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Where are we with Artificial Intelligence?

Machine Learning  
Papers on Arxiv: 

 
100 in CY 2009  

100 per day in 2019



Beginnings of Modern AI: The Google Cat (2012)

This is what the computer learned a cat looks like



Loosely inspired by the human brain

What is Deep Learning?

of visual re-representations, from V1 to V2 to V4 to IT
cortex (Figure 2). Beginning with the studies of Gross [27],
a wealth of work has shown that single neurons at the
highest level of the monkey ventral visual stream – the IT
cortex – display spiking responses that are probably useful
for object recognition. Specifically, many individual IT
neurons respond selectively to particular classes of objects,
such as faces or other complex shapes, yet show some
tolerance to changes in object position, size, pose and
illumination, and low-level shape cues. (Also see e.g.
Ref. [28] for recent related results in humans.)

How can the responses of individual ventral stream
neurons provide insight into object manifold untangling
in the brain? To approach this, we have focused on char-
acterizing the initial wave of neuronal population ‘images’
that are successively produced along the ventral visual str-
eam as the retinal image is transformed and re-represented
on its way to the IT cortex (Figure 2). For example, we and
our collaborators recently found that simple linear classi-
fiers can rapidly (within <300 ms of image onset) and
accurately decide the category of an object from the firing
rates of an IT population of!200 neurons, despite variation
in object position and size [19]. It is important to note that
using ‘stronger’ (e.g. non-linear) classifiers did not substan-
tially improve recognition performance and the same

classifiers fail when applied to a simulated V1 population
of equal size [19]. This shows thatperformance isnota result
of the classifiers themselves, but the powerful form of visual
representation conveyed by the IT cortex. Thus, compared
with early visual representations, object manifolds are less
tangled in the IT population representation.

To show this untangling graphically, Figure 3 illustrates
the manifolds of the faces of Sam and Joe from Figure 1d
(retina-like representation) re-represented in the V1 and IT
cortical population spaces. To generate these, we took popu-
lations of simulated V1-like response functions (e.g. Refs
[29,30]) and IT-like response functions (e.g. Refs [31,32]),
and applied them to all the images of Joe and Sam.
This reveals that the V1 representation, like the retinal
representation, still contains highly curved, tangled object
manifolds (Figure 3a), whereas the same object manifolds
are flattened and untangled in the IT representation
(Figure 3b). Thus, from the point of view of downstream
decisionneurons, the retinal andV1 representations are not
in a good format to separate Joe from the rest of the world,
whereas the IT representation is. In sum, the experimental
evidence suggests that the ventral stream transformation
(culminating in IT) solves object recognition by untangling
objectmanifolds.For eachvisual image striking the eye, this
total transformation happens progressively (i.e. stepwise

Figure 2. Neuronal populations along the ventral visual processing stream. The rhesus monkey is currently our best model of the human visual system. Like humans,
monkeys have high visual acuity, rely heavily on vision (!50% of macaque neocortex is devoted to vision) and easily perform visual recognition tasks. Moreover, the
monkey visual areas have been mapped and are hierarchically organized [26], and the ventral visual stream is known to be critical for complex object discrimination
(colored areas, see text). We show a lateral schematic of a rhesus monkey brain (adapted from Ref. [26]). We conceptualize each stage of the ventral stream as a new
population representation. The lower panels schematically illustrate these populations in early visual areas and at successively higher stages along the ventral visual stream
– their relative size loosely reflects their relative output dimensionality (approximate number of feed-forward projection neurons). A given pattern of photons from the world
(here, a face) is transduced into neuronal activity at the retina and is progressively and rapidly transformed and re-represented in each population, perhaps by a common
transformation (T). Solid arrows indicate the direction of visual information flow based on neuronal latency (!100 ms latency in IT), but this does not preclude fast feedback
both within and between areas (dashed arrows, see Box 1). The gray arrows across the bottom indicate the population representations for the retina, V1 and IT, which are
considered in Figures 1d and 3a,b, respectively. RGC, retinal ganglion cells; LGN, lateral geniculate nucleus.
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DiCarlo & Cox, TICS, 2006

A working hypothesis:

The ventral stream “untangles” objects

“cat”

•  Loosely inspired by what (little) we know about  
    the biological brain.!
•  Higher layers form higher levels of abstraction



How do Human Neural Networks Work?
Why do neural 
networks work?
Why do neural 
networks work?

see!
image

catclick!
if cat!

