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Abstract

Human information processing is often modeled as costless Bayesian inference.
However, research in psychology shows that attention is a computationally costly
and potentially limited resource. We thus study Bayesian agents for whom comput-
ing posterior beliefs is costly; such agents face a tradeoff between economizing on
attention costs and having more accurate beliefs. We show that even small process-
ing costs can lead to significant departures from the standard costless processing
model. There exist situations in which beliefs can cycle persistently and never
converge. In addition, when updating is costly, agents are more sensitive to signals
about rare events than to signals about common events. Thus, these individuals can
permanently overestimate the likelihood of rare events. There is a commonly held
assumption in economics that individuals will converge to correct beliefs/optimal
behavior given sufficient experience. Our results contribute to a growing literature
in psychology, neuroscience, and behavioral economics suggesting that this assump-
tion is both theoretically and empirically fragile.
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1 Introduction

Modeling human information processing as Bayesian is standard across many fields. Cog-
nitive scientists have modeled visual perception as a form of Bayesian inference (Knill and
Richards (1996)); psychologists have argued that babies are “intuitive Bayesians” (Gop-
nik (2010)); neuroscientists have attempted to investigate how the brain would perform
Bayesian inferences (Doya (2007)); and economists have used Bayesian models to justify
many assumptions on human behavior (Epstein and Le Breton (1993)).

The Bayesian actor model assumes not only an ability to update beliefs, but an ability
to do so costlessly. In this paper, we examine how Bayesian behavior changes if the
costless processing assumption is relaxed; we find that this small departure from standard
Bayesian information processing models can lead to significant changes in behavior.

We consider an agent who is uncertain about the way the world works. The agent
is a Bayesian, and begins with a prior probability distribution over possible models of
the world. The agent receives signals about the true model of the world, and can choose
whether to internalize signal information by updating his prior via Bayesian inference.
Updating is costly, but internalizing signal information is valuable because it helps the
agent solve asset allocation problems that arise each period.*

In the single-period version of our model, we show that the agent’s optimal strategy
can be implemented using an elegant algorithm: Upon receiving a signal, he performs a
Bayesian update in a low-dimensional space to compute a “decision value” that determines
whether the signal provides enough new information to be worth internalizing. If the
signal’s decision value exceeds the cost of updating, then the agent internalizes the signal,
performing the full Bayesian update (which is useful for any future decision that may
arise).

Building on this characterization, we show that the agent can reject a large proportion
of signals even if updating costs are very small. Moreover, the agent is specially attentive
to signals suggesting that rare events are more likely than the prior suggests; in other
words, individuals optimally attend more closely to signals suggesting that rare events
are more common than they seem (e.g., hearing about airplane crashes) than to signals
that rare events are, in fact, very rare (e.g., government reports on the general safety of
airplanes).

We proceed to study the dynamic version of our model, where agents repeatedly
decide whether or not to update their beliefs based on the signal received. We show that
in dynamic environments, agents can exhibit several further behaviors that depart from
the traditional costless baseline. Agents can exhibit permanent belief cycling: Even as
they receive infinite information, their beliefs need not converge. More starkly, there are
situations where agents’ beliefs remain bounded away from the truth with probability 1.

Although agents in our model exhibit seemingly irrational behaviors, these behaviors
are not a result of irrationality on the part of agents. Indeed, agents in our model are

'We focus on the asset allocation problem because it is important in many economic applications.
Asset allocation also has two nice technical properties: First, the expected payoff is continuous in the
agent’s belief; and second, better-informed agents have strictly higher ex-ante expected payoffs.



always rationally optimizing, given the constraint that Bayesian inference is computation-
ally costly.

