guarantee
the sum of what can be ensured from individual buyers. On the other hand, this total pro�t guarantee cannot be
improved upon with either independent values or private signals, since nature can simultaneously minimize the
seller’s pro�t from each buyer.

29�is setup connects with the previous Section 6.2, since later buyers arrive with more information. �e di�erence is
that the amount of initial information is now endogenous.

30With perfectly-aligned values and signal observations, other buyers’ purchase decisions do not reveal more infor-
mation than the signals. �us in our se�ing it is without loss to make purchase decisions unobservable.
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Figure 1: Illustration of price paths. Blue is δ = 0.9; Orange is δ = 0.95.

To see why Proposition 5 holds, we �rst observe that nature can provide the Roesler-Szentes
information structure in the �rst period and hold pro�t below ΠRSD per buyer. In the opposite
direction, we look for increasing price paths that guarantee close to ΠRSD. �e following analogue
of the Replacement Lemma greatly simpli�es the analysis:

Lemma 4 (Replacement Lemma for Common Values). Consider the model with common values
and public signals. Suppose that the seller uses a deterministic and increasing price path. �en total
pro�t can be minimized by an information structure that only provides information in the �rst period.

Lemma 4 enables us to restrict a�ention to static information structures. To complete the
proof, we adapt Du’s random price distribution (3) to construct price paths such that the seller’s
total pro�t under any static information structure approximates the single-period pro�t under
Du’s mechanism. As a consequence, pro�t guarantee converges to ΠRSD.

7. Conclusion

In this paper, we have utilized a robust approach to study optimal monopoly pricing with dynamic
information arrival. In our baseline model, the monopolist’s optimal pro�t guarantee is what he
would obtain with only a single period to sell to each buyer, and a constant price path delivers this
optimal pro�t. We have shown how this conclusion depends on our formulation of the seller’s
problem, in particular the assumption regarding whether (the seller believes) prices in�uence
information availability. We also identify several economically meaningful restrictions on the
informational environment that would lead to gains from non-constant pricing strategies. �is
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illustrates the power of our approach to explain pricing behavior, since performing a Bayesian
analysis with general information structures would typically disallow a parsimonious benchmark
result similar to our �eorem 1.

We view one contribution of this paper as introducing a robust objective into a dynamic
mechanism design problem. Dynamics complicates the characterization of agent behavior, which is
essential for understanding the performance of a given mechanism across di�erent (informational)
environments. �is di�culty suggests durable-goods pricing as a natural �rst se�ing to investigate
robust dynamic mechanisms, because a buyer’s decision is simply represented by the choice of
a stopping time. But in terms of economic motivation, dynamic robustness concerns are also
present in other applications. We hope that the techniques developed in this paper will help other
researchers seeking to extend the robust mechanism design literature to accommodate dynamics.
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A. Proofs for the Main Model

We �rst de�ne the pressed distribution G in cases where F need not be continuous.
DEFINITION 1’. Given a percentile α ∈ (0, 1], de�ne g(α) to be the expected value of the lowest
α-percentile of the distribution F . In case F is a continuous distribution, g(α) = 1

α

∫ F−1(α)

0
vdF (v).

In general, g is continuous and weakly increasing.

Let v be the minimum value in the support of F . For β ∈ (v,E[v]], de�ne G(β) = sup{α :

g(α) ≤ β}. We extend the domain of this inverse function to R+ by se�ing G(β) = 0 for β ≤ v and
G(β) = 1 for β > E[v].31

�e rest of this appendix provide proofs for Proposition 1, �eorem 1 and Proposition 2.

A.1. Proof of Proposition 1

Given a realized price p, minimum pro�t occurs when there is maximum probability of signals
that lead the buyer to have posterior expectation ≤ p. First consider the information structure I
that tells the buyer whether her value is in the lowest G(p)-percentile or above. By de�nition of
G, the buyer’s expectation is exactly p upon learning the former. �is shows that, under I , the
buyer’s expected value is ≤ p with probability G(p).

Now we show that G(p) cannot be improved upon. To see this, note that it is without loss
of generality to consider information structures which recommend the buyer to purchase or not.
Nature chooses an information structure that minimizes the probability of “purchase.” By Lemma
1 in Kolotilin (2015), this minimum is achieved by a partitional information structure, namely by
recommending purchase for v > α and not for v ≤ α. Since the buyer’s expected value given
v ≤ α cannot be greater than p, we have α ≤ F−1(G(p)). It is then easy to see that the particular
information structure I above is the worst case.

�us, for any realized price p, the seller’s minimum pro�t is p(1 − G(p)). �e proposition
follows from the seller optimizing over p.

A.2. Proof of �eorem 1

As discussed in the main text, the proof consists of a lower-bound and an upper-bound. We address
them in turn and discuss at the end why the optimal pricing strategy is unique (when p∗ is).

31If F does not have a mass point at v, g(α) is strictly increasing and G(β) is its inverse function which increases
continuously. If instead F (v) = m > 0, then g(α) = v for α ≤ m and it is strictly increasing for α > m. In that
case G(β) = 0 for β ≤ v, a�er which it jumps to m and increases continuously to 1.
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A.2.1. Lower-bound: Proof of Lemma 1

For the lower-bound on the seller’s pro�t guarantee, we will prove Lemma 1 which is stronger. Fix
a dynamic information structure I and an optimal stopping time τ of the buyer. Because prices
are deterministic, the distribution of signal st in period t only depends on previous signals (and
not on prices). We can also think about the stopping time τ as a function of signal realizations.

We will construct another information structure I ′ which only reveals information in the
�rst period, and which weakly reduces the seller’s pro�t. Consider a signal set S = {s, s},
corresponding to the recommendation to purchase or not, respectively. To specify the distribution
of these signals conditional on the true value v, let nature draw signals s1, s2, · · · according to
the original information structure I (and conditional on v). If, along this sequence of realized
signals, the stopping time τ results in purchasing the object, let the buyer receive the signal s with
probability δτ−1. With complementary probability and when τ = ∞, let her receive the other
signal s. In the alternative information structure I ′, nature reveals s or s in the �rst period and
provides no more information a�erwards.

We claim that under I ′, the buyer receiving the signal s has expected value at most p1. In fact,
something stronger holds, namely that the buyer has expected value at most p1 conditional on s
and any realized s1 under the original information structure I .32 To prove this, note that since
stopping at time τ is weakly be�er than stopping at time 1, we have

E[v | s1]− p1 ≤ Es2,··· ,sT
[
δτ−1(E[v | s1, s2, · · · , sτ ]− pτ )

]
. (6)

Here and later, the superscripts over the expectation sign highlight the random variables which
the expectation is with respect to. In this case they are s2, . . . , sT , whose distribution is governed
by the original information structure I and the realized signal s1.

Since pτ ≥ p1, simple algebra reduces (6) to the following.

E[v | s1] ≤ Es2,··· ,sT
[
δτ−1E[v | s1, s2, · · · , sτ ] + (1− δτ−1)p1

]
. (7)

Doob’s Optional Sampling �eorem says that E[v | s1] = Es2,··· ,sT [E[v | s1, s2, · · · , sτ ]]. �us we
derive the inequality:

p1 ≥
Es2,··· ,sT [(1− δτ−1) · E[v | s1, s2, · · · , sτ ]]

Es2,··· ,sT [1− δτ−1]
. (8)

�e denominator Es2,··· ,sT [1− δτ−1] can be rewri�en as Es2,··· ,sT [P(s | s1, s2, . . . , sT )], which

32Technically we only consider those s1 such that s occurs with positive probability given s1.
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is the probability of s given s1. Because τ is a stopping time, the numerator in (8) equals

Es2,··· ,sT
[
(1− δτ−1) · E[v | s1, s2, · · · , sT ]

]
,

which can be further rewri�en as

Es2,··· ,sT
[
(1− δτ−1) · E[v | s1, s2, · · · , sT , s]

]
because s does not provide more information about v beyond s1, . . . , sT .

