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Abstract

In many auction settings the auctioneer must disclose the identity of the

winner and the price he pays. We characterize the auction that minimizes

the winner’s privacy loss among those that maximize total surplus or the

seller’s revenue, and are strategy-proof. Privacy loss is measured with re-

spect to what an outside observer learns from the disclosed price, and is

quantified by the mutual information between the price and the winner’s

willingness to pay. When only interim individual-rationality is required,

the most privacy preserving auction involves stochastic ex-post payments.

Under ex-post individual rationality, and assuming the bidders’ type distri-

bution exhibits a monotone hazard rate, privacy loss is minimized by the

second-price auction with deterministic payments.
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1 Introduction

In many auction markets, it is common practice for the auctioneer to disclose

the identity of the winning bidder and the price he paid. For instance, this trans-

parency is prevalent in many public procurement auctions worldwide. In the U.S.,

cities such as New York, Chicago, and Philadelphia make the contract amount and

winning bidder publicly accessible.1 Likewise, the U.S. Department of the Trea-

sury publishes the names of winners and the sale prices for auctions of seized

property.2 Another example is that of prominent auction houses, which have built

their reputation on their capacity to secure high sale prices, and also frequently

disseminate the results of their auctions. While some may not reveal the identity

of the winner, this information often finds its way into the media.3,4

This disclosure of information may raise concerns for potential bidders. For

instance, a bidder may fear that the disseminated information could be leveraged

against him in subsequent auctions. Additionally, a bidder who wins a contract

through a procurement auction will often need to negotiate with subcontractors.

Knowledge of his true value for winning the contract may undermine his bargain-

ing position in these negotiations. Other buyers may be concerned that winning

an auction and paying either an excessively high or low price could expose them

to criticism from third parties (e.g. managers, clients, or the general public).

This leads to the question: Given the necessity of disclosing the winner’s iden-

tity and payment (e.g., due to regulatory requirements or as an anti-corruption

measure), which type of auction minimizes the winner’s privacy loss while still

accomplishing the auctioneer’s primary objective, which can be either efficiency

or revenue maximization? In this paper, we take a first step towards addressing

this question.

Measuring privacy loss. To investigate the question, we employ the Bayesian

approach to measuring privacy loss, as proposed in Eilat, Eliaz and Mu (2021).

The cornerstone of this approach is the idea that privacy loss is a relative notion:

How much new information is effectively learned about the winner’s willingness

to pay (“type”) from observing his payment should be measured relative to what

1See open-contracting.org for a list of worldwide databases of public procurement auction re-
sults.

2See www.treasury.gov/auctions/treasury/rp/bidresults.shtml.
3See, e.g., thecollector.com and artnews.com.
4The disclosure of the winner’s identity and payment is often justified as a compromise between

full transparency (i.e., disclosing all participants and their bids) and complete opacity in an auc-
tion. Such a compromise is warranted because full transparency may facilitate collusion among
bidders, while complete opacity may create opportunities for corruption.
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was previously known about the winner.

In the context of this paper, consider an “outsider” who observes the winner’s

identity and payment. In accordance with the Bayesian tradition of mechanism

design, the outsider is assumed to have a prior belief regarding the winner’s type.

When she observes the actual payment, the outsider updates her beliefs about

the winner’s type. The Bayesian approach to privacy loss quantifies the expected

change in the outsider’s equilibrium beliefs triggered by the new information. A

greater change indicates a more significant privacy loss.

There are several equivalent methods for computing Bayesian privacy loss.

For most of the analysis, we use the following representation: Privacy loss is de-

fined as the mutual information between the random variable representing the

winner’s type and the random variable representing the payment. This represen-

tation quantifies the reduction in uncertainty about the former random variable

caused by observing a realization of the latter. In Section 3 we discuss two equiv-

alent methods for computing the same quantity. We discuss the merits of our

approach below.

Preview of the model and main results. We consider a pure private values

environment (where values are drawn from a distribution that satisfies the mono-

tone hazard rate conditions) with risk-neutral buyers whose participation in the

auction is voluntary. A single item is offered for sale. When the auction ends, two

pieces of information are disclosed to an outside observer: the winner’s identity

and payment. As is common in many “real-world” settings (as in the examples

mentioned above), we assume that no information is disclosed about the losing

bidders – neither their identity, nor their bids, are revealed. In light of this, we

are concerned only with the privacy loss of the winner.

For most of our analysis, we focus on the class of efficient mechanisms with a

dominant-strategy equilibrium (we briefly discuss Bayesian incentive-compatible

mechanisms in Section 4.4). Because payments can in principle be stochastic, this

class contains many mechanisms (see Section 4.2). Within this class, we seek the

mechanism that minimizes the winner’s privacy loss. We subsequently demon-

strate that our main findings remain applicable when the designer’s objective is

revenue maximization. We view this objective as a conservative approach for pri-

vacy preservation in the sense that the designer’s first priority is to maximize

either surplus or revenue, and his secondary desideratum is to minimize privacy

loss.5

5An alternative approach to modeling the designer’s goal would be to consider an objective that
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Our focus on dominant-strategy mechanisms is motivated by several consider-

ations. First, this assumption makes the analysis more tractable. Specifically, we

rely on this assumption in Step 3 of the proof for Theorem 1. Second, dominant-

strategy mechanisms are considered to be desirable in practical applications. This

is because they simplify the strategic reasoning for bidders and exhibit robustness

in the sense that equilibrium outcomes do not rely on bidders’ high-order beliefs.

Finally, the class of dominant-strategy mechanisms provides a natural candidate

– the second-price auction (SPA) – that can serve as a benchmark for assessing

the most privacy-preserving mechanism, as it does not directly disclose the win-

ner’s willingness to pay. In contrast, other prevalent auction formats that are

not strategy proof, such as the first-price and the Dutch auctions, reveal all in-

formation about the winner, and hence are the worst mechanisms in terms of the

winner’s privacy.

We begin by demonstrating that, perhaps unsurprisingly, introducing random-

ization to the winner’s payment can, under certain conditions, reduce privacy loss.

From an outsider’s perspective, this randomization may weaken the connection

between the winner’s willingness to pay and his final payment.

In particular, we show that randomization is effective in reducing privacy loss

when voluntary participation is required at the interim stage (that is, before the

final payment is announced). In Section 4.1, we demonstrate that when payments

are uniformly capped – meaning all buyer types are restricted to paying no more

than a fixed constant K – a stochastic payment mechanism minimizes the win-

ner’s privacy loss. This mechanism takes the form of a lottery between 0 and K ,

with probabilities chosen to satisfy both incentive compatibility and interim in-

dividual rationality. If payments are allowed to be arbitrarily high (i.e., K →∞),

while still maintaining incentive compatibility and interim individual rational-

ity, it is possible to achieve efficiency or revenue maximization with privacy loss

converging to zero.

We emphasize that the stochastic payment mechanisms characterized in Sec-

tion 4.1 are not intended as descriptive or normative models of privacy-preserving

auction design: we neither claim that such mechanisms are used in real-world

auctions, nor do we advocate for their adoption. Rather, the purpose of present-

ing them is to demonstrate a setting in which randomization proves helpful in

enhancing Bayesian privacy. Notably, this stands in stark contrast to our main

results, which show that in a slightly modified version of the problem, random-

is a weighted sum of surplus (or revenue) and privacy loss. However, this approach would require
a different set of solution techniques, and is left as an open question for future research.

3



ness is not effective in alleviating privacy concerns.

To present our main results, we shift our focus to auctions where voluntary

participation is required ex-post – that is, after the auction concludes and the price

is announced, the winner retains the option to decline completing the deal. In this

environment, the maximum payment a winner can make is type-dependent, and

therefore any payment exceeding the lowest possible type reveals some informa-

tion about the winner’s type (e.g., if the type distribution is supported on [0,1]

and the paid price is 0.9, an outside observer learns that the the winner’s type

lies between 0.9 and 1). We show that in such settings, stochastic payments may

become ineffective in reducing the winner’s privacy loss. In fact, in Theorem 1,

we demonstrate that under mild conditions, a well-known mechanism with deter-
ministic payments – the second-price auction – minimizes the winner’s privacy

loss among all efficient and dominant-strategy incentive compatible mechanisms.

Theorem 2 extends this finding to the case where the objective is revenue maxi-

mization, with the addition of an optimal reserve price.

The proof of Theorem 1 comprises three steps. First, we establish a gen-

eral lemma that characterizes the lower bound on the mutual information be-

tween two ordered random variables with given marginal distributions (Lemma

1). Next, we verify that the joint distribution of winner types and payments un-

der the second-price auction indeed achieves the mutual information lower bound

identified in the lemma. Finally, we note that any other dominant-strategy mech-

anism induces a payment distribution that constitutes a mean-preserving spread

of the distribution of the second highest type among the bidders. We then show

that any mean-preserving spread payment distribution can only increase the

aforementioned lower bound. The proof of Theorem 2 follows the same outline.

The merits of the Bayesian approach to privacy loss. Our approach is well-

suited to situations in which the specific way that disclosed information will be

exploited in the future is highly uncertain. Because our measure does not require

assumptions about the precise nature of future strategic interactions, it enables

us to rank auctions based on the amount of information they reveal about a sen-

sitive variable (namely, the winners type), without committing to a particular use

of that information in subsequent contexts.

Moreover, our measure of privacy loss relies on the notion of mutual infor-

mation. This is a well-established measure for quantifying the amount of in-

formation gained about one random variable (in our case, the winner’s type) by

observing the realization of another (in our case, the price paid). Importantly, this
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measure is context-independent in that it does not rely on any specific metric over

the set of types. This property makes it especially valuable in settings where the

nature of future interactions is unknown.

Finally, in line with our conservative approach to incorporating privacy con-

cerns, we do not explicitly model consumers’ preferences over privacy– i.e., how

individuals trade off privacy, consumption, and monetary outcomes. Instead, we

impose a requirement that the auction mechanism minimizes privacy loss from

the perspective of an external observer. This paternalistic stance is motivated by

the current lack of an accepted framework in economics for modeling individual

privacy preferences. Rather than adopt an ad hoc utility function, our approach

deliberately abstracts away from this issue. Furthermore, this paternalistic ap-

proach aligns with the well-documented privacy paradox – the observation that

individuals’ online behavior (which often reveals substantial personal informa-

tion) frequently contradicts their stated privacy concerns (see, e.g., Barth and

de Jong (2017); Kokolakis (2017)).

Organization. The paper is organized as follows. In Section 2 we review the

related literature. In Section 3 we present the framework and define our privacy

notion. Section 4 presents our main results. Throughout the analysis we focus

on dominant strategy equilibrium, but in Section 4.4 we briefly discuss privacy

preservation in Bayesian incentive-compatible auctions. In Section 5, we provide

a supply-and-demand interpretation of one of our key results, stated in Lemma 1:

the characterization of the joint distribution that minimizes the mutual informa-

tion between two ordered random variables with given marginals. The complete

proof of Lemma 1 is presented in Section 6. Concluding remarks are given in

Section 7.

2 Related Literature

Eilat, Eliaz and Mu (2021) introduced the notion of Bayesian privacy in mecha-

nisms, but studied privacy loss with respect to the designer of a mechanism that

has access to the participants’ actions. It analyzes a monopolistic seller who faces

one buyer and seeks to design the profit maximizing mechanism subject to some

exogenous cap on privacy loss, which is measured by the mutual information be-

tween the buyer’s action and type. In contrast, this paper is concerned with the

privacy loss from the perspective of an outsider who observes only the outcome

of the mechanism, where the outcome is the winner’s identity and payment. Ad-
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ditionally, this paper solves a different problem: find the mechanism with the

minimal privacy loss among all those that maximize some objective function.

