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Abstract

After observing the outcome of a Blackwell experiment, a Bayesian decisionmaker can form

(a) posterior beliefs over the state, as well as (b) posterior beliefs she would observe any given

signal (assuming an independent draw from the same experiment). I call the latter her con-

tingent hypothetical beliefs. I show geometrically how contingent hypothetical beliefs relate to

information structures. Specifically, the information structure can (generically) be derived by

regressing contingent hypothetical beliefs on posterior beliefs over the state. Her prior is the unit

eigenvector of a matrix determined from her posterior beliefs over the state and her contingent

hypothetical beliefs. Thus, all aspects of a decisionmaker’s information acquisition problem can

be determined using ex-post data (i.e., beliefs after having received signals). I compare my re-

sults to similar ones obtained in cases where information is modeled deterministically; the focus

on single-agent stochastic information distinguishes my work.

∗University of Southern California. Email: libgober@usc.edu. I thank Juan Carrillo and Xiaosheng Mu for
helpful discussions.
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1 Introduction

This paper introduces and studies an object I refer to as contingent hypothetical beliefs. Economists

are by now quite familiar with the Blackwell formulation of information arrival (Blackwell (1953)).

In this framework, a decisionmaker starts with some prior beliefs over an uncertain state, observes

the outcome of an experiment—which is a (stochastically drawn) signal, say s, whose distribution

depends on the state—and updates her beliefs accordingly via Bayes rule. I define her contingent

hypothetical beliefs to be her (updated) beliefs that she could have seen any particular signal, say s̃,

given that she did in fact observe s. These beliefs represent a probability distribution over signals,

and can alternatively be thought of as the distribution over signals the decisionmaker would expect

to face given another independent draw from the experiment. As their name suggests, these beliefs

are hypothetical—specifically, related to what the decisionmaker could potentially see given an

observation determined by the information structure–but contingent on her posterior beliefs after

having seen s (as opposed to her prior beliefs).

There are a number of reasons contingent hypothetical beliefs may be of interest. One reason

is practical—an analyst may only have (or only be able to reliably obtain) data about a decision-

maker’s uncertainty after her beliefs have updated, and thus would be unable to directly determine

aspects of the informational environment from a position of ignorance. In such cases, contingent

hypothetical beliefs provide additional information—which, as I will show, the analyst would be

able to use.1 Another reason is mathematical, as my results highlight certain additional structure

implicit in models of stochastic information arrival. Contingent hypothetical beliefs turns out to

be similar to higher-order beliefs (i.e., beliefs about the beliefs of other players) in multi-agent

settings. Indeed, higher-order beliefs concern the signals other players might have observed; there

is a tight connection between updating beliefs to form higher-order beliefs in multi-agent settings,

and updating beliefs to form contingent hypothetical beliefs in this paper. The technical struc-

ture I highlight is reminiscent of similar (important) restrictions on informational environments

in multi-agent settings, assuming deterministic information arrival; I discuss this connection more

concretely in Section 5.1.

That said, understanding the structure of Blackwell experiments seems to be valuable in itself,

as recent years have seen a surge in interest in using them to describe information arrival and

transmission. Since the celebrated work of Kamenica and Gentzkow (2011) who studied them within

the context of a communication game, current work has seen their applications grow dramatically.

This has included decision theoretic work on identifying information (as in Lu (2019)), as well as

multi-agent and mechanism design settings where it is used to motivate the solution concept of

Bayes Correlated Equilibrium (see Bergemann and Morris (2016) for more on this connection).

This way of modelling information is clearly influential, and its usefulness has likely still not been

1As an example, imagine an experiment seeking to determine if subjects’ prior beliefs are biased toward extremes.
If a subject is told that the probability assigned to some state should initially be 0.7, then she might simply report
this information having understood the instructions well—even if she updates beliefs according to a true prior which
assigns that state probability 0.9. In this case, my method suggests it would be possible to detect this bias from
ex-post data, even though eliciting the actual prior used in this kind of setting would be unreliable.
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exhausted despite extensive recent work.

It is also worth emphasizing just how central the ability to perform contingent reasoning is in

economic theory, both in strategic settings and in environments with uncertainty. The importance

of contingent reasoning in strategic contexts has been recognized since at least Akerlof (1970), who

observed that markets can unravel when players condition on what prices would be offered con-

tingent on seller quality. Such analysis assumes individuals rationally consider and define updated

beliefs that follow every possible price the seller might charge. By contrast, Eyster and Rabin

(2005) propose a solution concept (cursed equilibrium) whereby players update beliefs about their

own value correctly conditional on their information, but do not subsequently update their beliefs

about what other players observed.2 The contrast between these papers highlights that the impor-

tance of contingent reasoning is generally recognized by economists, at least in strategic settings.

Though I focus on the natural first case where decisionmakers are able to perform contingent rea-

soning perfectly, it is important to note that experimental work does show that subjects may have

difficulty in contingent reasoning—for instance, as illustrated by the Winners Curse (as in Kagel

and Levin (1986)) or the Monty Hall problem (as in Miller and Sanjurjo (2019)).3 This raises a

natural theoretical question: is it sensible to treat individuals who do not correctly form beliefs

about what was not (but could have been) seen as otherwise Bayesian? My results suggest the

answer is no. Bayesian updating provides dramatic restrictions on which kinds of contingent hypo-

thetical beliefs can emerge. If a decisionmaker does not reason contingently correctly, then there

may no information structure which rationalizes these contingent hypothetical beliefs together with

her beliefs over the state—a point I make explicitly in Section 3.1.

Thus, it seems natural to ask how beliefs about what a decisionmaker could have seen are lim-

ited by her beliefs about what she actually did see. This paper answers this question, describing

precisely how contingent hypothetical beliefs are limited by the ex-post beliefs induced by an infor-

mation structure, and how they relate to one another. As to the best of my knowledge, contingent

hypothetical beliefs have not been introduced elsewhere, I am not aware of prior work which would

directly answer this question.