0.1 sec: 
neurons 
fire only 
10 times!!



Human perception is very fast (0.1 seconds) 

     Recognize Objects (“see”) 

     Recognize Speech (“hear”) 

     Recognize Emotion (“feel”) 

The efficiency of Human Neural Networks is amazing

Attributes of Human Neural Networks



2012 Model for Object Recognition

Won 2012 ImageNet Challenge with 16.4% error rate  

Fully-connected layers

Input

Layer 1

Layer 7

...

Softmax to predict object class

Convolutional layers!
(same weights used at all!
spatial locations in layer)!
!
Convolutional networks 
developed by!
Yann LeCun (NYU)

Basic architecture developed by Krizhevsky, Sutskever & Hinton 
(all now at Google).!

Won 2012 ImageNet challenge with 16.4% top-5 error rate

2012-era Convolutional Model for Object Recognition



2014 Model for Object Recognition

24 layers deep!

2014-era Model for Object Recognition

Developed by team of Google Researchers:!
Won 2014 ImageNet challenge with 6.66% top-5 error rate

Module with 6 separate!
convolutional layers

24 layers deep 

Each module has six separate convolutional layers 

Developed by a team  of Google Researchers

Won 2014 ImageNet Challenge  
with 6.66% error rate  

By February 2015, error rate dropped 
to 5.6%, matching human performance 







Healthy Diseased

Hemorrhages

No DR Mild DR Moderate DR Severe DR Proliferative DR

1 2 3 4 5



0.95
F-score

Algorithm Ophthalmologist 
(median)

0.91

“The study by Gulshan and colleagues truly 
represents the brave new world in 

medicine.”

“Google just published this paper in JAMA 
(impact factor 37) [...] It actually lives up to 

the hype.”

Dr. Andrew  Beam, Dr. Isaac Kohane 
Harvard Medical School

Dr. Luke Oakden-Rayner 
University of Adelaide



Beyond Image Recognition:
Natural Language Processing,  

Translation, Game Playing



Meet Jill Watson, your new Teaching Assistant

Georgia Tech 2016  
Artificial Intelligence  
Teaching Assistant (TA) 

Computer answered all  
questions where it had  
high confidence (97%) 

Students were unaware 
that teaching assistant  
was actually a computer



AI Beats Humans in Answering Questions

Alibaba's deep neural network and Microsoft AI 
have outscored humans on a Stanford University 
reading comprehension test, which demanded 
answers to more than 100,000 questions (1/2018)

Broad implications for customer service to handle inquiries 



Google GNMT Translation Performance



Google Translatotron: Real-time V2V

Real-time Voice-to-Voice 
Translation Application  

Keeps character of the 
source speaker voice in 
the output 

No intermediate textual 
representation are used 
during inference



The Ancient Game of Go
Oldest board game  
in history (500 B.C.) 

10^170 possible 
board positions 

More than number of 
atoms in the universe 

Cannot be mastered 
with brute force search



Alpha-Go, the 2016 Go World Champion

A Neural Network that: 
 
1. Learned from existing  
Championship Games 

2. Practiced with the 
European Champion 

3. Then challenged  
the World Champion



The Next Question

What if the computer started with nothing,
except the rules of the game?



Alpha Zero: The New Go World Champion

Figure 1: Training AlphaZero for 700,000 steps. Elo ratings were computed from evaluation
games between different players when given one second per move. a Performance of AlphaZero
in chess, compared to 2016 TCEC world-champion program Stockfish. b Performance of Al-
phaZero in shogi, compared to 2017 CSA world-champion program Elmo. c Performance of
AlphaZero in Go, compared to AlphaGo Lee and AlphaGo Zero (20 block / 3 day) (29).

Self-play games are generated by using the latest parameters for this neural network, omitting
the evaluation step and the selection of best player.

