
Introduction to STM Systems

Over the last few decades, much of the gain in software performance can be attributed to increases
in CPU clock frequencies. However around 2004, 50 years of exponential improvement in the
performance of sequential computers ended [1]. Industry’s response to these changes was to
introduce single-chip, parallel computers, variously known as “chip multiprocessors,” “multicore,”
or “manycore” computers.

In order to get a continued speedup on these processors, applications need to be able to harness the
parallelism of the underlying hardware. This is commonly achieved using multi-threading.
Therefore, there is an increasing need for programmers to produce applications in which multiple
processes execute in parallel and coordinate to achieve some shared task.

Yet writing correct and scalable multi-threaded programs is far from trivial. While it is well known
that shared resources must be protected from concurrent accesses to avoid data corruption, guarding
individual resources is often not sufficient. Sets of semantically related actions may need to execute
atomically to avoid semantic inconsistencies. For instance, if a thread t1 wishes to access data-items
x and y atomically, then between the accesses of t1, no other thread (say t2) should access these
data-items. Thus the following execution should not be allowed:

t1.read(x) t2.write(x) t2.write(y) t1.read(y)

Traditionally locks have been used to synchronizing threads. Threads wishing to the access multiple
shared data-items atomically, obtain locks for all the shared data-items, performs the access and
then releases the locks. This approach is called as two phase locking (2PL).

Issues with Locking: Lock-based parallel programming, however, is widely acknowledged as a
difficult and error-prone task. Several classes of bugs that can result from mistakes in this area
cannot be found by static analysis, and can sometimes be difficult to find even with the most
rigorous testing, as they are only triggered under precise timing conditions while executing tasks in
parallel. All of this increases the cost of developing high performance parallel software [2].

More importantly, systems built using locks are difficult to compose without knowing about their
internals. Correct fragments may fail when combined [3]. Composition of software is a very useful
property which is used to build large software systems using simpler software systems. Using
composition existing pieces of correctly executing software can be trivially combined to form a
larger piece of software that executes correctly. It is the basis of modular programming.

Alternative to locking – STM Systems
Due to these difficulties with locks, alternative approaches were looked into. Software transactional
memory (STM) is an approach which has garnered significant interest as an elegant alternative for
developing parallel programs. Software transactions are units of execution in memory which enable
concurrent threads to execute seamlessly. Software transactions address many of the shortcomings
of lock based systems. This idea originated from transactions in databases.

Unlike the lock-based programming, STM approach is optimistic: a thread completes modifications
to shared memory without regard for what other threads might be doing, recording every read and
write that it is performing in a log. The STM system then looks into the log and validates if the
actions of the thread can be allowed to become permanent (called committed) or not (aborted then).
The benefit of this approach is increased concurrency: no thread needs to wait for access to a
resource, and different threads can safely and simultaneously modify disjoint parts of a data
structure that would normally be protected under the same lock.

Another advantages of STMs is that it provides a very promising approach for composing software
components [3]. STMs achieve composition through nesting of transactions. A transaction is called

nested if it invokes another transaction as a part of its execution.

Programming support for STMs

In order to execute code accessing shared data-items as transactions, the user designates piece of
code in an atomic block. For instance, the following code will be executed as a transaction by the
STM system.

atomic {
 if (x != null)
 x.foo();
 y = true;
}
The STM system’s responsibility is to execute these transactions as if they were atomic — as if the
entire body of the transaction were executed at a single moment of time. As discussed above, a
transaction executes to completion then it is committed and its effects are visible to other
transactions. Otherwise it is aborted and none of its effects are visible to other transactions.

Thus it can be seen that not much change is required to the existing code. Sections of the code
which access shared objects have to be designated as transactions. The STM system ensures that
they execute atomically.

Conclusion
Software transactional memory (STM) is an approach which has garnered significant interest as an
elegant alternative for developing parallel programs. Software transactions are units of execution in
memory which enable concurrent threads to execute seamlessly. Software transactions can be
employed to address many of the shortcomings of lock based systems.

References
[1] K. Olukotun and L. Hammond, “The Future of Microprocessors,” ACM Queue, Vol. 3(7), pp.
26–29, 2005.
[2] James R. Larus and Ravi Rajwar, “Transactional Memory”, Morgan & Claypool, 2006.
[3] Tim Harris, Maurice Herlihy, Simon Marlow, and Simon Peyton-Jones. Composable memory
transactions. In Proceedings of PPOPP, Jun 2005.

	Introduction to STM Systems
	Alternative to locking – STM Systems
	Conclusion
	References

