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Abstract

The object language of Kripke’s 1975 semantic theory of truth, based on the

Strong Kleene valuation scheme, cannot contain a predicate that express the notion

of “ungroundedness” that Kripke provides an analysis of. This is unfortunate: it

means that, in the object language of Kripke’s theory, there is no obvious way to

express Kripke’s diagnostic insight about what causes semantic pathology. This

paper shows how to introduce a “groundedness” predicate, G, to a Kripkean the-

ory of truth that can fill this expressive gap. In the fixed-point construction that

determines an interpretation for G, G’s anti-extension tracks networks of sentences

that, due to predications of truth, result in non-terminating trees of semantic de-

pendence. In the fixed-point models that provide a class of intended interpretations

for G: (i) every sentence with a classical semantic value is in the extension of G,

(ii) every sentence in the anti-extension of G receives the value 1
2 , and (iii) the

anti-extension of G includes all the sentences that receive 1
2 in the corresponding

K3 model of Kripke’s original theory. The language L[T,G] has the resources for

describing Kripke’s diagnostic insight as it applies to L[T,G].

It is well-known that the object language described by Kripke’s 1975 semantic the-

ory of truth, based on the Strong Kleene valuation scheme, cannot contain a predi-

cate/operator that expresses “ungroundedness.”1 This would be an object language

predicate that is true of all sentences that do not receive a classical truth-value in the

fixed-point model one is taking as a semantic theory. The introduction of such a predi-

cate would undermine the monotonicity of the jump operation used to construct Kripke’s

fixed-point models. The simplest way to see that is to note that the resulting language

would contain Strengthened Liar sentences like (1):

1These points hold as well regarding “exclusion negation.”
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(1) (1) is not true or (1) is ungrounded.

There is no fixed-point model based on the Strong Kleene scheme in which (1) is in the

extension of “ungrounded” if and only if it does not receive a classical value. Given the

intended interpretation of “ungrounded,” is inconsistent to suppose that (1) doesn’t have

a classical value, and any model in which (1) does have a classical value cannot be a

fixed-point.

This aspect of Kripke’s theory is unfortunate. As Hartry Field puts it, we would like to

be able to express in the object language, in an assertive way, that pathological sentences

like the Liar (2008 pg. 94-96) are to be rejected. If there is no predicate in the object

language that expresses ungroundedness, it is not clear how we can do this. Moreover,

Kripke’s semantic theory has struck many as offering an insightful diagnosis of Liar-like

pathology, and it would nice to be able to express this in the object language as well.

That diagnosis, roughly, is that sentences that predicate truth semantically depend on

the sentences they predicate truth of, and Liar-like pathology is caused by being part of a

non-well-founded network of semantic dependence. Since the object language of Kripke’s

theory cannot contain a predicate that holds just of the sentences that are semantically

ungrounded in this way, it would appear that there are no resources in the object language

for expressing Kripke’s diagnostic insight. Part of the attraction of Kripke’s theory rests

on the fact that it makes intelligible how we can talk, in the object language, about the

truth of of object language sentences, so it is, prima facie, a defect if so much of what

is philosophically interesting regarding Kripke’s response to the semantic paradoxes can

only be expressed once we make the reflective ascent to a metalanguage.

I’ll suggest in this paper that we can develop a Kripkean theory of truth that goes

a long way to satisfying these desiderata if we relax our standard for what counts as a

ungroundedness predicate. Arguably, the intended interpretation of a “ungroundedness”

predicate described above—a predicate that is true of all sentences that do not receive a

classical value—is stronger than it is reasonable to demand. It would not be so surprising

if a groundedness/ungroundedness predicate is susceptible to semantic failure for similar

reasons that a truth/falsity predicate is. And if so, we might expect that, for some

objects that are ungrounded, applying the groundedness/ungroundednes predicate to

those objects just results in semantic failure rather than a claim with a truth value.

Here I develop a fixed-point semantics for a language L[T,G] that extends the usual

language for a Kripkean theory of truth, L[T], by adding a Groundedness predicate G.

In the fixed-point models that will be my focus, G has the following properties:

• Every sentence with a classical truth value that model is in the extension of G.

• Every sentence in the anti-extension of G receives the value 1
2
in that model.
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• The anti-extension of G in that model includes all the sentences that receive 1
2
in

the corresponding K3 model (of Kripke’s original theory).

I begin, in Section 1, by introducing the language L[T,G] and defining the notions

relevant to the jump operation by which I construct fixed-point models. In Section 2,

following Kripke, I define the sequences that lead to the construction of such models.

In Section 3, I compare my L[T,G] models to the corresponding K3 models of Kripke’s

original semantics. The main result of this section is Theorem 8: for all sentences s of

L[T], s receives the value 1
2
in a K3 model if and only if s’s Gödel code is in the anti-

extension of “G,” in the corresponding L[T,G] model. I close, in Section 4, by elaborating

on my suggestion that, by introducing the G predicate, we end up with a language in

which we can affirmatively express rejection of semantically pathological sentences, and

can express the core diagnostic insight of Kripke’s theory of truth. I also compare my

Groundedness predicate to Roy Cook’s 2007 hierarchy of “pathology” predicates, which

are introduced to solve a similar problem.