AlphaGo Zero tuned the hyper-parameter of its search by Bayesian optimisation. In Alp-
haZero we reuse the same hyper-parameters for all games without game-specific tuning. The
sole exception is the noise that is added to the prior policy to ensure exploration (29); this is
scaled in proportion to the typical number of legal moves for that game type.

Like AlphaGo Zero, the board state is encoded by spatial planes based only on the basic
rules for each game. The actions are encoded by either spatial planes or a flat vector, again
based only on the basic rules for each game (see Methods).

We applied the AlphaZero algorithm to chess, shogi, and also Go. Unless otherwise speci-
fied, the same algorithm settings, network architecture, and hyper-parameters were used for all
three games. We trained a separate instance of AlphaZero for each game. Training proceeded
for 700,000 steps (mini-batches of size 4,096) starting from randomly initialised parameters,
using 5,000 first-generation TPUs (15) to generate self-play games and 64 second-generation
TPUs to train the neural networks.1 Further details of the training procedure are provided in the
Methods.

Figure 1 shows the performance of AlphaZero during self-play reinforcement learning, as
a function of training steps, on an Elo scale (10). In chess, AlphaZero outperformed Stockfish
after just 4 hours (300k steps); in shogi, AlphaZero outperformed Elmo after less than 2 hours
(110k steps); and in Go, AlphaZero outperformed AlphaGo Lee (29) after 8 hours (165k steps).2

We evaluated the fully trained instances of AlphaZero against Stockfish, Elmo and the pre-
vious version of AlphaGo Zero (trained for 3 days) in chess, shogi and Go respectively, playing
100 game matches at tournament time controls of one minute per move. AlphaZero and the
previous AlphaGo Zero used a single machine with 4 TPUs. Stockfish and Elmo played at their

1The original AlphaGo Zero paper used GPUs to train the neural networks.
2AlphaGo Master and AlphaGo Zero were ultimately trained for 100 times this length of time; we do not

reproduce that effort here.
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Alpha Zero (Late 2017 Version) beat 
AlphaGo Lee (2016 World Champion) 
after just 7 Hours of Self-Training 
and kept improving beyond that



Alpha Zero Performance in Chess and Shogi

Alpha Zero beat Stockfish (previous Chess Champion) in 4 Hours  
and Elmo (previous Shogi Champion) in just 2 Hours of Self-Training 

without any prior knowledge of how to play the game 
and evaluating 1000X fewer positions than brute force programs

Figure 1: Training AlphaZero for 700,000 steps. Elo ratings were computed from evaluation
games between different players when given one second per move. a Performance of AlphaZero
in chess, compared to 2016 TCEC world-champion program Stockfish. b Performance of Al-
phaZero in shogi, compared to 2017 CSA world-champion program Elmo. c Performance of
AlphaZero in Go, compared to AlphaGo Lee and AlphaGo Zero (20 block / 3 day) (29).

Self-play games are generated by using the latest parameters for this neural network, omitting
the evaluation step and the selection of best player.

AlphaGo Zero tuned the hyper-parameter of its search by Bayesian optimisation. In Alp-
haZero we reuse the same hyper-parameters for all games without game-specific tuning. The
sole exception is the noise that is added to the prior policy to ensure exploration (29); this is
scaled in proportion to the typical number of legal moves for that game type.

Like AlphaGo Zero, the board state is encoded by spatial planes based only on the basic
rules for each game. The actions are encoded by either spatial planes or a flat vector, again
based only on the basic rules for each game (see Methods).

We applied the AlphaZero algorithm to chess, shogi, and also Go. Unless otherwise speci-
fied, the same algorithm settings, network architecture, and hyper-parameters were used for all
three games. We trained a separate instance of AlphaZero for each game. Training proceeded
for 700,000 steps (mini-batches of size 4,096) starting from randomly initialised parameters,
using 5,000 first-generation TPUs (15) to generate self-play games and 64 second-generation
TPUs to train the neural networks.1 Further details of the training procedure are provided in the
Methods.