With these, (8) states that

p1 ≥
Es2,··· ,sT [P(s | s1, s2, . . . , sT ) · E[v | s1, s2, · · · , sT , s]]

Es2,··· ,sT [P(s | s1, s2, . . . , sT )]
= E[v|s1, s] (9)

just as we claimed.
�us, under the static information structure I ′ constructed above, a buyer who receives the

signal s has expected value at most p1, which is also less than any future price. Since information
only arrives in the �rst period, all sale happens in the �rst period to the buyer receiving the signal
s. �e probability of sale is at most E[δτ−1], and the seller’s pro�t is at most E[δτ−1] · p1. �is is
no more than E[δτ−1 · pτ ], the discounted pro�t under the original dynamic information structure.
Hence the lemma.

A.2.2. Upper-bound: Proof of Lemma 2

In the main text we sketched an argument to prove Lemma 2 for deterministic price paths. Here we
provide a formal treatment of the general case, where the pricing strategy σ may be randomized.
For clarity, the proof is broken down into four steps.

Step 1: Cuto� values. To begin, we de�ne a set of cuto� values. In each period t, given previous
and current prices p1, . . . , pt, a buyer who knows her value to be v prefers to buy in the current
period if and only if

v − pt ≥ max
τ≥t+1

E[δτ−t · (v − pτ )] (10)

where the RHS maximizes over all stopping times that stop in the future. It is easily seen that
there exists a unique value vt such that the above inequality holds if and only if v ≥ vt.33 �us, vt
is de�ned by the equation

vt − pt = max
τ≥t+1

E[δτ−t · (vt − pτ )] (11)

and it is a random variable that depends on realized prices pt and the expected distribution of
33�is follows by observing that both sides of the inequality are strictly increasing in v, but the LHS increases faster.
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future prices σ(· | pt).
Next, let us de�ne for each t ≥ 1

wt = min{v1, v2, . . . , vt} = min{wt−1, vt}. (12)

For notational convenience, let w0 = ∞ and w∞ = 0. wt is also a random variable, and it is
decreasing over time.

Step 2: Construction of information structure. Consider the following information structure
I . In each period t, the buyer is told whether or not her value is in the lowest G(wt)-percentile.
Providing this information requires nature to know wt, which depends only on the realized prices
and the seller’s pricing strategy.

Step 3: Buyer behavior. �e following lemma describes the buyer’s optimal stopping decision
in response to σ and I :

Lemma 5 (Optimal Stopping). For any pricing strategy σ, let the information structure I be
constructed as above. �en the �rst buyer �nds it optimal to follow nature’s recommendation: She
purchases in the �rst period when told her value is above the G(wt)-percentile (and waits otherwise).

To prove this lemma, suppose period t is the �rst time that the buyer learns her value is above
the G(wt)-percentile. �en in particular, wt < wt−1, which implies wt = vt by (12). Given this
signal, the buyer knows she will receive no more information in the future (because wt decreases
over time). She also knows her value is above the G(wt)-percentile, which is greater than wt = vt

(the average value below that percentile). By the de�nition of vt, such a buyer optimally purchases
in period t.

On the other hand, suppose that in some period t the buyer learns her value is below the
G(wt)-percentile. Since wt decreases over time, this signal contains more information than all
previous signals. By the de�nition of the pressed distribution G, this buyer’s expected value is
wt ≤ vt. Such a buyer prefers to delay her purchase even without additional information in the
future; the promise of future information does not change the conclusion. �e lemma follows.

Step 4: Pro�t decomposition. By Lemma 5, the buyer whose true value belongs to the percentile
range (G(wt−1), G(wt)] will purchase in period t. �us, the seller’s expected discounted pro�t
can be computed as

Π = E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) · pt

]
.

We rely on a technical result to simplify the above expression:
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Lemma 6 (Price Equals Discounted Cuto�s). Suppose wt = vt ≤ wt−1 in some period t. �en

pt = E

[
T−1∑
s=t

(1− δ)δs−tws + δT−twT | pt
]

(13)

which is a discounted sum of current and expected future cuto�s.

Using Lemma 6, we can rewrite the pro�t as

Π = E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) · E

[
T−1∑
s=t

(1− δ)δs−tws + δT−twT | pt
]]

= E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) ·

(
T−1∑
s=t

(1− δ)δs−tws + δT−twT

)]

= E

[
T−1∑
s=1

(1− δ)δs−1ws(1−G(ws)) + δT−1wT (1−G(wT ))

]
≤ Π∗.

(14)

�e second line uses the law of iterated expectations, as well as the fact that wt−1 and wt only
depend on the realized prices pt. �e next line follows from interchanging the order of summation,
and the last inequality is because ws(1−G(ws)) ≤ Π∗ holds for every ws.

To complete the proof of the upper-bound, it only remains to show Lemma 6.

Proof of Lemma 6. We assume that T is �nite,34 and prove the result by induction on T − t. �e
base case t = T follows from wT = vT = pT . For t < T , from (11) we can �nd an optimal stopping
time τ ≥ t+ 1 such that

vt − pt = E[δτ−t · (vt − pτ )]

which can be rewri�en as
pt = E[(1− δτ−t)vt + δτ−tpτ ]. (15)

We claim that in any period s with t < s < τ , vs ≥ vt so that ws = wt = vt by (12); while in
period τ , vτ ≤ vt and wτ = vτ ≤ wτ−1. In fact, if s < τ , then the optimal stopping time τ suggests
that the buyer with value vt weakly prefers to wait than to buy in period s. �us by de�nition of
vs, it must be true that vs ≥ vt. On the other hand, in period τ the buyer with value vt weakly
prefers to buy immediately, and so vτ ≤ vt.

34�e in�nite-horizon version can be proved by using �nite-horizon approximations and applying the Monotone
Convergence �eorem. We omit the technical details.
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By these observations, if τ =∞ (meaning the buyer never buys), we have

(1− δτ−t)vt + δτ−tpτ = vt =
T−1∑
s=t

(1− δ)δs−tws + δT−twT .

And if τ ≤ T , we can apply inductive hypothesis to pτ and obtain

(1− δτ−t)vt + δτ−tpτ =
τ−1∑
s=t

(1− δ)δs−tws + E

[
T−1∑
s=τ

(1− δ)δs−tws + δT−twT | pτ
]
.

Plugging the above two equations into (15) proves the lemma as well as �eorem 1.

A.2.3. Proof of Unique Optimality

Suppose p∗ is unique in the one-period problem, then from (14) we see that the seller’s pro�t from
the �rst buyer equals Π∗ only if ws = p∗ almost surely for each s. �is together with Lemma 6
implies p1 = p∗ with probability 1. Similar consideration for later buyers shows that the seller
must always charge p∗ to achieve the total pro�t guarantee Π∗ · 1−δT

1−δ .

A.2.4. Example: Pro�t Can be Even Worse

�e partitional information structure in the upper-bound argument directly generalizes the one-
period construction. Despite this analogy, however, this particular process is generally not the
worst case beyond a single period. Here we provide a concrete example to illustrate:

Example 2. Let T = 2, v = 0 or 1 with equal probabilities, and δ = 1/2. Suppose the seller
sets prices to be p1 = 11/40 and p2 = 1/10. Under these prices, a buyer with value 9

20
would

be indi�erent (in the �rst period) between purchase and delay. Hence the partitional information
structure constructed before Lemma 5 induces expected value 9

20
when recommending the buyer not

to purchase in the �rst period. �is information structure further induces expected value p2 = 1/10

when recommending the buyer not to purchase in the second period.

If the probability of being recommended to purchase in period t (conditional on not having bought)
is rt, we have 1

2
= r1 + 9

20
(1− r1) and 9

20
= r2 + 1

10
(1− r2) because beliefs are martingales. �us

we obtain r1 = 1
11

and r2 = 7
18
. Pro�t under this information structure is

p1 ·
1

11
+ (δp2) ·

(
1− 1

11

)(
7

18

)
≈ 0.0427 < 0.0858 ≈ Π∗.

Now suppose that instead, nature were to provide no information in the �rst period and reveal the
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value perfectly in the second period. Note that the buyer would be willing to delay, since

E[v]− p1 ≤ δ · P[v = 1] · (1− p2) ,

which in fact holds with equality. Under this di�erent information structure, the seller’s pro�t is
therefore δ · P[v = 1] · p2 = 1

40
< 0.0427.