Specifically, my main results describe when the underlying informational environment can be

determined from the beliefs of the decisionmaker following every signal, together with the contingent

hypothetical beliefs. The simplest case is when there are at least as many signals as states. In this

case, there is a striking way of determining the underlying information structure: Simply “regress”

a contingent belief vector (i.e., the probability assigned to possibly having observed a particular

signal) on the matrix of beliefs. While specifying these objects appropriately requires some care,

this procedure delivers the information structure which generates the signals. The prior also has a

geometric interpretation as an eigenvector of a matrix, which comes out of analyzing a martingale

condition on beliefs. Provided this regression is possible, and the eigenvector equation from the

2Again, as I discuss in Section 5.1, there is a fundamental connection between higher-order beliefs and contingent
hypothetical beliefs. Thus, the contrast between these two papers is very much related to the exercise at hand.

3See also Martinez-Marquina et al. (2019), who show that the presence of uncertainty dramatically increases the
difficulty with which subjects are able to reason about contingencies.
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martingale condition has a solution for a unit eigenvector, we can back out both the information

structure and the prior from the possible beliefs over the states, together with the contingent

hypothetical beliefs. I also discuss what it means for these conditions to fail, and what can be done

when they do.

If there are more signals than states, then the problem above cannot be solved via the same

method. Again, the issue is familiar from linear regression, where this takes the form of an identi-

fication problem that emerges if there are more explanatory variables than observations. It turns

out that one proposal from statistics for how to address this problem works in our situation as

well—I describe a regularization process which essentially allows us to perform the inversion step

required by linear regression. The process is known as “ridge regression.” The idea is to add a small

perturbation to the singular matrix to avoid the singularity issue that arises with the identification

failure, and thus allow the inversion step. If the correct perturbation is considered, then we re-

cover the information structure again (despite the discontinuity in the limit). While this technique

is familiar in statistics and econometrics, I suspect it may have more applications in information

economics, which I hope future work may be able to exploit.

My analysis therefore shows how intimately related contingent beliefs are to the underlying

information structure. While the particular results describe precisely how to recover the information

structure and prior from the contingent hypothetical beliefs, the precise geometric relationship

between these different objects appears novel. As alluded to above, the idea that the prior can be

interpreted as an eigenvector of a matrix determined from the information structure is reminiscent

of an important result in Samet (1998b) in the multi-agent context. However, the question of

inferring the information structure itself is not considered (although perhaps it is more precise to

say, given the assumption of deterministic information, that actually this step is trivialized). In

this paper, this step is needed to determine the prior.4 In any event, although aspects of the

geometric structure of information I highlight may be familiar in other contexts, the extension to

Blackwell experiments—and in particular the corresponding regression interpretation of information

structures—appears new and is the primary contribution of this paper.

2 Preliminaries

Let Θ denote a finite state space, and let p be a Bayesian decisionmaker’s prior over Θ. Let

I : Θ → ∆(S) denote a Blackwell experiment or information structure, where we take I(θ)[s] to

refer to the probability that the decisionmaker observes s in state θ. I also assume throughout that

S is finite. Together with a prior belief over Θ, and given any signal s ∈ S, a decisionmaker can

form beliefs over each state θ ∈ Θ via Bayes rule. Let:

4As I discuss more thoroughly in Section 5.1, while a stochastic information structure can be modelled as a
deterministic information structure, this equivalence requires the ability to expand the state space. This expansion
limits the sharpness of my main results, and makes defining the contingent hypothetical beliefs is less straightforward.
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bs,θ =
p(θ)I(θ)[s]∑
θ̃∈Θ p(θ̃)I(θ̃)[s]

.

I denote the |S|-by-|Θ| matrix of beliefs (over the state) by B = (bs,θ)s∈S,θ∈Θ. Here, rows are signal

observations, and columns are states θ ∈ Θ over which the beliefs are formed. I refer to the matrix

B as the state belief matrix when necessary to avoid confusion with the contingent hypothetical

belief matrix introduced below. I assume that B does not have a zero vector for any column.

In addition, the decisionmaker has the ability to think counterfactually. I let qs,s̃ denote the

probability the decisionmaker assigns to the experiment I generating signal s̃, if in fact the deci-

sionmaker observed signal s. I let Q = (qs,s̃)s∈S,s̃∈S denote the corresponding |S| − by− |S| matrix,

where the rows are signals the decisionmaker observes, and the columns index the decisionmaker’s

belief that she could have observed any particular signal from the set S (so that Q is row-stochastic).

I refer to the matrix Q as the contingent hypothetical belief matrix (and each probability qs,s̃ as a

contingent hypothetical belief).

Note that given a signal s, a decisionmaker with updated beliefs bs,θ and knowledge of I can

form her contingent hypothetical beliefs. Indeed, while I treat the matrix Q as a primitive, qs,s̃

could be derived from B and I as follows:

qs,s̃ =
∑
θ

I(θ)[s̃]bs,θ

I will call an informational environment the combination of the information structure I and

the prior p0. To help motivate the exercise, one can imagine the case where I and p0 define the

agent’s problem, but B and Q are the relevant objects observed by an analyst. However, I am more

generally interested in whether we can recover I and p0 from B and Q, as well as how restricted

Q is. For the results below, it will be convenient to index the information structure I so that each

row corresponds to the vector I(θ)[·] (that is, so that rows are indexed by states).

2.1 Example: Truth or Noise Information

I walk through a simple example to illustrate the key definitions from the previous section. Suppose

Θ = {θ1, θ2, θ3}, and suppose the decisionmaker uses an initial prior over Θ that assigns probability

pi to state θi. Consider the following information structure: With probability ε ∈ (0, 1), the

decisionmaker observes a “null signal.” With probability 1 − ε, the decisionmaker observes the

state. Using the above formalism, we can write the state belief matrix as follows:

B =


p1 p2 p3

1 0 0

0 1 0

0 0 1

 .

Notice that, consistent with the definitions above, the rows refer to different signals the decision-
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maker may observe, and the columns refer to different states.

The contingent hypothetical belief matrix corresponding to this information structure is there-

fore:

Q =


ε (1− ε)p1 (1− ε)p2 (1− ε)p3

ε 1− ε 0 0

ε 0 1− ε 0

ε 0 0 1− ε

 .