1 Definitions

Let L be the language of Peano Arithmetic. I’ll suppose that L contains only ¬,∨ and

the existential quantifier as logical operators. Let L[T] be L with an additional unary

predicate, T, the truth predicate; let L[T,G] be L[T] with an additional unary predicate

G, the groundedness predicate. A non-alethic sentence of L[T,G] is any sentence that

lacks an occurrence of T.2 I assume throughout that in L[T,G] there is some suitable

Gödel-coding of the sentences of L[T,G] (and I’ll sometimes identify sentences with their

codes).

A L[T,G] model is a triple M = ⟨N, ⟨T+, T−⟩, ⟨G+, G−⟩⟩, where N is a standard

classical interpretation of L, T+ is the extension of T , T− is the anti-extension of T ,

G+ is the extension of G, and G− is the anti-extension of G. Naturally, removing the

interpretation of G from an L[T,G] results in a K3 model for L[T ]. A valuation v of

an L[T,G] model is a function from L[T,G] sentences to {0, 1
2
, 1}, defined by the Strong

Kleene Scheme.3 A simplified representation of a model M for L[T,G] is M[T,G], where

T abbreviates ⟨T+,T−⟩, the “truth concept” of M, and G abbreviates ⟨G+,G−⟩, the
“groundedness concept” of M.

A truth concept T′ extends a truth concept T iff T+ ⊆ T′
+ and T− ⊆ T′

−. Likewise, a

groundedness concept G′ extends a groundedness concept G iff G+ ⊆ G′
+ and G− ⊆ G′

−.

A model L[T′,G′] extends a model L[T,G] iff T′ extends T and G′ extends G.

2So sentences like “G⌜0 = 0⌝” count as non-alethic—I discuss this further in Section 4.
3That is: v(⌜¬ϕ⌝) = 1 − v(⌜ϕ⌝) and v(⌜ϕ ∨ ψ⌝) = Max(v(⌜ϕ⌝), v(⌜ψ⌝). Existential generalizations

are understood as infinite disjunctions.
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Our ultimate goal is to describe a G predicate whose anti-extension tracks sentences

that can be shown to be members of an illegitimate semantic dependence structure. This

sort of illegitimate structure is given an analysis in the definition of an ungrounded

set, Defintion 7. I’ll start with explaining some notions that are presupposed by that

definition—beginning with the relevant relation of semantic dependence: direct calling.4

Definition 1 For any sentences x and y of L[T,G], x directly calls y iff:

(i) x is an atomic sentence of the form ⌜Tc⌝ and c refers to the (the Gödel number

of) y.

(ii) x is a sentence ⌜¬ϕ ⌝ and y is ϕ.

(iii) x is ⌜ϕ ∨ ψ⌝ and y is ϕ or ψ.

(iv) x is ⌜∃vϕ⌝ and y is ⌜ϕ[v/c]⌝ for some constant c, where ⌜ϕ[v/c]⌝ is ϕ with

every free occurence of v replaced with c.

A sequence of L[T,G] sentences p0, ... , pn is a calling path iff in for every consecutive

pair in the sequence < x, y >, x directly calls y.

Definition 2 Let N be a set of indexed sentences {yi} for any natural number i. Then a

directed graph R(N), where R is a binary relation on N , is a partial dependence tree

under the sentence p iff:

(i) p0 ∈ N .

(ii) No member of N bears R to p0.

(iii) For every yk in N , yk bears R to some zi only if y directly calls z.

(iv) For any n and m in N such that n ̸= m, there is no q such that n and m both

bear R to q.

(v) N = {x | there is an R path from p0 to x}.5

Definition 3 A dependence tree R(N) is drawn from a set B of L[T,G] sentences iff

every member of N is yk for some y ∈ B (for some index k) and for every y ∈ B there is

a node yk in N (for some index k).

Definition 4 If p is an L[T,G] sentence, then q is an anchor of p iff:

(i) p has the form ⌜Tc⌝ and q is the sentence whose Gödel number is c.

(ii) p is a complex sentence containing a subsentence of the form ⌜Tc⌝, and q is

the sentence whose Gödel number is c.

The set of all p’s anchors is the sufficiency set of p.

4I borrow this terminology from Gaifman 1988, 1992, 2000. For similar graph-theoretic treatments of
semantic dependence, see Yablo 1982 and Cook 2004.

5This definition is based on the characterization of dependence trees in Yablo 1982.
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Definition 5 We inductively define Settled-as-True and Settled-as-False for sen-

tences of L[T,G]:

If p is an atomic sentence, then p is settled-as-true relative to a model M iff:

(i) p is a non-alethic sentence and p v(M)(p) = 1

(ii) p is a sentence of the form ⌜Tc⌝ and v(M)(c) = 1.

If p is an atomic sentence, then p is settled-as-false relative to a model M iff:

(i) p is a non-alethic sentence and p v(M)(p) = 0.

(ii) p is a sentence of the form ⌜Tc⌝ and v(M)(c) = 0

If p is a complex sentence, then p is settled-as-true relative to a model M iff:

(i) p is ⌜¬ϕ⌝ and ϕ is settled-as-false in M.