�e intuitive explanation for this example is that nature can promise more information (relative
to our constructed process) to the buyer in the second period. �is creates option value and induces
delay, which hurts the seller’s pro�t when price in the second period is much lower. In light of
Lemma 1, prices declining over time are crucial for such an example. Conversely, this example
also shows that the Replacement Lemma only holds with non-decreasing prices.

A.3. Proof of Proposition 2

Fix any dynamic information arrival process, our goal is to �nd a partitional process that leads to
lower pro�t. For ease of exposition, we present the proof assuming a deterministic price path, but
the same argument applies to randomized pricing strategies.

As a �rst step, we assume without loss that the original process I simply recommends the
buyer to purchase or not in each period. For 1 ≤ t ≤ T , let λt denote the probability that the
buyer is recommended to purchase in period t, and let yt denote her expected value given this
recommendation (and previous recommendations not to purchase). We also de�ne λT+1 and yT+1

to correspond to the situation when the buyer is never recommended to purchase.

In the alternative, partitional, process I ′, we consider thresholds ∞ = v0 ≥ v1 ≥ · · · ≥
vT ≥ vT+1 = v, such that P[v ∈ [vt, vt−1)] = λt. Under this partitional process, the buyer learns
whether or not v ≥ vt in each period t. We use zt to denote the average value when v belongs to
the interval [vt, vt−1). Crucially, we have the following inequality

T+1∑
r=t+1

λr · yr ≥
T+1∑
r=t+1

λr · zr, ∀0 ≤ t ≤ T. (16)

�is re�ects a key property of partititional information structures: given a mass
∑

r>t λr of buyers,
their average value is minimized when they are precisely those buyers with value less than vt.

Using (16), we are going to show that when the buyer learns her value is below vt, she optimally
delays purchase. To see this, consider a buyer who is recommended not to purchase in period t
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under the original process I . Incentive compatibility requires

T+1∑
s=t+1

λs · (ys − pt) ≤
T∑

s=t+1

δs−tλs · (ys − ps).

Rearranging, this yields

T∑
s=t+1

(1− δs−t)λsys + λT+1yT+1 ≤
T+1∑
s=t+1

λspt −
T∑

s=t+1

δs−tλsps.

Observe that the LHS above is a positive linear combination of the LHS of (16), so we can use (16)
to further deduce (with zs replacing ys everywhere)

T∑
s=t+1

(1− δs−t)λszs + λT+1zT+1 ≤
T+1∑
s=t+1

λspt −
T∑

s=t+1

δs−tλsps.

Rearranging again gives

T+1∑
s=t+1

λs · (zs − pt) ≤
T∑

s=t+1

δs−tλs · (zs − ps).

�at is, a buyer with value below vt should not purchase in period t.

By the above analysis, the partitional process I ′ ensures that any buyer with value in [vt, vt−1)

purchases in period t or later. If she indeed purchases in period t, discounted pro�t equals δt−1λtpt,
which is the same as the original discounted pro�t from period t. But if she delays, discounted
pro�t would be even lower because social surplus decreases while buyer surplus could only
increase. �is proves that the constructed partitional process yields a lower pro�t.

B. Proofs for �e Model with Limited Price-dependence

In this appendix, we �rst review the solution to the one-period model without price-dependence.
�e analysis follows Du (2018), although we will represent his exponential mechanism as a random
price mechanism. A�er listing several useful properties of Du’s mechanism, we will present the
proof of �eorem 2. We conclude with a discussion of the dynamic model with limited price-
dependence, in particular focusing on the case where information depends on past but not current
prices.
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B.1. Properties of Du’s Mechanism

For the one-period model, Du (2018) constructs a mechanism that guarantees pro�t ΠRSD re-
gardless of the buyer’s information structure. By viewing interim allocation probabilities as a
distribution function, we can equivalently implement Du’s mechanism as a random price with the
following c.d.f.:

D(x) =


0 x < W
log x

W

log S
W

x ∈ [W,S)

1 x ≥ S

(17)

Recall from the main text that W and B are parameters for the Roesler-Szentes information
structure; see (4). In the above we have an additional parameter S, which is characterized by
S ∈ [W,B] and ∫ S

0

FB
W (v) dv =

∫ S

0

F (v) dv (18)

where FB
W is the Roesler-Szentes worst-case information structure. To explain where S comes

from, note that the LHS in (18) must not exceed the RHS for all S because F is a mean-preserving
spread of FB

W (Rothschild and Stiglitz (1970)). When W is smallest possible, such a constraint
must bind at some S.

Since the constraint
∫ x

0
FB
W (v) dv ≤

∫ x
0
F (v) dv binds at x = S, the �rst order condition gives

FB
W (S) = F (S). �is implies that not only F is a mean-preserving spread of FB

W , but the truncated
distribution of F conditional on v ≤ S is also a mean-preserving spread of the corresponding
truncation of FB

W . In other words:

Remark 1. �e Roesler-Szentes information structure has the property that any buyer with true
value v ≤ S has posterior expected value at most S, while any buyer with true value v > S has
posterior expected value greater than S.

For completeness, we include a quick proof that the random price p ∼ D guarantees pro�t
W = ΠRSD. Consider the one-period model in which nature chooses a distribution F̃ of the
buyer’s posterior expected values. �en the seller’s pro�t is

Π =

∫ S

W

p(1− F̃ (p)) dD(p) =
1

log S
W

∫ S

W

(1− F̃ (p)) dp ≥ 1

log S
W

(
S −W −

∫ S

0

F̃ (p) dp

)
≥ 1

log S
W

(
S −W −

∫ S

0

F (p) dp

)
=

1

log S
W

(
S −W −

∫ S

0

FB
W (p) dp

)
= W.

�e second inequality follows because F is a mean-preserving spread of F̃ . �e next equality uses
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(18), and the last equality uses (4).

B.2. Proof of Lemma 3 and�eorem 2

As discussed in the main text, �eorem 2 follows from Lemma 3. So we focus on proving the
lemma. �e proof is broken down into several steps.

In this proof, we start with a general (price-independent) dynamic information structure I .
We use it to construct an information structure that only provides information to the buyer upon
arrival, while delivering lower pro�t to the seller.

Step 1: Cuto� prices and purchase probabilities. By assumption, each buyer’s expected value
follows a martingale process v1, v2, . . . that is autonomous (independent of the realized constant
price). We de�ne a sequence of cuto� prices adapted to the v-process:

vt − rt = max
τ>t

E[δτ−t(vτ − rt)];

qt = max {r1, . . . , rt}.

In case T is �nite, we extend these de�nitions to t > T by le�ing rt = vt = vT and qt = qT .
�ese cuto� prices are dual concepts of cuto� values de�ned in Appendix A. In particular, sale

occurs in period t precisely when the random constant price p belongs to [qt−1, qt). Moreover,
whenever qt = rt ≥ qt−1 we have the following analogue of Lemma 6:

vt = E

[∑
s≥t

(1− δ)δs−tqs | v1, . . . , vt

]
. (19)

Step 2: Pro�t decomposition. Suppose the seller draws a random price p from some c.d.f. H .
Let

π(q) =

∫ q

0

p dH(p)

denote the one-period pro�t from a buyer whose value is q. �en we can compute total pro�t to be

Π = E

[∑
t≥1

δt−1

∫ qt

qt−1

p dH(p)

]

= E

[∑
t≥1

δt−1(π(qt)− π(qt−1))

]

= E

[∑
t≥1

(1− δ)δt−1π(qt)

]
.
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Step 3: Replacement. Given the qt process from Step 1, de�ne ṽ to be the random variable that
is equal to qt with probability (1− δ)δt−1; let F̃ be the resulting distribution of ṽ. Step 2 implies
that pro�t (with one buyer) under the dynamic information process is also the pro�t in one period
facing value distribution F̃ . To complete the proof, it su�ces to show that F̃ is the distribution
of posterior expected values under prior F and some static information structure; this is, F is a
mean-preserving spread of F̃ (see Rothschild-Stiglitz (1970)).