There is ample psychological evidence that individuals display seemingly irrational
patterns of belief updating. For example, Edwards (1982) reports situations in which
individuals update more conservatively than Bayesian updating would predict. Bar-Hillel
(1980) argues that individuals do not pay enough attention to base rates. Finally, Kah-
neman and Tversky (1979) and Prelec (1998) show that individuals appear to overweight
rare events and underweight common events. In the presence of updating costs, some sig-
nal structures can make agents look conservative, while others can make agents look like
they overweight the probability of rare events. Thus costly Bayesian updating provides a
principled and unified formulation that can explain why certain biases may exist in some
environments and not others.

Our model also links to the psychology and neuroscience of attention. The optimal
strategy under costly Bayesian updating (described above) can be implemented in a way
that resembles the “early selection theory of attention” (Pashler and Sutherland (1998)).
First, a fast, parallel system analyzes the signals received and determines which ones are
important enough for internalization. Important signals are then passed on to a slower,
serial system for further processing. This theory explains why attention exhibits “cocktail
party effects” (Bronkhorst (2000)): Important ambient signals such as hearing one’s name,
are readily attended to, while most incoming information is rejected /lost. Our model also
explains “flashbulb memories,” the fact that certain episodes are recorded much more
vividly in memory than others (Brown and Kulik (1977)).

1.1 Related Literature

Alternative constraints on belief processing have been considered. Wilson (2014) char-
acterizes optimal (Markovian) memory protocols for agents that have a finite number of
memory modules. In the two-state setting she considers, an agent optimally associates
each memory module with an interval of beliefs and—after observing a signal—transitions
to the module whose corresponding interval contains the posterior. Although Wilson
(2014) assumes that the agent forgets about the realized history of signals, she allows the
agent to fully introspect on the source of his beliefs by Bayesian updating over all pos-
sible signal histories; in our dynamic model, this channel of introspection is shut down.?
Like us, Wilson (2014) finds that agents should ignore signals that are mildly informa-
tive given the prior (see also Compte and Postlewaite (2012)). Consequently, information
processing is “non-commutative” and first impressions matter. Contrary to her model,
however, agents facing information processing costs as in our model do not succumb to
confirmation bias. Rather, they regard evidence opposite to the prior as having higher
decision value (see the discussion on belief cycling later in this paper).

Steiner and Stewart (2006) study the optimal design of probability perception when
there is noisy information at the time of decision making.® Steiner and Stewart (2006)

2Like in the work of Lipman (1999), we model bounded rationality as a “lack of logical omniscience.”
30ther models of belief manipulation include those of Bénabou and Tirole (2002), Bénabou and Tirole
(2004), Compte and Postlewaite (2004), Brunnermeier and Parker (2005) and Gossner and Steiner (2016).



show that the well-known biases of overweighting small probabilities and underweighting
large probabilities arise as a second-best solution to correct for the winner’s curse effect.
In our framework, agents also face friction in information processing. Yet, rather than
holding the friction fixed and analyzing ex ante perception, we allow agents to repeatedly
interact with the friction by choosing which signals to incorporate at a cost and which
ones to ignore. Although our prediction that agents pay more attention to rare events
bears resemblance to the finding of Steiner and Stewart (2006), in our context this is
because rare events entail higher decision values.

Other models assume that agents have information processing constraints either be-
cause they must use one of a finite number of learning algorithms (Brock and Hommes
(1997)) or because the amount of information they can process is limited (Sims (2003),
Gabaix (2014)). However, any fixed upper bound on information processing becomes
non-binding as beliefs approach the extreme, so that a rationally inattentive agent always
updates at extreme beliefs. Thus the model of rational inattention cannot produce belief
traps of the type we find.

Schwartzstein (2014) considers a model in which agents are Bayesian, yet selectively
attend only to aspects they believe are important. With a sufficiently strong (and wrong)
prior, a selectively attentive agent may “persistently fail to attend to information even if it
would greatly improve forecast accuracy.” The bad, self-confirming outcome Schwartzstein
(2014) finds largely depends on the fact that the agent internalizes information via a model
that is sometimes misspecified. This does not occur in our framework because our agents
face processing costs instead of model misspecification.*

Fryer et al. (2015) introduce a special signal (consisting of a pair of opposite signals)
that the agent remembers as favoring his current bias and then updates upon; this leads
to double updating and confirmatory bias. In our setting, by contrast, perfectly mixed
signals are simply ignored because they have no decision value.?