(ii) p is ⌜ϕ ∨ ψ⌝ and either ϕ or ψ is settled-as-true on M.

(iii) p is ⌜∃vϕ⌝ and some sentence ⌜ϕ[v/c]⌝ is settled-as-true in M.

If p is a complex sentence, then p is settled-as-false relative to a model M iff:

(i) p is ⌜¬ϕ⌝ and ϕ is settled-as-true in M.

(ii) p is ⌜ϕ ∨ ψ⌝ and both ϕ and ψ are settled-as-false on M.

(iii) p is ⌜∃vϕ⌝ and some sentence ⌜ϕ[v/c]⌝ is settled-as-false in M.

Definition 6 For any sentence x of L[T,G], x is settled by a model M iff x is settled-

as-true on M or settled-as-false on M.

Now we can give an analysis of the sort of semantic pathology that the anti-extension

of the G predicate is intended to track:

Definition 7 A set of L[T,G] sentences B is an ungrounded set relative to a model

M iff:

(i) every member of B has the value 1
2
on M.

(ii) no member of B is settled by M.

(iii) for all x, x is unevaluated on M and some member of B directly calls x, then

x ∈ B. (i.e. B is closed under direct call among the sentences that are unevaluated

on M.)

(iv) there is a partial dependence tree R(N) drawn from B such that every n ∈ N

bears R to something.

If x is a member of an ungrounded set relative to a model M, then all of the terminating

limbs of x’s semantic dependence tree have been evaluated, and there is still no basis

for determining x’s truth-value—we are left with an infinite descending tree of semantic

dependence. What I’m calling Kripke’s diagnostic insight is the claim that being a

member of such an ungrounded set causes semantic pathology.
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Next, we define the operation by which sentences get “added” to the extension

and anti-extension of G. This is a function J from L[T,G] models to L[T,G] models,

based on Kripke’s jump operator. For the following three definitions, let Q = {x ∈
N | x is not a code of a sentence}.

Definition 8 J is a function from L[T,G] models to L[T,G] models. J(M[T,G]) =

M[T
′
, G

′
], where:

T
′
+ = {x | v(M)(x) = 1}
T

′
− = {x | v(M)(x) = 0} ∪Q
G

′
+ = {x | v(M)(x) = 1 or v(M)(x) = 0}

G
′
− = G− ∪ {x | x is a member of an ungrounded set in M}∪Q

Again following Kripke, I will be considering fixed-point models that are generated

by a sequence starting with a certain base model. The construction can only be carried

out if we make certain assumptions about that base model—namely that it is in good

standing, in the sense defined below.6

Definition 9 An L[T] model M is in good standing iff for every sentence ϕ of L[T],
if v(M)ϕ ∈ {0, 1}, then iff v(M)ϕ = v(M)(T⌜ϕ⌝).

An L[T,G] model M is in good standing iff for every sentence ϕ of L[T]:

(i) if v(M)ϕ ∈ {0, 1}, then, v(M)ϕ = v(M)(T⌜ϕ⌝) and v(M)(G⌜ϕ⌝) = 1.

(ii) G− = Q.7

Finally, since I want to compare L[T,G] models with K3 models, we need to charac-

terize the sense in which two such models can be said to correspond to each other.

Definition 10 An L[T] model M[T] and an L[T,G] model M[T’, G’] correspond to

each other iff T = T’ and G’+ = {T+ ∪ T−} \Q.

2 The construction

The next definition describes the construction that yields fixed-point models for L[T,G].8

Definition 11 Suppose that M[T,G] is an L[T,G] model that is in good standing. We

define a sequence of L[[T,G] models as follows:

6The first part of this definition is just the condition that a base model must meet for Kripke’s original
construction to yield a fixed-point.

7Alternatively, (ii) could stipulate that G− = ∅. (Though we would have to appropriately modify
Definition 11). Perhaps a weaker condition then either of these will do, but I won’t explore the possibility.

8The organization of the proofs in this section draws on unpublished notes by Redacted for Blind
review.
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(i) M[T,G]0 = M[T,G]

(ii) M[T,G]α+1 = J(M[T,G])

(iii) Where α is a limit ordinal, M[T,G]α=M[⟨
⋃

β<α T
β
+,

⋃
β<α T

β
−⟩, ⟨

⋃
β<α G

β
+,

⋃
β<α G

β
−⟩]

(In the last clause Tβ
+ refers to the T+ of M[T,G]β.)

Theorem 1 For any L[T,G] sentence p and any L[T,G] models M[T,G] and M[T ′,G ′],

if T ′ extends T and G ′ extends G, then v(M[T ′,G ′])(p) = v(M[T,G](p).

The proof of Theorem 1 is a simple induction on formula complexity.

Theorem 2 (Monotonicity Conditions) For all ordinals α and β:

• If α > β, then M[T,G]α extends M[T,G]β.

• If If α > β, then for all L[T,G] sentences p, v(M[T,G]α)(p) = v(M[T,G]β)(p).