To do this, observe that F is a mean-preserving spread of the distribution of v∞ = limt→∞ vt.
So it su�ces to show that the la�er distribution is a mean-preserving spread of F̃ , i.e., the
distribution of v∞ should be second-order stochastically dominated by the (suitably averaged)
distribution of qt in second-order stochastic dominance. For each real number x, let γ be a stopping
time adapted to the v-process such that qγ �rst exceeds x. �en

E

[∑
t≥1

(1− δ)δt−1(qt − x)+

]
= E

[
δγ−1

∑
t≥γ

(1− δ)δt−γ(qt − x)

]
= E

[
δγ−1(vγ − x)

]
≤ E[(v∞ − x)+],

where we use y+ to denote max{y, 0}. �e �rst equality follows from the de�nition of γ and the
fact that qt increases in t. �e second equality holds by (19), which can be applied here because
qγ > x ≥ qγ−1 by de�nition of γ; note that it also trivially holds when γ =∞, meaning qT < x.
To show the last inequality, we have vγ−x ≤ (vγ−x)+ ≤ E[(v∞−x)+ | v1, . . . , vγ] by martingale
property of the v-process and convexity of the positive part function.

SinceE
[∑

t≥1(1− δ)δt−1(qt − x)+
]
≤ E[(v∞−x)+] for each x, andE

[∑
t≥1(1− δ)δt−1qt

]
=

E[v∞] = E[v], we conclude SOSD as desired. Lemma 3 and �eorem 2 then follow.

B.3. Information Depending on Past Prices

We now consider another version of our model, where information can depend on past but not
current prices. We show that ΠRSD per buyer can still be guaranteed if information is static.

Proposition 6. Suppose that information to each buyer is only provided when she arrives and can
only depend on past prices. �en for any T and δ, maxmin average pro�t per buyer is ΠRSD. �e
seller can achieve this by a strategy that sets independent prices across periods.

�e proof relies on the following lemma regarding the outcome-equivalence between static
and dynamic pricing strategies (under known values):
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Lemma 7 (Outcome Equivalence). Fix any continuous distribution function D(·) and any T, δ.35

�ere exists a pricing strategy σ ∈ ∆(pT ) such that in the known value case, any buyer who has true
value v and arrives in period a purchases with total probability D(v) (discounted to period a).

In words, for any personalized static pricing strategyD, there is a dynamic pricing strategy σ which
does not condition on buyers’ arrival times, but which results in the same discounted purchase
probabilities for every type of each arriving buyer. Note that in Proposition 6, we assume buyers
do know their values upon arrival (given by the static information structure). As a consequence,
a seller using strategy σ obtains the same pro�t from each buyer as if he sells only once to this
buyer at a random price drawn from D. So Lemma 7 will imply Proposition 6.

Proof of Lemma 7. We �rst prove the result for T = 2, then generalize to all �nite T and lastly
discuss the case of T =∞.

Step 1: �e case of two periods. In the second period, regardless of realized p1 the seller should
charge a random price drawn from D. �is achieves the desired purchase probabilities for the
second buyer.

Consider the �rst buyer. For any price p1 in the �rst period, de�ne v1 as the cuto� indi�erent
between buying at price p1 or waiting till the next period and facing the random price drawn from
D. �at is,

v1 − p1 = δ · Ep2∼D [max{v1 − p2, 0}] . (20)

As p1 varies according to the seller’s pricing strategy σ, v1 is a random variable. We de�ne w1 = v1

and w2 = min{v1, p2}, where p2 is independently drawn according to D.
If the buyer has value at least w1, she purchases in the �rst period. If here value belongs

to (w2, w1], she purchases in the second period. Otherwise she does not purchase. �e total
discounted purchase probability of buyer 1 with value x is thus

Pw1 [x ≥ w1] + δ · Pw1,w2 [w1 > x ≥ w2] = (1− δ) · Pw1 [x ≥ w1] + δ · Pw2 [x ≥ w2].

Let w be the random variable that satis�es w = w1 (or w2) with probability 1− δ (or δ), then the
seller seeks to ensure that w is distributed according to D.

Suppose H is the c.d.f. of v1. Since w1 = v1 and w2 = min{v1, p2}, the probability that w is
greater than x is given by (1− δ)(1−H(x)) + δ(1−H(x))(1−D(x)).36 �is has to be equal to
1−D(x), which implies

1−H(x) =
1−D(x)

1− δD(x)
. (21)

35Note that Du’s distribution D(·) is continuous except when it is a point-mass on W ; in that exceptional case we
have ΠRSD = Π∗, and Proposition 6 follows from �eorem 1.

361−H(x) is the probability that w1 > x, and (1−H(x))(1−D(x)) is the probability that w2 > x.
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We are le� with the task of �nding a �rst-period price distribution under which v1 ∼ H . �is can
be done because the random variables v1 and p1 are in a one-to-one relation (see (20)). �e lemma
thus holds for T = 2.

Remark 2. It will be useful to note that (21) implies the distribution H has the same support as D.
In light of (20), we see that when v1 achieves the maximum of this support, p1 is in general strictly
smaller than v1 (unless the support is a singleton point, which implies ΠRSD = Π∗). So the �rst-period
maximum price is smaller than in the second period. On the other hand, the minimum price p1 is
equal to the minimum of the support of D, which isW when D is Du’s price distribution.

Step 2: Extension to �nite T . Similar to the above, we conjecture a pricing strategy σ that is
independent across periods: dσ(p1, . . . , pT ) = dσ1(p1)× · · · × dσT (pT ), where we interpret each
σt as a distribution. De�ne the cuto� values v1, . . . , vT as in (11). Note that due to independence,
vt only depends on current price pt but not on previous prices. Further de�ne random variables
w(t) as follows: For t ≤ s ≤ T − 1, w(t) = min{vt, vt+1, . . . , vs} with probability (1− δ)δs−t; and
with remaining probability δT−t, w(t) = min{vt, vt+1, . . . , vT}.

Consider a buyer who arrives in period t with value x. We can generalize the previous
arguments and show that her discounted purchase probability is P[w(t) ≤ x]. To deduce the
lemma, we want each w(t) to be distributed according to D. Simple calculation shows this is
the case if vT ∼ D and v1, . . . , vT−1 ∼ H as given in (21); since vt depends only on pt, they
are independent random variables. We can then solve for the price distributions σ1, . . . , σT by
backward induction: σT is simply D, and once the prices in period t+ 1, . . . , T are determined,
there is a one-to-one relation between pt and vt by (11). �us, the distribution of pt is uniquely
pinned down by the distribution of vt (which we know is H).

Step 3: �e in�nite horizon case. If T = ∞, we look for price distributions σ1, σ2, . . . such
that v1, v2, · · · ∼ H . �e reason H(x) should be the c.d.f. of v1 can be understood this way:
Under stationary price distributions, the (�rst) buyer with value x purchases in period t with
probability H(x) conditional on not purchasing earlier. �us the discounted purchase probability
is
∑

t δ
t−1(1−H(x))t−1H(x). Se�ing this equal to D(x) yields (21).

In order for each vt to be distributed as H , we conjecture a stationary price distribution. Below
we let P (x) denote the c.d.f. of each pt. To determine P , recall that the cuto� v1 is de�ned by

v1 − p1 = max
τ≥2

E
[
δτ−1(v1 − pτ )

]
. (22)

�e stopping problem on the RHS is stationary. �us when p2 < p1 the buyer stops in period 2
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and receives v1 − p2; otherwise she continues and receives v1 − p1. (22) thus reduces to

v1 − p1 = δ · Ep2 [max{v1 − p1, v1 − p2}]

which can be further simpli�ed to

v1 = p1 +
δ

1− δ
· Ep2 [max{p1 − p2, 0}] . (23)

When p1 = x, (23) implies

v1 = x+
δ

1− δ
·
∫ x

0

(x− z) dP (z) = x+
δ

1− δ

∫ x

0

P (z) dz.

