

Christophe BONNEVILLE, PhD – President

Why a workshop about Raman for bioprocessing?

Why a workshop about Raman for bioprocessing?

Conference	Number of talks dealing with Raman			
	2017	2018	2019	
IFPAC	5	10	9	
ESACT	1	-	5	
Bioprocessing Summit Europe	-	3	3	

Hot topic but talks generally provide:

- Short redondent explantations about Raman fundamentals
- Results of user cases with very few explanations about the followed way
- No emphasis on problems to be fixed
- Lack of vision of the future

During this 2-day workshop:

- Deeper fundamentals about Raman and chemometrics
- Detailed and transparent user cases
- Tips and tricks to progress smoothly
- Think about the future

1930Sir Chandrashekhara V. Raman
Nobel Prize in Physics

Courtesy of the Raman Research Institute, Bangalore.

1930	Sir Chandrashekhara V. Raman Nobel Prize in Physics	
1960 & 1969	LASER and CCD invention	

Dr. Townes shared his Nobel with Nikolai G. Basov and Aleksandr M. Prokhorov for the invention of the **LASER**

Willard S. Boyle, left, and George E. Smith pose in the Bell Labs with a camera using their **CCD** invention, 1974

FIG. 6. (Color) The basic CCD structure.

Raman spectra of Benzene obtained thanks to a LASER and a CCD

HP 2116A

- 1971: invention the word chemometrics by Svante Wold, Umeå Universitet, Sweden
- 1974: creation of the International Chemometrics Society (ICS)
- 1980s: first dedicated software (ARTHUR, SIMCA, and UNSCRAMBLER)

Chemometrics - Science of extracting information from chemical systems by data-driven means (multivariate statistics, applied mathematics, computer science,...) ⇔ psychometrics and econometrics.

1930	Sir Chandrashekhara V. Raman Nobel Prize in Physics
1960 & 1969	LASER and CCD invention
1970's	1 st computers for instrumentation & chemometrics term invention
2004	1 st testing of Raman in a cell culture reported

Online Raman Spectroscopy for Bioprocess Monitoring
by
Gustavo Adolfo Gil
Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degrees of
Bachelor of Science in Electrical Science and Engineering
and
Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (ماليه المحمد موجدة المحمد) August 2005
© Massachusetts Institute of Technology 2005. All rights reserved. Wassochuserts samme of RCMACORY Author
Accepted by Arthur C. Smith Chairman, Department Committee on Graduate Theses
BARKER

INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d'Agronomie et des Insdustries Alimentaires (ENSAIA) Ecole doctorale Ressources Procédés Produits Environment (RP2E) Laboratoire des Sciences du Génie Chimique (LSGC)

> THESE Présentée à l'INPL par

Emma PETIOT

En vue d'obtenir le grade de

DOCTEUR DE L'INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Spécialité : Procédés Biotechnologiques et Alimentaires

PROCEDES DE CULTURES DE CELLULES VERO

EN MILIEU SANS SERUM :

Contributions au développement d'une stratégie PAT.

Soutenue publiquement le 6 novembre 2009 devant la commission d'examen

Membres du jury

Président du Jury :	Pascal SOMMER	Directeur de Recherche CNRS, IBCP, Lyon
Rapporteurs :	Amine KAMEN	Professeur, IRB-CNRC, Montréal
	Otto MERTEN	Responsable bioprocédés, Généthon, Evry
Examinateurs :	Noël DETRAZ	Responsable développement industriel, Mérial, Lyon
	Annie MARC	Directeur de Recherche CNRS, LSGC, Nancy
	Hervé PINTON	Directeur Global Technologies Innovation, Sanofi-pasteur Marcy L'Etoile
Invitée :	Cécile GENY	Chef de projet, Sanofi-pasteur, Marcy L'Etoile

1930Sir Chandrashekhara V. Raman
Nobel Prize in Physics1960 &
1969LASER and CCD invention1970's1st computers for
instrumentation &
chemometrics term invention20041st testing of Raman in a cell
culture reported2004PAT FDA directive

Guidance for Industry PAT — A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance

> Office of Training and Communication Division of Train Ig Mormalion, HID-340 Centre for Dirig Evaluation and Baesarch Provent for Dirig Evaluation and Baesarch Received and Diright Control of the Con-Received Control of the Control of the Con-Received Control of the Control Office of the Control of the Cont

PAT framework, these tools can be categorized according to the following:

- Multivariate tools for design, data acquisition and analysis
- Process analyzers
- Process control tools
- Continuous improvement and knowledge management tools

integrated manner. The goal of PAT is to enhance understanding and control the manufacturing process, which is consistent with our current drug quality system: *quality cannot be tested into products; it should be built-in or should be by design*.