Figure 1 shows the performance of AlphaZero during self-play reinforcement learning, as
a function of training steps, on an Elo scale (10). In chess, AlphaZero outperformed Stockfish
after just 4 hours (300k steps); in shogi, AlphaZero outperformed Elmo after less than 2 hours
(110k steps); and in Go, AlphaZero outperformed AlphaGo Lee (29) after 8 hours (165k steps).2

We evaluated the fully trained instances of AlphaZero against Stockfish, Elmo and the pre-
vious version of AlphaGo Zero (trained for 3 days) in chess, shogi and Go respectively, playing
100 game matches at tournament time controls of one minute per move. AlphaZero and the
previous AlphaGo Zero used a single machine with 4 TPUs. Stockfish and Elmo played at their

1The original AlphaGo Zero paper used GPUs to train the neural networks.
2AlphaGo Master and AlphaGo Zero were ultimately trained for 100 times this length of time; we do not

reproduce that effort here.
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Generative Adversarial Networks  
(GAN)



Which of these Pictures are Real?



Style Transfer with GAN Networks

Original 
Picture

Picasso
Style

Picasso
Dog





Creating Images from Sketches (Nvidia)



One Hour of Imaginary Celebrities (NVidia)



LipReading SuperHuman Performance

Oxford University LipNet Program: 93% Accuracy
Experienced Human Lipreader: 52% Accuracy



Real-Time Reenactment



Unmasking Deep Fake Videos

Using A.I. to unmask deep fake Videos
(Research by UC Berkeley)



FaceForensics++: Learning to Detect Manipulated Facial Images

Andreas Rössler1 Davide Cozzolino2 Luisa Verdoliva2 Christian Riess3

Justus Thies1 Matthias Nießner1

1Technical University of Munich 2University Federico II of Naples 3University of Erlangen-Nuremberg

Figure 1: FaceForensics++ is a dataset of facial forgeries that enables researchers to train deep-learning-based approaches
in a supervised fashion. The dataset contains manipulations created with four state-of-the-art methods, namely, Face2Face,
FaceSwap, DeepFakes, and NeuralTextures.

Abstract

The rapid progress in synthetic image generation and
manipulation has now come to a point where it raises signif-
icant concerns for the implications towards society. At best,
this leads to a loss of trust in digital content, but could po-
tentially cause further harm by spreading false information
or fake news. This paper examines the realism of state-of-
the-art image manipulations, and how difficult it is to detect
them, either automatically or by humans.

To standardize the evaluation of detection methods, we
propose an automated benchmark for facial manipulation
detection1. In particular, the benchmark is based on Deep-
Fakes [1], Face2Face [59], FaceSwap [2] and NeuralTex-
tures [57] as prominent representatives for facial manipula-
tions at random compression level and size. The benchmark
is publicly available2 and contains a hidden test set as well
as a database of over 1.8 million manipulated images. This
dataset is over an order of magnitude larger than compara-
ble, publicly available, forgery datasets. Based on this data,
we performed a thorough analysis of data-driven forgery
detectors. We show that the use of additional domain-
specific knowledge improves forgery detection to unprece-
dented accuracy, even in the presence of strong compres-
sion, and clearly outperforms human observers.

1. Introduction
Manipulation of visual content has now become ubiqui-

tous, and one of the most critical topics in our digital so-
ciety. For instance, DeepFakes [1] has shown how com-
puter graphics and visualization techniques can be used to
defame persons by replacing their face by the face of a dif-
ferent person. Faces are of special interest to current manip-
ulation methods for various reasons: firstly, the reconstruc-
tion and tracking of human faces is a well-examined field
in computer vision [68], which is the foundation of these
editing approaches. Secondly, faces play a central role in
human communication, as the face of a person can empha-
size a message or it can even convey a message in its own
right [28].

Current facial manipulation methods can be separated
into two categories: facial expression manipulation and fa-
cial identity manipulation (see Fig. 2). One of the most
prominent facial expression manipulation techniques is the
method of Thies et al. [59] called Face2Face. It enables the
transfer of facial expressions of one person to another per-
son in real time using only commodity hardware. Follow-up
work such as “Synthesizing Obama” [55] is able to animate
the face of a person based on an audio input sequence.

1. kaldir.vc.in.tum.de/faceforensics_benchmark
2. github.com/ondyari/FaceForensics
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stead of the classic cross-entropy loss, the authors propose
the mean squared error between true and predicted labels.
We resize the face images to 256 ⇥ 256, the input of the
network.