Entropy formulas related to those we find have also appeared in the literature on
costly information acquisition. Those papers’ similarity to ours is due to log utility being
prominent; see, for example, Lemma 2 of Cabrales et al. (2013b). However, in costly
information models like that of Cabrales et al. (2013b),% the cost of information is paid ez
ante (as an information acquisition cost), whereas in our model the agent sees the signal
first and then decides whether or not to pay to update.

2 Baseline Setup

We consider an agent who must allocate 1 unit of assets across possible outcomes (2 =
{wi,ws,...,wr}. The true outcome is generated by a distribution, denoted by 0*—the
(true) model of the world. Our agent’s beliefs about the world are based on a set

4For further work on information processing under misspecified models, see Benjamin, Rabin, and
Raymond (2016) and Benjamin, Bodoh-Creed, and Rabin (2016).

®Also related are the work on memory and recall, for example Mullainathan (2002), Gennaioli and
Shleifer (2010), and Bordalo et al. (2015).

6See also Cabrales et al. (2013a) and Bergemann and Bonatti (2015).



© = {61,0,,...,0,} of possible models of the world, which contains the true model,
6*. We assume that the agent does not know the true model 6* but starts with prior beliefs
po € A(O) over models of the world putting positive weight on 6* (i.e. po(6*) > 0).” Thus,
learning about the true probability distribution #* helps the agent make better decisions.

When an outcome w; actually occurs, the agent gets utility u(a;), where «; is the
amount of assets he allocated to outcome w;. We use the asset allocation problem as our
benchmark because it is simple, has economic meaning in many contexts, and implies a
direct value for information. Before allocating his asset, the agent receives a signal s
drawn from the set S = {s1, 2, ..., S, }. Given a model of the world 6, the distribution of
the signal is denoted by A(6), so that the probability of any signal s is A(6)[s]. We assume
signal and outcome realizations are conditionally independent from each other given 6.
We also assume the information structure can distinguish between different models, so
that for any 0 # ¢, there exists s with A(0)[s] # A(€')[s].

The final component of our model is our departure from the standard Bayesian model:
Performing Bayesian updating is costly. After seeing a signal s, the agent chooses whether
to internalize the signal by updating his prior. Updating requires payment of a (fixed)
cost ¢, and results in the replacement of the prior beliefs py with the posterior beliefs p(s).
If the agent does not update, then he pays no cost but the signal information is lost.

We consider first the case with a one-shot decision; this can also be thought of the case
in which the agent acts in each period but has a discount rate of 6 = 0. After presenting
our results for the single-period case, we explain how our findings change in a dynamic
world with 6 > 0.

3 Single-Period Costly Updating

For a distribution p on models of the world # € ©, we let p € A(Q) be the induced
probability distribution on outcomes, defined by

Pl =Y p(0)0(w):

0cO

We can then define the expected utility of an agent who has beliefs p over models of the
world and allocates assets according to aw € A(€2):

The optimal action o* is defined by
a*(p) = argmax e () EU,(a),

which leads to our key concept of “decision value” below.

"We use the standard notation A(X) for the set of probability distributions over set X.



Definition 1. Given prior py, the deciston value of a signal realization s s
EUs(a”(p)) — EUg(” (po)),
where p = p(s) represents the posterior beliefs given s.

To interpret this formula, note that when the agent sees signal s, he faces two options:
On one hand, he can choose to internalize the signal and update beliefs to p; this allows
him to allocate according to a*(p) and obtain payoff EU;(a*(p)) modulo the updating
cost. On the other hand, he can alternatively choose to discard the signal information;
in this case he knows that at the time of decision his future self will allocate according
to a*(po), so the expected payoff for his current self is given by EUs(a*(po)). Thus the
agent optimally chooses to internalize a signal if and only if its decision value exceeds c.
We emphasize that unlike models of costly information acquisition, the decision value in
our setting depends on the signal realization (recall that p = p(s)).