To understand why the contingent hypothetical belief matrix takes this form, note that if the

decisionmaker were to observe no information, then she would still understand this event to be an

ε probability occurrence; this corresponds to the entry in the upper left corner. On the other hand,

since she obtains no information following the uninformative signal, the probability she would then

assign to observing each of the other three signals, conditional on observing an informative signal,

simply coincides with the prior distribution. Since the probability of observing such a signal in

the first place is 1 − ε, she therefore assigns (1 − ε)pi to the event that she would have seen the

signal revealing state θi. Following every other signal, while she would know the state, she would

also understand that there was an ε chance that she would have remained uninformed. Thus,

on the one hand, she assigns probability ε to observing the uninformative signal, but also assigns

probability 0 to observing any signal that would reveal any other state. Importantly, this matrix

is row stochastic, each row itself being a probability distribution over S.

3 Identifying Information if |S| ≥ |Θ|

The previous section showed how to construct both kinds of belief matrices from an information

structure given a prior belief; the state belief matrix B is computed from Bayes rule, whereas the

contingent hypothetical belief matrix additionally can be derived using rules of conditional and

total probabilities. A well-known result (originally due to Aumann and Maschler (1995)) states

that, given a prior belief and a set of posteriors, there is an essentially unique information structure

inducing these beliefs. The main question I study in this paper is how to infer the decisionmaker’s

information structure and prior using data in the form of the contingent hypothetical belief matrix.

Theorem 1. For generic state belief matrices B and contingent hypothetical belief matrices Q with

|S| ≥ |Θ|, I and p are uniquely identified by B and Q.

The Theorem actually shows how to construct the information structure from the state belief

matrix and the contingent hypothetical belief matrix. Specifically, it shows that the information

structure arises from regressing a given column of the contingent belief matrix on the columns of the

state belief matrix. I illustrate this using the truth-or-noise information structure from the previous

section. If p1 = p2 = p3 = 1/3, then I compute:
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(BTB)−1BT =


1
4

11
12 − 1

12 − 1
12

1
4 − 1

12
11
12 − 1

12
1
4 − 1

12 − 1
12

11
12


For an arbitrary vector v, the expression (BTB)−1BT v is well-known as the ordinary least squares

regression of v on B; that is, it determines the coefficients β in the equation v = B ·β which provide

the “best-fit” (according to the least square error). Also observe that in this example, the rows of

(BTB)−1BT sum to 1 (which turns out to be a general property). Letting 1n denote a vector of 1s

of length n, since the first column of Q is ε · 1T4 , we thus have the coefficients corresponding to this

regression are ε · 1T3 . This is exactly the vector of probabilities of observing the null signal in each

of the three states. On the other hand, if we were to instead consider the second column of Q, we

have:

(BTB)−1BT


1−ε

3

1− ε
0

0

 =

1− ε
0

0

 ,

which is precisely the vector of probabilities that the decisionmaker observes the signal saying the

state is θ1 (that is, the probability that this signal is seen in each of the three states).

Notice that Theorem 1, and in particular the regression interpretation, also clarifies exactly

what is decided by each column of Q. Each column of Q gives a unique column of the matrix

determining the information structure I. As the following section notes, however, not every matrix

Q will yield an information structure consistent with B.

The condition necessary in order for this procedure to work is that the columns of B are linearly

independent, which the proof of Theorem 1 shows generically holds. If it fails, then the matrix BTB

is not invertible.5 But even in (non-generic) cases where the columns are linearly dependent, we

can still recover the belief matrix by removing the linear dependencies, although the procedure is

somewhat more involved. To illustrate, consider the following example with Θ = {θ1, θ2, θ3, θ4},
where the third column of B is a linear combination of the first two:

B =


2/3 0 1/3 0

1/3 1/3 1/3 0

0 2/5 1/5 2/5

0 0 0 1

 , Q =


1/2 1/2 0 0

1/4 1/2 1/4 0

0 3/10 1/2 1/5

0 0 1/2 1/2


In this case, BTB is not invertible, as the linear independence condition is not satisfied; specifically,

the third column is 1/2 times the first column and 1/2 times the second column. Ideally, we could

“remove” the third state responsible for the linear dependencies. Importantly, since the contingent

hypothetical belief matrix makes no reference to the underlying states, it would not change if states

5Indeed, this condition always fails when |S| > |Θ|, though not when |S| ≤ |Θ| as in this section.
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were removed, provided the distributions over the signals do not change.

I now show how to remove the state θ3, and subsequently interpret the original state space as

an auxiliary one where θ3 is induced with equal probabilities following θ1 and θ2 (after these are

already drawn). After doing this, it will be possible to recover the information structure and prior.

We renormalize B so that it does not include θ3, supposing that it is instead generated following

θ1 or θ2 after the state is first drawn from {θ1, θ2, θ4}. This directly gives us an alternative state

belief matrix:

B̃ =


1 0 0

1/2 1/2 0

0 3/5 2/5

0 0 1

 .

If we were to have started with B̃, then we could obtain B by considering the case where the state

is “flipped” to θ3 following θ1, with probability 1/3, and the state is “flipped” to θ3 following θ2,

again with probability 1/3 (and never following θ4). Indeed, the third column of B is the sum of the

first two columns, times 1/2; and the first two columns of B are the same as the first two columns

of B̃, divided by 2/3 (and 2/3 is the probability that the state is “unflipped”). This is the sense in

which θ3 is a linear combination of θ1 and θ2. Now, the matrix B̃T B̃ is invertible, and regressing

each column of Q on B̃ gives an information structure. In this case:

(B̃T B̃)−1B̃Q =

1/2 1/2 0 0

0 1/2 1/2 0

0 0 1/2 1/2

 .

One can check that this information structure generates B̃ and Q, as Theorem 1 suggests it should,

using the prior P[θ1] = P[θ2] = 3/8 and P[θ4] = 1/4.

Now, notice that in the above interpretation, θ3 is induced with equal probabilities following θ1

and θ2. So consider the following information structure on the original state space {θ1, θ2, θ3, θ4}:

I =


1/2 1/2 0 0

0 1/2 1/2 0

1/4 1/2 1/4 0

0 0 1/2 1/2

 .

Where does the signal distribution following state θ3 come from? The third row of this vector is

one half the first row plus one half the second row. In other words, the signal distribution is exactly

what it would be if “the state is θ3” is equivalent to “the state is θ1 with probability 1/2 and θ2 with

probability 1/2.” And indeed, one can check that this information structure, under a uniform prior

(which, again, is what would the prior would be under the specification of how θ3 is determined

from θ1 and θ2), generates B.

