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Background: Gradient-based Meta-learning
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Meta-learning Gradient-based meta-learning
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Uniform Task Sampling

Some tasks are less valuable or 
contain noises

Uniform 
Sampling

Ideal Scenario Real Scenario

Require non-uniform sampling

Drug discovery
• Each assay is a task
• Noisy tasks caused by 

improper measurement
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Non-adaptive task schedulers

Adjusting class sampling strategies 
[Liu et al. 2020]

+ Benefit meta-learning process with a task scheduler

Ranking tasks based on the amount of 
their information [Sæmundsson et al. 
2020]

- Require manually strategy design
- The task scheduler can not adapt to the learning progress of the meta-model 
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Adaptive Task Sampling (ATS)

Goal: determining task sampling probability via a neural scheduler
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Meta-model-related Factors

Information covered in candidate tasks – Two meta-model-related factors

1. Loss ℒ(𝒟(
), 𝜃(

'/+ ) on the query set

2. Gradient similarity between the support and query sets

Task Pool

Information covered 
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Motivation
• large query losses + large gradient similarities            true hard tasks
• Large query losses + small gradient similarities            tasks with noise
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How to Optimize?

Optimize neural scheduler and meta-model alternatively
Step 1: Obtain the temporal meta-model
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How to Optimize? 

Step 2: Use validation tasks to optimize the neural scheduler

Neural 
Scheduler 𝜙

Temporal Meta-
model )𝜃' Val Tasks

Use REINFOCE to Update 𝜙

Val 
Reward

Val Reward – Performance 
on the validation tasks
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How to Optimize? 

Step 3: Update meta-model 𝜃(
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Overall Framework
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How does ATS Improves Meta-training Process?

sampling probability negatively correlated with loss + positively correlated with gradient similarity 

ATS improves the meta-training loss

Speed up training
The minima tends to 

be flat with better 
generalization ability 
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Experiments: Meta-learning with Noise

• Create noisy tasks
• Add noises on the support set of each task – noisy support set + clean query 

set

• Two datasets
• miniImagenet – classify the category of each image
• Drug – predict the activity of each drug compound (regression)
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Ablation Study about Meta-model-related Factors 
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• Sim – gradient similarity
• Loss – loss on the query set
• Reweighting – change sampling probabilities to task weights



Effect of Noise Ratio

More noises          more improvements 
More noises
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Analysis of the Meta-model-related Factors
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High losses + low gradient similarities           noisy tasks

miniImagenet

Drug



Experiments: Meta-learning with Limited Budgets

• Goal: identify the most useful tasks
• Datasets
• miniImagenet – less meta-training classes means less budgets
• Drug – only 4,100 tasks in the whole dataset

16



Analysis of the Meta-model-related Factors

High losses + high gradient similarities           more valuable tasks

miniImagenet

Drug
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Effect of the Budgets

More tasks

Less meta-training tasks          more improvements 
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Takeaways & Next

• Adaptive task sampling strategies improves the meta-training process

• Both query loss and gradient similarity are important factors in ATS

• What’s Next?
• Incorporate task scheduler with sample scheduler

• Reduce the computational cost

19



Thanks
Q & A

20


