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Abstract

Passivity of systems comprising a continuous time plant
and discrete time controller is considered.  This topic is
motivated by stability considerations arising in the con-
trol of robots and force-reflecting human interfaces
(“haptic interfaces”).  A necessary and sufficient condi-
tion for the passivity of a class of sampled-data systems
is derived.  An example — implementation of a “virtual
wall” via a one degree-of-freedom haptic interface — is
presented.

1.  Introduction

Passivity is a powerful tool for the analysis of coupled
stability problems arising in robotics and related
disciplines.  For instance, passivity methods have been
used to establish conditions for the stability of a robot
contacting an uncertain dynamic environment [5], to
investigate the robustness of force feedback controllers
[7], and to study the stability of telemanipulation with a
time delay [1].  More recently, passivity techniques have
been used in the design of “haptic interfaces” to virtual
environments [4].  A haptic interface is a device which
lets human operators touch, feel, and manipulate virtual
(computer-generated) environments [9].

Haptic interface design provides direct motivation
for the problem considered in this paper — passivity of
sampled-data systems.  This is because a haptic interface
endowed with nearly ideal, collocated sensors and
actuators, and implementing a virtual environment
whose physical counterpart is passive, may nonetheless
exhibit unstable oscillations when grasped by a human
operator.  Often, the frequency of these oscillations is
outside the range of human voluntary movement and
involuntary tremor, which would indicate that the energy
required to sustain them is supplied by the interface.
Thus, the interface is active, not passive.  This is a direct
consequence of the time delay and loss of information
inherent in sampling.

Prior work on passivity has focused on continuous-
time and discrete-time systems, but has not addressed
sampled-data systems (continuous-time plant and
discrete-time controller) [6, 11].   Recently, however,
there has been a growing interest in the derivation of
norms  for sampled-data systems.  This interest is
motivated principally by the application of such norms
to H 2 and H∞  optimal controller design [10, 12, 14].
Conditions for passivity can, however, be converted via

a bilinear transformation to conditions for the
boundedness of an L2 induced norm.  A formula for the L2
induced norm has been presented by Leung, et al. [12],
although this formula assumes a bandlimited input (to
eliminate aliasing), an assumption which may not be
valid for robotic and haptic interface applications in
which collisions create high frequencies.  Kabamba and
Hara [8] present conditions for the boundedness of the L2
norm and a proposition concerning computation of the
norm.  Sivashankar and Khargonekar [14] present
formulas for L1 and L∞  induced norms, and an upper
bound for the L2 induced norm.

2.  Problem Statement

The problem will be described in terms of a prototypical
one degree-of-freedom haptic interface, pictured in Figure
1.  The interface basically consists of an actuator, such
as a servomotor, which the operator grasps.
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Figure 1.  Schematic of a one degree-of-freedom haptic
interface.

Feedback signals representing the state of the
interface are input to a computer.  In this paper, it is
assumed that there is only one feedback signal, based on
the displacement of the actuator.  While no such restric-
tion need be observed in practice, this is a common
implementation.  The computer calculates an actuator



command according to its model of the virtual envi-
ronment.  This command is output, amplified, and sent to
the actuator.

Figure 2 is a model of this system.  It is assumed
that the actuator and handle behave as a rigid body (m)
with some viscous friction (b ), acted upon by a
controller force (u).  Amplifier and sensor dynamics,
nonlinearity, and noise are ignored.  The feedback signal
is sampled at the rate T, and the control signal is passed
through a zero order hold.  The virtual environment
(feedback controller) is represented by a stable linear,
shift-invariant transfer function, H(z).

Useful virtual environments cannot be composed
strictly of linear operators, however.  At a minimum, it
is necessary to include the nonlinear element pictured in
Figure 2.  This element, the unilateral constraint, is
ubiquitous in the physical world.  An example is the
constraint experienced by a ball dropped on a floor —
vastly different equations of motion apply when the ball
is and is not in contact with the floor.  Unilateral
constraints are needed, in general, to account for
collisions and contact.  They are, however, nonlinear.
In this paper, necessary and sufficient conditions for
passivity will first be found for the linear case.  It will
then be shown that the sufficient conditions apply
equally if a unilateral constraint is incorporated as in
Figure 2.
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Figure 2.  Model of a one degree-of-freedom haptic
interface.

If the haptic display behaves passively, then the
operator can never extract energy from it.  Here, we will
use the slightly more stringent statement that the energy
input to the haptic display from the operator must be
positive for all admissible force histories f(t) (see
discussion in Section 3.2) and all times greater than
zero:

∫
  0

t

 f(τ)v(τ)dτ > 0,  ∀ t > 0, admissible f(t) (2.1)

A system which does not satisfy 2.1 is said to be
“active.”