Having described how to obtain the information structure, we can now ask: What about the
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prior? As alluded to above, Kamenica and Gentzkow (2011) and Aumann and Maschler (1995)

demonstrated that an information structure is identified by the prior belief and the set of posteriors

(which in this case is B). However, this result requires that the prior is in the interior of the convex

hull of the posterior beliefs. While the regression procedure finds the information structure, it does

not necessarily guarantee that the resulting prior is in the interior of the convex hull of the posterior

beliefs.

Addressing this issue yields another insight into the geometry of information structures. Note

that the probability of observing any particular signal determined from I and p:

∑
θ

I(θ)[s] · p(θ) = P[s].

We also have the martingale property of beliefs:

∑
s

bθ,sP[s] = p(θ).

Substituting in for P[s] and rewriting in matrix form gives the following identity:

BTIT p = p⇒ (BTIT − I)p = p.

This equation demonstrates that the prior is therefore a unit eigenvector of the matrix BTIT (or,

by taking transposes, a left eigenvector of IB). And in fact, given the previous observation that

the information structure I can be identified from B and Q, this shows that the prior can as well.

The proof verifies that indeed this eigenvalue can be guaranteed to exist, via an appeal to the

Frobenius-Perron theorem. It is worth emphasizing that the Frobenius-Perron theorem ensures

that the eigenvector which satisfies this equation is unique (up to scaling), implying that the prior

is pinned down as well. The condition needed in order for this to hold is that the matrix of which

the prior is a Perron eigenvector is irreducible.6 This condition holds for generic B and Q that

induce informational environments (generically, all entries of the matrix will be positive).

Lastly, although the above arguments are sufficient to identify the informational environment,

we could use an identical argument to determine P[s], if for whatever reason this were of more

interest than p(θ). Following the exact same calculations as above—except substituting in for p(θ)

instead of P[s]—we also have that P[s] is a unit eigenvector of the matrix ITBT (i.e., switching

the order in which we multiply the two matrices). As I discuss below in Section 5.1, while the

eigenvector interpretation of the prior is similar to one obtained by Samet (1998b), I am not aware

of any analogous characterization of the probability of each signal’s observation. This duality

between P[s] and P[θ] therefore appears novel.

6See the deterministic information structure example in Section 4.1 for a case where this condition fails, and a
description of what is identified if so.
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3.1 Example: Information from Contingent Beliefs?

A natural question that emerges from the previous discussion is how restricted the set of contin-

gent hypothetical belief matrices are. Can an arbitrary contingent hypothetical belief matrix be

consistent with a state belief matrix? The answer to this question turns out to be no. For instance,

suppose the belief matrix induced is the following:

B =

(
1/4 3/4

3/4 1/4

)
⇒ (BTB)−1BT =

(
−1

2
3
2

3
2 −1

2

)
.

Now, given some candidate Q =

(
a 1− a

1− b b

)
, right multiplying by Q gives:(

−a
2 + 3(1−b)

2 −1−a
2 + 3b

2
3a
2 −

1−b
2

3(1−a)
2 − b

2

)
.

For an arbitrary a, b, it may be that this yields an information structure, yet does not necessarily

yield one that can induce B given any prior p. An immediate corollary of Kamenica and Gentzkow

(2011) shows that the prior together with B pins down the information structure; from this, the

matrix Q can always be inferred. It follows that:

Proposition 1. For every belief matrix B with linearly independent columns, the dimensionality

of Q yielding B is |Θ| − 1.

Given this result, in the previous example, we see that given a possibly valid a, there is a

unique value of b which corresponds to a valid information structure. Figure 1 shows how, given

the belief matrix B, which a and b choices correspond to a fixed feasible prior p. For instance, we

see that a = b = 5/8 is the solution when p = 1/2. The choice of a = b = 9/16 is therefore invalid;

nevertheless, for these choices, we have:

(BTB)−1BTQ =

(
3/8 5/8

5/8 3/8

)
Upon inspection, we see that this is indeed a perfectly valid information structure I, and in fact

one that is symmetric. But, it is also straightforward to see that it cannot induce the belief matrix

B for any prior; indeed, since B is symmetric as well, symmetry would require p0 = 1/2, which in

turn would suggest distinct beliefs given the information structure than those given by B.

If we take any square matrix Q whose rows sum to 1, then (BTB)−1BTQ will be a matrix

whose rows sum to 1, and thus be a valid information structure.7 The dimension of the set of row-

stochastic |S|-by-|S| matrices is |S| (|S| − 1). On the other hand, Proposition 1 suggests a smaller

dimensionality on the set of matrices Q which yield valid informational environments inducing B.

For instance, in the previous example we can choose a to be anything within some interval, but

this will pin down b exactly, so that the dimension of the set of Q inducing B is one; by contrast,

7See the Appendix for a proof of this Claim.
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Figure 1: Value for a and b in the example which yield a valid contingent hypothetical belief matrix,
given a prior probability of state 1 equal to p ∈ [1/4, 3/4].

the set of 2-by-2 row stochastic matrices is two dimensional. Therefore, while this procedure does

determine an information structure for generic values of Q, it does not necessarily generate an

information environment inducing these matrices, because it may be that no prior exists which

does so.

4 The |Θ| > |S| case

The regression characterizations no longer apply in the case where there are more states than

signals, in the same way that an Ordinary Least Squares regression requires more observations

than covariates in order to yield an identified solution (i.e., B must have more rows than columns,

in addition to having no linear dependencies). Appealing to the regression interpretation, however,

allows us to appeal to a suggestion from statistics on how to circumvent the problem.

To solve for the information structure, as before, we first pre-multiply the matrix equation for

the contingent hypothetical beliefs by the state belief matrix B:

BTQ = BTBI

If |S| < |Θ|, BTB is not invertible. However, for all but at most finitely many λ > 0, the matrix

BTB+λI is invertible, since the determinant is an n-degree polynomial in λ (and since any matrix

with non-zero determinant is invertible). This implies:

BTQ+ λI = (BTB + λI)I ⇒ (BTB + λI)−1BTQ = I(1− (BTB + λI)−1λI) (1)

Since this holds for all λ, we therefore will be able to recover I by considering the limit λ → 0; a

necessary and sufficient condition for this to converge to I is:

(BTB + λI)−1λI → 0. (2)
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In statistics, the idea of adding λI in order to be able to invert BTB is used to motivate ridge

regression; in cases where more general perturbations are considered, this process is also known as

Tikhonov regularization. In statistical applications where this method is used, taking λ too small

is often undesirable.8 Here, however, the λ→ 0 limit will prove to be useful.