Proof : The first Monotonicy Condition implies the second, given Theorem 1, so it is

sufficient to prove the first. If α is 0 or a limit ordinal the condition holds trivially. So

it suffices to show that the first condition holds for an ordinal α + 1 on the assumption

that both Monotonicty Conditions hold for α. We do this by showing that Tα
+ ⊆ Tα+1

+ ,

Tα
− ⊆ Tα+1

− , Gα
+ ⊆ Gα+1

+ , and Gα
− ⊆ Gα+1

− .

• Suppose that c is an element of Tα
+. Let γ be the least ordinal such that c ∈

Tγ
+. γ cannot be a limit ordinal, so γ is either 0 or a successor. Suppose γ = 0.

By the assumption that M is in good standing, v(M[T,G,]γ)(c) = 1. Since we

assume that both Monotonicity conditions hold for α, and γ ≤ α, it follows that

v(M[T,G,]α)(c) = 1. Therefore, by definition of the sequence, c ∈ Tα+1
+ . Suppose

that γ is a successor. Then there is some ordinal that is γ − 1. By definition

of the sequence, v(M[T,G]γ−1)(c) = 1. Since we assume that both Monotonicity

conditions hold for α, and γ−1 ≤ α, it follows that v(M[T,G]α)(c) = 1. Therefore,

by definition of the sequence c ∈ Tα+1
+ .

• The proofs for Tα+1
− and Gα+1

+ have the same form. The proof of Gα+1
− is simpler be-

cause, by the definition of good standing, G0
− is guaranteed to contain no sentences,

and jump always preserves the contents of G−. Therefore Tα
+ ⊆ Tα+1

+ , Tα
− ⊆ Tα+1

− ,

Gα
+ ⊆ Gα+1

+ , and Gα
− ⊆ Gα+1

+ .

• So both Monotonicity Conditions hold for all ordinals α and β.

Theorem 3 (Fixed Point) There is an ordinal β such that M[T,G]β = M[T,G]β+1.

This follows since there are ordinals that exceed the cardinality of any set of L[T,G]

sentences.
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3 Comparison with K3 Fixed-Points

Suppose that we have a L[T] model M∗
0 and a L[T,G] model M+

0 that corresponds to

M∗
0, and that both are in good standing. Let M∗ refer to the fixed point model generated

by the standard Kripkean Jump-sequence construction on M∗
0, and let M+ refer to the

fixed point model generated by the Jump-sequence construction described in Definition

12 on M+
0 .

Theorem 4 For any ordinal α and any L[T ] sentence p, p ∈ T ∗α
+ iff p ∈ T+α

+ and p ∈ T ∗α
−

iff p ∈ T+α
− .

Proof : Proof by transfinite induction. For α = 0, the condition is trivial on the as-

sumption that M∗
0 and M+

0 correspond. For α = β + 1, suppose that for any L[T]
sentence p the truth concepts T∗

β and T+
β agree about p. Then, for every sentence p of

L[T], v(M∗
β)(p) = v(M+

β )(p). Therefore, by the definition of the jump operations for the

respective sequences, for every sentence p of L[T], p ∈ T ∗α
+ iff p ∈ T+α

+ and p ∈ T ∗α
− iff

p ∈ T+α
− . Now we prove that the condition holds for a limit ordinal α, on the assumption

that it holds for all β < α. This case is trivial too, since the Jump operation takes the

union of T+ and T−, respectively, for all prior steps.

Corollary 4.1 The truth concept of M+ extends the truth concept of M∗.

Corollary 4.2 For any L[T] sentence p, v(M+)(p) = v(M∗)(p).

Lemma 5 and 6 are helpful preliminaries for the proof of Theorem 7.

Lemma 5 If p is an L[T] sentence with the sufficiency set H, and p receives a classical

value (0 or 1) on a model M[T,G], then, for any model M[T’,G’ ] if T’+ is such that

(H∩T+) ⊆ T’+, and T’− is such that (H∩T−) ⊆ T’−, then v(M[T])(p) = v(M[T’ ])(p).

Proof : Induction on formula complexity:

• Suppose p is a non-alethic atomic. The condition holds trivially because, if p is non-

alethic, its interpretation is invariant with respect to changes in the interpretation

of T.

• Suppose p is an atomic of the form ⌜Tc⌝. The sufficiency set of p is just {c}.
Suppose p has the value 1 on M[T,G]. Then H ∩ T+ = {c}. Now suppose that

{c} ⊆ T′
+. Then p has the value 1 on M[T′,G′]. Suppose, alternatively, p gets 0

on M[T,G]. Then H ∩T− = {c}. Now suppose that {c} ⊆ T′
−. Then p also gets 0

on M[T′,G′]. So the condition holds if p is a alethic atomic.
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• Suppose p is ⌜¬ϕ⌝. We assume the inductive hypothesis holds for ϕ. Suppose p gets

the classical value x on M[T,G]. Then, by the Strong Kleene Scheme, ϕ receives

the value |x − 1| on M[T,G]. By inductive hypothesis, v(M[T′,G′])(ϕ) = |x − 1|.
So v(M[T′,G′])(p) = x. So the condition holds if p is ⌜¬ϕ⌝.

• The proofs for ⌜ϕ ∨ ψ⌝ and ⌜∃vϕ⌝ follow the same pattern as ¬ϕ.

• QED

This lemma holds for all K3 models as well, since it only concerns L[T] sentences. In a

slogan this lemma is: for L[T] sentences, only anchors matter.

