

Meta-learning with an Adaptive Task Scheduler

Huaxiu Yao¹, Yu Wang², Ying Wei³, Peilin Zhao⁴ Mehrdad Mahdavi⁵, Defu Lian², Chelsea Finn¹

¹Stanford University, ²University of Science and Technology of China ³City University of Hong Kong, ⁴Tencent AI Lab, ⁵Pennsylvania State University

Background: Gradient-based Meta-learning

Uniform Task Sampling

Ideal Scenario

Real Scenario

Drug discovery

- Each assay is a task
- Noisy tasks caused by improper measurement

Some tasks are less valuable or contain noises

Require non-uniform sampling

Non-adaptive task schedulers

Adjusting class sampling strategies [Liu et al. 2020]

Ranking tasks based on the amount of their information [Sæmundsson et al. 2020]

- + Benefit meta-learning process with a task scheduler
- Require manually strategy design
- The task scheduler can not adapt to the learning progress of the meta-model

Adaptive Task Sampling (ATS)

Goal: determining task sampling probability via a neural scheduler

Meta-model-related Factors

Information covered in candidate tasks – Two meta-model-related factors

- 1. Loss $\mathcal{L}(\mathcal{D}_i^q, \theta_i^{(0/k)})$ on the query set
- 2. Gradient similarity between the support and query sets

Motivation

- large query losses + large gradient similarities -----> true hard tasks
- Large query losses + small gradient similarities —> tasks with noise

$$w_i^{(k)} = g\left(\mathcal{L}(\mathcal{D}_i^q; \theta_i^{(k)}), \left\langle \nabla_{\theta_0^{(k)}} \mathcal{L}(\mathcal{D}_i^s; \theta_0^{(k)}), \nabla_{\theta_0^{(k)}} \mathcal{L}(\mathcal{D}_i^q; \theta_0^{(k)}) \right\rangle; \phi^{(k)}\right)$$

How to Optimize?

Optimize neural scheduler and meta-model alternatively Step 1: Obtain the temporal meta-model

How to Optimize?

Step 2: Use validation tasks to optimize the neural scheduler

How to Optimize?

Step 3: Update meta-model θ_0

Overall Framework

How does ATS Improves Meta-training Process?

Proposition 1. Suppose that $\mathbf{w} = [w_1, \dots, w_{N^{pool}}]$ denotes the random variable for sampling probabilities, $\mathcal{L}_{\theta_0} = [\mathcal{L}(\mathcal{D}_1^q; \theta_0), \dots, \mathcal{L}(\mathcal{D}_{N^{pool}}^q; \theta_0)]$ denotes the random variable for the loss using the meta-model, and $\nabla_{\theta_0} = [\langle \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_1^s; \theta_0), \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_1^q; \theta_0) \rangle, \dots, \langle \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_{N^{pool}}^s; \theta_0), \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_{N^{pool}}^q; \theta_0) \rangle]$ denotes the random variable for the inner product between gradients of the support and query sets with respect to the meta-model. Then the following equation connecting the meta-learning losses with and without the task scheduler holds:

 $\mathcal{L}^{w}(\theta_{0}) = \mathcal{L}(\theta_{0}) + \operatorname{Cov}(\mathcal{L}_{\theta_{0}}, \mathbf{w}) - \alpha \operatorname{Cov}(\nabla_{\theta_{0}}, \mathbf{w}).$ (10)

sampling probability negatively correlated with loss + positively correlated with gradient similarity

ATS improves the meta-training loss

Proposition 2. With the sampling probability defined as

$$w_i^* = \frac{e^{-\left[\mathcal{L}(\mathcal{D}_i^q;\theta_0^*) - \alpha \left\langle \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_i^s;\theta_0^*), \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_i^q;\theta_0^*) \right\rangle \right]}}{\sum_{i=1}^{B} e^{-\left[\mathcal{L}(\mathcal{D}_i^q;\theta_0^*) - \alpha \left\langle \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_i^s;\theta_0^*), \nabla_{\theta_0} \mathcal{L}(\mathcal{D}_i^q;\theta_0^*) \right\rangle \right]},\tag{11}$$

the following hold:

 $\forall \theta_0 : \operatorname{Cov}(\mathcal{L}_{\theta_0} - \alpha \nabla_{\theta_0}, e^{-(\mathcal{L}_{\theta_0^*} - \alpha \nabla_{\theta_0^*})}) \ge 0, \qquad \qquad \mathcal{L}^w(\theta_0) - \mathcal{L}^w(\theta_0^*) \ge \mathcal{L}(\theta_0) - \mathcal{L}(\theta_0^*), \quad \blacktriangleleft \quad \text{Speed up training}$

 $\forall \theta_0 : \operatorname{Cov}(\mathcal{L}_{\theta_0} - \alpha \nabla_{\theta_0}, e^{-(\mathcal{L}_{\theta_0^*} - \alpha \nabla_{\theta_0^*})}) \leq -\operatorname{Var}(\mathcal{L}_{\theta_0^*} - \alpha \nabla_{\theta_0^*}), \quad \mathcal{L}^w(\theta_0) - \mathcal{L}^w(\theta_0^*) \leq \mathcal{L}(\theta_0) - \mathcal{L}(\theta_0^*). \quad \blacksquare \quad \text{The minima tends to be flat with better}$

11

Experiments: Meta-learning with Noise

- Create noisy tasks
 - Add noises on the support set of each task noisy support set + clean query set
- Two datasets
 - miniImagenet classify the category of each image
 - Drug predict the activity of each drug compound (regression)