�us v1 has c.d.f. H(x) if and only if

P (x) = H

(
x+

δ

1− δ

∫ x

0

P (z) dz

)
. (24)

To solve for P (x), we de�ne

Q(x) = x+
δ

1− δ

∫ x

0

P (z) dz; U(y) = 1 +
δ

1− δ
H(y) =

1

1− δD(y)
. (25)

�en (24) becomes the di�erential equation

U(Q(x)) = Q′(x). (26)

Put V (y) =
∫ y

0
(1− δD(z)) dz, so that V ′(y) = 1

U(y)
. �en

∂V (Q(x))

∂x
= V ′(Q(x)) ·Q′(x) =

Q′(x)

U(Q(x))
= 1. (27)

Inspired by the analysis for �nite T , we conjecture that the minimum value of p1 is W . �at is,
we conjecture Q(W ) = W . �us V (Q(W )) = V (W ) = W . From (27) we deduce V (Q(x)) = x,
so that

Q(x) = V −1(x) with V (y) =

∫ y

0

(1− δD(z)) dz. (28)

Since V is strictly increasing, there is a unique solution Q(x) to the above equation. From (25),
the corresponding distribution of prices is

P (x) =
1− δ
δ
· (Q′(x)− 1). (29)
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�is completes the proof of Lemma 7 and thus of Proposition 6.

B.4. An Impossibility Result

Finally, consider information structures that are dynamic and depend on past but not current prices.
ΠRSD remains an upper-bound on the seller’s pro�t guarantee. However, unlike in the previous
section, we show here that the upper-bound cannot be achieved against dynamic information.
�e following result is stated for two periods, but it easily generalizes to any T > 1.

Proposition 7. Suppose that information can depend on past prices, ΠRSD > Π∗ and Du’s mecha-
nism is uniquely maxmin optimal in the one-period problem.37 �en in the two-period model with
one buyer arriving in each period, the seller’s total discounted pro�t guarantee is strictly below
(1 + δ)ΠRSD for any δ ∈ (0, 1).

Proof. We present the proof in several steps.

Step 1: Construction of information structure. Consider the model with two periods and
one buyer arriving in each period. By providing the Roesler-Szentes information structure to the
second buyer, nature can ensure that seller obtains no more than ΠRSD from her.

For the �rst buyer, we construct the following dynamic information structure I :

• In the �rst period, nature provides the Roesler-Szentes information structure. We denote
the buyer’s posterior expected value by ṽ, so as to distinguish from her true value v. Note
that ṽ ∼ FB

W .

• In the second period, given the realized price p1 and the buyer’s expected value ṽ a�er the
�rst period, nature reveals the buyer’s true value v if ṽ ≥ v1(p1), where the cuto� v1(p1) is
de�ned as usual (assuming no information arrives in the second period):

v1 − p1 = δ · Ep2∼σ(·|p1) [max{v1 − p2, 0}] .

If ṽ < v1(p1), nature provides no information in the second period.

Intuitively, nature targets the buyer who prefers to purchase in the �rst period when she does
not expect to receive information in the second period. By promising full information to such a buyer
in the future, nature potentially delays her purchase and reduces the seller’s pro�t. �e rest of the
37ΠRSD > Π∗ is clearly necessary for the result: We have shown in our main model that (1+ δ)Π∗ can be guaranteed

even when nature is allowed to condition on current price. On the other hand, we impose an extra assumption that
Du’s mechanism is strictly optimal. �is is for technical reasons that we explain below, and it may not be necessary
for the conclusion. In any event, we show in Appendix D.4 that Du’s mechanism is indeed unique for “generic”
value distributions F .
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proof formalizes this argument.

Step 2: Buyer behavior and seller pro�t. To facilitate the analysis, we compare to the static
information structure I ′ in which nature reveals ṽ in the �rst period but does nothing in the
second period. Under I ′, the buyer’s value distribution FB

W does not change over time. �us by
Stokey (1979), the seller’s pro�t would at most be ΠRSD. We will show that the seller’s pro�t
under the dynamic information structure I could only be lower than under I ′ (for any pricing
strategy), and we also characterize when the comparison is strict.

Lemma 8 (Pro�t Comparison). Consider the dynamic information structure I and its static coun-
terpart I ′ constructed above. �e seller’s pro�t under I ′ is no greater than ΠRSD, and his pro�t under
I is even smaller by at least (1− δ)W multiplied by the probability that the buyer delays purchase.

To prove this lemma, we consider three possibilities. First, if the price p1 is so high that
ṽ < v1(p1), then the buyer does not purchase in the �rst period under I ′. �is is also her optimal
decision under I , because she will not receive extra information in the second period. Second, if
the price is very low, then under both I and I ′ the buyer purchases in the �rst period. Lastly, for
some intermediate prices, the buyer purchases in the �rst period under I ′ but not under I . We note
that the opposite case cannot arise, because I provides more information than I ′ in the second
period, making the buyer more willing to delay under I .

To summarize, when nature provides the dynamic information structure I rather than I ′, the
seller’s pro�t changes only when some buyers delay their purchase in the �rst period. Observe
that whenever such delay occurs, discounted social surplus decreases from ṽ to at most δ · ṽ.
Since buyer surplus cannot decrease by incentive compatibility, pro�t must decrease by at least
(1− δ)ṽ ≥ (1− δ)W . Lemma 8 follows.

Step 3: Proof for a particular pricing strategy. Let σD be the pricing strategy given by Lemma
7, which we recall guarantees ΠRSD from each buyer when information is static. Here we argue
that if the seller uses σD, then by providing the dynamic information structure I , nature holds
pro�t strictly less than ΠRSD. Later we generalize the result to other pricing strategies.

Remark 2 shows that under σD, p2 is drawn from Du’s distribution D independently of p1. On
the other hand, p1 is continuously supported on a smaller interval [W,S1], with W < S1 < S.
�e distribution of p1 is such that v1(p1) ∼ H , which is supported on [W,S].

Suppose the buyer’s posterior expected value ṽ belongs to the open interval (W,S). Further
suppose that knowing her true value strictly improves her expected payo� in the second period
when p2 ∼ D. �en, whenever p1 is smaller than but close to the indi�erence type v−1

1 (ṽ), such a
buyer would purchase in the �rst period under I ′ but delay purchase under I . By Lemma 8, we
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can bound pro�t away from ΠRSD so long as we �nd a positive measure of such buyers.

To do this, note from Remark 1 that ṽ < S implies the true value also satis�es v < S. More-
over, because we assume ΠRSD > Π∗, Lemma 10 in Appendix D.5 gives W > v. �us with
positive probability, a buyer with expected value ṽ ∈ (W,S) has true value v ∈ (v,W ). For any
such buyer, even without additional information she would purchase at some prices p2 ∼ D

and p2 ∈ (W, ṽ). But if she were informed that her true value is less than W , she would not
purchase at any second-period price p2 ∼ D. Hence knowing her true value strictly improves
this buyer’s second-period expected payo�, and we are done with the proof when the seller uses σD.

Step 4: Proof for general pricing strategy σ. We now prove Proposition 7 in its full generality.
�e argument is as follows (omi�ing some technical details): Suppose for contradiction that some
pricing strategy σ guarantees pro�t arbitrarily close to ΠRSD from each buyer. �en because
Du’s price distribution D(x) is uniquely optimal in the one-period problem, the distribution of p2

conditional on p1 is close to D (in the Prokhorov metric) with high probability; otherwise nature
could su�ciently damage the seller’s pro�t from the second buyer. Next, we can similarly show
that the distribution of v1(p1) must be close to H , which is its distribution under σD.38 �e rest of
the proof proceeds as in Step 3: With positive probability the buyer has true value v < W and
posterior expected value ṽ ∈ (W,S). For such a buyer, full information in the second period is
strictly valuable, and she delays purchase with positive probability under the dynamic information
structure I (relative to I ′). Lemma 8 then implies that pro�t from the �rst buyer is bounded away
from ΠRSD. �is contradiction proves Proposition 7.