Unfortunately, the limit defined in (2) need not always hold, although we can still use these

ideas to recover the information structure even in that case as well. Before doing this, however, I

walk through examples illustrating the key ideas.

4.1 Examples

Consider the following state belief matrix and contingent hypothetical belief matrix, with |Θ| = 3

and |S| = 2:

B =

(
2/3 1/3 0

0 1/3 2/3

)
, Q =

(
5/6 1/6

1/6 5/6

)
.

In this example, it turns out Tikhonov regularization as described works to infer the information

structure. We emphasize that limλ→0(BTB + λI)−1 is not well-defined since B is not full rank.

However, for all λ > 0, we have:

(BTB + λI)−1 =


1

6λ + 1
2+3λ + 9

8+18λ − 2
6λ+9λ2

4
24λ+90λ2+81λ3

− 2
6λ+9λ2

2
3λ + 1

2+3λ − 2
6λ+9λ2

4
24λ+90λ2+81λ3 − 2

6λ+9λ2
1

6λ + 1
2+3λ + 9

8+18λ


In this case, we have BTB is non-invertible, but BTB+λI is, for all λ > 0. On the other hand,

every term in this matrix approaches ∞ as λ→ 0. But post-multiplying by BT gives

(BTB + λI)−1BT =


1

2+3λ + 3
4+9λ − 2

8+30λ+27λ2

1
2+3λ

1
2+3λ

− 2
8+30λ+27λ2

1
2+3λ + 3

4+9λ


The entries in this expression do not diverge and this converges to a finite matrix. We can

therefore compute:

lim
λ→0

(BTB + λI)−1BTQ =

 1 0

1/2 1/2

0 1

 .

It is straightforward to verify that indeed this information structure induces this state belief

matrix and contingent hypothetical belief matrix when s1 is observed with probability 1 in state θ1

and 1/2 in state θ2, and signal s2 is observed with probability 1/2 in state θ2 and 1 in state θ3.

Our second example both illustrates a case where the regularization method does not work, as

8See van Wieringen (2015) for more on what guides the choice of λ in statistical applications.
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well as serving as a prelude to some discussion in Section 5.1. Specifically, we consider the case

of a deterministic information structure: In these models, signals are associated with elements of

a partition of the state space. Suppose Θ = {θ1, θ2, θ3, θ4}, and consider an information structure

where the decisionmaker observes which element of P = {{θ1}, {θ2, θ3}, {θ4}} the state belongs to.

If pi is the prior probability over state θi, then this corresponds to the following state belief matrix

and hypothetical belief matrix:

B =

1 0 0 0

0 p2

p2+p3

p3

p2+p3
0

0 0 0 1

 , Q =

1 0 0

0 1 0

0 0 1


Of course, in this example our main exercise is fairly straightforward, but understanding what the

procedure produces in this case is instructive. For this example, we compute:

lim
λ→0

(BTB + λI)−1λI =


0 0 0

0 p3(p3−p2)
p2

2+p2
3

0

0 p2(p2−p3)
p2

2+p2
3

0

0 0 0


This matrix converges to 0 only when p2 = p3. And indeed, we see that the procedure fails to

produce an information structure:

lim
λ→0

(BTB + λI)−1BTQ =


1 0 0

0 p2(p2+p3)
p2

2+p2
3

0

0 p3(p2+p3)
p2

2+p2
3

0

0 0 1

 .

What went wrong? Notice that in the above derivation, adding λI to BTB was only one way to

ensure we the inversion step would be possible. And indeed, the equation Q = BI should have

multiple solutions in the case of |Θ| > |S|, and so the limit only considers one of them.

Note that in this case, a different regularization would deliver the information structure. For

instance, one can compute that:

lim
λ→0


BTB + λ

:=M︷ ︸︸ ︷
1 0 0 0

0 1 0 0

0 0 p3

p2
0

0 0 0 1





−1

BTQ =


1 0 0

0 1 0

0 1 0

0 0 1

 ,

which is indeed the deterministic information structure in this example. One can derive this expres-

sion by following the same steps as outlined in Equation (1), but considering a different perturbation;
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namely, using λM instead of λI.

4.2 Identifying Information

Our main result from this section shows that, even if (2) does not hold, the result of this limit is

still useful as it allows us to identify a linear subspace in which the information structure must

belong:

Theorem 2. Suppose |Θ| > |S|. The matrix:

Ĩ = lim
λ→0

(BTB + λI)−1BTQ,

exists and is well-defined. Furthermore, let v1, v2, . . . , vk be a basis for the null-space of B. Then

I(·)[si] = Ĩ(·)[si] +
∑

j αjvj.

This theorem suggests a way to determine the information structure when there are more states

than signals. Of course, when I has more signals than states and B is full rank, then BTB is

invertible, and the theorem remains true as well–although in this case, considering the limits is

unnecessary.

As discussed above, a necessary and sufficient condition for I = Ĩ is that (2) holds. In fact,

more generally, the same argument as outlined above shows, for an arbitrary Θ-by-Θ matrix M , if

I = limλ→0(BTB + λM)−1BTQ exists, then:

(BTB + λM)−1λMI → 0

implies that I induces B and Q. Or, put differently, if one finds that:

(BTB + λM)−1λM(BTB + λM)−1BTQ→ 0,

then the analyst can be assured that I is valid and generates B and Q.

On the other hand, the following example shows that Theorem 2 can still be used to determine

the information structure in the case where |Θ| > |S|. Suppose:

B =

(
2
3

1
3 0

4
9

1
9

4
9

)
, Q =

(
7
18

11
18

11
54

43
54

)
.

