

C-Mixup: Improving Generalization in Regression

Huaxiu Yao^{1*}, Yiping Wang^{2*}, Linjun Zhang³ James Zou¹, Chelsea Finn¹

¹Stanford University, ²Zhejiang University ³Rutgers University

Mixup in Deep Learning

A learning model

$$\mathcal{D}_{tr} = \{x_i, y_i\}_{i=1}^N \to \text{Classifier},$$

Mixup (Zhang et al. 2018):

$$\widetilde{\mathcal{D}}_{tr} = \{\widetilde{x}_i, \widetilde{y}_i\}_{i=1}^N \to \text{Classifier},$$

where

$$\tilde{x}_i = \lambda x_i + (1 - \lambda) x_j, \tilde{y}_i = \lambda y_i + (1 - \lambda) y_j$$

$$\lambda \sim \text{Beta}(\alpha, \beta)$$

[1.0, 0.0]

[0.0, 1.0] cat dog [0.7, 0.3]

Why Mixup May Fail in Regression?

Directly applying mixup in Regression may produce arbitrary labels

Example: Pose Prediction

How to Apply Mixup to Regression?

Solution: mixing examples with similar labels

Specifically, we change the sampling probability of mixing pairs

$$P((x_j,y_j)|(x_i,y_i)) \propto \exp\left(-\frac{d(i,j)}{2\sigma^2}\right)$$
 d: distance between examples i and j

Natural way: compute the distance using the input feature x

$$d(i,j) = d(x_i, x_j)$$

Drawbacks:

- Lacking good distance metrics to capture structured feature information for high dim data
- Distance between features can be easily influenced by feature noise

C-Mixup

Examples with closer labels

Higher probability to be mixed

$$d(i,j) = d(y_i, y_j)$$

Sampling Probability Comparison

- + benefit both in-distribution and out-of-distribution generalization
- + calculating label distance is computationally efficient

C-Mixup

Example pairs with closer labels

Higher probability to be mixed

$$d(i,j) = d(y_i, y_j)$$

Sampling Probability Comparison

+ benefit both in-distribution and out-of-distribution generalization

Theory (linear and monotonic non-linear model)

mean square error: C-Mixup < min(ERM, $d(x_i, x_i)$)

How C-Mixup Performs? In-Distribution Generalization

How C-Mixup Performs? Out-of-Distribution Generalization

Subpopulation shift – mitigate spurious correlation

RCF-MNIST: angle spuriously correlates with labels

Domain shift – generalize the model to new domains

	Train			Test	
Satellite image (x)					
Country / Urban-rural (d)	Angola / urban	Angola / rural	Angola / urban	Kenya / urban	Kenya / rural
Asset index (y)	0.259	-1.106	2.347	0.827	0.130

How C-Mixup Performs? Out-of-Distribution Generalization

Worst Group/Domain

		ERM	Best prior OOD method	C-Mixup
Image	RCF-MNIST (RMSE) ↓	0.162	0.153	0.146
	RCF-MNIST (RMSE) ↓ PovertyMap (R) †	0.50	0.48	0.53
	Crime (RMSE)	0.173	0.152	0.146
Tabular	Crime (RMSE) ↓ SkillCraft (RMSE) ↓	10.182	7.444	7.362
Drug	DTI (R) †	0.429	0.443	0.458

Analysis

Analysis I: different distance metrics

Feature/Repr Dist

C-Mixup

DTI

0.477

0.498

Analysis II: Batch-wise C-Mixup (Scalability)

	Dataset	Airfoil	NO2	Exchange-Rate	Electricity
RMSE ↓	C-Mixup-batch C-Mixup	$\begin{array}{c c} 2.792 \pm 0.135 \\ 2.717 \pm 0.067 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 0.0205 \pm 0.0017 \\ 0.0203 \pm 0.0011 \end{array}$	$\begin{array}{c} 0.0576 \pm 0.0002 \\ 0.0570 \pm 0.0006 \end{array}$
MAPE ↓	C-Mixup-batch C-Mixup	$\begin{array}{ c c c c c }\hline 1.616 \pm 0.053\% \\ 1.610 \pm 0.085\% \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$13.697 \pm 0.155\% \\ 13.372 \pm 0.106\%$

Takeaways

• Simple strategy for data interpolation in Regression

 Mixing examples with closer continuous labels avoids producing arbitrary mixed labels

Code: https://github.com/huaxiuyao/C-Mixup

Thanks

Q & A