Our paper is related to the literature on auction design that takes into account

the inference that will be made about the winner after the auction. A recent paper

by Dworczak (2020) studies the problem of a seller, whose payoff depends not only

on the outcome of the mechanism, but also on the outcome in an aftermarket. The

paper represents the aftermarket via the seller’s payoff that depends both on the

winner’s type and on the posterior belief about this type. Given an aftermarket,

the seller’s problem is to design both an allocation rule and a disclosure rule to

maximize his payoff. The paper restricts attention to a class of allocation rules

that are dominant-strategy implementable via “cutoff mechanisms,” where the

winner has to outbid a random threshold that does not depend on his bid. The

seller may disclose any information about the realization of the random cutoff.

There are three key differences between our framework and that of Dwor-

czak (2020). First, our approach is context independent in the sense that it does

not require specifying the exact payments for the seller (or the buyers) in the

aftermarket. Second, our seller cares about posterior beliefs in a lexicographic
manner: Among the mechanisms that meet some objective, he chooses the one

that preserves the most privacy about the winner’s type. Finally, in contrast to

Dworczak (2020), our seller must disclose the price the winner paid. If our seller

had the option to not disclose any information, he would choose it.6

A related literature studies the effect of disclosure policies on particular post-

auction interaction between the bidders and third parties. Calzolari and Pavan

(2006b) study the optimal disclosure of information between an upstream and a

downstream principal who contract sequentially with the same agent. Calzolari

and Pavan (2006a) consider the case of a monopolist who designs an allocation

rule and a disclosure policy to maximize revenue, taking into account that the

winning bidder may resell the object. Molnár and Virág (2008) consider a seller

who designs an auction and a flexible disclosure rule to maximize expected rev-

enue, taking into account that the winner’s payoff depends both on the value he

derives from the good and on the posterior belief about his value, given the in-

formation disclosed by the seller. They give sufficient conditions on the winner’s

payoff under which the seller discloses all or no information about bidders’ types.

Instead of jointly designing the selling mechanism and the disclosure policy,

6Dworczak (2020) gives sufficient conditions on the seller’s payoff function for which it is op-
timal to conduct an SPA and disclose the price paid by the winner. However, our result that the
SPA solves the seller’s problem is obtained only when we impose ex-post individual rationality, a
restriction which is orthogonal to the condition identified in Dworczak (2020).
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other authors (some notable examples include Goeree (2003), Das Varma (2003),

Katzman and Rhodes-Kropf (2008) and Giovannoni and Makris (2014)) compared

different auction formats and different disclosure rules on revenue when the auc-

tion was followed by some form of competition, or when the winner cares about the

posterior belief formed about his type. Similarly, Bergemann and Hörner (2018)

analyze Markov-perfect equilibria of infinitely repeated first-price auctions, and

compare the effect on revenue and efficiency of different disclosure rules. Haupt

and Hitzig (2024) study how a designer can implement a social choice rule while

gradually eliciting agents private information in a way that minimizes the reve-

lation of information irrelevant to the final decision.

In the computer science literature, a popular approach to measuring privacy

in mechanisms uses the notion of “differential privacy”, which was introduced

by Dwork et al. (2006) (see the surveys by Pai and Roth (2013) and Heffetz and

Ligett (2014)). The key difference from our approach is that differential privacy

is non-Bayesian. Because it does not incorporate a prior belief, it is not concerned

with what new information is learned, relative to what an outside observer knew

or believed before the mechanism was executed. Furthermore, as long as the

environment is prior-free, maximizing ex-ante expected revenue or welfare is not

a well-defined problem. If we were to allow a prior in defining the objective, but

measured privacy loss using differential privacy, we would not be able to meet the

objective since it is very sensitive to the buyer’s reports.

A second approach in computer science applies cryptographic tools to ensure

that the communication between the seller and the bidders discloses only infor-

mation that is necessary to run the mechanism. The early papers in this litera-

ture focused on guaranteeing the privacy of the bidder-bid relationship and the

secrecy of the bids, while also ensuring the correctness and trustworthiness of the

outcome (see Naor, Pinkas and Sumner (1999), Parkes et al. (2008) and the survey

by Alvarez and Nojoumian (2020)). However, this line of research is not applica-

ble in our setting, where there is an exogenous requirement to publicly reveal the

identity of the winner and the price paid.

More recently, Canetti, Fiat and Gonczarowski (2023) introduced a novel ap-

proach to privacy that is complementary to ours. Using tools from cryptography,

they show that a seller can credibly prove to bidders that he committed to a mech-

anism that is individually rational and incentive compatible without disclosing

any information about the mechanism, and without relying on a third party for

verification. This ensures that the only information that is disclosed is the out-

come - which is the starting point of our paper.
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3 Model

A seller owns one unit of an indivisible good, whose value to him is normalized to

zero. There are n potential risk-neutral buyers. The willingness to pay (i.e. “type”)

of buyer i ∈ N = {1, ...,n}, denoted θi, is privately and independently drawn from a

distribution F over [θ,θ] with θ > θ ≥ 0. We restrict attention to distributions with

strictly positive and continuously differentiable densities f over the interval [θ,θ],

which exhibit a monotone hazard rate – i.e., the ratio (1−F(θ))/ f (θ) is decreasing

in θ.7

The seller designs a mechanism M whose outcome is an allocation of the good,

which could remain with the seller, and a profile of possibly stochastic payments.

To streamline the exposition, we assume that M is a simultaneous move mecha-

nism, which is without loss of generality as explained below. The seller considers

only mechanisms that have dominant-strategy equilibria, and where only buyers

make payments to the seller. Participation in the mechanism is voluntary, and a

buyer who opts out gets a payoff of zero. We assume that the seller can commit to

the details of the mechanism.8

If one of the buyers wins the good, then the winner’s identity and his pay-

ment are publicly disclosed. Until Section 4.3, we focus on “efficient” mechanisms

in which the good is always allocated to a buyer with the highest type. This re-

striction simplifies the definitions below by ensuring that the winner is always

well-defined.

Given a mechanism M that always allocates the good and a dominant-strategy

equilibrium (DSE) σ in this mechanism, let Pσ and Wσ denote the random vari-

ables that represent the winner’s payment and winner’s type induced by σ and

F, and let Gσ denote their joint probability distribution. Let Gσ
P and Gσ

W denote

the marginal distributions of Pσ and Wσ, respectively, while Gσ
W |P denotes the

conditional distribution of Wσ given Pσ. An outsider, who observes the winner’s

identity and payment (i.e. the realization of Pσ), updates his beliefs about the

winner’s type (the value of Wσ).

The privacy loss entailed by a mechanism M (along with its DSE σ) is quan-

tified as the mutual information between the winner’s willingness to pay (the

7We use this condition in the third step of the proof of Theorem 1. We do not know if this
condition is necessary for our result or if it can be further relaxed.

8E.g., the seller cannot ignore bids, engage in shill bidding, or change randomization probabili-
ties. This
(standard) assumption can be justified by ethical guidelines or legal constraints, or by rep-
utational considerations of third parties, such as accounting firms, who oftentimes conduct the
auction in practice.
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random variable Wσ) and the paid price (the random variable Pσ). Mutual in-

formation measures the reduction in uncertainty about one variable given knowl-

edge of the other. Rooted in information theory, it is calculated using the joint and

marginal probability distributions of the variables.9 Formally:

Definition 1 (Privacy loss) The privacy loss associated with a mechanism M
that always allocates the good and a DSE σ is the mutual information between the
induced random variables Wσ (winner’s type) and Pσ(winner’s payment):

MI
(
Wσ,Pσ

)= DKL
(
Gσ||Gσ

W ⊗Gσ
P
)

(MI)

where DKL is the Kullback-Leibler (KL) divergence, and ⊗ denotes the product
distribution.

Equivalent representations of privacy loss. Mutual information can be com-

puted in several equivalent ways, one of which is shown on the right-hand side of

Eq. (MI). Another method to compute the same quantity is given by:

MI
(
Wσ,Pσ

)= EPσ

[
DKL

(
Gσ

W |P ||Gσ
W

)]
.

This representation emphasizes that the privacy loss is equal to the expected

KL divergence from the posterior belief of the winner’s type after observing the

payment to the prior belief, with expectations taken with respect to the realized

payment. Symmetrically, we also have

MI
(
Wσ,Pσ

)= EWσ

[
DKL

(
Gσ

P|W ||Gσ
P

)]
.

This is useful for computation, as we can often express the payment in terms of

the winner type without going through Bayesian updating.

Another equivalent representation of the mutual information is the following:

MI(Wσ,Pσ)= H(Wσ)−EPσ[H(Wσ|Pσ)],

where H(·) is the Shannon entropy of a distribution. Here, privacy loss is com-

puted as the expected entropy reduction in the belief about winner type. Because

the entropy H(Wσ) is constant across all efficient mechanisms, this representa-

tion suggests that minimizing privacy loss is equivalent to maximizing expected

residual uncertainty about winner type.
9Unlike simpler measures such as covariance or correlation, which focus solely on linear de-

pendencies, mutual information captures a broader range of statistical dependencies.
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Example 1. To illustrate the definition, suppose there are two buyers whose

valuations are distributed uniformly on [0,1]. Suppose further that the seller

uses an SPA, which admits a DSE σ in which both buyers bid their value. Before

the auction is carried out, the prior is that the winner’s type w is the highest of

two independent draws from a uniform distribution. Hence, Gσ
W (w) = w2 is the

prior CDF of winner type, with a density of 2w. In an SPA, the realized payment

p is the value of the loser, which is the lowest of two independent draws from a

uniform distribution. Therefore, Gσ
P (p) = 1− (1− p)2, with a density of 2(1− p).

The joint distribution Gσ (w, p) is uniform over the triangle 0 ≤ p ≤ w ≤ 1, with a

density of 2. Plugging these into the KL-divergence formula, we obtain:

MI(Wσ,Pσ)= DKL
(
Gσ||Gσ

W ⊗Gσ
P
)=∫1

0

∫w

0
2log

2
2w ·2(1− p)

dpdw = 1− log2.

□

The seller’s objective is to design a mechanism with a DSE that maximizes the

total expected surplus, such that there is no other mechanism with a DSE that

achieves the same objectives but with lower privacy loss. Later, we will explain

how our analysis extends to the case of revenue maximization.

Formally, let M denote the class of all pairs (M,σ), where M is a normal-form

mechanism, and σ is a DSE in M in which each buyer’s interim expected payoff is

non-negative (i.e., interim individual rationality is satisfied). Let V (M,σ) denote

the expected social surplus in the DSE σ of M. The seller’s problem is then given

by:

inf
M,σ

DKL
(
Gσ||Gσ

W ⊗Gσ
P
)

(Seller’s problem)

s.t. (M,σ) ∈ arg max
(M′,σ′)∈M

V
(
M′,σ′)

Remark. As reflected in the seller’s problem, our framework takes a paternalis-

tic approach to privacy, in the sense that the designer is concerned about privacy,

while bidders behavior is driven solely by their material payoffs. This approach is

motivated by the well-documented phenomenon known as “the privacy paradox”

(see, e.g., Athey, Catalini and Tucker (2017)), which highlights the mismatch be-

tween stated privacy preferences and actual behavior. Put differently, individuals

exhibit “narrow bracketing” in their approach to privacy: When explicitly asked,

they express concern about privacy, yet they fail to account for the implications of

privacy loss in situations where its potential is only implicit. Thus, our analysis
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can be interpreted as reflecting the perspective of a social planner who adopts a

non-invasive approach to privacy preservation in the sense of trying to minimize

privacy loss while ensuring the seller’s objectives remain unaffected.10

A direct revelation mechanism is a normal-form mechanism in which bid-

ders report their types. Formally, a direct revelation mechanism is a tuple

M = 〈q, t1 . . . tn〉, where q : [θ,θ]n → ∆(I) is an allocation function that maps a

profile of reports to a lottery over who gets the good (with I being the set of all

players including the seller), and ti : [θ,θ]n →∆(R+) maps the profile of reports to

a potentially stochastic payment of buyer i (i.e., after the type profile is reported

the payment can still be stochastic). Let qi (θ) be the probability that the good is

assigned to buyer i according to the distribution q (θ), and let Ti (θ) = E [ti (θ)] be

the expected ex-post payment of buyer i, where the expectation is taken with re-

spect to the distribution of payments implied by ti (θ). Thus, the expected utility

of buyer i when the realized profile of types is θ is given by ui(θ)= qi (θ)·θi−Ti (θ).