To simplify the rest of our analysis, from here onwards we assume that the agent
has log-utility: that is, u(a;) = log(c;). This functional form assumption drives the
functional forms of our results, but not our qualitative findings.

We now show that under log-utility, there is an elegant characterization of the agent’s
optimal updating strategy in terms of KL divergence.®

Proposition 1. Given prior pg, signal s, and log-utility, the agent updates if and only if
D(p(s)* || vg) > e,

where D(p(s) || p}) is the Kullback-Leibler (KL) divergence of the prior from the poste-
rior, and c is the processing cost.

Proof. In the asset allocation problem with log utility, the first-order conditions imply

*(p) =p".

If the agent uses prior beliefs py to make the allocation decision, he ends up with an
expected utility of

Zp ) log(pf (w)),

where p represents his posterior behefs.
However, if the agent uses p to make his allocation decision, he has expected utility

Zp ) log(p" (w)).

8The Kullback-Leibler (KL) divergence of distribution @ from distribution P over a common discrete
sample space 2 is defined as (Kullback and Leibler (1951))

DIPIIQ) = P) (QEZD

weN




Thus the decision value of the signal is given by

Zp )(log(p (w)) — log(py (w Zp ) - log <ng3)

0

=3

which is exactly the KL divergence of the prior from the posterior. O

3.1 Discussion

Proposition 1 tells us the exact conditions under which updating is useful, but computing
a decision value itself requires Bayesian updating. How can the agent solve this problem?
The key here is that the KL divergence is computed in terms of marginal distributions
over (2. Thus, the agent only needs to do a “partial” update to find the decision value.
To further illustrate this point, below we argue that Proposition 1 implies that the agent
can use a two-step algorithm that is more efficient than full Bayesian updating, so long
as updating in a larger space is more computationally intensive.

First, consider the complete decision space. A Bayesian agent has a distribution
1w e AO x S x Q) that describes the joint probability of any model, signal and outcome
combination. To fully update this distribution given a signal s, the decision-maker must
make some number of computations, which we denote /;.

As a different strategy, the agent may instead look at the distribution v that is the
projection of p onto the space S x ). This space is of lower-dimension than © x .S x €Q;
thus, updating in S x ) given a signal s is simpler, having processing cost fo < /1.
Proposition 1 suggests that in order to determine whether the signal s is worth updating
fully, it suffices for the agent to partially update to ¥ and compute the decision value.

In a world where all signals are highly informative and worth internalizing, “gate-
keeper” computation of v is a waste of resources. However, suppose that only a fraction
q < 1 of signals are worthwhile. The agent pays expected updating cost of {5 + ¢ - ¢; from
following the two-step algorithm, versus the cost of ¢; if he always updates. Thus, if ¢ is
small or if /; is large relative to fo—e.g., if there are many possible models but few out-
come possibilities—then the gatekeeper strategy we propose conserves on computational
cost while still allowing the agent to internalize important information.’

We mention that the gatekeeper solution is exactly the kind of system set up by the
early selection theory of attention in psychology (Pashler and Sutherland (1998)). In the
models posited in that literature, agents are endowed with two information processing
systems: A fast one that can process information in parallel, but only at a cursory level,
and a slower one that can look at information in more depth, but must do so serially. In
such models, the parallel system screens incoming stimuli. After screening, signals deemed
unimportant are ignored, while those deemed important are passed “upstairs” for further
processing. For our agent, the faster “gatekeeper” system can compute the decision value
and, if need be, push the signal to the slower serial system for internalization.

9A second, more psychological (or reduced-form) interpretation of Proposition 1 is that the decision
value of a signal is more easily accessible than are the signal’s implications about the likelihoods of
different models of the world.