3.  An Analytical Passivity Criterion

The major result of this paper is given by the following
theorem:

Theorem
A necessary and sufficient condition for passivity of the
sampled data system in Figure 2 is:

b  >  
T
2  

1

1 -  cos ωT
  Re{ }(1 - e-jωT) H (ejωT)

0 ≤ ω ≤ ωN (3.1)

where ωN= π/T is the Nyquist frequency.

3.1.  Proof of Necessity
One of the well-known consequences of passivity is

the following:  a strictly passive system, connected to
any passive environment, is necessarily stable.  Thus,
stability when connected to a linear time-invariant,
passive, but otherwise arbitrary environment may be
considered a necessary condition for passivity.  This idea
is the basis of the necessity proof.

Suppose that the unilateral constraint in Figure 2 is
removed and the operator is replaced with a passive, but
otherwise arbitrary impedance Zo(s).  The closed loop
characteristic equation of the resulting system is:

1  +  H(esT)G*(s)  =  0 (3.2)

where:

G*(s) = 
1
T

 ∑
n=-∞

∞
 G(s+jnωs) (3.3)

G(s) = 
1-e-Ts

s2  
1

m s  + b  + Z o (s ) (3.4)

and ωs = 2π/T.  It will be proved that 3.1 is necessary to
ensure 3.2 contains no unstable roots.  The proof re-
quires the use of coupled stability theory [13].  For clar-
ity, the approach is first outlined:  To begin, the con-
straint that Zo(s) is passive is used to identify the region
of the Nyquist plane, RG*, within which G*(jω) must lie
at each frequency.  Next, a linear fractional transforma-
tion1, M{jω,G*(jω)} (defined below), is found which
will map this region to the complete interior of the unit
disk, pointwise in frequency.  The results of [2] are then
used to find a related LFT, N{s,H(esT)}, through which
H(esT) can be mapped such that the closed loop character-
istic equation, written in terms of transformed quantities,
contains the same unstable poles as 3.2.  This ensures
that the transformation does not alter closed loop stabil-
ity.  The Small Gain Theorem then leads directly to a
necessary and sufficient condition for closed loop stabil-
ity:  ||N{s,H(esT)}||∞  <  1.

RG* is found via a series of transformations on the
region corresponding to Zo(jω), as illustrated in Figure
3.  The latter is simply the closed right half plane:
Re{Zo(jω)} ≥ 0,  Im{Zo(jω)} arbitrary.  Consider first the

1A linear fractional transformation (LFT) is a type of
conformal mapping having the property that it maps cir-
cular regions in the complex plane to other circular re-
gions (this includes half planes, which are considered
circles of infinite extent).
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Figure 3.

term  mjω + b + Zo(jω).  The purely imaginary contri-
bution of the mass will have no effect on the region,
while the damping will shift the entire region to the
right by b units.  The resulting half plane is shown in
Figure 3b.  Next consider the term (mjω + b + Zo(jω))-1.
The half plane is mapped, via the inverse, to a closed
disk centered on the real axis at 1/2b with a radius of

1/2b.  Note that this is true at every frequency.  Let this
region be denoted R1.

Because R1 is frequency-independent, it can be re-
moved from the infinite sum when computing the region
corresponding to G*(jω):

RG*(ω)  =  r(jω) R1 (3.5)

where:

r(jω)  =  
1
T

 ∑
n=-∞

∞
  

1   -  e -( jω - jnωs )T

(jω+jnωs)2
(3.6a)

=  
1  - e-jωT

T
 ∑
n=-∞

∞
   

1

(jω+jnωs)2
(3.6b)

=  
T
2  

e -jωT   -  1

1 -  cos ωT
(3.6c)

The factor r(jω) may be viewed as a frequency-dependent
rotation and scaling.  Thus, RG*(ω) is a disk at each fre-
quency (Figure 3d), and it may be mapped to the unit disk
by a translation and scaling.  An appropriate LFT, ap-
plied to G*(s), is:

M{s,G*(s)}  =  - 1  +  
2b
r(s) G*(s) (3.7)

Thus, the region corresponding to M{jω,G*(jω)} is the
closed unit disk centered at the origin (Figure 3e).
Details for finding the associated transformation
N{s,H(esT)}, are given in [2].  The result is:

N{s,H(esT)}  =  
r(s)H(esT)

2b + r(s)H(esT)
(3.8)