Thus, a focus on process understanding can facilitate risk-based regulatory decisions and innovation.

Real time release is the ability to evaluate and ensure the acceptable quality of in-process and/or final product based on process data. Typically, the PAT component of *real time release* includes

In the

1930	Sir Chandrashekhara V. Raman Nobel Prize in Physics		
1960 & 1969	LASER and CCD invention		
1970's	1 st computers for instrumentation & chemometrics term invention		
2004	1 st testing of Raman in a cell culture reported		
2004	PAT FDA directive		
2009 - 2015	1 st pilot projects in the industry		

Biogen – PAT architecture

Intellicentic Consortium

CellPAT project - Sanofi Pasteur - LASIR Université de Lille

1930	Sir Chandrashekhara V. Raman Nobel Prize in Physics	AICHE
1960 & 1969	LASER and CCD invention	Cross-Scale Predictive Modeling of CHO Cell Culture Growth and Metabolites
1970's	1 st computers for instrumentation & chemometrics term invention	Using Raman Spectroscopy and Multivariate Analysis Brandon Berry Cell Culture Development, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, MA 02142 Justin Moretto, Thomas Matthews, John Smelko, and Kelly Wiltberger Cell Culture Development, Biogen Idec, Inc., 5000 Davis Drive, Research Triangle Park, NC 27709
2004	1 st testing of Raman in a cell culture reported	DOI 10.1002/btpr.2035 Published online December 29, 2014 in Wiley Online Library (wileyonlinelibrary.com)
2004	PAT FDA directive	
2009 - 2015	1 st pilot projects in the industry	3L to 2,000L but not yet real
2015	1 st cross-scale modeling	real-time parameter quantitation!

1930	Sir Chandrashekhara V. Raman Nobel Prize in Physics		
1960 & 1969	LASER and CCD invention		
1970's	1 st computers for instrumentation & chemometrics term invention		
2004	1 st testing of Raman in a cell culture reported		
2004	PAT FDA directive		
2009 - 2015	1 st pilot projects in the industry		
2015	1 st cross-scale modeling		
2017	1 st GMP Raman analyzer		

- ProCellics[™]
- GMP compact hardware
- Unique interface for calibration dataset management and real-time monitoring

The Bioprocessing PAT world is dreaming of generic models for every processes...

⁽¹⁾ Webster et al. (2018) Development of Generic Raman Models for a GS-KOTM CHO Platform Process

Parameter	Ν	Latent Variables	Concentration Range	Precision	Error*
Glucose (g/L)	344	5	0.4 - 10.1	0.4	4 %
Lactate (g/L)	344	5	0 - 3.7	0.3	8 %
Product (g/L)	267	6	0 - 4.7	1.2	26 %

*As percentage of maximum process

...but the accuracy delivered by such models is poor

1930	Sir Chandrashekhara V. Raman Nobel Prize in Physics
1960 & 1969	LASER and CCD invention
1970's	1 st computers for instrumentation & chemometrics term invention
2004	1 st testing of Raman in a cell culture reported
2004	PAT FDA directive
2009 - 2015	1 st pilot projects in the industry
2015	1 st cross-scale modeling
2017	1 st GMP Raman analyzer
2017	Generic model trial by Lonza
2019	Local model in a large dataset

Generic dataset and local models...

Rowland-Jones *et al.* (2017), Comparison of Spectroscopy Technologies for Improved Monitoring of Cell Culture Processes in Miniature Bioreactors

Parameter	Ν	Latent Variables	Precision	Error*
Glucose (g/L)	20	8	0.3	3 %
Lactate (g/L)	20	6	0.3	2 %

*As percentage of maximum process

ABOUT US APPLICATIONS PR

Automatic Calculation of Locally Weighted Partial Least Squares (LW-PLS) will Improve Cell Culture Process Monitoring

Raman spectroscopy technology is a non-destructive, rapid, and robust method to measure multiple analytes simultaneously. That is why Raman Spectroscopy has become an essential Process Analytical Technology (PAT) tool in cell culture bioprocesses to monitor in-line and in real-time Critical Process Parameters (CPPs).

Partial Least Square (PLS) regression is the most common statistical method used to build chemometric models from Raman spectra to monitor CPPs in cell culture processes. To ensure models robustness.

resolution

spectra systems

ProCellics™ today

Software

Hardware

Support

- 1. Implementation support
 - . Chemometric support
- GMP support
- Maintenance & licensing
- . Training material

Thank you!

www.resolutionspectra.com