In this case, we compute Ĩ to be: 
29
63

52
63

31
126

23
126

− 4
63

58
63


Obviously, Ĩ is not an information structure, as each row violates the two requirements to be

probability distributions: non-negative entries and summing to 1. The nullspace of B is spanned
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by a single vector, (−2, 4, 1). We add a multiple of this vector to the first column of Ĩ to make sure

all entries are non-negative. This yields: 
1
3

52
63

1
2

23
126

0 58
63


Adding another multiple of (−2, 4, 1) to the second column allows each row to sum to 1, and yields:

1
3

2
3

1
2

1
2

0 1


which indeed is an information structure inducing these belief matrices.

I briefly mention that the interpretation of the prior as an eigenvector of BTIT remains in this

setting as well, as this argument does not rely at all upon the cardinality of either the signal space

nor the message space. However, I emphasize that the Frobenius-Perron theorem does require that

this matrix is positive; notably, this is not satisfied for the deterministic information structure

case. And indeed, we do not have a unique prior identified by B and Q in this case—while we can

determine the prior beliefs “within a signal,” in the deterministic information structure case, it is

not possible to determine the relative probability across different partition elements.9

5 Discussion

5.1 Deterministic vs. Stochastic Information

The focus on contingent reasoning embedded within information structures is itself not new, but

to the best of my knowledge it has so far been focused on so-called “deterministic” models of

information arrival with multiple agents. An important property of Blackwell experiments is that

information is stochastically generated as a function of the state. An alternative is to treat signals

as deterministic functions of the state, and to view an information structure as partitions of a state

space (with signals being elements of the partition). It is a common exercise to study the hierarchy

of beliefs using this formulation; that is, beliefs over other players beliefs, and belief over these

beliefs over beliefs, and so on.

As discussed above, deterministic information arrival is immediately a special case of stochastic

information arrival. In fact, an information structure is deterministic if and only if Q is the identity

(a claim I show in the Appendix). Note that in this case, we will have |S| > |Θ| whenever the

information structure does not reveal the state.

However, it also turns out that stochastic information arrival can also be modelled as a special

9More generally, as illustrated by this example, if BTIT is not irreducible, then while we can use the Frobenius-
Perron theorem to determine a unique prior within each irreducible class, we cannot determine the relative prior
probabilities across classes.
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case of deterministic information arrival, although to do so requires replacing the state space. Green

and Stokey (1978) articulated this method clearly; if one views the state itself as belonging to the

set Θ × [0, 1], instead of Θ, then any stochastic information structure can be represented as a

deterministic one, assuming a uniform prior on this second dimension. While this transformation

does not satisfy the finiteness requirement I impose on the state space, this limitation is minor.10

A more substantive restriction, however, is that under this relabeling, one always has more signals

than states, by construction. In principle, one could define contingent hypothetical beliefs in this

framework as well; in this case, these are decisionmaker’s beliefs that she would see a given signal,

assuming the same state but an independent draw from the second dimension. If one imagined this

second draw were observed by a different agent, then the beliefs about the signals of the others

would be a higher-order belief. On the other hand, to define the state belief matrix in this case,

one would have to “integrate out” the second dimension, something which would not be meaningful

if we did not start out with a state space that already had the implied structure of a Blackwell

experiment.

Focusing on questions related to the existence of a common prior—and not the identification of

the information structure—a similar construction to the one I proposed in this paper was uncovered

by Samet (1998b), and further explored by Samet (1998a) and Golub and Morris (2017). Samet

(1998b) characterized a common prior as the eigenvector of a stochastic transition matrix obtained

from an information structure involving multiple agents (specifically, Propositions 3 and 5).11 These

results provide an interim characterization of the common prior assumption, i.e., after signals have

been observed. This paper’s motivation is similar, though I am not only interested in identifying

the prior from interim beliefs but also the information structure. On the other hand, once an

information structure is assumed to be deterministic, it is immediate to then find the information

structure—simply group any signals where beliefs are constant.

In addition, note that, as discussed above, the application of the Frobenius-Perron theorem,

used to determine the prior beliefs, would not work in any single agent case with a deterministic

information structure. That is, the prior is generally not pinned down by only a single agent’s (non-

degenerate) deterministic information structure. In the multiple agent case, however, this limitation

can be overcome; again, Samet (1998b)’s result is that a common prior is uniquely pinned down

as the eigenvector of a matrix derived by multiplying the belief matrices of each agent regarding the

signals received by the other agents. Golub and Morris (2017) explore this idea further, roughly

speaking using similar ideas to move from studying “beliefs about beliefs” to “expectations about

expectations”—and subsequently characterizing implications, for instance, of assuming these expec-

tations do not depend on the order agents are considered. Their analysis also involves an explicit

application of the Frobenius-Perron theorem, in order to characterize the “consensus expectation”

10For instance, it would not emerge if one could somehow use {0, 1/n, . . . , (n−1)/n, 1} instead of [0, 1], even though
this could only generate certain stochastic information structures.

11Specifically, the existence of the common prior is equivalent to this eigenvector being independent of the order in
which agents are considered in defining this stochastic transition matrix. See Hellman (2011) for a generalization of
this result to infinite spaces.
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in a model with interacting agents. Notice that in any deterministic information structure case,

many different priors can typically generate the same state belief matrix B (for a single agent).

The existence of a common prior is much more restrictive, as the same prior would need to induce

possibly different belief matrices B.12

By contrast, in a model of stochastic information arrival, the prior may be pinned down even

with only a single agent. In addition, the question of how to infer the information structure is

trivialized in the case of deterministic information structures (although as I discussed, one could

still use my method even there), and so it is not clear that the regression interpretation achieves

much in these cases, unlike in the stochastic information case. Still, the question of inferring the

information of agents appears practically relevant, and as discussed above, in many cases this may

be more naturally modelled using the Blackwell (stochastic) formulation.

5.2 Other Relevant Literature

It is additionally worth pointing out connections to a few other relevant literatures this paper is

related to. The first is on the general agenda of determining when it is possible (and if so, how) to

identify the parameters of an agent’s decision problem as a function of observables. The problem

of identification is one that is commonly studied in econometrics, as well as in decision theory. For

the question studied here, the closest paper is Lu (2019), who asks when it is possible to identify

a decisionmaker’s utility function and information from choice data, if their stochastic choice is

generated by a distribution over posterior beliefs; he shows that it is possible provided the analyst

has data from two treatments where the agent is better informed than one or the other, and given

data from only one treatment if the signal structure is known. The question in this paper is in a

similar spirit, although the objects of interest differ. Of course, the relevance of the results in either

paper depend on practical considerations, and hence a productive area for future work may be to

determine when identification is possible given limitations of real-world data.