Model	miniImagenet-noisy		Drug-noisy		
IVIOUCI	5-way 1-shot	5-way 5-shot	mean	medium	>0.3
Uniform	$ $ 41.67 \pm 0.80%	$55.80\pm0.71\%$	0.202	0.113	21
SPL	$42.13 \pm 0.79\%$	$56.19\pm0.70\%$	0.211	0.138	24
FocalLoss	$41.91 \pm 0.78\%$	$53.58\pm0.75\%$	0.205	0.106	23
GCP	$ $ 41.86 \pm 0.75%	$54.63\pm0.72\%$	N/A	N/A	N/A
PAML	$41.49 \pm 0.74\%$	$52.45\pm0.69\%$	0.204	0.120	24
DAML	$41.26 \pm 0.73\%$	$55.46\pm0.70\%$	0.197	0.113	24
ATS (Ours)	\mid 44.21 \pm 0.76%	$\textbf{59.50} \pm \textbf{0.71\%}$	0.233*	0.152*	31 *

Ablation Study about Meta-model-related Factors

- Sim gradient similarity
- Loss loss on the query set
- Reweighting change sampling probabilities to task weights

Ablation Model	miniImagenet-noisy		Drug-noisy		
Adiation woder	5-way 1-shot	5-way 5-shot	mean	medium	>0.3
Random ϕ	$ $ 41.95 \pm 0.80%	$56.07 \pm 0.71\%$	0.204	0.100	22
Rank by Sim/Loss	$42.84 \pm 0.76\%$	$57.90 \pm 0.68\%$	0.181	0.109	22
ϕ +Loss	$42.45 \pm 0.80\%$	$56.65 \pm 0.75\%$	0.212	0.122	27
ϕ +Sim	$42.28 \pm 0.82\%$	$56.71 \pm 0.72\%$	0.214	0.122	29
Reweighting	$42.19 \pm 0.80\%$	$56.48\pm0.72\%$	0.217	0.118	28
ATS (ϕ +Loss+Sim)	\mid 44.21 \pm 0.76%	$\textbf{59.50} \pm \textbf{0.71\%}$	0.233*	0.152*	31*

* means the result is significant according to Student's T-test at level 0.01 compared to Weighting

Effect of Noise Ratio

More noises — more improvements

				iviore noises			
Image	Noise Ratio 0.2		0.4	0.6	0.8		
	Uniform BNS	$\begin{vmatrix} 43.46 \pm 0.82\% \\ 44.04 \pm 0.81\% \end{vmatrix}$		$\begin{array}{ } 41.67 \pm 0.80\% \\ 42.13 \pm 0.79\% \end{array}$	$\begin{vmatrix} 36.53 \pm 0.73\% \\ 38.21 \pm 0.75\% \end{vmatrix}$		
	ATS (Ours)	$ $ 45.55 \pm 0.80%	\sim 44.50 ± 0.86%	\mid 44.21 \pm 0.76%	$ \textbf{42.18} \pm \textbf{0.73\%}$		
Drug	Noise Scaler	η=2	<i>η</i> =4	<i>η=</i> 6	$\eta=8$		
	Uniform BNS		260.2020.11321310.2110.13824	$ \begin{vmatrix} 0.196 & 0.131 & 22 \\ 0.208 & 0.116 & 24 \end{vmatrix} $			
	ATS* (Ours)	0.235 0.160 3	33 0.233 0.152 31	0.221 0.136 28	0.219 0.133 28		

* means all results are significant according to Student's T-test at level 0.01 compared to BNS

More noises

Analysis of the Meta-model-related Factors

High losses + low gradient similarities —> noisy tasks

Experiments: Meta-learning with Limited Budgets

- Goal: identify the most useful tasks
- Datasets
 - minilmagenet less meta-training classes means less budgets
 - Drug only 4,100 tasks in the whole dataset

Model	miniImagenet-Limited 5-way 1-shot 5-way 5-shot		Drug-Full mean medium >0.3		
Uniform SPL FocalLoss	$\begin{vmatrix} 33.61 \pm 0.66\% \\ 34.28 \pm 0.65\% \\ 33.11 \pm 0.65\% \end{vmatrix}$	$\begin{array}{c} 45.97 \pm 0.65\% \\ 46.05 \pm 0.69\% \\ 46.12 \pm 0.70\% \end{array}$	$ \begin{array}{c c} 0.233 \\ 0.232 \\ 0.229 \end{array} $	0.140 0.135 0.140	33 29 28
GCP PAML DAML	$\begin{vmatrix} 34.69 \pm 0.67\% \\ 33.64 \pm 0.62\% \\ 34.83 \pm 0.69\% \end{vmatrix}$	$\begin{array}{r} 46.86 \pm 0.68\% \\ 45.01 \pm 0.69\% \\ 46.66 \pm 0.67\% \end{array}$	N/A 0.238 0.227	N/A 0.144 0.141	N/A 32 28
ATS (Ours)	$ $ 35.15 \pm 0.67 %	$\textbf{47.76} \pm \textbf{0.68\%}$	0.252*	0.179*	36*

* means the result is significant according to Student's T-test at level 0.01 compared to PAML

Analysis of the Meta-model-related Factors

High losses + high gradient similarities — more valuable tasks

Effect of the Budgets

Less meta-training tasks —> more improvements

Takeaways & Next

- Adaptive task sampling strategies improves the meta-training process
- Both query loss and gradient similarity are important factors in ATS
- What's Next?
 - Incorporate task scheduler with sample scheduler
 - Reduce the computational cost

Thanks

Q & A