C. Proofs for Other Extensions

C.1. Proof of Proposition 3

If information only arrives once, we will show that a seller who sets prices p2 = p∗ and p1 slightly
larger than p∗ can guarantee strictly more than Π∗. �e proof considers two cases (information
either in the �rst period or second):

Case 1: Information in period one. Let F̃ denote the distribution of posterior expected values

38If Du’s mechanism is not unique in the one-period problem, then we cannot reach these conclusions. In fact, without
that technical assumption our proof presented here would fail: In an earlier version of this paper we show that if
nature provides the speci�c information structure I , then the seller has a pricing strategy that obtains ΠRSD from
both buyers whenever Du’s mechanism is non-unique. Details are available upon request.
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given the static information structure. �en pro�t can be computed as

Π = p1(1− F̃ (v1)) + δp2(F̃ (v1)− F̃ (v2))

= (1− δ)v1(1− F̃ (v1)) + δv2(1− F̃ (v2)),
(30)

where v1 = p1−δp2
1−δ and v2 = p2 are the threshold values for buying in period one and period two,

respectively. Since F is a mean-preserving spread of F̃ , we have∫ x

0

F (s) ds ≥
∫ x

0

F̃ (s) ds, ∀0 ≤ x ≤ 1.

By our choice, v2 = p2 = p∗ and v1 is slightly larger than p∗. �en for all x > v1 > p∗ the above
inequality implies a joint upper-bound on F̃ (v1) and F̃ (v2) as follows:∫ x

0

F (s) ds ≥
∫ x

0

F̃ (s) ds ≥ (v1 − p∗)F̃ (p∗) + (x− v1)F̃ (v1), (31)

where the second inequality holds by monotonicity of the c.d.f. F̃ .

In particular, let us choose x = L−1(p∗) = F−1(G(p∗)). Note that G(p∗) > 0 ensures
x > p∗ > v, so for p1 close to p∗ we indeed have v1 ∈ (p∗, x). Moreover, p∗ = 1

F (x)

∫ x
0
s dF (s)

and so ∫ x

0

F (s) ds = xF (x)−
∫ x

0

s dF (s) = xF (x)− p∗F (x) = (x− p∗)G(p∗).

Combined with (31), we deduce the following inequality:

F̃ (v1)−G(p∗) ≤ v1 − p∗

x− v1

· (G(p∗)− F̃ (p∗)). (32)

Plugging into the objective function (30), we conclude that for v1 su�ciently close to p∗ and ε > 0

su�ciently small:

Π = (1− δ)v1(1− F̃ (v1)) + δp∗(1− F̃ (p∗))

≥ (1− δ)p∗(1− F̃ (v1)) + δp∗(1− F̃ (p∗)) + ε

= p∗
[
1−G(p∗) + δ(G(p∗)− F̃ (p∗))− (1− δ)(F̃ (v1)−G(p∗))

]
+ ε

≥ p∗(1−G(p∗)) + ε

= Π∗ + ε.

�e inequality in the second line holds whenever ε ≤ (v1 − p∗)(1− F̃ (v1)). As v1 → p∗, we have
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lim sup F̃ (v1) ≤ G(p∗) < 1 from (32). �us we are able to choose some ε > 0 (depending on v1)
that satis�es this inequality. As for the inequality in the penultimate line above, it holds because
δ

1−δ ≥
v1−p∗
x−v1 and G(p∗)− F̃ (p∗) ≥ 0, the la�er of which follows from (32) and F̃ (v1) ≥ F̃ (p∗).

Hence when information only arrives in the �rst period, the seller guarantees more than Π∗.

Case 2: Information in period two. Suppose instead that the buyer only receives a signal in
the second period. If the information structure is such that the buyer prefers to purchase in period
one, pro�t clearly increases to p1. Below we focus on the situation where information in the
second period makes the buyer willing to delay. �en incentive compatibility requires that

E[v]− p1 ≤ δ × expected buyer surplus in period two

Since δ < 1 and p1 is slightly larger than p2, buyer surplus in period two is greater than (and
bounded away from) E[v]− p2, which is the surplus under the worst-case partitional information
structure against price p2. Since this worst-case scenario maximizes buyer surplus subject to
probability of sale being equal to 1−G(p2), we deduce that actual probability of sale in period
two must be greater than (and bounded away from) 1−G(p2).

To proceed with the analysis, we assume without loss that there is exactly one signal s in
the second period that recommends the buyer to purchase. �en we can rewrite the incentive
compatibility condition as

E[v]− p1 ≤ δ · P[s] · (E[v | s]− p2). (33)

Since the probability of sale exceeds 1−G(p2), the expected value upon seeing s is less than (and
bounded away from) the average value conditional on value above the lowest G(p2)-percentile.
�is average value is exactly E[v]−p2G(p2)

1−G(p2)
. �us for some η > 0 independent of p1, we have

E[v | s]− p2 ≤
E[v]− p2G(p2)

1−G(p2)
− η − p2 =

E[v]− p2

1−G(p2)
− η.

�erefore we have the following pro�t lower-bound:

Π = δ · P[s] · p2 ≥ (E[v]− p1) · p2

E[v | s]− p2

≥ (E[v]− p1)p2

E[v]−p2
1−G(p2)

− η
,

where the �rst inequality uses the IC constraint (33).

As p1 → p2 = p∗, the RHS above is larger than p2(1−G(p2)) = Π∗, completing the proof of
the proposition.
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C.2. Proof of Proposition 4

On one hand, the Replacement Lemma implies that when using the increasing price path speci�ed
in the proposition, the seller obtain from each buyer what he can guarantee in the static problem.
On the other hand, the proof of Lemma 2 extends to show that a longer selling horizon does not
improve the seller’s pro�t from any buyer. Combining both parts yields the proposition.

C.3. Proof of Proposition 5

We �rst assume the truth of the Replacement Lemma. Let F̃ denote the distribution of posterior
valuations arising from an arbitrary static information structure. �en the seller’s total pro�t
under this information structure can be wri�en as:

(1− δ) · ΠC(δ, T ) = min
F̃

T∑
t=1

(1− δ)δt−1pt · (1− F̃ (pt)), (34)

�e RHS can be interpreted as the pro�t in the one-period problem, when the seller charges a
random price that is equal to pt with probability (1− δ)δt−1. �us, as long as the seller chooses
p1, . . . , pT such that the distribution of this random price approximates Du’s distribution D(·), he
can guarantee pro�t close to ΠRSD.

To achieve this approximation, we equate the c.d.f. at the discrete points p1, . . . , pT . �is leads
to prices de�ned by D(pt) = 1− δt, or equivalently

pt = W · (S/W )1−δt .

As δ → 1 and T → ∞, these points p1, . . . , pT are densely distributed on the interval (W,S).
Hence their distribution converges to D(·), which proves the proposition. We turn to Lemma 4.

Proof of Lemma 4. Fixing any (public) dynamic information structure I , we will replace it with
another information structure I ′ that only provides a single public signal in the �rst period.
Moreover, we will ensure that each arriving buyer has lower discounted purchase probability
under this replacement, so that pro�t is decreases.

To do this, consider any possible signal history s1, s2, . . . under the original process I . For
each arriving buyer a, let τa denote her optimal stopping time along this history; that is, the buyer
who arrives in period a �nds it optimal to purchase in period τa given the signal realizations
s1, . . . , sτa . Note that we always have τa ≥ a. And due to public signals, τa+1 ≥ τa with equality
whenever τa > a.

We de�ne a “critical” subset of buyers j1, j2, . . . as follows: To begin, j1 is the �rst buyer who
delays purchase (with τj1 > j1). Next, j2 is the �rst buyer a�er τj1 such that τj2 > j2. So on and

45



so forth, until every later buyer purchases immediately upon arrival. We complete the de�nition
by including a hypothetical buyer j = T + 1 into the critical subset, with τT+1 =∞.

As an example, suppose T = 7, and buyers’ stopping times are 2, 2, 3, 6, 6, 6, 7. �en buyers
1, 4, 8(= T + 1) are critical. More generally, it is not di�cult to show that the critical buyers and
their stopping times uniquely determine the stopping behavior of all the buyers.

Now we are ready to construct the replacement information structure I ′. We assume the
signal set is {0, 1, . . . , T}, where the signal “i” represents nature’s recommendation that buyers
with a ≤ i purchase upon arrival and that other buyers do not purchase. Furthermore, given the
original signal history s1, s2, . . . , we assume that signal i realizes only if i = jm − 1 for some
critical buyer jm. We specify the probability of such a signal to be39

δ
∑

k<m τjk−jk · (1− δτjm−jm).