Of course, one may ask: Why not simply always update in the lower-dimensional space
S x Q) and forget the existence of © x S x Q27 This is because just forming beliefs over
S x € is sufficient in a dynamic setting. Specifically, if the agent only maintains beliefs
about s and w over multiple updates, then he treats signals and outcomes as independent,
but in fact they are only independent conditional on the model 6. Consequently, such an
agent will learn the wrong distribution in the long run, even in the absence of updating
costs.

We now move on to examples showing how agents with costly updating differ in
behavior, sometimes greatly, from their costless Bayesian counterparts.

3.2 Example 1: Quantifying Costs

Proposition 1 shows that the addition of updating costs may cause agents to discard some
information. We now show, by numerical example, that this effect distorts behavior away
from the standard (rational, with perfect updating) baseline model even when processing
costs are relatively small.

We consider an example with two possible models of the world, 6; and 5, and two
possible outcomes, wy and wy. The probability of outcome w; under 6 is .9, the probability
of outcome w; under 5 is .1. The agent has a prior that puts weight py on #; and 1 — p,
on 0,19 In this setup, any possible signal s can be parametrized by an accuracy level

A(01)]s]
A(01)[s] + A(02)[s]

r=

A signal with accuracy level r = 1 (r = 0) is a signal that 0; (0o, respectively) is definitely
the true model of the world. We now characterize the agent’s decision to accept a signal
with accuracy level r as a function of his prior.

Given a signal of accuracy r, we can compute the agent’s decision value. First, we
determine the prior distribution on outcomes:

Py (w1) = po(-9) + (1 — po)(-1).

Similarly, the posterior distribution on outcomes implied by the signal is

0 . Por _ Por
Plwn) = por + (1 —po)(1 — 1) (9)+ (1 por + (1 —po)(1 — T)) L

By Proposition 1, the agent should choose to update iff (omitting the superscript €2)

planytog (20 ) 4 1 = plaayton (=20 )

Po(wl) 1- Po(wl)

Clearly, there is a threshold cost (depending on the prior) above which the agent
discards the signal and below which the agent updates. To interpret the magnitude of

10Here and hereafter, when a distribution p is over two objects, we abuse notation slightly by using the
distribution notation p to represent the probability of one of the objects.
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Figure 1: Combinations of prior py (horizontal axis) and signal accuracy r (vertical axis)
that lead the agent to accept (blue) or ignore (red) the signal. Here ¢ = 15 x .16.

this threshold, we will perform a unit conversion. We scale ¢ to be a fraction of the total
expected utility gain between a completely informed agent (who has expected utility of
9log(.9) + .1log(.1)) and a completely uninformed agent (who has expected utility of
log(.5)). That is, ¢ is written as a fraction of the term

(.91log(.9) + .1log(.1)) — log(.5) ~ .16.

Figure 1 shows how an agent with prior beliefs py reacts to signals of accuracy 7.

Note that even if ¢ is just 10% of the informational value of the problem, the agent
will, for any prior, reject signals that have accuracy in the interval [%,2]. Thus costly
updating has a large distortionary effect on behavior, relative to the costless updating

baseline.

3.3 Example 2: Attention to Rare Events

Individuals tend to overestimate the probability of rare events like plane crashes and
terrorist attacks (see, e.g., Barberis (2013)). In the behavioral economics literature, this



overestimation has been modeled as accidental distortion of probabilities (Kahneman and
Tversky (1979)). Our model, however, suggests a different explanation: When updating
is costly, agents’ beliefs tend to gravitate towards models of the world in which rare events
are more common than they actually are.

To see this, consider an example with agents who live in a big city. The agents faces
two outcomes: 2 = {p (robbed), o (safe)}. Correspondingly, there are two possible models
of the world: © = {6°,69}. We suppose that #°(c) = .99 and §¢(c) = .8, so that robbery
is always rare, but much rarer under 6% than under 4. We can interpret 6° as a model in
which the city is “safe”; #9 is a model in which the city is “dangerous.”