(5) XceptionNet [14] is a traditional CNN trained on Im-
ageNet based on separable convolutions with residual con-
nections. We transfer it to our task by replacing the final
fully connected layer with two outputs. The other layers are
initialized with the ImageNet weights. To set up the newly
inserted fully connected layer, we fix all weights up to the fi-
nal layers and pre-train the network for 3 epochs. After this
step, we train the network for 15 more epochs and choose
the best performing model based on validation accuracy.

A detailed description of our training and hyper-
parameters can be found in Appendix D.

Comparison of our Forgery Detection Variants: Fig. 6
shows the results of a binary forgery detection task using
all network architectures evaluated separately on all four
manipulation methods and at different video quality levels.
All approaches achieve very high performance on raw input
data. Performance drops for compressed videos, particu-
larly for hand-crafted features and for shallow CNN archi-
tectures [10, 17]. The neural networks are better at han-
dling these situations, with XceptionNet able to achieve
compelling results on weak compression while still main-
taining reasonable performance on low quality images, as it
benefits from its pre-training on ImageNet as well as larger
network capacity.

To compare the results of our user study to the perfor-
mance of our automatic detectors, we also tested the detec-
tion variants on a dataset containing images from all ma-
nipulation methods. Fig. 7 and Table 1 show the results on
the full dataset. Here, our automated detectors outperform
human performance by a large margin (cf. Fig. 4). We also
evaluate a naı̈ve forgery detector operating on the full im-
age (resized to the XceptionNet input) instead of using face
tracking information (see Fig. 7, rightmost column). Due
to the lack of domain-specific information, the XceptionNet
classifier has a significantly lower accuracy in this scenario.
To summarize, domain-specific information in combination
with a XceptionNet classifier shows the best performance
in each test. We use this network to further understand the
influence of the training corpus size and its ability to distin-
guish between the different manipulation methods.

Forgery Detection of GAN-based methods The experi-
ments show that all detection approaches achieve a lower
accuracy on the GAN-based NeuralTextures approach.
NeuralTextures is training a unique model for every ma-
nipulation which results in a higher variation of possible
artifacts. While DeepFakes is also training one model per
manipulation, it uses a fixed post-processing pipeline sim-

Compression Raw HQ LQ

[14] XceptionNet Full Image 82.01 74.78 70.52

[27] Steg. Features + SVM 97.63 70.97 55.98

[17] Cozzolino et al. 98.57 78.45 58.69

[10] Bayar and Stamm 98.74 82.97 66.84

[51] Rahmouni et al. 97.03 79.08 61.18

[5] MesoNet 95.23 83.10 70.47

[14] XceptionNet 99.26 95.73 81.00

Table 1: Binary detection accuracy of our baselines when
trained on all four manipulation methods. Besides the naı̈ve
full image XceptionNet, all methods are trained on a con-
servative crop (enlarged by a factor of 1.3) around the center
of the tracked face.

Figure 8: The detection performance of our approach us-
ing XceptionNet depends on the training corpus size. Espe-
cially, for low quality video data, a large database is needed.

ilar to the computer-based manipulation methods and thus
has consistent artifacts.

Evaluation of the Training Corpus Size: Fig. 8 shows
the importance of the training corpus size. To this end,
we trained the XceptionNet classifier with different train-
ing corpus sizes on all three video quality level separately.
The overall performance increases with the number of train-
ing images which is particularly important for low quality
video footage, as can be seen in the bottom of the figure.

Figure 5: Our domain-specific forgery detection pipeline
for facial manipulations: the input image is processed by a
robust face tracking method; we use the information to ex-
tract the region of the image covered by the face; this region
is fed into a learned classification network that outputs the
prediction.

improves the overall performance of a forgery detector in
comparison to a naı̈ve approach that uses the whole image
as input (see Sec. 4.2.2). We evaluated various variants of
our approach by using different state-of-the-art classifica-
tion methods. We are considering learning-based methods
used in the forensic community for generic manipulation
detection [10, 17], computer-generated vs natural image de-
tection [51] and face tampering detection [5]. In addition,
we show that the classification based on XceptionNet [14]
outperforms all other variants in detecting fakes.