To interpret, these probabilities ensure that conditional on i ≥ jm− 1, the event i ≥ jm occurs
with probability δτjm−jm . In other words, the replacement information structure recommends the
critical buyer jm to purchase with conditional probability δτjm−jm . �is is in line with the proof
of Lemma 1 since we push and discount nature’s recommendation to this buyer’s arrival time.
Due to conditioning, however, a di�erence arises here in that δτjm−jm is not the probability of
receiving a signal i ≥ jm (except for m = 1). From the above formula, we see that any critical
buyer is recommended to purchase with probability smaller than δτjm−jm . In fact, this holds also
for non-critical buyers.40 �us discounted purchase probabilities are lower as long as buyers are
willing to follow nature’s recommendation not to purchase the object.

Suppose buyer a receives signal i∗ < a, we need to verify that her expected value is lower than
pa. Since all buyers have the same expectation and prices are increasing over time, it is su�cient
to consider a = i∗ + 1. �en by de�nition, a must be a critical buyer jm. We will prove a stronger
result, that conditional on any realizations s1, . . . , sjm (and on the signal i∗), expected value is at
most pa. Indeed, once s1, . . . , sjm are �xed, so are the critical buyers before jm as well as their
stopping times. �us the term δ

∑
k<m τjk−jk is simply a multiplicative constant in the probability

of those signals i ≥ i∗. �is suggests that the conditional probability of receiving signal i∗ is
1− δτjm−jm . But then we return to the proof of Lemma 1, where the buyer is recommended to not
purchase with probability 1− δτjm−jm . From that proof we know that the buyer’s expected value
upon seeing i∗ is at most pa. Hence the same is true here, completing the proof.

39Instead of introducing the critical subset and writing out the signal probabilities in closed form (as done here), one
can also prove the result by induction on T and recursively de�ne the signal probabilities.

40�e probability that any buyer a receives a signal i ≥ a is δ
∑

k≤m τjk−jk , where jm is the last critical buyer up to
and including a. Since we always have τjm − jm ≥ τa − a, this probability is smaller than δτa−a.
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D. Other Results

D.1. Uncertainty Leads to Lower Price

We prove here that uncertainty over the information structure leads the seller to choose a lower
price than under known values.

Proposition 8. For any continuous distribution F , let p̂ be an optimal monopoly price under known
values:

p̂ ∈ argmax
p

p(1− F (p)). (35)

�en any maxmin optimal price p∗ satis�es p∗ ≤ p̂. Equality holds only if p∗ = p̂ = v.

Proof of Proposition 8. It su�ces to show that the function p(1−G(p)) strictly decreases when
p > p̂, until it reaches zero. By taking derivatives, we need to show G(p) + pG′(p) > 1 for p > p̂

and G(p) < 1.
From de�nition, the lowest G(p)-percentile of the distribution F has expected value p. �at is,

pG(p) =

∫ F−1(G(p))

0

vdF (v),∀p ∈ [v,E[v]]. (36)

Di�erentiating both sides with respect to p, we obtain

G(p) + pG′(p) =
∂

∂p
(F−1(G(p))) · F−1(G(p)) · F ′(F−1(G(p))) = G′(p) · F−1(G(p)). (37)

�is enables us to write G′(p) in terms of G(p) as follows:

G′(p) =
G(p)

F−1(G(p))− p
. (38)

�us,
G(p) + pG′(p) =

G(p) · F−1(G(p))

F−1(G(p))− p
. (39)

We need to show that the RHS above is greater than 1, or that F−1(G(p)) < p
1−G(p)

whenever
p > p̂ and G(p) < 1. �is is equivalent to G(p) < F ( p

1−G(p)
), which in turn is equivalent to

p

1−G(p)
·
(

1− F
(

p

1−G(p)

))
< p. (40)

From the de�nition of p̂, we see that the LHS above is at most p̂(1− F (p̂)) ≤ p̂ < p, as we claim
to show. Moreover, when p̂ > v, the last inequality p̂(1− F (p̂)) < p̂ is strict. Tracing back the
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previous arguments, we see that G(p) + pG′(p) > 1 holds even at p = p̂. In that case we would
have the strict inequality p∗ < p̂ as desired.

D.2. Known Information Arrival Process

�is appendix supplies two simple examples where the information arrival process is known to
the seller. We show that optimal prices in such a problem can be increasing or decreasing over
time. �ese examples illustrate why, under the standard Bayesian approach, it may be di�cult to
accommodate learning while obtaining clear predictions on pricing.

Example 3. In the �rst example, consider F = U [0, 1], T = 2 and δ = 1/2. In the �rst period no
information is provided to the �rst buyer, while both buyers learn their exact value in the second period.
Given a price p2 ≤ 1, the �rst buyer purchases upon arrival if 1

2
− p1 ≥

∫ 1

p2
(v − p2)dv = (1−p2)2

2
. So

if the seller desires to have sale in the �rst period, it is best to set this indi�erence condition to hold
with equality. In this case pro�t is p1 + δp2(1− p2) = 1

2
− (1−p2)2

2
+ p2(1−p2)

2
. Optimizing over p2

gives p2 = 3
4
, p1 = 15

32
, yielding pro�t 9

16
.

Note that this pro�t is higher than selling only in the �rst period (pro�t 1/2) or selling only in the
second period (pro�t 1/4). Hence the optimal (deterministic) price path is 15

32
followed by 3

4
, which

is increasing over time. We mention that the seller does not bene�t from randomizing in the second
period. In fact, when p2 is a random variable, p1 is bounded above by 1

2
− E[ (1−p2)2

2
]. So pro�t is at

most 1
2
− E[ (1−p2)2

2
] + E[p2(1−p2)

2
]. �is is maximized by choosing p2 = 3

4
with probability one.

Example 4. In this di�erent example, each buyer is one of two types, L orH , with equal probabilities.
�e type H buyer has value equal to 1. In contrast, the type L buyer has value 2

3
with probability

3/4 and value 0 with probability 1/4. �e information structure is such that in the �rst period, the
�rst buyer only knows her type, while both buyers know their exact values in the second period.

Using similar arguments to the previous example, we can show that the (uniquely) optimal prices
are p1 = 1− δ

3
and p2 = 2

3
. �is choice ensures that when the �rst buyer has typeH , he is indi�erent

between purchasing in either period. Moreover, p2 = 2
3
generates maximal pro�t when the �rst buyer

has type L, and this price is also optimal facing the second buyer. Hence the optimal price path
involves p1 > p2 and the seller bene�ts from intertemporal price discrimination.

�e intuitive di�erence between these two examples is that in the �rst, the seller has the
possibility of extracting full surplus from the �rst buyer. �is gives him the incentive to set a
higher price in the second period, so that the �rst buyer does not delay purchase despite future
information. In the second example, however, the seller’s monopoly pro�t (a la Stokey) actually
increases from 1

2
to 7

12
when a buyer learns her true value. �is motivates the seller to screen

di�erent types of buyers by using a declining price path. Under general learning processes, either
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or both of these forces may be at play, which explains why the Bayesian approach typically do
not provide a sharp prediction.

D.3. Alternative Interpretation of Π∗

In this appendix, we consider a game where the buyer (rather than nature) chooses information,
but where Π∗ also emerges as the seller’s equilibrium pro�t. �e motivation borrows from Roesler
and Szentes (2017), so we begin by reviewing their result.

Roesler and Szentes (2017) consider a game with the following timing: �e (single) buyer
�rst chooses an information structure I : R+ → ∆(S). �e seller then chooses a price p ∈ R to
maximize his pro�t. Finally, the buyer observes her signal and decides whether or not to purchase
the object. �ose authors show that in order to maximize payo�, the buyer acquires information
according to FB

W . �is turns out to simultaneously minimize the seller’s pro�t.
Recall that our one-period model di�ers from Roesler and Szentes (2017) in that we allow nature

to provide information depending on the realized price. Inspired by this di�erence, we modify the
above information acquisition game so that the buyer can acquire information depending on the
price. �at is, we maintain the same setup as in Roesler and Szentes (2017), except that the buyer
chooses a price-dependent information structure I : V × P → ∆(S).41

We characterize the outcome of this game in the following result:

Proposition 9. Consider the above information acquisition game where the buyer chooses a price-
dependent information structure. In any Nash equilibrium of this game, the seller’s pro�t is Π∗ and
the buyer’s expected payo� is E[v]− Π∗.