It can be verified by direct computation that the closed
loop characteristic equation of the transformed system
has the same unstable roots as those of the original sys-
tem.  Because M{jω,G*(jω)} is completely uncertain in
phase and may have a magnitude as great as one, the
Small Gain Theorem [6] gives a necessary and sufficient
condition for stability, which is ||N{s,H(esT)}||∞ < 1, or:

 


 
r(jω)H(ejωT)

2b + r(jω)H(ejωT)
  <  1    ∀  ω (3.9)

Straightforward manipulation then leads to the alternate
expression in 3.1.  The periodicity of r(jω)H(ejωT) has
also been used to narrow the range of frequencies which
must be examined to  0 ≤ ω ≤ ωN.

3.2.  Proof of Sufficiency
Consider again the system in Figure 2, and suppose

the mass is initially at rest.  An intuitive statement of
passivity is that the kinetic energy of the mass never be
as great as the total energy input by the source f(t):

1
2 mv2(t) < ∫

  0

t

 f(τ)v(τ)dτ ,  ∀ t > 0, admissible f(t)

(3.10)

Because kinetic energy is positive definite, satisfaction
of 3.10 is clearly a sufficient condition for passivity ac-
cording to 2.1.  Also, if kinetic energy ever exceeded to-
tal energy input, energy could be extracted simply by
applying a force pulse sufficient to bring the mass to rest



in an arbitrarily short time period.  We conclude, there-
fore, that 3.10 is equivalent to 2.1.

A force balance on the mass leads to the following:

1
2 mv2(t) = ∫

  0

t

 f(τ)v(τ)dτ  - ∫
  0

t

 u(τ)v(τ)dτ - ∫
  0

t

 b v(τ )v(τ )dτ

(3.11)

Subtracting 3.11 from 3.10 gives:

∫
  0

t

 u(τ)v(τ)dτ  +  ∫
  0

t

 b v2(τ )dτ   >  0,

∀ t > 0, admissible v(t), v̇(t) (3.12)

An admissible signal is one for which the truncated L2
norm is non-zero and finite for all t.  The restriction to
admissible velocity and acceleration in 3.12 ensures that
the same class of signals is covered as in 3.10.

The passivity condition (3.12) may be converted to
a frequency domain condition using Parseval’s Theorem.
First, define a class of truncated signals:

vθ(τ) = 

 



0 τ   <   0

v(τ) 0   ≤   τ  ≤  θ

0 τ  >  θ

(3.13)

Equation 3.12 can be rewritten as:

∫
  - ∞

∞

 u(τ)vt(τ)dτ  +  ∫
  - ∞

∞

 b v
2
t (τ)dτ  >  0,

∀ t, admissible v(t), v̇(t) (3.14)

Parseval’s Theorem gives an equivalent inequality:

∫
  - ∞

∞

 U(jω)V*(jω)dω + ∫
  - ∞

∞

 b V(jω)V*(jω)dω > 0,

∀ ω , admissible V(jω) (3.15)

where U ( jω) and (admissible) V ( jω) are Fourier
Transforms of u(τ) and vt(τ), respectively.

The signal U can be written in terms of V using the
sampler, pulse transfer function, and zero order hold.
Refer to Figure 2.  Using the impulse modulation model
of a sampler:

U(jω) =  
1 - e-jωT

jωT
 H(ejωT) ∑

n=-∞

∞
 
V(jω+jnωs)

jω+jnωs
(3.16)

The following definition is made to simplify notation:

–
H(ω)  =   -   

1 - e-jωT

T
 H(ejωT) (3.17)

–
H(ω) is periodic with a period equal to the sampling rate,
T.  Equation 3.15 may now be rewritten as:

∫
  - ∞

∞

 
–
H(ω) ∑

n=-∞

∞
  

V(jω+ jnωs)

jω+jnωs
   
 


 
V(jω)

jω

*

 dω

 + ∫
  - ∞

∞

 b V(jω)V*(jω)dω  >  0 (3.18)

It can be shown that the value of the first integral in 3.18
is unchanged if 

–
H (ω) is replaced by Re{

–
H(ω)}.  The requi-

site manipulations are omitted.
The next step is to identify an analytical lower

bound to the sum of integrals in equation 3.18.  While
details are omitted due to space restrictions, a lower
bound can be found, leading to the sufficient condition:

∫
  - ∞

∞

 
 


 
b  +  Re{

–
H(ω)}  ∑

n=-∞

∞
 

1

(ω+nωs)2
  V(jω)V*(jω)dω > 0

(3.19)

This inequality will be satisfied for all admissible V(jω)
if and only if the expression in brackets is positive at
every frequency.  This is because the power in v(t) can be
concentrated in an arbitrarily narrow frequency band.
Using the same equality as in equation 3.6, the sufficient
condition may be rewritten:

b  +  Re{
–
H(ω)} 

T2

2   
1

1 - cosωT
  >  0 ∀ ω (3.20)

Finally, it can be seen that equations 3.20 and 3.1 are
equivalent.  This completes the proof in the absence of a
unilateral constraint.