It is without loss of generality to restrict attention to direct revelation mech-

anisms where truth-telling is a DSE. This is because privacy loss is calculated

solely based on what an outsider observes, and not directly influenced by the

players’ reports to the designer. By exactly the same arguments that lead to the

standard revelation principle, we obtain the following result:

Observation 1 (Revelation principle) For any mechanism with a dominant
strategy equilibrium, there exists a direct revelation mechanism in which truth-
telling is a dominant strategy, such that the two equilibria induce the same
stochastic mapping from type profiles to outcomes, and thus induce the same pri-
vacy loss.

In light of this, in the remainder of the paper we will focus on direct revelation

mechanisms with truthful DSE. To ease notation, we will omit the superscript σ.

As discussed above, there exists an essentially unique allocation q (θ) that

characterizes an efficient mechanism:11

qi(θ)=
1, if θi =max1≤ j≤nθ j

0, otherwise
(1)

10An alternative approach would involve explicitly incorporating privacy concerns into bidders’
preferences. However, a key conceptual challenge lies in the lack of an agreed-upon model (or
revealed-preference foundation) for preferences that account for privacy concerns. Without a the-
oretical foundation, developing a utility representation over a rich domain that integrates privacy
concerns would require a separate, comprehensive analysis that is beyond the scope of this paper.

11I.e., the allocation is unique up to zero measure type profiles.
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Next, by standard arguments, dominant-strategy incentive-compatibility (DSIC)

requires the expected ex-post transfers to satisfy the following equation for every

buyer i and every type profile (θi,θ−i):

Ti (θi,θ−i)=−ui
(
θ,θ−i

)−∫θi

θ
qi

(
θ̂,θ−i

)
dθ̂+ qi (θi,θ−i) ·θi. (DSIC)

We then observe that ui(θ,θ−i) ≤ 0 because only buyers make payments to the

seller, and because the good is never allocated to type θ by Eq. (1). But interim

individual rationality requires Eθ−i

[
ui(θ,θ−i)

]≥ 0, so ui
(
θ,θ−i

)= 0 for any θ−i.

By plugging Eq. (1) into Eq. (DSIC), we obtain:

Ti (θi,θ−i)=
max {θ−i}, if θi ≥max {θ−i}

0, otherwise.
(2)

Thus, the designer’s problem reduces to the following: Among stochastic ex-post

payment functions t1 . . . tn that satisfy Eq. (2), find those that minimize the mu-

tual information between winner’s type and payment.

4 Characterization

A key factor in characterizing the solution to the seller’s problem is the maxi-

mum price that a bidder may be required to pay. In light of this, we will explore

two natural cases. First, we will assume that the highest price cannot exceed an

exogenous cap which is uniform across bidders regardless of their type. For ex-

ample, this is the case when all bidders face a budget constraint that is identical

for all types.

Next, we will consider the case where the price cap is type-dependent and

cannot exceed the bidder’s willingness to pay. Under this specification, bidders

must agree to pay the realized price, i.e. we impose the stronger constraint of

ex-post individual rationality. We show that while stochastic payments prove

beneficial with the exogenous uniform price cap, the same does not hold when

ex-post individual rationality is required.

4.1 Privacy with Uniform Price Caps

Given a positive real number K , define a K−capped mechanism to be a mech-

anism in which no buyer pays more than K in any realization of his payment.

Namely, the upper bound of the support of ti(θ) is smaller than K for all i and for
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all θ.

For any K ≥ θ, we say that a mechanism M = 〈q, t1 . . . tn〉 is a {0,K}-mechanism
if, for any profile of reports θ ∈ [θ,θ]n and every buyer i, the distribution of ti (θ)
is supported on {0,K}. Notice that any K-capped mechanism 〈q, t1 . . . tn〉 can be

transformed into a {0,K}-mechanism as follows. For any type profile θ, we keep

the same allocation function and modify the stochastic ex-post payment function

of each buyer i to be a lottery with support {0,K} whose mean is equal to Ti (θ)
of the original mechanism. This transformation does not affect the expected pay-

ment of any buyer at any type profile and thus maintains both incentive compat-

ibility and efficiency. Since DSIC and efficiency pin down Ti (θ), there exists a

unique efficient mechanism that is also a {0,K}-mechanism.

The result below shows that the efficient {0,K}-mechanism minimizes privacy

loss among all efficient K-capped mechanisms, and it is an essentially unique

minimizer.

Proposition 1 For any K ≥ θ, the efficient {0,K}-mechanism minimizes privacy
loss among all efficient K-capped mechanisms. Moreover, if any efficient K-capped
mechanism achieves minimal privacy loss, then for every buyer i, the realized
payment ti(θ) is supported on {0,K} for almost every type profile θ such that
θi =max1≤ j≤nθ j.

Proof: Given an efficient K-capped mechanism M, we can view the efficient

{0,K}-mechanism as the following transformation of M: For any profile of reports

θ, any buyer i and any payment p in the support of ti(θ), replace the payment p
by a lottery that induces the payment K with probability p/K and the payment 0

with remaining probability. This results in an efficient {0,K}-mechanism, which

must be the unique one discussed above.

Denote by PM and P{0,K} the random variables that represent the winner’s

payments in M and the {0,K}-mechanism, respectively. The above transforma-

tion allows us to represent P{0,K} as a random variable that only depends on PM .

In particular, conditional on PM , the random variable P{0,K} is conditionally inde-
pendent from the winner’s type W . Therefore, by the Data Processing Inequality,

we have:12

MI (W ,PM)≥ MI
(
W ,P{0,K}

)
.

This proves that the efficient {0,K} mechanism minimizes privacy loss.
12Given three random variables, X ,Y , Z, that form a Markov chain X → Y → Z, the Data Pro-

cessing Inequality states that MI(X ,Y ) ≥ MI(X , Z), with equality if and only if X and Y are
conditionally independent given Z (see Theorem 2.8.1 in Cover and Thomas (2012)).
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To show that it is essentially the unique minimizer, note that the Data Pro-

cessing Inequality holds equal only if PM is also conditionally independent from

W conditional on P{0,K}. Below we show that this can only be the case if PM is

supported on {0,K}, which will imply the result.

Let H denote the distribution of PM conditional on P{0,K} = K , while H denotes

its distribution conditional on P{0,K} = 0. Let µ and µ denote the expectation of H
and H, respectively. Given any winner type W , let α(W) denote the conditional

probability that P{0,K} = K . We have the following conditional expectation:

E
[
P{0,K} |W

]=α(W) ·K .

On the other hand, assuming conditional independence from W , the random

variable PM will have α(W) probability to follow the distribution H and remaining

1−α(W) probability to follow the distribution H. Therefore,

E [PM |W]=α(W) ·µ+ (1−α(W)) ·µ=α(W) ·
(
µ−µ

)
+µ.

Recall that the transformation from PM to P{0,K} does not change expected

ex-post payments at any type profile. So the above two conditional expectations

E
[
P{0,K} |W

]
and E [PM |W] must be equal for every value W of the winner type.

Because α(W) is not constant in W ,13 this equality implies µ= 0 and µ= K . Since

the support of PM is contained in the interval [0,K], the distribution H must be

the point-mass at K while H is the point-mass at 0. This completes the proof that

PM is supported on {0,K}. ■

The next result shows that with a sufficiently large price cap K , the seller can

make the privacy loss arbitrarily small.

Proposition 2 For any ε> 0 there exists K(ε) > 0 such that the efficient {0,K(ε)}-
mechanism achieves privacy loss smaller than ε.

Proof. With Ti(θ) given by Eq. (2), let τ (θi) = Eθ−i [Ti(θ)] denote the interim ex-

pected payment of buyer type θi in any efficient mechanism. Then, in the unique

efficient {0,K}-mechanism, winner type W would pay K with probability τ (W) /K
and pay zero with the remaining probability. Averaging across W (according to

13α(W)·K is the expected winner payment conditional on winner type W , which is the conditional
expectation of the second highest type. When W is close to θ, the second highest type is also close
to θ. But if W is bounded away from θ, then the second highest type also has a positive conditional
probability of being bounded away from θ, making its expectation bounded away from θ as well.
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the distribution of the winner’s type, GW ), the unconditional probability that the

winner pays K is E [τ (W)] /K , and 0 with the remaining probability. Hence the

privacy loss in the efficient {0,K}-mechanism is given by:

DKL(G||GW ⊗GP )= EW
[
DKL

(
GP|W ||GP

)]
=

∫θ

θ

(
τ (w)

K
log

τ (w) /K
E [τ (W)] /K

+
(
1− τ (w)

K

)
log

1−τ (w) /K
1−E [τ (W)] /K

)
dGW (w) (3)

The integrand on the right-hand side of Eq. (3) is bounded above by

θ

K
log

θ

E [τ (W)]
+ log

1

1−θ/K
=O (1/K) .

Thus, as K →∞ the integral converges to zero. ■

4.2 Privacy with Ex-post Individual Rationality

In this section we consider the case where the mechanism must satisfy ex-post

individual rationality (EPIR). Namely, the winner’s payment cannot exceed his

valuation. In contrast to our previous results, we now show that in this case,

the most privacy-preserving auction uses a deterministic pricing rule: the winner

simply pays the second-highest bid.

Theorem 1 The standard SPA with deterministic payments minimizes the pri-
vacy loss among all efficient, DSIC and ex-post individually rational mecha-
nisms.14

Before we proceed to the proof, it is worth noting that the restriction to ex-post

individually-rational dominant-strategy mechanisms still leaves the door open to

a wide variety of auctions. Namely, although conditional on winning the expected
payment of the winner must be independent of the winner’s type and be equal

to the second-highest bid, this payment can potentially be stochastic ex-post (i.e.,

after all bids have been submitted). Therefore, the distribution of prices that the

winner pays can vary with the profile of bids, including the winner’s bid. The

distribution of prices only needs to adhere to the following conditions: (i) its mean

has to be equal to the second highest value, and (ii) its support must be bounded

above by the winner’s value. A variety of stochastic price schedules satisfy these

conditions, as we show below.
14It follows from the proof below that randomized payments strictly increase the privacy loss

when the hazard rate 1−F(θ)
f (θ) is strictly decreasing in θ.
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A simple example, in the spirit of Proposition 1, is the following. Given a

profile of bids where b1 is the highest bid and b2 is the second highest, the mech-

anism can determine the winner’s price by randomizing between 0 and b1 with

probabilities 1− b2/b1 and b2/b1, respectively. Consequently, for every profile of

bids, the winner pays the second highest bid on average. More complex contin-

uous distributions that satisfy the required properties can also be devised. An

example is when the winner’s price is drawn from a scaled Beta distribution with

parameters α= b2 and β= b1−b2 that is supported on [0,b1], whose mean is pre-

cisely b2. Theorem 1 proves that all these examples will generate a higher loss of

privacy compared to the deterministic SPA.

Proof of Theorem 1. The proof proceeds in three steps. First, given two dis-

tributions X and Y on R, where X is non-atomic and X (s)≤Y (s) ∀s, we derive a

lower bound on the mutual information between any two jointly distributed ran-

dom variables with marginal distributions X and Y .15 Applied to our setting,

this result gives us a lower bound on the mutual information between winner’s

type and payment, given these two variables’ marginal distributions. Next, we

show that the SPA induces a joint distribution of winner type and payment that

achieves the above mutual information lower bound, given its marginal distribu-

tions. Finally, we show that with the marginal distribution of winner type pinned

down by the prior F (due to efficiency), any other marginal distribution of pay-

ment increases the mutual information lower bound compared to the one induced

by the SPA.