Lemma 6 (Sufficiency Principle) For all L[T] sentences p and any model M, J(M)

gives p a classical value iff M settles p.

The proof of Lemma 6 is a simple induction on formula complexity and it is left to the

reader.

Theorem 7 is crucial for establishing the main result of this paper: that for all L[T ]
sentences p, v(M∗)(p) = 1

2
iff p(’s code) is a member of G+

− (Theorem 8). But it is also

of independent interest in characterizing constructions that lead to L[T,G] fixed-point

models. It establishes that, once a sentence(’s code) is added to G−, it will never receive

a classical value at a subsequent stage in the construction.

Theorem 7 For any ordinal τ , if p(’s code) is a member of Gτ
−, then, for all β ≥ τ ,

v(M[T,G]β)(p) =
1
2
.

Proof: Induction on formula complexity.

• Suppose p is an atomic that does not feature the predicate T or G. Suppose p ∈ Gτ
−.

Let α be the least ordinal such that p ∈ Gα
−. α cannot be 0 or a limit ordinal, so

there is an ordinal α− 1. By the definition of the sequence, p must be a member of

an ungrounded set in M[T,G]α−1, and therefore v(M[T,G]α−1)(p) =
1
2
. But, since

p doens’t contain T or G, p receives a classical value at every model in the sequence.

Contradiction. So the condition holds trivially of every atomic sentence lacking T

and G.

• Suppose p is an atomic of the form ⌜Gc⌝. Suppose p ∈ Gτ
−. Let α be the least

ordinal such that p ∈ Gα
−. α cannot be 0 or a limit ordinal, so there is an ordinal

α − 1. By the definition of the sequence, p must be a member of an ungrounded

set in M[T,G]α−1. Let that set be B. By the definition of ungrounded set, there

is a partial dependence tree drawn from B that has no terminal nodes. But, if p

is ⌜Gc⌝, then it does not directly call any sentence. Therefore, any dependence

tree drawn from B will have at least one terminal node pi. Contradiction. So the

condition holds trivially of every atomic sentence of the form ⌜Gc⌝.
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• Suppose p is an atomic of the form ⌜Tc⌝. Let α be the least ordinal such that

p ∈ Gα
−. Again α cannot be 0 or a limit ordinal, so there is an ordinal α−1. By the

definition of the sequence, p must be a member of an ungrounded set in M[T,G]α−1.

Call that set B. Now, suppose for contradiction that there is an ordinal greater

than α such that p receives a classical value in the model corresponding to that

ordinal. Let β be the least such ordinal. β cannot be 0 or a limit ordinal, so there

is an ordinal β − 1. By the definition of the sequence, if ⌜Tc⌝ has a classical value

on M[T,G]β, then c has a classical value on M[T,G]β−1. We can show that c is a

member of B. Suppose not for reductio. p directly calls c, and B is closed under

direct call among sentences with the value 1
2
in M[T,G]α−1, so if c ̸∈ B, then c has

a classical value on M[T,G]α−1. But if c has a classical value on M[T,G]α−1, then p

is settled on M[T,G]α−1. This contradicts the assumption that B is an ungrounded

set. Therefore, c ∈ B. In order to yield a dependence tree without terminating

nodes, c must be an alethic sentence. Let W be the smallest set containing c and

all of c’s anchors, and which is closed under anchoring. Let H = B ∩W . Since

anchoring is a special case of a calling path and B is closed under anchoring, for

every a ∈ H, if b is an anchor of a and v(M[T,G]α−1)(b) =
1
2
, then b ∈ H.

– We can show (Helper Lemma) that, for any model M′ extending M[T,G]α−1

such that no member of H is a member of T′
+ or T’−, no member of H

receives a classical value in M′. For, suppose that no member of H is a

member of T′
+ or T′

− in M′. Suppose now for contradiction that o ∈ H

has a classical value on M′. Let F = T′
+ ∩ {x | x is an anchor of o} and

E = T′
− ∩ {x | x is an anchor of o}. Since we are supposing that F and E

are both disjoint from H, it follows that every member of F or E receives a

classical value in Mα−1, because H includes all of the anchors of o that receive

the value 1
2
in Mα−1. By Lemma 5, o must receive a classical value in Mα

(J(Mα−1)), since o has a classical value in M′, and by the definition of the

sequence F ⊆ Tα
+ and E ⊆ Tα

−. But, by the Sufficiency Principle, this implies

that o is settled by Mα−1. But this yields a contradiction, since o is assumed

to be a member of B, which is an ungrounded set.

Now we do a transfinite induction to show: for every ordinal ϵ ≥ α− 1, no member

of H has a classical value on Mϵ . For ϵ = α−1 this is trivial given the assumptions

above. Suppose ϵ = γ+1, where γ > α−1. By inductive hypothesis every member

of H has the value 1
2
on M[T,G]γ. Suppose for reductio, that some o ∈ H has a

classical value on M[T,G]ϵ. By the Helper Lemma, this implies that some member

of H is a member of Tϵ
+ or Tϵ

−. But, given the definition of the sequence, this

implies that that some member of H has a classical value in M[T,G]γ—contrary to

hypothesis. Suppose ϵ is a limit ordinal, and suppose that the inductive hypothesis
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holds for all γ < ϵ. Since nothing is receives a classical value at a limit ordinal that

does not receive it at some predecessor ordinal, no member of H receives a classical

value in M[T,G]ϵ.