3.3. Sufficiency with a Unilateral Constraint
Because the output of the sampled data controller is

fixed during each period, one can always construct a func-
tion v(t), kT  ≤ t < (k+1)T , which will extract an arbi-
trarily large amount of energy from the actuator.  By se-
lecting large enough b (according to 3.1), however, one
is assured that at least as much energy will be lost to fric-
tion.  Thus, one implication of the sufficiency proof is
that, while moving, the haptic interface will consume
energy during each and every sample period.  Because, in
addition, the haptic interface is passive in the absence of
a feedback loop, we may conclude that u(t) can be set to
zero during any sample period without affecting the
sufficiency result.  In other words, the kinetic energy of
the mass will at no point be greater than the total energy
input by f(t).  Thus, the sufficiency proof guarantees that
the incorporation of a unilateral constraint will not af-
fect the passivity result obtained with a given linear con-
troller.

4.  Example

This section considers a common implementation of a
“virtual wall,” composed of a virtual spring and damper
in mechanical parallel, together with a unilateral con-
straint operator [4].  A velocity estimate is obtained via
backward difference differentiation of position, giving
the following transfer function within the wall:

H(z)  =  K  +  B  
z - 1
Tz

(4.1)

where K > 0 is a virtual stiffness, and B > 0 is a virtual
damping coefficient.  From 3.1, the condition for pas-
sivity is:

b > 
T
2 

1

1-cosωT
 Re{ }(1-e-jωT) ( )K  + B  

ejωT- 1
TejωT

0 ≤ ω ≤ ωN (4.2)



This relation can be reduced by straightforward algebraic
manipulation to:

b  >  
KT
2   -  B cos ωT     0 ≤ ω ≤ ωN (4.3)

The right hand side is maximized at ω = ωN, leading to
the condition:

b  >  
KT
2   +  B (4.4)

This result shows that, to achieve passivity, some
physical dissipation is essential.  It also shows that,
given fixed physical and virtual damping, the maximum
achievable virtual stiffness is proportional to the sam-
pling rate.  Further, the achievable virtual damping is in-
dependent of the sampling rate.

These findings have certain implications for haptic
interface design.  In order to implement very stiff, dissi-
pative constraints (high K, B), it is helpful to maximize
b and minimize T.  Fast sampling is a standard objective,
but maximizing damping goes against conventional
wisdom.  It is generally argued that the dynamics of a
haptic interface should be dominated by the virtual envi-
ronment (which is the programmed behavior we wish to
display) rather than any inherent dynamics (which is
considered parasitic).  Unfortunately, this ignores the ef-
fect of sampling.  Sampling ensures a certain disparity
between the actual and intended behaviors of the virtual
environment which will result in active behavior and the
potential for coupled instability unless accompanied by
a sufficient degree of inherent damping (b).  It is interest-
ing to note, however, that the passivity condition does
not rule out the use of negative virtual damping.  For in-
stance, if  B<0  is permitted, passivity condition 4.4
changes to:

b  >  
KT
2   +  |B| (4.5)

Thus, as much negative virtual damping is permissible as
positive virtual damping.  In the case of  K=0, it should
be possible to eliminate almost completely the effect of
inherent damping.

In a recent set of psychophysical experiments per-
formed in the authors’ laboratory, the benefits of physi-
cal damping and negative virtual damping for virtual wall
implementation have been demonstrated [3].

5.  Conclusions

A necessary and sufficient condition for the passivity of
a class of sampled-data systems has been derived.  The
example of a “virtual wall” characterized by virtual stiff-
ness and damping coefficients has been given and inves-
tigated with the aid of the passivity condition.

A related problem deserving careful investigation is
the effect of quantization (or sensor resolution) on pas-
sivity.  Quantization is as fundamental a consequence of
digital control as sampling.  The roundoff generated by
quantization may be viewed as a form of high frequency
noise.  This noise may be amplified by differentiation,
leading to sustained oscillations in a haptic interface.

Finally, the application of this theory, leading to
the improved design and control of robots and haptic in-
terfaces, is an important area for research.
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