4.2.1 Detection based on Steganalysis Features:

We evaluate detection from steganalysis features, follow-
ing the method by Fridrich et al. [27] which employs hand-
crafted features. The features are co-occurrences on 4 pixels
patterns along the horizontal and vertical direction on the
high-pass images for a total feature length of 162. These
features are then used to train a linear Support Vector Ma-
chine (SVM) classifier. This technique was the winning
approach in the first IEEE Image Forensic Challenge [16].
We provide a 128 ⇥ 128 central crop-out of the face as in-
put to the method. While the hand-crafted method outper-
forms human accuracy on raw images by a large margin, it
struggles to cope with compression, which leads to an accu-
racy below human performance for low quality videos (see
Fig. 6 and Table 1).

4.2.2 Detection based on Learned Features:

For detection from learned features, we evaluate five net-
work architectures known from the literature to solve the
classification task:

(1) Cozzolino et al. [17] cast the hand-crafted Steganal-
ysis features from the previous section to a CNN-based net-
work. We fine-tune this network on our large scale dataset.

(2) We use our dataset to train the convolutional neu-
ral network proposed by Bayar and Stamm [10] that uses
a constrained convolutional layer followed by two convo-
lutional, two max-pooling and three fully-connected layers.
The constrained convolutional layer is specifically designed

Figure 6: Binary detection accuracy of all evaluated archi-
tectures on the different manipulation methods using face
tracking when trained on our different manipulation meth-
ods separately.

Figure 7: Binary precision values of our baselines when
trained on all four manipulation methods simulatenously.
See Table 1 for the average accuracy values. Aside from
the Full Image XceptionNet, we use the proposed pre-
extraction of the face region as input to the approaches.

to suppress the high-level content of the image. Similar to
the previous methods, we use a centered 128⇥ 128 crop as
input.

(3) Rahmouni et al. [51] adopt different CNN architec-
tures with a global pooling layer that computes four statis-
tics (mean, variance, maximum and minimum). We con-
sider the Stats-2L network that had the best performance.

(4) MesoInception-4 [5] is a CNN-based network in-
spired by InceptionNet [56] to detect face tampering in
videos. The network has two inception modules and two
classic convolution layers interlaced with max-pooling lay-
ers. Afterwards, there are two fully-connected layers. In-

Fake Video Detection Accuracy



Infrastructure for A.I.



AI in the Cloud creates Very Large Demands 
Training 
      Terabytes to Exabytes of training data sets 
      Continuous Self-learning multiplies the computational load
Inference  
      Billions of users, up to a Million requests per second  
      Latency Requirements in the 10s of milliseconds

100X to 1000X More Throughput Required Compared to Today



Traditional CPU Throughput hitting LimitsGeneral Purpose Processor Performance Trends

Graph from 40 Years of Microprocessor Trend Data, Karl Rupp, CC-BY 4.0.

Single-core 
performance 
plateauing 
after 
decades of 
exponential 
growth



AI needs High Throughput, not High Precision

handful of 
specific 

operations
× =
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about 1.2

× about 0.6
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× 0.61127

0.73989343
NOT

Special computation properties



Processors are Built for Specific Workloads

4ScaledML 2018

CPU
Scalar
Designed for office apps
Evolved for web servers

GPU
Vector
Designed for graphics
Evolved for linear algebra

IPU
Graph
Designed for intelligence

Processor are built for specific workloads

CPU
Scalar Processing
Designed for office apps
Evolved for web servers

GPU
Vector Processing
Designed for graphics
Evolved for linear algebra

TPU
Systolic Processing
Designed for neural nets
Learning and Inference



Google TPU Cluster V3.0

16 Server 
IO Nodes

16 Server 
IO Nodes

100 PetaFlops 
of Peak B-Flop  
Performance  
in 8 Racks



Performance Scales with Size of Cluster

IO Nodes

TPU Scaling for ResNet-50

Near Linear Scaling 
for ResNet-50 

1402 Minutes on  
one TPUv2 device 

22 Minutes on  
64 TPUv2 devices



Economic and Social Implications of A.I.