Step 1. We begin by deriving the lower bound on the mutual information be-

tween two ordered random variables with given marginal distributions. A key

observation for this result is that the joint density that attains this lower bound

has a multiplicative form. To illustrate this observation in a simpler setup, con-

sider the following discrete example in which the optimal joint distribution can

be characterizes using a standard Lagrangian method.

Example 2. Suppose that X and Y are two discrete random variables, jointly

distributed on {1,2,3}×{1,2,3}, where X ≥Y with probability 1. Denote the prob-

ability mass functions of the two random variables by g1 and g2, respectively.

Table (1a) provides an example. To find the joint distribution λ that minimizes

the mutual information between the two random variables, we solve:
15To economize on notation we slightly abuse of notation here by letting X (s) and Y (s) denote

also the respective commutative distribution functions.
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x = 1 x = 2 x = 3 g2(y)
y= 3 λ(3,3) 0.1
y= 2 λ(2,2) λ(3,2) 0.3
y= 1 λ(1,1) λ(2,1) λ(3,1) 0.6
g1(x) 0.1 0.4 0.5

(a)

x = 1 x = 2 x = 3 g2(y)
y= 3 0.1 0.1
y= 2 0.15 0.15 0.3
y= 1 0.1 0.25 0.25 0.6
g1(x) 0.1 0.4 0.5

(b)

Table 1: Parameters for Example 2. (a) Given random variables X and Y that
satisfy X ≥ Y , with probability mass functions g1(·) and g2(·), respectively, find
the joint distribution λ(x, y) on 1 ≤ y ≤ x ≤ 3 that minimizes the mutual informa-
tion between the two random variables (b) The MI-minimizing joint distribution.

min
λ

3∑
x=1

x∑
y=1

λ(x, y) · log(
λ(x, y)

g1(x) · g2(y)
)

s.t.
x∑

y=1
λ(x, y)= g1(x) ∀x, and

3∑
x=y

λ(x, y)= g2(y) ∀y

Differentiating the associated Lagrangian, we obtain the following first-order con-

ditions:
λ∗(x, y)= h1(x)×h2(y)×1y≤x ∀x, y ∈ {1,2,3}

where h1(x) = eα(x)+log(g1(x)) and h2(y) = eβ(y)+log(g2(y))−1, and α(x) and β(y) are the

Lagrange multipliers associated with the marginal constraints. Given the first-

order conditions and the marginal constraints, the parameters of the example

yield the solution h1(1)= 1
6 ,h1(2)= 5

12 ,h1(3)= 5
12 and h2(1)= 15

25 ,h2(2)= 9
25 ,h2(3)=

6
25 .16 This solution is described in Table (1b), where, for example, λ(2,2)= h1(2)×
h2(2)= 0.15. □

The following result extends the illustration in Example 2 to any pair of ran-

dom variables X and Y , where X is non-atomic.17

Lemma 1 Let X and Y be two Borel probability measures on R, and with an
abuse of notation let X (s),Y (s) also denote their CDFs. Assume X is non-atomic
(i.e. X (s) is continuous in s) and X (s)≤Y (s) for all s ∈R.

Define M (X ,Y ) to be the set of joint distributions λ of two random variables
X and Y with marginal distributions X and Y , and satisfying X ≥ Y with λ-

16There may be multiple solutions for h1 and h2, but all solutions yield the same product.
17This result generalizes the bivariate case of Theorem 5.4 in Butucea et al. (2018) to environ-

ments where the marginal distributions may not admit densities. This generalization is important
for our application, as the payment distribution is endogenously chosen and may not have a den-
sity (for example see Section 4.3 below). See also the independent work by Arnold, Molchanov and
Ziegel (2020).
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probability 1. Then, with the convention log 1
0 =∞, it holds that

inf
λ∈M (X ,Y )

DKL(λ || X ⊗Y )=−1+
∫
R

log
1

Y (s)− X (s)
dX (s). (4)

The infimum above is achieved as minimum whenever the RHS of Eq. (4) is
finite, in which case the unique minimizer λ∗ is the joint distribution defined by

dλ∗

d(X ⊗Y )
(x, y)= 1

Y (x)− X (x)
· e−

∫x
y

1
Y (s)−X (s) dX (s) ·1Y (x)>X (x) ·1y≤x. (5)

That is, the Radon-Nikodym derivative of λ∗ with respect to the product measure
X ⊗Y is zero if either Y (x) = X (x) or y > x. Otherwise this density is 1

Y (x)−X (x) ·
e−

∫x
y

1
Y (s)−X (s) dX (s).

Moreover, if the RHS of Eq. (4) is finite and if there exists λ̂ ∈ M (X ,Y ) such
that dλ̂

d(X⊗Y ) (x, y) = h1(x) ·h2(y) for a pair of functions h1,h2 that are positive and
bounded away from zero, then λ̂=λ∗ as described above.

Equation (5) admits a supply-and-demand interpretation, which we present

in Section 5. The proof of the lemma is provided in Section 6.

Applying Lemma 1 to our setup, we can let X =GW be the marginal distribu-

tion of winner type, and Y = GP be the marginal distribution of payment in an

efficient, DSIC, EPIR mechanism. The RHS of Eq. (4) provides a lower bound on

privacy loss, given by:

−1+
∫
R

log
1

GP (s)−GW (s)
dGW (s). (6)

We emphasize that the condition X ≥ Y with λ-probability 1 is crucial for the

lemma; otherwise λ= X ⊗Y could lead to zero mutual information. In our setup,

this ranking condition corresponds to the winner’s type always exceeding his pay-

ment, as required by ex-post individual rationality.

Step 2. We now show that the joint distribution of winner type and payment

under the SPA achieves the mutual information lower bound in Eq. (4), given

its marginal distributions. Note that X = GW = Fn is the marginal distribution

of winner type, with density gW (s) = nf (s)F(s)n−1. Denote the CDF of the sec-

ond highest type out of n independent draws from F by GL(s) = F(s)n + n(1−
F(s))F(s)n−1. Then Y =GL is the marginal distribution of payment, with density

gL(s)= n(n−1) f (s)(1−F(s))F(s)n−2.

Under the SPA, the joint distribution λ̂ of winner type and payment is the joint

distribution of the highest and second highest types among n independent draws
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from F. This joint distribution has density dλ̂(w, p) = nf (w) · (n−1) f (p)F(p)n−2.

Therefore,

dλ̂
d(GW ⊗GL)

(w, p)= 1
nF(w)n−1(1−F(p))

∀ θ ≤ p < w ≤ θ.

Define h1(w) = 1
nF(w)n−1 ≥ 1

n and h2(p) = 1
1−F(p) ≥ 1. The last part of Lemma

1 shows that λ̂ minimizes mutual information given its marginals. It is

the unique minimizer as
∫

log 1
GL(s)−GW (s) dGW (s) = ∫

log 1
n(1−F(s))F(s)n−1 dF(s)n =∫1

0 log 1
n(1−x)xn−1 dxn is finite.18

Remark. Intuitively, while the highest and second highest types are not inde-

pendently distributed, their joint distribution can be obtained by conditioning a

product distribution on the “triangular region” that one of them is always larger

than the other. Lemma 1 ensures that whenever the joint distribution of two

ordered random variables has such a property, this joint distribution minimizes

mutual information given the marginals. This feature was also illustrated in Ex-

ample 2.

Step 3. Under DSIC, the winner’s expected payment at any type profile is the

second highest type. Thus for any DSIC mechanism, GP is a mean-preserving
spread of GL, and due to EPIR, GP (θ)= 1=GL(θ). From this we will show that GL

minimizes the RHS of Eq. (6) among all possible GP , which will prove Theorem 1.

We need to show that∫θ

θ
log

1
GP (s)−GW (s)

dGW (s)≥
∫θ

θ
log

1
GL(s)−GW (s)

dGW (s).

Rearranging, this is equivalent to

∫θ

θ
log

GL(s)−GW (s)
GP (s)−GW (s)

dGW (s)≥ 0.

For any two real numbers a > 0 and b ≥ 0, we have log b
a ≤ b

a −1 and thus log a
b ≥

18To see this, write
∫1

0 log 1
n(1−x)xn−1 d(xn) = I1 + I2 + I3, where I1 = −∫1

0 nxn−1 logndx, I2 =
−∫1

0 nxn−1 log(1− x)dx and I3 = −∫1
0 nxn−1 log xn−1 dx. By straightforward computation, we have

I1 = − logn. Using Eq. (4.293.8) in Gradshteyn and Ryzhik (2007), we have I2 = ∑n
k=1

1
k . In-

tegration by parts yields I3 = n−1
n . Combining these results, we obtain

∫1
0 log 1

n(1−x)xn−1 d(xn) =∑n
k=1

1
k − logn+ n−1

n , which is finite for every n ≥ 2.
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a−b
a . Thus,

∫θ

θ
log

GL(s)−GW (s)
GP (s)−GW (s)

dGW (s)≥
∫θ

θ

GL(s)−GP (s)
GL(s)−GW (s)

dGW (s).

We then observe that

dGW (s)
GL(s)−GW (s)

= gW (s) ds
GL(s)−GW (s)

= nf (s)F(s)n−1

F(s)n +n(1−F(s))F(s)n−1 −F(s)n ds = f (s)
1−F(s)

ds.

Thus it suffices to show∫θ

θ
(GL(s)−GP (s)) · f (s)

1−F(s)
ds ≥ 0. (7)

From the mean-preserving spread property, we have
∫t
−∞(GL(s)−GP (s)) ds ≤ 0

for every t ∈R. Moreover, at t = θ we have equality because
∫θ
−∞(GL(s)−GP (s)) ds

evaluates to the difference between the mean of GL and the mean of GP , since

they are both supported on (−∞,θ]. Thus, from
∫θ
−∞(GL(s) −GP (s)) ds = 0 ≥∫t

−∞(GL(s)−GP (s)) ds, we have

∫θ

t
(GL(s)−GP (s)) ds ≥ 0 for every t ≤ θ. (8)

Now note that C(s) := f (s)
1−F(s) , which shows up in the desired integral inequality

(7), is precisely the hazard rate that we assumed to be increasing in s. If we write

C(s)= C(θ)+∫s
θ C′(t) dt with C′ non-negative, then

∫θ

θ
(GL(s)−GP (s))·C(s) ds = C(θ)·

∫θ

θ
(GL(s)−GP (s)) ds+

∫θ

θ
(GL(s)−GP (s))

∫s

θ
C′(t) dt ds.

The first term on the RHS above is non-negative by the inequality (8) at t = θ.

The second term is a double integral that can be rearranged to
∫θ
θ C′(t)

∫θ
t (GL(s)−

GP (s)) ds dt after changing the order of integration, and it is also non-negative by

(8). This proves the desired inequality (7), and thus among all possible payment

distributions GP , GL minimizes the mutual information lower bound in Eq. (6).

Discussion: On the Privacy Loss of the Second Price Auction

The proof of Theorem 1 establishes that the privacy loss associated with the stan-

dard second-price auction (with deterministic payments) is given by MISPA(n) ≡
−1+∫

log 1
GL(x)−GW (s) dGW (s), where GW and GL are the cumulative distribution
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functions of the winner type and payment, respectively (i.e. the first- and second-

highest realizations out of n independent draws from F). Using the computation

in Footnote 18, we can simply this expression to the following:

MISPA(n)≡−1+
n∑

k=1

1
k
− logn+ n−1

n
=

n−1∑
k=1

1
k
− logn. (9)

By Theorem 1, MISPA(n) is the minimal privacy loss achievable by any effi-

cient, dominant-strategy incentive compatible, and ex-post individually rational

auction with n players. Equation (9) leads to three key observations.