Similar to Roesler and Szentes (2017), trade occurs with probability 1 in equilibrium. However,
since in our main model trade is ine�cient, the buyer’s payo� is higher in this game than in the
worst-case scenario for the seller.

Proof of Proposition 9. For each price p, let I∗(p) be the corresponding worst-case partitional
information structure in our main model. We �rst construct a (subgame-perfect) equilibrium as
follows: On the equilibrium path, the buyer chooses to acquire no information if p = Π∗, but
for any other price he acquires information according to I∗(p); the seller chooses p = Π∗. O�
the equilibrium path, the buyer chooses any di�erent information structure and the seller best
responds with some price.

To see this is an equilibrium, observe that on path, trade occurs with probability 1 because
Π∗ < E[v] whenever F is non-degenerate. Hence the seller’s pro�t is Π∗ and the buyer’s payo� is
41We implicitly require the buyer to commit to acquiring information according to I a�er the price is realized. A

di�erent interpretation is that such information may be provided by a third party whose objective is to help the
buyer (rather than directly hurt the seller).
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E[v] − Π∗, sharing all the surplus. By the de�nition of Π∗, choosing p = Π∗ is the seller’s best
response on the equilibrium path. It remains to check that the buyer cannot pro�tably deviate.
Indeed, regardless of the buyer’s choice of information structure, the seller can always set price
to be p∗ and guarantee pro�t Π∗. Since the seller best responds, his actual pro�t must be higher.
But total surplus cannot exceed E[v], which implies that buyer’s payo� is at most E[v]− Π∗. �is
veri�es our equilibrium construction.

Since this is a sequential-move game, the same argument shows that buyer’s payo� must be
E[v] − Π∗ in every equilibrium. Again because total surplus is bounded by E[v], pro�t cannot
exceed Π∗. Since the seller can guarantee Π∗, this must be his pro�t level in every equilibrium.
Hence the proposition.

Note that the same argument works for an arbitrary horizon. �at is, suppose the buyer
chooses a (price-dependent) dynamic information structure to maximize her payo�, whereas the
seller responds with a pricing strategy. �en in every equilibrium of this game, the buyer receives
E[v]− Π∗ and the seller obtains Π∗.

D.4. Uniqueness of Du’s Mechanism

Recall the random price mechanism from Section 5 and further discussed in Appendix B.1. In
general, there could be more than one point S for which (18) holds. If that was the case, the
seller’s optimal strategy in the one-period model with price-independent information would not
be unique.

Nonetheless, the point S is indeed unique for generic distributions F .42 �e intuition is simple:
(18) must bind at some S when W is smallest possible (subject to F being a mean-preserving
spread of FB

W ). But for (18) to bind at two di�erent points S would impose a non-generic constraint
on F . We omit the formal proof of this genericity result, which is tangential to the paper.

In the following result, we verify that the optimal price distribution is unique whenever S is
uniquely de�ned.

Lemma 9. �ere is a uniquely-optimal random price distribution in the one-period price-independent
model if and only if (18) holds at a unique point S.

Proof of Lemma 9. “Only if” follows from Appendix B.1, so we focus here on the “if” direction.
Suppose S is unique, we need to show any random price that guarantees W must be distributed

42A su�cient condition for S to be unique is that xF (x) is strictly convex. To see this, note that x(F (x)−FBW (x)) =
xF (x) + W − x is strictly convex, so it has at most two roots x0 < x1. Since F (x) > FBW (x) for x < x0, (18)
implies S cannot be the smaller root x0. Hence S must be the bigger root x1.
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according to D(·). Let h(p) be the p.d.f. of the random price, then seller’s pro�t is given by

Π =

∫ 1

0

p · h(p) · (1− F̃ (p)) dp. (41)

where F̃ represents the distribution of posterior expected values that nature chooses to minimize
Π. Nature’s constraint is that F must be a mean-preserving spread of F̃ . �at is,∫ x

0

F̃ (v) dv ≤
∫ x

0

F (v) dv,

for all x ∈ (0, 1], with equality at x = 1.

By Roesler and Szentes (2017), choosing F̃ = FB
W forces Π ≤ W . On the other hand, seller’s

optimal pricing strategy guarantees Π ≥ W . So W is the value of the zero-sum game between
seller and nature, and whenever the seller uses an optimal strategy, F̃ = FB

W is a solution to
nature’s problem. By assumption, the above integral inequality constraint only binds at x = S

when F̃ = FB
W . Standard perturbation techniques thus imply that F̃ = FB

W is nature’s optimal
choice only if p · h(p) is a constant for p ∈ (W,S). Indeed, suppose that p · h(p) > p′ · h(p′)

for some p, p′ ∈ (W,S). �en starting with F̃ = FB
W , nature could increase F̃ around p and

correspondingly decrease it around p′. �e perturbed distribution is still feasible, but the pro�t is
reduced. Similarly, p · h(p) must also be a constant on the interval p ∈ (S,B). Let c1, c2 be these
constants.

We now show c2 = 0. Observe that h(p) must be supported on [W,B]. So we can alternatively
write

Π = c1

∫ S

W

(1− F̃ (p)) dp+ c2

∫ B

S

(1− F̃ (p)) dp.

Let nature �x F̃ (p) = FB
W (p) for 0 ≤ p ≤ S. �en

∫ 1

S
(1 − F̃ (p)) dp =

∫ 1

S
(1 − FB

W (p)) dp =∫ 1

S
(1− F (p)) dp. �is yields

Π = c1

∫ S

W

(1− FB
W (p)) dp+ c2

∫ 1

S

(1− FB
W (p)) dp− c2

∫ 1

B

(1− F̃ (p)) dp.

Given the seller’s choice of c1, c2, the �rst two terms above are constants. So nature’s problem is
to choose F̃ (p) for p ∈ (S, 1) to maximize c2

∫ 1

B
(1− F̃ (p)). Since

∫ 1

B
(1− FB

W (p)) = 0, F̃ = FB
W

can only be an optimal choice when c2 = 0.

To summarize, we have shown that the seller’s price density h(p) must be supported on [W,S]

and p · h(p) is a constant. �is condition together with
∫ S
W
h(p) dp = 1 uniquely pins down h(p),

which is exactly the density function of D(x). Lemma 9 follows.
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D.5. Comparison Between Π∗ and ΠRSD

Here we show that the pro�t benchmark ΠRSD is in general higher than Π∗, and the di�erence
may be signi�cant:

Lemma 10. ΠRSD ≥ Π∗ with equality if and only ifW = v = p∗. Furthermore, as the distribution
F varies, the ratio ΠRSD/Π

∗ is unbounded.

Proof of Lemma 10. �e inequality ΠRSD ≥ Π∗ is obvious. Next, recall that Π∗ ≥ v (seller can
charge v) and W = ΠRSD. �us W = v implies ΠRSD ≤ Π∗, and equality must hold.

Conversely suppose W = ΠRSD = Π∗, then W = p∗(1 − G(p∗)). �is implies p∗ ≥ W .
Consider a seller who charges price p∗ against the Roesler-Szentes information structure FB

W . By
the unit elasticity of demand property, the seller’s pro�t is either W = Π∗ (when p∗ < B) or 0.
Since we showed in our main model that the seller can guarantee Π∗ with a price of p∗, pro�t
must be W and the Roesler-Szentes information structure is a worst case for the price p∗. �us
W ≥ p∗, because a worst-case information structure cannot induce a posterior expected value
strictly below p∗. We there conclude p∗ = W = Π∗ = p∗(1−G(p∗)), from which it follows that
G(p∗) = 0 and p∗ = v. �us W = v must hold.

Finally, the ratio ΠRSD/Π
∗ is unbounded even within distributions F that have binary support.

�is follows from Proposition 6 in Carrasco et al. (2018). However, we conjecture that this pro�t
ratio becomes bounded under certain regularity conditions on F .
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