Since c is a member of H this implies that there is no ordinal ϵ ≥ α − 1 such

that c receives a classical value in M[T,G]ϵ. Therefore, contrary to assumption, c

does not receive a classical value in M[T,G]β−1. This concludes the reductio of the

assumption that there is an ordinal β such that p has classical value on M[T,G]β

Therefore, for all β ≥ α, v(M[T,G]β)(p) =
1
2
. Thus the condition holds if p is ⌜Tc⌝.

• Suppose p is a sentence ¬ϕ. Suppose the inductive hypothesis holds for ϕ. Suppose
p ∈ Gτ

−. Let α be the least ordinal such that p ∈ Gα
−. α cannot be 0 or a limit

ordinal, so there is an ordinal α − 1. By the definition of the sequence, p must

be a member of an ungrounded set in M[T,G]α−1. Let that set be B. ϕ must

be a member of B. For, suppose not for reductio. Then, since, B is closed under

direct call among sentences evaluated as 1
2
in M[T,G]α−1 and p calls ϕ, then ϕ

would have a classical value in M[T,G]α−1. This in turn implies that M[T,G]α−1

settles p, contradicting the assumption that B is an ungrounded set. So, ϕ ∈ B,

which, by definiton of the sequence, implies that ϕ ∈ Gα
−. By inductive hypothesis,

for all ϵ ≥ α v(M[T,G]ϵ)(ϕ) = 1
2
. By the Strong Kleene Scheme, for all ϵ ≥ α

v(M[T,G]ϵ)(p) =
1
2
. Since, α ≤ τ the condition holds for if p is ⌜¬ϕ⌝.

• The proofs for ⌜ϕ ∨ ψ⌝ and ⌜∃vϕ⌝ follow the same pattern as ⌜¬ϕ⌝.

• QED

Theorem 8 For all L[T ] sentences p, v(M∗)(p) = 1
2
iff p(’s code) is a member of G+

−,

i.e. the G− of M+.

Proof:

Left to Right: For all L[T ] sentences p, if v(M∗)(p) = 1
2
, then p(’s code) is a member

of G+
−. Induction on formula complexity.

• Suppose p is a non-alethic atomic. Trivial, since p has a classical value in M∗.

• Suppose p has the form ⌜Tc⌝. Suppose that v(M∗)(p) = 1
2
. There is no ordinal α

such that M+
α gives p a classical value, because if it did p would have a classical

value on M+, and, by Corollary 4.2, p would have a classical value on M∗ contrary

to assumption. It follows too that there is no ordinal α such that M+
α settles p. Let

B be the smallest set including p that is closed under direct call. Let β be the least

ordinal such that every member of B that receives a classical value in M+ receives

a classical value in M+
β . Let B

′ = B\{x | x receives a classical value in M+
β }. We

11



can prove that B′ is an ungrounded set in M+
β . By hypothesis, no member of B′

receives a classical value in M+
β and it is closed under direct call among sentences

that receive 1
2
in M+

β . Every member o ∈ B′ must be unsettled on M+
β , because

if o were settled, then o would receive a classical value in J(M+
β ), and therefore

in M+, contrary to hypothesis. Finally, there is a partial dependence tree under p

drawn from B′ that has no terminal nodes. Since every non-alethic sentence of L[T]
receives a classical value in M+

β , every member of B′ is an alethic sentence, and

therefore directly calls some sentence. Further, for every o ∈ B′, o must directly

call some sentence that does not receive a classical value in M+
β , because if every

sentence called by o had a classical value in M+
β , o would be settled by M+

β—

contradiction. Since B′ is closed under direct call among sentences that do not

receive classical values in M+
β , every element of B′ calls some element of B′. Since

p calls every element of B′ and every member of B′ is a potential non-terminal

node in a dependence tree, there is a partial dependence tree under p that has no

terminal nodes. Therefore p is a member of an ungrounded set in M+
β . Therefore,

p ∈ Gβ+1
− , and by Monotonicity, p ∈ G+

−. So the condition holds if p is ⌜Tc⌝.

• Suppose p is ¬ϕ. Suppose the inductive hypothesis holds for ϕ. Suppose that

v(M∗)(p) = 1
2
. By the Strong Kleene semantics, v(M∗)(ϕ) = 1

2
. By inductive

hypothesis, ϕ ∈ G+
−. Let α be the least ordinal such that ϕ ∈ Gα

−. α cannot be 0

or a limit ordinal, so there is an ordinal α− 1. By the definition of the sequence ϕ

is a member of an ungrounded set in Mα−1. Call that set B. The set B ∪ {p} is

also an ungrounded set. Therefore, p ∈ Gα+1
− , and by Monotonicity p ∈ G+

−. So the

condition holds if p is ¬ϕ.

• The proofs for ⌜ϕ ∨ ψ⌝ and ⌜∃vϕ⌝ follow the same pattern as ⌜¬ϕ⌝.