First, as indicated by the right-hand side of Eq. (9), the privacy loss of the

second-price auction is independent of the underlying type distribution F.

Second, MISPA(n) increases with the number of participating bidders, n; this

follows from the simple inequality that log(n+1)− logn < 1
n . Intuitively, as n in-

creases, both the highest type and the second highest type increase on average,

but their expected difference becomes smaller. Thus, observing the second high-

est type imposes a tighter constraint on the possible values of the highest type,

thereby increasing the privacy loss as the number of bidders grows.

Finally, in light of this second observation, a natural question arises: as the

number of players grows to infinity, does the privacy loss of the SPA diverge, or

does it remain bounded? Eq. (9) shows that the latter is true. Specifically, by

taking the limit of the right-hand side of Eq. (9) as n approaches infinity, we find

that the privacy loss implied by the second-price auction is bounded from above

and converges to a constant:

lim
n→∞MISPA(n)= lim

n→∞

(n−1∑
k=1

1
k
− logn

)
= γ. (10)

where γ on the right-hand side of Eq. (10) is Euler’s constant.

We record these three observations in the following proposition:

Proposition 3 For the standard second-price auction with n players:

1. The privacy loss MISPA(n) is independent of the underlying type distribution
F;

2. The privacy loss MISPA(n) is strictly increasing in the number of bidders n;

3. As the number of bidders n grows to infinity, the privacy loss MISPA(n) con-
verges to a finite limit, specifically the Euler constant γ.
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4.3 Privacy and Revenue Maximization

In the above analysis, we assumed that the designer’s objective is to achieve ef-

ficiency. We now demonstrate that our main results extend to the case of rev-

enue maximization. By Myerson (1981), the essentially unique allocation for a

revenue-maximizing mechanism can be implemented by an SPA with a reserve

price r, where r maximizes r(1−F(r)) and is unique due to monotone hazard rate.

Thus, Eq. (1) is modified so that qi(θ)= 1 if and only if θi =max1≤ j≤nθ j ≥ r. Under

DSIC, the expected ex-post transfers are also the same as in the SPA with reserve

price r, given by Ti(θi,θ−i)=max{max{θ−i}, r} in case qi(θ)= 1.

A revenue-maximizing designer who cares about privacy seeks to minimize

privacy loss among all stochastic ex-post payment functions that average to the

above expected payments. Note however that we need to extend the previous

definition of privacy loss to the current setting, because the winner is not always

defined (in particular when all buyers have value less than r). We propose the

following extension of Definition 1: For any mechanism M and DSE σ, let Wσ

denote the random variable of winner type conditional on the event E σ that the
good is allocated. Similarly let Pσ denote the random variable of winner payment

conditional on the same event E σ. Then

Definition 2 (Privacy loss in the general case) The privacy loss associated
with a mechanism M and a DSE σ is the mutual information between the condi-
tional random variables Wσ and Pσ, multiplied by the probability that the winner
exists:

P(E σ) ·MI
(
Wσ,Pσ

)
This coincides with Definition 1 when the mechanism always allocates the good,

but provides a natural generalization to cases where the good is sometimes with-

held.

Under this definition, we can again show that randomized payments do not

help preserve privacy once ex-post individual rationality is required:

Theorem 2 The standard SPA with an optimal reserve price and deterministic
payments minimizes the privacy loss among all revenue-maximizing, DSIC and
ex-post individually rational mechanisms.

Proof. We follow the previous proof of Theorem 1 and point out the modifications.

Step 1 is unchanged. In Step 2, we consider the joint distribution λ̃ of winner type
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W and payment P (conditional on existence of a winner) that is induced by the

SPA with reserve price r. The key observation is that for any p ≥ r,

P[W ≤ w | P = p]= F(w)−F(p)
1−F(p)

. (11)

To see this, suppose that t1 is the highest type, which means t1 ≥ maxi>1 ti and

also t1 ≥ r because the winner exists. Thus t1 ≥ P and P[W ≤ w | P = p] = P[t1 ≤
w | t1 ≥ P = p], which is further equal to P[t1 ≤ w | t1 ≥ p] by the independence

across types.

From Eq. (11) we obtain that under the SPA with reserve price r, the condi-

tional density of W given P = p is simply f (w)
1−F(p) for w ≥ p. The marginal distribu-

tion of W is GW (w) = F(w)n−F(r)n

1−F(r)n , so the unconditional density of W is nf (w)F(w)n−1

1−F(r)n

for w ≥ r. Dividing the conditional density by the unconditional density, we arrive

at the Radon-Nikodym derivative of the joint distribution of (W ,P) with respect

to the product of their marginals:

dλ̂
d(GW ⊗GL)

(w, p)= 1−F(r)n

nF(w)n−1(1−F(p))
∀ r ≤ p < w ≤ θ.

With h1(w) = 1
nF(w)n−1 and h2(p) = 1−F(r)n

1−F(p) , we can apply the last part of Lemma 1

to conclude that λ̂ minimizes mutual information given its marginals.19

As for Step 3, note that with a reserve price r, GW (s) = F(s)n−F(r)n

1−F(r)n · 1s≥r

is the CDF of winner type conditional on existence of a winner, and GL(s) =
F(s)n−F(r)n+n(1−F(s))F(s)n−1

1−F(r)n ·1s≥r is the conditional CDF of payment (GL has a mass

point at r). We want to show that whenever GP is a mean-preserving spread of

GL, it holds that

∫θ

r
log

1
GP (s)−GW (s)

dGW (s)≥
∫θ

r
log

1
GL(s)−GW (s)

dGW (s). (12)

The proof is essentially the same as before, since we still have gW (s)
GL(s)−GW (s) = f (s)

1−F(s)

for any s ≥ r.20 Thus, the desired inequality (12) is implied by
∫θ

r (GL(s)−GP (s)) ·
f (s)

1−F(s) ds ≥ 0, which is just the analogue of (8) with the range of integration

changed to [r,θ]. The same proof that we had for (8) applies here.

Finally, we emphasize that the results presented in Proposition 3 do not ap-
19As r maximizes r(1−F(r)), F(r) < 1 must hold and so h2(p) is bounded away from zero. In

addition, λ̂ is the unique minimizer because
∫

log 1
GL(s)−GW (s) dGW (s) is finite like before. We omit

the calculation.
20Intuitively, the reserve price r affects GW and GL by the same linear transformation.
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ply when the designer’s objective is revenue maximization. This is because the

optimal reserve price r depends on the distribution F.

4.4 Discussion: Privacy Under Bayesian Incentive Compat-
ibility

The analysis above raises the natural question of whether the SPA is also the most

privacy preserving auction mechanism among all Bayesian incentive-compatible

auction mechanisms that are efficient, or revenue-maximizing, and satisfy EPIR.

This is a challenging question, as the techniques applied in the previous subsec-

tions do not extend directly to Bayesian incentive-compatible mechanisms. How-

ever, some insights can be gained by examining the restricted class of k−price

auctions.

A k-price auction is defined as an auction in which the winner is the player

who submits the highest bid, but she pays the k-th highest bid. It is well known

that such an auction admits a unique symmetric Bayesian Nash Equilibrium,

and the symmetric bidding strategy must be strictly increasing in type (see for

example Monderer and Tennenholtz (2000)). We have:

Proposition 4 Among all k-price auctions, along with their respective symmetric
Bayesian Nash Equilibria, the auction that maximizes the winner’s privacy is the
n-price auction where n is the total number of bidders.

To prove Proposition 4, we first recall a fundamental result about order statis-

tics. Let X1, . . . , Xn denote n independent random variables, each drawn from

a distribution with cumulative distribution function F(x) and density f (x). For

r = 1, . . . ,n, let F(r)(x) denote the cumulative distribution function of the rth order

statistic X(r) among these n random variables. Since F admits density, Theorem

2.5 in David and Nagaraja (2004) implies that:

fX(r+1),...,X(n)|X(1)=x1,...,X(r)=xr (X(r+1), . . . , X(n))

= fX(r+1),...,X(n)|X(r)=xr (X(r+1), . . . , X(n))

where the left-hand side is the joint conditional density of the random variables

X(r+1), . . . , X(n), given X(1) = x1, . . . , X(r) = xr, and the right-hand side is the joint

conditional density of the same random variables given only X(r) = xr. In words,

given the realization X(r) = xr, the random variables X(r+1), . . . , X(n) are condition-

ally independent of X(1), . . . , X(r−1).
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Applied to k−price auctions, the (n−k+1)-th order statistic among the n bidder

types is just the k-th highest type. Thus, given the k-th highest type X(n−k+1), the

highest type X(n) is conditionally independent of any k′-th highest type X(n−k′+1)

with k′ > k. The Data Processing Inequality then implies

MI(X(n), X(n−k+1))>MI(X(n), X(n−k′+1)), ∀k′ > k.

The strict inequality holds because the mutual information between X(n) and

X(n−k+1) is non-zero given X(n−k′+1) – that is, when the k′-th highest type is

known, further knowing the k-th highest type provides information about the

highest type.

Now note that MI(X(n), X(n−k+1)) is precisely the winner privacy loss in the

symmetric BNE of the k-price auction, because there is a one-to-one mapping

between the winner’s payment and the k-th highest type (recall bidding strategies

are increasing in type). Thus, the above mutual information inequality shows that

the winner privacy loss in a k-price auction is decreasing in k. This completes the

proof that k = n minimizes privacy.

While Proposition 4 demonstrates that the degree of Bayesian privacy preser-

vation in a k-price auction increases with k, all such auctions with k > 2 violate

EPIR. This follows from Theorem A in Monderer and Tennenholtz (2000), which

states that in the unique symmetric equilibrium of a k-price auction with k > 2,

the equilibrium bid exceeds the bidder’s type. Given our assumption that the den-

sity of F is strictly positive, there is a nonzero probability that the k− th highest

bid exceeds the winner’s type, thereby violating EPIR. We obtain the following

simple corollary:

Corollary 1 Among the class of k-price auctions that satisfy EPIR, the SPA is the
most privacy preserving auction.

The above observations suggest that the standard SPA is the most privacy

preserving auction among a broader class of mechanisms than those dominant

strategy mechanisms examined in Sections 4.2 and 4.3. It remains an open ques-

tion to characterize the entire class of mechanisms where this is true.

5 Supply and Demand Interpretation for Lemma 1

Lemma 1 characterizes the joint distribution λ∗ in Equation (5) as the one that

minimizes the mutual information between two ordered random variables with
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demand:
µ(x)dx

supply:
ν(y)dy

0 1

1

X

Y

Figure 1: Supply and demand interpretation for Lemma 1

given marginal distributions. In this section, we explore a supply-and-demand

interpretation of Equation (5). To illustrate this, consider a simplified setting in

which the cumulative distribution functions of X and Y are both continuous and

supported on the unit interval [0,1]. Let µ and ν denote their respective densities.

Figure 1 illustrates this setup.

Suppose that at each point (y, y) along the main diagonal of the unit square

[0,1]2 there is a supply point – a “warehouse” of infinitesimal size dy – containing

mass ν(y)dy of some homogeneous good. In Figure 1, a few of these warehouses

are illustrated as circles along the main diagonal. Each warehouse is permitted to

transfer its contents only to the right, that is, from (y, y) to any destination (x, y)

with x ∈ [y,1].

We seek a “transfer plan” that distributes mass from the warehouses to loca-

tions to their right, in a way that satisfies two key properties. First, each vertical

slice of infinitesimal width dx at coordinate x must receive exactly µ(x)dx units

of mass, combined from all warehouses. Note that such a transfer plan effectively

induces a “joint distribution” over sources and destinations – specifying how much

mass each destination receives from each source – which corresponds to the prob-

ability measure λ in our original formulation.

The second property we require is that, among all admissible transfer plans

satisfying the marginal constraint (each vertical slice receives the required

amount) and the directional constraint (mass can only be transferred to the right),

we seek the one that introduces the least structure – that is, the plan that mini-

mizes the mutual information between X and Y . Loosely speaking, we are looking
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for a plan under which knowing the origin warehouse reveals as little as possible,

on average, about the distribution of delivery locations.