The second idea explored here relates to the use of linear projection methods. It turned out

that these techniques were natural in the setting of this paper, since hypothetical beliefs themselves

involve a linear relationship between the information structure and beliefs. More generally, linear

structure (in various forms) often naturally lends itself to a substantially degree of tractability in a

number of settings of economic relevance. For instance, certain problems related to the elicitation

of information via scoring rules also inherit this structure, and linear projection methods have

proved useful there as well (see, for instance, Lambert (2019) and Ball (2021)). Here, the explicit

connection to linear regression was useful in suggesting how to tackle the problem of |Θ| > |S|.
However, the use of Tikhinov regularization in this paper appears to be relatively unexplored in

microeconomic theory. Since the technical ideas developed here have been used in other settings,

one can imagine using further tools developed in statistics to extend the boundary of problems

12Several other papers have used either the Markov chain interpretation of interim beliefs introduced by Samet
(1998b), or properties implied by the stationary distribution characterization of the common prior; see, for instance,
Morris and Shin (2002), Cripps et al. (2008), or Angeletos and Lian (2018).
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where linearity provides a significant source of tractability.

5.3 Final Comments

The review of the literature suggests one reason the results of this paper may be of interest,

namely in terms of showing linear algebraic characterizations of informational environments in

deterministic, multi-agent settings also apply to stochastic, single-agent settings. The objects differ

slightly and use the introduction of contingent hypothetical beliefs, which function similarly to

higher-order beliefs (since they represent “beliefs about beliefs”). On the other hand, they are quite

a bit more restricted than higher-order beliefs, since the universal type space as a mathematical

object involves significant added richness (e.g., it may be that two information structures agree

in terms of first and second order beliefs, but not on beliefs of order higher than that). Studying

contingent hypothetical beliefs in a multi-agent context is a distinct problem, but one that is likely

worth studying further in future work.

On the other hand, the primary motivation for the introduction of contingent beliefs is in

their importance in describing decision-making in the presence of learning. In this paper, I have

sought to articulate how the structure of these beliefs is restricted in a classic Bayesian model.

One conclusion a reader may reach from this is that they are too restricted, and that perhaps it

is excessively demanding to assume that decisionmakers have such a high degree of consistency

between the set of possible beliefs over the state and the set of contingent hypothetical beliefs.

As this paper shows, however, it is impossible to have this view without also being critical of the

Blackwell formulation of information arrival (i.e., where decisionmakers update beliefs as Bayesian

following an observation from a known Blackwell experiment), as these are ultimately equivalent.
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Proof of Theorem 1. We first note that B is full column rank, for generic belief matrices B with

|Θ| ≤ |S| (in other words, when there are more rows than columns). Indeed, the set of all possible

belief matrices is of dimension |S| × (|Θ| − 1) (with one degree of freedom lost for every row, since

every row is restricted to sum to 1); in general, the space spanned by k belief vectors, restricted

to sum to 1, is (k − 1) × |S|. Hence a generic belief matrices is full rank, since the set of belief

matrices which fail to satisfy this belong to a lower dimension subspace. Given this observation,

we have that B is of rank equal to |Θ|. On the other hand, the rank of BTB is equal to the rank

of B, and therefore BTB has full rank. Since a matrix is invertible if and only if it has full rank,

we have that BTB is invertible.

The rest of the first part of the theorem follows the arguments as laid in the main text. Writ-

ing the information structure so that rows are states and columns are signals, the definition of

hypothetical beliefs matrix tells us that:

Q = B · I,

since the ith row and jth column of Q is the inner product of the ith row of B (since rows of B

index signals) and the jth column of I (using the convention that columns index signals). Given

this expression, and using that (BTB)−1 is invertible, the solution for I comes from left-multiplying

both sides by BT and then left multiplying by (BTB)−1.

Next, we show that the prior is identified. As shown in the main text, the prior is a unit

eigenvector of the matrix BTIT , and therefore a unit eigenvector of BTQTB(BTB)−1. We show

that this matrix is always row-stochastic. Recall that 1TBT and 1TQT are both 1, since both B

and Q are row-stochastic (so that the transposes are column-stochastic). Therefore, we have that:

1TBTQTB(BTB)−1 = 1TQTB(BTB)−1 = 1TB(BTB)−1

Taking the transpose of this expression gives:

(BTB)−1BT1.

Now, recall the regression interpretation of the linear mapping (BTB)−1BT ; when applied to a

vector, it gives the coefficient of the regression of the unit vector onto the columns of B. However,

the columns of B sum to 1. Therefore, to write the vector 1 as a linear combination of the columns

of B, we need only write it using coefficients equal to 1, and hence this expression is itself a unit

vector.

Hence, the Frobenius-Perron theorem holds provided the matrix BTIT is irreducible. This

property holds generically; indeed, the entries of BTIT are generically positive, and all such matrices

are irreducible. This theorem therefore yields the existence of a Perron eigenvector, which is positive

and sums to 1. While the argument in the main text shows that being a Perron eigenvector is a

necessary condition for the prior, the Frobenius-Perron theorem implies that this vector is unique,

and therefore this condition is also sufficient. As a result, the prior is additionally identified from
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B and Q, in addition to the information structure, as desired.

Proof of Proposition 1. By Proposition 1 of Kamenica and Gentzkow (2011), given any belief matrix

B and prior p0, there exists an information structure I inducing this belief matrix.13 On the other

hand, Theorem 1 shows that any vector v of length |S| yields a vector of length Θ when considering

(BTB)−1BT v. Thus, the set of information structures is spanned by the set of Q that emerge in

some informational environment. Putting the previous observations together, the set of Q which

induce an informational environment given a belief matrix B is isomorphic to the set of priors

inducing B, which has dimensionality equal to |Θ| − 1, for any belief matrix satisfying the linear

independence condition.