Right to Left: For all L[T ] sentences p, if p(’s code) is a member of G+
−, then v(M∗)(p) =

1
2
.

• Suppose p(’s code) is a member of G+
−. Now suppose for contradiction that p

receives a classical value in M∗. By Corollary 4.2, p has a classical value on M+.

But by Theorem 7, v(M+)(p) = 1
2
. Contradiction. So v(M∗)(p) = 1

2
.

• QED

There is, then, a straightforward parallelism between L[T,G] fixed-point models and

corresponding K3 models: the L[T] sentences in the anti-extension of G will be exactly

the sentences that are ungrounded in the corresponding K3 model. Since the parallelism

holds for all fixed-points, the standard axiomatization of T, PFK, is also sound for all

L[T,G] fixed-point models. (I won’t pursue in this paper whether or not there is a natural
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axiomatization of G.) The parallelism is also modular in the sense that it doesn’t depend

specifically on the Strong Kleene semantics—claims analogous to Theorems 4-8 can be

proved regarding corresponding constructions for L[T,G] and L[T] models based on a

supervaluationist semantics.

4 Discussion

For an intuitive sense of how the G predicate works, it is helpful to think about the con-

struction starting with the base-model M[T,G]0 = M[⟨∅, Q⟩, ⟨∅, Q⟩]. (Where, again,

Q = {x ∈ N | x is not a code of a sentence}.) The fixed-point generated by this con-

struction corresponds to Kripke’s Minimal Fixed Point. (In what follows I will use “[p]”

to refer to the Gödel code of p.)

Liar sentences like a = [¬Ta] and truth-tellers like b = [Tb] both get added to G−

in the first jump since they are members of ungrounded sets in the base model. (This

is also true of any Liar cycles or Yablo-paradoxical chains consisting of atomic truth-

predications.) But there are other sentences that only get added to G− at later stages—

after their grounding possibilities “run out.” Consider e.g. c = [T⌜0 ̸= 0⌝ ∨ ¬Tc]. Since
c’s first disjunct receives 0 in the base model, c can only receive 1

2
in the fixed-point.

But c is not a member of an ungrounded set in the base model. In any base model,

the sentences in the following set all receive 1
2
: {c, ¬Tc, Tc, T[0 ̸= 0]}. This set is

closed under direct call among unevaluated sentences, but it is not an ungrounded set

because T[0 ̸= 0] is settled (as false) in the base model. However, {c, ¬Tc, Tc} will be

an ungrounded set in the second stage, once T[0 ̸= 0] receives the value 0.

In the fixed point generated from M[⟨∅, Q⟩, ⟨∅, Q⟩]:

• c = [¬Tc] receives 1
2

• ¬Gc and T[¬Gc] both receive 1

• d = [¬Td ∨ ¬Gd], a strengthened-Liar, receives 1
2
.

• e = [Ge] receives 1
2
, as does f = [¬Gf ].

My suggestion is that G expresses groundedness in the same way that T expresses

truth in standard Kripke constructions. T’s extension contains everything true, though

its anti-extension doesn’t include everything untrue. G’s extension contains everything

grounded, though its anti-extension doesn’t include everything ungrounded. None-the-

less, Theorem 8 shows that ¬G can be used to pick out all the things things that are

ungrounded in the fragment L[T]. In that sense, I think it can serve to express in the
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object language the diagnostic insight of Kripke’s original construction: that predicating

truth induces semantic dependence, and that, to be be grounded, you must be part of a

well-founded semantic dependence structure.

One might object: the fact that “¬G” does not apply to certain sentences that are are

ungrounded disqualifies it from expressing ungroundedness in a fully general way. After

all, a Strengthened Liar like b, where b = [¬Tb ∨ ¬G] is ungrounded in the sense that

it receives 1
2
in any L[T,G] fixed-point model, but that isn’t captured by “G.” b is not

in the extension or anti-extension of G in any fixed point. Moreover, the scope of G− is

narrowed in a way that might seem unprincipled. In my introduction, I suggested that

G should arguably be susceptible to semantic failure precisely because it is a semantic

predicate like T. But the characterization of ungrounded sets in Definition 7 is based on

a analysis of semantic dependence (direct calling) according to which predications of “T”

initiate semantic dependence links but predications of “G” do not. In other words, G− is

not tracking ungroundedness per se, just ungroundedness induced by predictions of truth.

This threatens to make G uninteresting. We already knew how to express “ungrounded

in L[T]” in a richer language that extends L[T]—how does the G predicate improve on

this?

In addressing these objections, we should be clear about the problems “G” is (and is

not) intended to solve. It is not intended to be a general response to “Revenge Paradoxes”

or to remove all philosophically puzzling expressive limitations present in Kripke’s theory

of truth. As I said in the introduction, I’m forswearing the project of introducing a

“ungroundedness” predicate to that correctly applies to all sentences of that language

that are ungrounded. Whatever pernicious Revenge objections can be raised against

Kripke’s theory of truth can equally be raised against my semantics for L[T,G].9 But I

do think the inclusion of the G predicate allows us to express, in the object language,

what I have characterized as Kripke’s main diagnostic insight.