Equation (5) characterizes the optimal plan. It follows a simple rule. Fix a

destination point x, and suppose all mass destined for locations less than x has

already been allocated, and that now a decision has to be made regarding the

mass that is allocated at x. Two quantities are now relevant:

1. the local demand at x, given by µ(x)dx, and

2. the overall remaining supply in the system that can still be allocated to x,

given by Y (x)− X (x).

Here, Y (x) is the total mass that could, in principle, be delivered to location x
from all warehouses, and X (x) is the total mass that has already been delivered

to locations less than x. Their difference represents the undelivered mass still

available to fulfill demand at x.

The optimal plan can be described as follows: from each warehouse y, it as-

signs to the vertical slice of width dx at position x a proportion r(x)dx of the mass

from warehouse y that has not yet been allocated, where

r(x)= µ(x)
Y (x)− X (x)

. (13)

The ratio r(x) quantifies how large the demand at x is relative to the total sup-

ply still available to serve it. A higher value of the ratio indicates more urgent

demand: the local need is high relative to what remains to be allocated, so ware-

house y must contribute a greater share of its available supply to destination x.

Equation (5), interpreted as the joint distribution of sources x and destinations y,

follows from this rule by direct computation.21

An important property of this mass distribution rule is that it is locally mem-
oryless: the proportion of mass directed from warehouse y to position x, out of

21To see this, let My(x) denote the remaining mass from warehouse y that has not yet been
allocated to destinations less than x. Then My(x) evolves according to the differential equation

dMy(x)
dx

=−r(x) ·My(x).

with initial condition My(y) = ν(y)dy. The solution is My(x) = ν(y)dy · e−
∫x

y r(s)ds. The amount of
mass delivered from y to x is therefore:

My(x) · r(x)dx = 1
Y (x)− X (x)

· e−
∫x

y
µ(s)

Y (s)−X (s) ds ·µ(x) ·ν(y) · dy ·dx,

which matches the expression in Equation (5), when written in terms of its density with respect
to Lebesgue measure.
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the warehouse’s yet-to-be-allocated supply, depends only on local quantities: the

current demand, µ(x), and the total remaining unallocated supply from all ware-

houses, Y (x)−X (x). It does not depend on the identity of the warehouse y, nor on

how mass has been allocated to other destinations. In other words, all unallocated

mass at x is treated identically, governed by the same local rule, regardless of its

origin or delivery history.

This also explains why the marginal constraint is satisfied. Because every

warehouse assigns to a slice of width dx at destination x the same proportion

r(x)dx of the mass it still has available when it reaches x, it follows that this slice

receives the fraction r(x)dx of the entire undelivered mass from all warehouses at

x, namely Y (x)− X (x). A direct computation shows that this mass equals µ(x)dx,

exactly matching the required demand.

To gain intuition for why the specified plan minimizes the mutual information

between X and Y , it is helpful to look at the problem backwards: fix a destination

x, pick a grain of mass located there, and ask – From which warehouse did this

grain most likely come? For any two candidate sources y1 < y2 ≤ x, the allocation

rule in Equation (5) implies

λ∗
Y |X=x(y1)

λ∗
Y |X=x(y2)

= ν(y1)
ν(y2)

e−
∫y2

y1 r(s)ds.

Crucially, this ratio is independent of the destination x. That is, while observing

the destination x restricts the range of possible sources to those y ≤ x, it does

not change the relative likelihoods between any two sources within that range. In

this sense, knowing the realization of the destination, X , reveals “relatively little”

about the origin, Y . The proof of Lemma 1 formalizes this intuition, showing

that the plan characterized by Equation (5) minimizes the mutual information

MI(X ;Y ) over all admissible allocation rules.

6 Proof of Lemma 1

This is a rather long proof, and we begin by introducing some notation. For

any interval I, we will write
∫

I u(s) dX (s) for the Lebesgue integral of a mea-

surable function u(s) with respect to the measure X . Sometimes we also write∫b
a u(s) dX (s), even though we still have in mind the Lebesgue integral unless

otherwise specified – since X is non-atomic, whether or not the endpoints a and b
are included in the range of integration does not matter. Likewise,

∫
I u(s) dY (s)
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is the integral of u with respect to Y over the interval I, but we will not write∫b
a u(s) dY (s) since the endpoints may matter.

For a bivariate function v(x, y), we denote by∫
y≤x

v(x, y) dX (x) dY (y)

the integral of v(x, y) with respect to the product measure X ⊗Y over the region

y≤ x. When the Fubini-Tonelli Theorem applies, this integral can be rewritten as

a double integral. Our notations will distinguish these different forms of integra-

tion.

The following lemma characterizes when there exists a “ranked” joint distri-

bution with given marginals X and Y :

Lemma 2 M (X ,Y ) 6= ; if and only if Y (s)≥ X (s) for every s ∈R.

Proof of Lemma 2. If X and Y are two random variables that satisfy X ≥ Y

almost surely, then the distribution of X first-order stochastically dominates the

distribution of Y . This implies Y (s) ≥ X (s) for every s. Conversely, by the well-

known “coupling” characterization, if X first-order stochastically dominates Y ,

then there exist random variables X and Y with marginal distributions X and

Y respectively, and satisfy X ≥ Y almost surely. For example, we can choose t
to be a Uni f [0,1] random variable, and let X = X−1(t) = min{z : X (z) ≥ t} and

Y =Y−1(t)=min{z : Y (z)≥ t}.

6.1 Preliminary Results

As can be seen from the definition of λ∗ in Eq. (5), the points s where the CDFs

Y (s) and X (s) coincide are special. In this section we prove some preliminary

results about these points.

For any s ∈R, let Y−(s)= limt<s,t→s Y (t) be the Y -measure of (−∞, s). Note that

1. while Y (s) is right-continuous in s, Y−(s) is left-continuous;

2. we do not define X− because X is assumed to be non-atomic;

3. Y (s)≥Y−(s)≥ X−(s)= X (s) holds for every s.

We then define the following sets:

A = {s ∈R : Y (s)= X (s)};

A = {s ∈R : Y−(s)= X (s)}.
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Lemma 3 A is a closed set that contains A.

Proof of Lemma 3. Since Y (s)≥Y−(s)≥ X (s), any s ∈ A necessarily also belongs

to A. Thus A contains A. To see that A is closed, consider any sequence sn ∈ A
that converges to some s ∈R. Without loss we can assume sn is monotone in n. If

sn increases in n, then by left-continuity Y−(sn) = X (sn) implies Y (s) = X (s) and

s ∈ A. If instead sn decreases in n, then Y−(s) ≤ limn Y−(sn) = limn X (sn) = X (s).

But we discussed above that Y−(s) ≥ X (s), so equality holds and s again belongs

to A.

Since A is a closed set, its complement A
c

is open. This complement can

then be written as the union of at most countably many disjoint open intervals

I1, I2, . . . , which we fix in the sequel. Let us write Ik = (ak,bk),22 and note that

ak,bk must both belong to A; otherwise they belong to another open interval Im,

which would intersect with Ik. We now consider two possibilities. If ak ∈ A then

we define Îk = Ik = (ak,bk), and if ak ∈ A\A we define Îk = [ak,bk).

Lemma 4 Ac is the union of the disjoint intervals Îk.

Proof of Lemma 4. Clearly these intervals are disjoint. Moreover, by construc-

tion, if s ∈ Îk then either s ∈ (ak,bk)⊂ A
c ⊂ Ac or s = ak ∈ A\A ⊂ Ac. Either way s

belongs to Ac.

Conversely, if s ∈ Ac then there are two cases. One case is if s ∈ A
c
, in which

case s belongs to some Ik ⊂ Îk. The remaining case is if s ∈ A\A, so that Y (s) >
Y−(s) = X (s). Thus for t slightly larger than s, Y (s) > X (t) also holds and we thus

have Y−(t)> X (t). It follows that any such t belongs to A
c
. All these t must belong

to a single open interval Ik, and thus s = ak belongs to Îk by construction.

The next result relates the measure of the set A under X and under Y .

Lemma 5 The Y -measure of A is equal to the X -measure of A.23

Proof of Lemma 5. Note that the Y -measure of Ac is the total Y -measure of

Îk summing across k. For each k, the Y -measure of Îk is Y−(bk)−Y (ak) if ak ∈ A
and Y−(bk)−Y−(ak) if ak ∈ A\A. In both cases the measure equals Y−(bk)−Y−(ak)

since ak ∈ A would imply Y (ak)=Y−(ak).
22Here we allow for the possibility that ak =−∞ and/or bk =∞. The subsequent analysis applies

to these special cases with minimal changes.
23However, the Y -measure of A may be bigger than its X -measure. For example if X is uniform

on [0,1] and Y is the point-mass at 0, then A = (−∞,0]∪ [1,∞) and it has X -measure zero but
Y -measure one. In this example A = (−∞,0)∪ [1,∞), which does have Y -measure zero.
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Thus, from ak,bk ∈ A we know that the Y -measure of Îk is X (bk)− X (ak) for

every k, which is equal to the X -measure of Îk (recall X is non-atomic). Summing

across k implies that the Y -measure of Ac is equal to the X -measure of Ac. Taking

the complement then yields the lemma.

6.2 Proof of Lemma 1 When X (A)> 0

The following result shows that if the X -measure of the set A is strictly positive,

then every joint distribution λ ∈M (X ,Y ) is not absolutely continuous with respect

to X ⊗Y . In these cases the KL-divergence D(λ || X ⊗Y ) is always infinite, and

Lemma 1 holds because −1+∫
R log 1

Y (s)−X (s) dX (s)≥−1+∫
A log 1

Y (s)−X (s) dX (s)=∞,

where the last equality holds by the assumption that Y (s)−X (s)= 0 for a positive

X -measure of points s.

Lemma 6 If A has positive X -measure, then every λ ∈ M (X ,Y ) is not absolutely
continuous with respect to X ⊗Y .

Proof of Lemma 6. Choose any λ ∈ M (X ,Y ). Consider any point s ∈ A, such

that Y−(s) = X (s). Thus λ assigns the same measure to the region y < s as to

the region x < s. But by assumption λ is supported on x ≥ y, so we also have

λ(y < s) = λ(y ≤ x < s), which implies λ(y < s ≤ x) = 0. In words, for any s ∈ A, λ

assigns zero measure to those pairs (y, x) with y< s ≤ x.

We use this to show that λ assigns zero measure to the set S = {(x, y) : x ∈
A and y< x}. Indeed, for any rational number r ∈R, we can let sr ∈ A be the point

that is closest to r (which exists because A is closed). Then define Sr = {(x, y) : y<
sr ≤ x}, which we know has λ-measure zero. Thus the union of Sr across rational

numbers r also has measure zero. This union covers S because for any x > y with

x ∈ A, we can choose a rational number r ∈ ( x+y
2 , x). Then the closest point sr

satisfies |sr − r| ≤ |x− r|, which implies sr ∈ (y, x] and so (x, y) ∈ Sr. Hence ∪rSr

covers S, which must have λ-measure zero.

In particular, the subset S = {(x, y) : x ∈ A and y< x} also has λ-measure zero.

Since λ has marginal X on the x-dimension, we know that the λ-measure of T =
{(x, y) : x ∈ A and y≤ x} is the X -measure of A. Thus the set difference

T\S = {(x, y) : x = y ∈ A}

has λ-measure equal to X (A) > 0. But this set T\S is part of the 45-degree line,
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which has measure zero according to X ⊗Y .24 Hence λ is not absolutely continu-

ous with respect to X ⊗Y .