Proof of the claim that rows of (BTB)−1BTQ sum to 1 if Q has rows that sum to 1. The sum of the

rows of this matrix is given by right multiplying by 1|S|, a vector of length |S| which is all 1s. If Q

has rows which sum to 1, then (BTB)−1BTQ · 1|S| = (BTB)−1BT1|S|. On the other hand, recall

that this expression is also the coefficients β1, . . . , βn solving:

1|S| =
n∑
i=1

βibi,

where bi is the ith column of the belief matrix Bi. While there is a unique set of coefficients solving

this equation, we also have that the columns of a belief matrix sum to 1. Hence β1 = · · · = βn = 1

is the solution. We thus conclude that (BTB)−1BTQ · 1|S| is a vector of 1s, as claimed.

Proof of Theorem 2. That there is convergence as λ→ 0 appears known, although I provide a proof

for completeness as other proofs I have found require significant detours.14 We first determine the

rate at which the determinant of BTB + λI tends to 0 as λ → 0. Note that, by the Matrix

Determinant Lemma (see (6.2.3) of Meyer (1995) for a version of this result), we have:

det(
1

λ
BTB + I) = det(I|S| +

1

λ
BBT ).

Note that the matrix involved in the left-hand side of this equation is |Θ|− by−|Θ| and the matrix

involved in the right hand side of this equation is |S| − by − |S|. We therefore have, multiplying

through by λ|Θ| and using that det(cA) = cn det(A) for c ∈ R and A an n-by-n matrix,

det(BTB + λI) = det(λ|Θ|/|S|I|S| + λ(|Θ|−|S|)/|S|BBT ).

Note that this determinant is a polynomial in λ which evaluates to 0 at λ = 0, and hence this

approaches 0 at a rate equal to the rate of the smallest term in this polynomial. We claim the

13Their proof is constructive; in our notation, one can set I(θ)[s] = Bs,θP[s]/p0[θ]. Now, note that P[s] is a left
unit eigenvector of the matrix Q. Note, however, that P[s] would be derived from Q in this paper, and not the prior
p0 and the posterior beliefs, as in theirs.

14As per van Wieringen (2015), the limit of the ridge estimator as λ → 0 is precisely the least square estimate
of smallest norm; showing this, however, requires a significant detour in defining ridge estimators. Note that van
Wieringen (2015) also shows that multiplying by a matrix M as described in the main text amounts to a rescaling of
the design matrix (in this case, B).
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degree is strictly less than |Θ|. This is clear from examining the right hand side of the equation

above. While every term on the diagonal in this matrix is of the order λ|Θ|/|S|, every term off the

diagonal is of the order λ|Θ|/|S|−1. To show that there is a term in the polynomial defined by the

determinant that is of order less than |Θ|, it suffices to show that some term in this expression

reflects off diagonal terms. Note that the determinant is a sum over permutations σ : |S| → |S|:

∑
σ

sgn(σ)

n∏
i=1

bi,·b·,σ(i),

where bi,· is the ith row of B. Then the permutations which simply flip one element (of which

there are |S| · (|S| − 1)/2 of) contribute to the determinant; since exactly two off diagonal terms

contribute to this sum, the exponent on λ reflecting these permutations is distinct and less than

|Θ|.15

Therefore, as λ→ 0, we have that (BTB+λI) · 1
λI has a determinant that does not approach 0.

Therefore, (BTB + λI)−1λI has a limit (since in the definition of the matrix inverse, each term is

scaled by the inverse of the determinant, and otherwise comes from multiplying and adding matrix

elements together—so, since each term is scaled by a term that does not approach infinity, each

term converges to a finite limit). Using Equation 1, we conclude that the limit defining Ĩ exists.

Now, note that the ridge estimator defined by Ĩ solves the following minimization problem:

Ĩλ(·)[s] = argmin
x

||qs,· −Bx||2 + λ ||x||2 . (3)

By contrast, the information structure I solves qs,· = BI(·)[s]. Now, as we have shown

limλ→0 Ĩλ(·)[s] exists; it follows from this expression that the resulting limit must also be a so-

lution to the equation qs,· = Bx; if it weren’t, then we would have the objective in (3) would

converge to some strictly positive amount as λ → 0; by contrast, any solution to this equation

makes this objective equal to 0 in the limit. Hence any vector x which does not satisfy qs,· = Bx

cannot be the limit of Ĩλ(·)[s] as λ→ 0.

On the other hand, for any vector x satisfying qs,· = Bx, subtracting the equation for Ĩ
from this equation yields 0 = B(x − ˜I(·)[s]), so that x − ˜I(·)[s] is in the nullspace of B. But

the information structure generating the decisionmaker’s information is one possible choice of x;

therefore, I(·)[s]− Ĩ(·)[s] =
∑

i αivi, where {v1, . . . , vk} is a basis for the nullspace of B (assuming

the dimension of this space is k); adding Ĩ(·)[s] to both sides of this expression proves the second

half of the theorem.

Proof of the claim that an information structure is deterministic if and only if Q is the identity. A

deterministic information structure involves the decisionmaker observing an element of the parti-

15More generally, the lowest degree of the polynomial should be |Θ| − |S|; showing this, however, requires that
some permutations which influence the determinant do not fix any elements on the diagonal. Determining that not
all terms cancel out, while certainly intuitive, appears less direct than this argument. However, provided this is the
case, then any entry corresponding to exclusively off-diagonal term will be a polynomial of order (λ(|Θ|−|S|)/|S|)|S|,
since the matrix is |S|-by-|S|.
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tion of Θ. Suppose an information structure is partitional. This implies that the probability of

observing any signal given any state is either 0 or 1. On the other hand, bs,θ is positive if and only

if I(θ)[s] = 1, meaning that qs,s̃ is equal to 1 if s = s̃ and 0 otherwise. Therefore, Q is the identity.

Now suppose Q is the identity. Notice that each entry of Q is a convex combination of I(θ)[·],
weighted according to a row of B. So, if bs,θ > 0, then we must have I(θ)[s] = 1. Notice that this

immediately implies that this partitions the state space, since we cannot have two signals s, s′ for

which bs,θ > 0, since this would imply the rows of I sum to a number greater than 1. Therefore, we

obtain a partition of a subset of the state space Θ; for any θ ∈ Θ that is not in this subset, we have

bs,θ = 0 for all s ∈ S. In this case, B and Q are generated according to a partitional information

structure, where each element of the partition is the support of bs,θ for some s, and where the prior

assigns probability 0 to any state where bs,θ = 0 for all s. Hence, the information is generated by

a partition.
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