Let me elaborate on that point a bit. The objection above is quite right that I

have described a groundedness predicate whose anti-extension is specifically sensitive to

networks of semantic dependence induced by predications of truth. This a restriction—it

doesn’t take account of the semantic dependence induced by predications of “G”—but it is

not an unmotivated restriction. Arguably, truth and falsity are basic semantic categories

and the dependence among claims attributing truth or falsity is the basic sort of semantic

dependence. It is the kind of semantic dependence that Kripke’s diagnosis is concerned

with. And although “¬G” does specifically track ungroundedness due to predications of

truth, it is not an ungroundedness predicate specifically for the language L[T]. Infinitely
9It’s also worth noting that, although one can truly assert “¬G[λ]”, where λ is a Liar sentence, one

cannot truly assert “¬T[λ]”. So the resulting system does not allow for the expression of the Chrysippus
Intuition—the suggestion that we can truly say of pathological sentences that they are not true.
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many sentences containing occurrences of “G” will end up in G− in the fixed-point models

I’ve described—including sentences commenting on the truth of sentences containing “G.”

For instance, let h = [¬Th∨¬G[0 = 0]]. “¬Gh” will get the value 1 in any L[T,G] fixed-

point model.10 So the “¬G” is not merely just another device for expressing semantic

failures occurring in the language L[T] in a richer metalanguage—it is a resource for

expressing in L[T,G] Kripke’s diagnostic insight as it applies to L[T,G].

I’ll close by comparing my G predicate to the pathology predicates in Cook 2007,

which are introduced to accomplish a similar purpose. Cook 2007 describes an indefinitely

extensible sequence of languages—L0,L∞...Lα, ...—where L0 is a a truth-free language, L1

extends L0 with the addition of a truth predicate, and each successor language Lβ+1≥2

contains a pathology predicate “Pβ” suitable for describing the sort of pathology that

arises in Lβ.
11 (If α is a limit ordinal, then Lα contains all “Pβ<α.”) Each language

Lα determines a fixed-point model generated from a base, and, if Lα+1 is a successor

language, the fixed-point for Lα+1 is generated in such a way that “Pα” is true of all and

only the the sentences that that are pathologicalα where this is the pathological value

required to give a semantics for Lα.
12

The most direct parallel obtains between L[T,G] and Cook’s L2—the language with

just one pathology predicate, “P1.” One difference in the semantics provided for these

languages is particularly salient: unlike G−, Cook’s “P1” doesn’t characterize semantic

pathology induced by predications of truth generally—it specifically captures semantic

pathology that arises due to truth being predicated of L1 sentences. For instance, in the

fixed-point for L2, the sentence a = [¬Ta ∨ P1[0 = 0]] will not be in the extension of P1.

Both a and “P1a” receive the value pathological2 in the fixed-point for L2. a is, of course,

the analogue in Cook’s system of the sentence h, described two paragraphs above, which,

as we saw, is in the anti-extension of G in every fixed-point model for L[T,G]. I would

suggest that G− succeeds in picking out the more natural semantic category. If Kripke’s

diagnostic insight is apt, then a semantically fails for the same reason that simple Liar

sentences or sentences like d = [¬Td ∨ 0 ̸= 0] fail—each of these sentences are part of

a network that can be judged ungrounded simply on the basis of semantic dependence

relations induced by predications of truth. It seems irrelevant that a involves predicating

truth of a sentence not in L1. Since this sort of semantic failure is expressed by “¬G”
but not by “P1,” in my view, the semantics I have offered for L[T,G] does a better job of

providing us with an object-language resource capable of expressing Kripke’s diagnostic

10Once “0=0” is added to G+, “¬Th ∨ ¬G[0 = 0]” will be a member of the ungrounded set {¬Th ∨
¬G[0 = 0],¬Th,Th} and it will get added to G− in the next step of the sequence.

11Technically, Cook considers this a sequence of stages in which a single language is expanded.
12For the sake of simplicity, I focus on the proposal in Cook 2007, but Cook has since elaborated and

modified this basic account in work with Nicholas Tourville (Tourville and Cook 2016, 2020). The critical
remarks I make in the next paragraph hold, modulo some technical adjustments, for these more recent
accounts as well.

15



insight as it applies to that very language.

That said, the general response to Revenge Paradoxes offered in Cook 2007 looks like it

could be naturally pursued in a setting featuring languages with my G predicate. On this

view, which Cook calls “Embracing Revenge,”13 the perpetual availability of Revenge

Paradoxes is due the fact that the concept of a truth-value is indefinitely extensible.

On such a picture, Revenge paradoxes are not a “problem to be overcome,” they are an

natural consequence of the fact that no language can have a fully exhaustive classification

of truth-values. I think the reasons Cook offers for thinking that the notion of a truth-

value is indefinitley extensible equally support the idea that we have an indefinitely

extensible notion of semantic dependence. I won’t pursue the suggestion here, but there

is no obvious obstacle to the project of defining a sequence of languages L[T,Gα], such

that every successor language contains a Groundedness predicate, modeled on G, that

is suitable for describing networks of dependence induced by the semantic vocabulary in

the prior language. If one is compelled by the “Embracing Revenge” response, one might

fruitfully develop it in the setting of a hierarchy of languages based on L[T,G].
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