6.3 Support of λ∗

From now on we assume the set A has X -measure zero. In this section we study

properties of the joint distribution λ∗, whose density with respect to X ⊗Y is

h∗(x, y)= 1
Y (x)− X (x)

· e−
∫x

y
1

Y (s)−X (s) dX (s) ·1Y (x)>X (x) ·1y≤x. (14)

While h∗ is defined for any y ≤ x, the following result shows that it is supported

on those pairs (x, y) such that x and y belong to the same interval Îk for some k,

where the intervals Îk were defined previously in Lemma 4.

Lemma 7 Suppose y ∈ Ac (i.e. Y (y) > X (y)), and let k be the unique index such
that y ∈ Îk. Then for x ≥ y,

∫x
y

1
Y (s)−X (s) dX (s) is finite if and only if x ∈ Îk. Con-

sequently, h∗(x, y) as defined in (14) is strictly positive if and only if x ≥ y and
x ∈ Îk.

Proof of Lemma 7. The second statement follows immediately from the first,

since for x ∈ Îk ⊂ Ac it holds that Y (x)− X (x) > 0. To prove the statement about∫x
y

1
Y (s)−X (s) dX (s), recall Îk = [ak,bk) or (ak,bk). Then because bk ∈ A, we have

Y−(bk)= X (bk). Thus∫
[y,bk)

1
Y (s)− X (s)

dX (s)≥
∫

[y,bk)

1
Y−(bk)− X (s)

dX (s)= log
Y−(bk)− X (y)
Y−(bk)− X (bk)

=∞,

where the penultimate equality uses the substitution z = X (s), and the last equal-

ity uses Y−(bk) ≥ Y (y) > X (y). It follows that
∫x

y
1

Y (s)−X (s) dX (s) is infinite when-

ever x ≥ bk.

As for x ∈ [y,bk),
∫x

y
1

Y (s)−X (s) dX (s) is finite because the integrand 1
Y (s)−X (s) is

bounded from above on the compact interval [y, x]. To see why, suppose for con-

tradiction that there exists a sequence sn ∈ [y, x] with Y (sn)− X (sn) → 0. Passing

to a subsequence, we may assume sn is monotone in n and has a limit s ∈ [y, x]. If

sn decreases in n, then Y (sn)− X (sn) → 0 implies Y (s) = X (s) by right-continuity,

but this contradicts s ∈ [y, x]⊂ Îk ⊂ Ac. If sn increases in n, then Y (sn)−X (sn)→ 0

implies s > y and Y−(s)= X (s). But this contradicts s ∈ (y, x]⊂ Ik ⊂ A
c
.

24For each y, the X -measure of those x such that x = y is zero because X is non-atomic. The
overall measure of the 45-degree line is thus also zero by Tonelli’s Theorem.
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6.4 λ∗ Belongs to M (X ,Y ) When X (A)= 0

We now apply Lemma 7 to show the following result:

Lemma 8 If A has X -measure zero, then λ∗ ∈M (X ,Y ).

Proof of Lemma 8. By construction λ∗ is supported on y ≤ x, so we just need

to check λ∗ has marginals X and Y . Consider any joint distribution λ ∈M (X ,Y )

that is absolutely continuous with respect to the product measure X ⊗Y . Let

h(x, y) be the density dλ
d(X⊗Y ) , with h(x, y) = 0 whenever y > x. Then the marginal

requirements on λ equivalently translate into∫
R

h(x, y) dX (x)= 1 for Y -almost every y; (15)

∫
R

h(x, y) dY (y)= 1 for X -almost every x. (16)

When A has X -measure zero and therefore also Y -measure zero by Lemma 5,

these equalities for h = h∗ are proved in the following two lemmata.

Lemma 9 h∗ defined in Eq. (14) satisfies Eq. (15) for every y ∈ Ac (i.e. Y (y) >
X (y)).

Lemma 10 h∗ defined in Eq. (14) satisfies Eq. (16) for every x ∈ Ac (i.e. Y (x) >
X (x)).

Proof of Lemma 9. Fix any y with Y (y)> X (y), and suppose y ∈ Îk = [ak,bk) or

(ak,bk). Then thanks to Lemma 7,∫
R

h∗(x, y) dX (x)=
∫

[y,bk)
h∗(x, y) dX (x)=

∫
[y,bk)

1
Y (x)− X (x)

·e−
∫x

y
1

Y (s)−X (s) dX (s) dX (x).

For this fixed y, let α(x) = ∫x
y

1
Y (s)−X (s) dX (s) for x ≥ y. Then as shown in Lemma

7, α(x) is finite for x ∈ [y,bk) and approaches ∞ as x → bk. Moreover, α(x) is

increasing and continuous on the interval [y,bk), where continuity follows from

the Dominated Convergence Theorem and X being non-atomic.

Since the function α(x) is equal to 0 at x = y and increases continuously for

x < bk, we can view it as defining a non-atomic measure (also called α) on [y,bk).

Directly from the definition α(x) = ∫x
y

1
Y (s)−X (s) dX (s), we see that α is absolutely

continuous with respect to X , with density function dα
dX (s) = 1

Y (s)−X (s) on this in-
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terval (this density is finite since s ∈ Îk ⊂ Ac). It follows that∫
R

h∗(x, y) dX (x)=
∫

[y,bk)

1
Y (x)− X (x)

· e−α(x) dX (x)

=
∫

[y,bk)
e−α(x) dα(x)=

∫∞

0
e−z dz = 1.

The penultimate equality crucially uses limx<bk,x→bk α(x)=α(bk)=∞ when mak-

ing the substitution z =α(x). This proves the lemma.

Proof of Lemma 10. Fix any x with Y (x)> X (x), and suppose x ∈ Îk = [ak,bk) or

(ak,bk). Then for h = h∗, the equality in (16) reduces to∫
(−∞,x]

e−
∫x

y
1

Y (s)−X (s) dX (s) dY (y)=Y (x)− X (x).

By Lemma 7, we can restrict the range of integration to [ak, x] or (ak, x]. In fact we

can always assume the range of integration is [ak, x], because Îk = (ak,bk) would

imply ak ∈ A ⊂ A, and thus Y does not have an atom at ak. In this case including

the point ak in the range of integration does not affect the integral on the LHS

above.

For this fixed x, let β(y) = ∫x
y

1
Y (s)−X (s) dX (s) for y ≤ x. By Lemma 7, the func-

tion β(y) is finite for y ∈ (ak, x] ⊂ Îk, and it is thus continuous on this interval by

the Dominated Convergence Theorem. Although β(ak) could be infinite (in case

ak ∉ Îk), the function β is still right-continuous at ak by the Monotone Conver-

gence Theorem. Thus β(y) is decreasing and continuous on the closed interval

[ak, x].

We need to show that
∫

[ak,x] e−β(y) dY (y) = Y (x)− X (x). Let g(y) = e−β(y), then

g is increasing and continuous for y ∈ [ak, x] with g(x) = 1.25 It remains to show

that ∫
[ak,x]

g(y) dY (y)=Y (x)− X (x). (17)

If ak = x, then the LHS above is simply Y ({x}) (the mass of Y at x) because g(x)= 1.

In this case the above equality holds because x = ak ∈ A implies Y−(x)= X (x), and

thus Y ({x})=Y (x)− X (x).

Below we consider ak < x. Note that we still have Y−(ak) = X (ak). We prove

(17) by approximating the LHS integral by the integrals of increasing step func-

tions. Specifically, consider any partition of the interval [ak, x] into disjoint in-

tervals [y0, y1]∪ (y1, y2]∪ ·· · (yn−1, yn] with ak = y0 < y1 < ·· · < yn = x. For each
25In case ak =−∞, we define β(−∞)=∫x

−∞
1

Y (s)−X (s) dX (s) and g(−∞)= e−β(−∞) accordingly. The
subsequent arguments also apply to this case.
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such partition, define two functions g(y) and g(y) such that for each y ∈ (yi−1, yi],

g(y) = g(yi−1) whereas g(y) = g(yi). Naturally, we also let g(y0) = g(y0) and

g(y0)= g(y1).

Since g is an increasing function, we have g ≤ g ≤ g point-wise for any parti-

tion. Moreover, since g is continuous on the interval [ak, x], the functions g, g con-

verge point-wise to g as the partition becomes finer and finer. Thus, by the Domi-

nated Convergence Theorem (which applies since g, g are uniformly bounded be-

tween 0 and 1), we have that
∫

[ak,x] g(y) dY (y) is the common limit of the integrals∫
[ak,x] g(y) dY (y) and

∫
[ak,x] g(y) dY (y), as the partition becomes arbitrarily fine.

Thus, to show (17), it suffices to show the following inequality for every partition:∫
[ak,x]

g(y) dY (y)≤Y (x)− X (x)≤
∫

[ak,x]
g(y) dY (y).

Using the fact that g and g are simple functions, we can rewrite their integrals

as finite sums. The above inequalities then become

g(y0) · (Y (y1)−Y−(y0))+
n−1∑
i=1

g(yi) · (Y (yi+1)−Y (yi))≤Y (yn)− X (yn);

g(y1) · (Y (y1)−Y−(y0))+
n−1∑
i=1

g(yi+1) · (Y (yi+1)−Y (yi))≥Y (yn)− X (yn).

For the first inequality, we prove by induction that

g(y0) · (Y (y1)−Y−(y0))+
m−1∑
i=1

g(yi) · (Y (yi+1)−Y (yi))≤ g(ym) · (Y (ym)− X (ym)). (18)

The base case m = 1 says g(y0) · (Y (y1)−Y−(y0)) ≤ g(y1) · (Y (y1)− X (y1)). Since

y0 = ak and Y−(y0)= X (y0), it suffices to show for any y0 < y1:

g(y0) · (Y (y1)− X (y0))≤ g(y1) · (Y (y1)− X (y1)).

This holds trivially if g(y0)= 0 or Y (y1)− X (y0)= 0. Otherwise

log
g(y1)
g(y0)

=β(y0)−β(y1)=
∫y1

y0

1
Y (s)− X (s)

dX (s)≥
∫y1

y0

1
Y (y1)− X (s)

dX (s)= log
Y (y1)− X (y0)
Y (y1)− X (y1)

,

as we desire to show.26 As for the induction step in (18) from m to m+1, we need

to verify that g(ym)(Y (ym)−X (ym))+ g(ym)(Y (ym+1)−Y (ym))≤ g(ym+1)(Y (ym+1)−
26The final equality here follows by viewing the integral as a Riemann-Stieltjes integral, and

making the substitution z = X (s).
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X (ym+1)). This reduces to

g(ym) · (Y (ym+1)− X (ym))≤ g(ym+1) · (Y (ym+1)− X (ym+1)),

which can be proved in exactly the same way as above (where we showed this for

m = 0).

The above analysis dealt with the lower bound g. As for g, we will similarly

show by induction that

g(y1)·(Y (y1)−Y−(y0))+
m−1∑
i=1

g(yi+1)·(Y (yi+1)−Y (yi))≥ g(ym)·(Y (ym)−X (ym)). (19)

The base case m = 1 holds because Y−(y0) = X (y0) ≤ X (y1). For the induc-

tion step, we need to verify g(ym)(Y (ym)− X (ym))+ g(ym+1)(Y (ym+1)−Y (ym)) ≥
g(ym+1)(Y (ym+1)− X (ym+1)), which is equivalent to

g(ym) · (Y (ym)− X (ym))≥ g(ym+1) · (Y (ym)− X (ym+1)).

This clearly holds if Y (ym) ≤ X (ym+1), so we assume Y (ym) > X (ym+1). We then

have27

log
g(ym+1)
g(ym)

=
∫ym+1

ym

1
Y (s)− X (s)

dX (s)≤
∫ym+1

ym

1
Y (ym)− X (s)

dX (s)= log
Y (ym)− X (ym)

Y (ym)− X (ym+1)
.

This proves the induction step and implies (19).

Therefore (17) holds and the lemma is proved.