The future of work will combine
human and machine intelligence



Augmenting Human Performance with A.I.

What if you could increase sales productivity by 20%?
What if you could reduce customer service costs by 50%?
What if you could improve drug discovery time by 10X?
What if you could design products not previously possible?

Big opportunity to improve productivity and accelerate innovation 
in almost any kind of industry and enterprise, including government



McKinsey White paper on AI Use Cases

Findings from a recent McKinsey paper on potential A.I. benefits 
across a wide range of industries, representing 400 use cases: 
1. Immediate opportunity is to improve performance compared to 

conventional analytical techniques 
2. Potential impact between $100B to $600B per industry 
3. There are hundreds of applications right now where A.I. can 

significantly improve human performance and business results



Two-thirds of the opportunities to use 
AI are in improving the performance of 
existing analytics use cases 
 
In 69 percent of the use cases we studied, 
deep neural networks can be used to improve 
performance beyond that provided by other 
analytic techniques. Cases in which only neural 
networks can be used, which we refer to here 
as “greenfield” cases, constituted just 16% of 
the total. For the remaining 15%, artificial 
neural networks provided limited additional 
performance over other analytics techniques, 
among other reasons because of data 
limitations that made these cases unsuitable for 
deep learning (Exhibit 3). 
 
McKinsey&Co, April 2018 



13McKinsey Global Institute Notes from the AI frontier: Insights from hundreds of use cases

Exhibit 6

In more than two-thirds of our use cases, AI can improve performance beyond that provided by other analytics 
techniques

SOURCE: McKinsey Global Institute analysis

NOTE: Numbers may not sum due to rounding.

Potential incremental value from AI 
over other analytics techniques

Breakdown of use cases by 
applicable techniques

69

16

15
Full value can be 
captured using 
non-AI techniques

AI necessary to 
capture value 
(“greenfield”)

AI can improve 
performance over 
that provided by 
other analytics 
techniques

30

36

38

39

44

44

44

50

55

55

56

57

67

79

85

85

87

89

128

Aerospace and defense

Advanced electronics/
semiconductors

Average = 62

Oil and gas

Transport and logistics

Retail

Automotive and assembly

High tech

Public and social sector

Insurance

Pharmaceuticals and
medical products

Telecommunications

Healthcare systems
and services

Agriculture

Consumer packaged goods

Media and entertainment

Chemicals

Basic materials

Travel

Banking

%

Potential Incremental Value  
 
The potential incremental value of AI 
over other analytical techniques ranges 
from a low of 30% for defense to 128% 
for travel, with an average of 62%.  
 
McKinsey&Co, April 2018 
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Sizing the potential value of AI 
 
We estimate that the AI techniques we 
cite in this briefing together have the 
potential to create between $3.5 trillion 
and $5.8 trillion in value annually 
across nine business functions in 19 
industries. This constitutes about 40% of 
the overall $9.5 trillion to $15.4 trillion 
annual impact that could potentially be 
enabled by all analytical techniques.  
 
McKinsey&Co, April 2018 



Will AI be Accepted by Consumers?
Consumers want to feel respected and valued 
 => A.I. Needs to make people feel this way  
Consumers hate emotion-less computer voices 
 => A.I. Needs emotionally expressive voices  
Consumers are careful who they trust 
 => A.I. Needs to earn this trust, not violate it

In the end, consumers embrace technologies that 
are beneficial to them and makes their lives easier



Consumer Confidence in U.S. Institutions
Knowing who to trust is everything
 
Americans have the highest 
confidence in the US military, 
followed by Amazon and Google.
 
The Press, Political Parties, and 
Congress rank considerably lower
 
 
Baker Center, Georgetown University 2018, 20

Mean confidence,  ranging from “no confidence” to “a great deal of confidence”
(n = 5,400)
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Trust in Government at Historic Lows

Source: Pew Research Center



Summary

A.I. offers a large opportunity to improve productivity 
and accelerate innovation across many industries 

Companies and countries that adopt A.I. more quickly 
have a significant economic advantage over others 
Consumers will embrace A.I. as long if it benefits them, 
makes them feel respected, and they can trust it



The Horizon Effect