6.5 λ∗ Minimizes Mutual Information When X (A)= 0

By Lemma 8 we know that λ∗ ∈M (X ,Y ). In this section we show DKL(λ || X⊗Y )≥
DKL(λ∗ || X ⊗Y ) for any λ ∈ M (X ,Y ). We introduce the following result, which

ensures that the support of λ is a subset of the support of λ∗.

Lemma 11 Suppose A has X -measure zero. Then every λ ∈M (X ,Y ) is supported
on those points (x, y) with y≤ x and y, x ∈ Îk for the same index k.

Proof of Lemma 11. First of all, λ is supported on Ac × Ac because it has

marginals X and Y , which assign zero measure to A. Thus we can restrict atten-

tion to x, y ∈ Ac =∪k Îk. Recall that Îk = [ak,bk) or (ak,bk). In either case the left

27Note that g(ym)= e−β(ym) > 0 for any ym > y0 = ak.
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end-point ak belongs to A, so that Y−(ak)= X (ak). Thus, just as we showed in the

proof of Lemma 6, λ must assign zero measure to the set Sk = {(x, y) : y< ak ≤ x}.

Since the number of indices k is at most countable, the union of the sets Sk also

has λ-measure zero. Note that if y ≤ x and y, x belong to Î j and Îk respectively

(with j 6= k), then (x, y) ∈ Sk. Thus the union of Sk covers all such points (x, y).

Taking the relative complement of this union in Ac × Ac implies that λ is only

supported on the remaining points where x and y do belong to the same Îk.

We now show that the KL-divergence from any λ ∈ M (X ,Y ) to X ⊗Y can be

decomposed as the sum of the KL-divergence from λ to λ∗ and the KL-divergence

from λ∗ to X⊗Y , so that λ∗ uniquely minimizes the KL-divergence. This “triangle

equality” does not in general hold, but it holds here because the density of λ∗ has

a multiplicatively separable form, a property that we study further in the next

section.

Lemma 12 Suppose A has X -measure zero. Then for every λ ∈M (X ,Y ), it holds
that

DKL(λ || X ⊗Y )= DKL(λ ||λ∗)+K(X ,Y ),

where K(X ,Y ) = −1 +∫
R log 1

Y (s)−X (s) dX (s). Consequently, DKL(λ∗ || X ⊗ Y ) =
K(X ,Y ) ≤ DKL(λ || X ⊗Y ), and when K(X ,Y ) < ∞ equality holds if and only if
λ=λ∗.

Proof of Lemma 12. If λ is not absolutely continuous with respect to X⊗Y , then

because λ∗ is absolutely continuous with respect to X ⊗Y , λ is also not absolutely

continuous with respect to λ∗. In this case both DKL(λ || X ⊗Y ) and DKL(λ || λ∗)

are infinite, and the lemma holds.

Suppose instead that λ is absolutely continuous with respect to X ⊗Y , admit-

ting a density h(x, y). Then from Lemma 11, it is without loss (up to sets that

have measure zero under X ⊗Y ) to assume h(x, y) > 0 only if they belong to the

same Îk and y ≤ x. For notational ease, we let Tk denote the “triangular region”

associated with Îk:

Tk = {(x, y) : y≤ x and y, x ∈ Îk}.

Then h is strictly positive only on ∪kTk. We also recall from Lemma 7 that the

density h∗ associated with λ∗ is strictly positive on and only on ∪kTk.
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We can write the mutual information induced by λ as follows:

DKL(λ || X ⊗Y )=
∫
R2

h(x, y) logh(x, y) dX (x) dY (y)

=
∫
∪kTk

h(x, y) logh(x, y) dX (x) dY (y)

=
∫
∪kTk

h(x, y) log
h(x, y)
h∗(x, y)

dX (x) dY (y)+
∫
∪kTk

h(x, y) logh∗(x, y) dX (x) dY (y)

= DKL(λ ||λ∗)+∑
k

∫
Tk

h(x, y) logh∗(x, y) dX (x) dY (y).

(20)

In this derivation one may be worried about absolute integrability affecting the

equality between the second line and the third line. This turns out to not be an is-

sue because in the third line, the first integrand h(x, y) log h(x,y)
h∗(x,y) is bounded below

by h(x, y)−h∗(x, y), so the negative part of h(x, y) log h(x,y)
h∗(x,y) is absolute integrable.

Meanwhile, as shown below, the second integrand h(x, y) logh∗(x, y) is bounded

below by −h(x, y)
∫x

y
1

Y (s)−X (s) dX (s), which is also absolute integrable with inte-

gral 1.

We now compute
∫

Tk
h(x, y) logh∗(x, y) dX (x) dY (y) for each k. Recall that

for x, y ∈ Îk, h∗(x, y) = 1
Y (x)−X (x) · e−

∫x
y

1
Y (s)−X (s) dX (s). Thus logh∗(x, y) = log 1

Y (x)−X (x) −∫x
y

1
Y (s)−X (s) dX (s), and it follows that

∫
Tk

h(x, y) logh∗(x, y) dX (x) dY (y)

=
∫

Tk

h(x, y) log
(

1
Y (x)− X (x)

)
dX (x) dY (y) −

∫
Tk

h(x, y) ·
(∫x

y

1
Y (s)− X (s)

dX (s)
)

dX (x) dY (y).

(21)

To simplify the first term on the RHS above, we recall that h is the density

of λ ∈ M (X ,Y ), and thus satisfies the marginal requirements (15) and (16).

In particular, (16) gives
∫
R h(x, y) dY (y) = 1 for X -almost every x, and thus∫

Îk
h(x, y) dY (y) = 1 for X -almost every x ∈ Îk. Applying Tonelli’s Theorem, we

thus have∫
Tk

h(x, y) log
(

1
Y (x)− X (x)

)
dX (x) dY (y)=

∫
Îk

log
1

Y (x)− X (x)
·
(∫

Îk

h(x, y) dY (y)
)

dX (x)

=
∫

Îk

log
1

Y (x)− X (x)
dX (x).

(22)
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As for the second term on the RHS of (21), we have28

∫
Tk

h(x, y) ·
(∫

[y,x)

1
Y (s)− X (s)

dX (s)
)

dX (x) dY (y)

=
∫

y,s,x∈Îk: y≤s<x
h(x, y)

1
Y (s)− X (s)

dX (s) dX (x) dY (y)

=
∫

s∈Îk

1
Y (s)− X (s)

·
(∫

y,x∈Îk: y≤s,x>s
h(x, y) dX (x) dY (y)

)
dX (s).

(23)

Now observe that the integral
∫

y,x∈Îk: y≤s<x h(x, y) dX (x) dY (y) is simply the mea-

sure that λ assigns to the region {(y, x) ∈ Tk : y≤ s < x}. Since the different Îk are

disjoint, we see from Lemma 11 that the λ measure of this region is just equal

to the λ-measure of the larger region {(y, x) : y ≤ s < x}, which is just Y (s)− X (s).

Hence, plugging in the RHS of (23), we obtain∫
Tk

h(x, y) ·
(∫

[y,x)

1
Y (s)− X (s)

dX (s)
)

dX (x) dY (y)

=
∫

s∈Îk

1
Y (s)− X (s)

· (Y (s)− X (s)) dX (s)=
∫

s∈Îk

1 dX (s)= X (Îk).
(24)

If we now plug (22) and (24) into (21) and then back into (20), we arrive at

DKL(λ || X ⊗Y )= DKL(λ ||λ∗)+∑
k

(∫
Îk

log
1

Y (x)− X (x)
dX (x)− X (Îk)

)
= DKL(λ ||λ∗)+

∫
Ac

log
1

Y (x)− X (x)
dX (x)− X (Ac)

= DKL(λ ||λ∗)+
∫
R

log
1

Y (x)− X (x)
dX (x)−1

= DKL(λ ||λ∗)+K(X ,Y ),

(25)

where the penultimate equality uses X (Ac)= 1. This completes the proof.

6.6 Multiplicatively Separable Density Must be λ∗

It remains to prove the last paragraph in the statement of Lemma 1. To do this

we show the following analogue of Lemma 12:

Lemma 13 If λ̂ ∈ M (X ,Y ) satisfies dλ̂
d(X⊗Y ) (x, y) = h1(x) · h2(y) for a pair of func-

tions h1,h2 that are positive and bounded away from zero, then for every λ ∈
28We can write

∫x
y

1
Y (s)−X (s) dX (s) as

∫
[y,x)

1
Y (s)−X (s) dX (s) because X is non-atomic.
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M (X ,Y ) it holds that

DKL(λ || X ⊗Y )= DKL(λ || λ̂)+DKL(λ̂ || X ⊗Y ).

Lemma 13 immediately implies that λ̂ minimizes mutual information whenever

the minimum is achieved. Thus λ̂=λ∗ whenever the RHS of Eq. (4) is finite.

Proof of Lemma 13. Like before, it is without loss to assume λ admits density

h with respect to X ⊗Y ; otherwise both sides of the desired equality are infinite.

We then have

DKL(λ || X ⊗Y )=
∫
R2

h(x, y) logh(x, y) dX (x) dY (y)

=
∫
R2

h(x, y) log
h(x, y)

h1(x)h2(y)
dX (x) dY (y)+

∫
R2

h(x, y) log(h1(x)h2(y)) dX (x) dY (y)

= DKL(λ || λ̂)+
∫
R2

h(x, y) logh1(x) dX (x) dY (y)+
∫
R2

h(x, y) logh2(y) dX (x) dY (y).

(26)

Here we made use of the assumption that h1(x) and h2(y) are bounded away from

zero, which ensures that the negative parts of h(x, y) logh1(x) and h(x, y) logh2(y)

are absolutely integrable.

Since λ has marginals X and Y , we have
∫

h(x, y) dY (y) = 1 for X -almost

every x and
∫

h(x, y) dX (x) = 1 for Y -almost every y. So by the Fubini-

Tonelli Theorem,
∫
R2 h(x, y) logh1(x) dX (x) dY (y) = ∫

logh1(x) dX (x), and simi-

larly
∫
R2 h(x, y) logh2(y) dX (x) dY (y)=∫

logh1(x) dX (x)=∫
logh2(y) dY (y). Plug-

ging these into Eq. (26), we obtain

DKL(λ || X ⊗Y )= DKL(λ || λ̂)+
∫

logh1(x) dX (x)+
∫

logh2(y) dY (y).

Since this equality holds in particular for λ = λ̂, we obtain DKL(λ̂ || X ⊗Y ) =∫
logh1(x) dX (x)+∫

logh2(y) dY (y). Therefore it follows that

DKL(λ || X ⊗Y )= DKL(λ || λ̂)+DKL(λ̂ || X ⊗Y ),

as we desire to show.

7 Conclusion

This paper takes a first step in exploring the implications of Bayesian privacy

concerns for the design of efficient and optimal auctions. Since, in many settings,
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the identity of the auction winner and the price she paid are publicly disclosed, we

focus on minimizing the privacy loss to the winner. We quantify this loss using the

mutual information between the winner’s type and her payment, and show that,

when both dominant-strategy incentive compatibility and ex-post individual ra-

tionality are required, under mild conditions the second-price auction minimizes

the winner’s privacy loss among all auctions that satisfy the designer’s primary

objectives.

Our results highlight an unexplored property of the second-price auction: its

attractive privacy characteristics. While we do not claim that this should be the

primary reason to use the second-price auction in practical settings, our findings

show that its determinism should not be viewed as a disadvantage, at least insofar

as Bayesian privacy is concerned.

Our proof relies on a novel result that establishes a lower bound on the mutual

information between two ordered random variables. We use this result, together

with the property of dominant-strategy mechanisms that the winner’s payment is

a mean-preserving spread of the second-highest bid, to establish our main theo-

rems. A natural extension of this work would be to study privacy-preserving auc-

tions under alternative solution concepts, while maintaining ex-post individual

rationality. Although we provide preliminary insights in this direction, a compre-

hensive analysis would require different proof techniques and is therefore left as

an open question for future research.
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