Suppose there are two agents who have the same updating cost ¢. One agent, whom
we call Dirk, starts out thinking that the city is dangerous, and the other, whom we call
Stephen, starts out thinking that the city is safe. Both agents are equally certain of their
(differing) models of the world: Dirk puts prior probability py > .5 on ¢, while Stephen
puts prior probability py on 6°.

We examine what happens when both agents receive equally strong signals suggesting
that their beliefs are wrong. Formally, Stephen receives a signal s¢ that has accuracy level
r < .5, and Dirk receives a signal s° that has accuracy 1 —r.

Our next result shows that quite generally, the decision value of Dirk’s signal is higher
than that of Stephen’s.

Proposition 2. For a fized py > .5, suppose that v € (0,.5) is such that the posterior
beliefs of Stephen put probability at least 1 — py on the model 6°. Then the decision value
of the signal s@ for Stephen is strictly higher than the decision value of the signal s° for
Dirk.

Under costly updating, agents who believe that the city is safe—that is, agents who
think that rare, dangerous events are very rare—tend to be very responsive to information
that suggests otherwise. Meanwhile, agents who believe that rare events are relatively
common are not as responsive to equally strong information suggesting that rare events
are, in fact, rare.

Proof of Proposition 2. We use two technical lemmata, whose proofs are deferred to the
appendix. For p,q € (0,1), we abuse notation slightly and write D(pl||q) for the relative
entropy between two Bernoulli distributions with success probabilities p and gq.

First, we observe that signals that move the agent’s beliefs away from the extreme are
more valuable than equally-strong signals that push beliefs toward the extreme.

Lemma 1. For all .5 <p<q <1, D(p|llqg) > D(q||p).

Second, we establish a monotonicity result on the value of signals that change beliefs
by a fixed amount.

' Note that Proposition 2 is only true if the signal is not strong enough to completely overturn the prior.
To see why r cannot be too small, consider the above setup with pg = .6 and r = .1, so that Stephen’s
posterior puts probability % on #°. His posterior estimate of the probability of the safe outcome is about
.827, compared to the prior estimate .914. From Proposition 1, we compute that Stephen’s decision value
is about .0166. Similarly we can compute that the decision value for Dirk is .0183, higher than Stephen’s.

10



Lemma 2. For any A > 0 and any p,q satisfying 5 <p<q<1—A, D(pl|lp+A)<
D(q|lq+24).

Now, let p§ = .99p + .8(1 — p) be Stephen’s prior probability on the safe outcome and
let 75 — .99pr+.8(1—p)(1—r)
P = - a-n)

accuracy 7. Similarly, we let pd = .8p +.99(1 — p) and p¢ =
prior and posterior estimates respectively.

For any r < .5 we have .5 < p° < p, .5 < p§ < p¥, and, importantly, A = p§ — p°
4 —pd. The condition that r is not too small further ensures that p¢ < p, and so pd <
Hence, Lemma 1 and Lemma 2 together imply that

be the corresponding posterior probability following a signal with

.8pr+.99(1—p)(1—r) R
P G g be Dirk’s

P

D(p"llpy) < Dhlp") = Dw5llps + A) < DFF|Ip* + A) = D(F*|Ip5); (1)

the expression (1) says exactly that the decision value for Stephen is higher than that for
Dirk. O

4 Belief Dynamics

We now explicitly consider the dynamics of our model. Suppose that the true model
of the world remains constant throughout. In this setting, the agent starts each period
t =1,2,... with a prior p;_;, receives a signal s drawn from probability distribution A(6*),
and chooses whether to internalize s. He then faces the allocation decision outlined in
our static model, with beliefs p; = p;_1(s) if s is internalized, and with beliefs p; = p;_; if
not. The agent then proceeds to the next period, with new prior p,. We assume that the
agent discounts future payoffs at rate § € [0, 1).

When § > 0, our dynamic model here assumes that the agent takes into account
future information values (which in turn depends on future updating decisions) in deciding
whether to internalize signals. This kind of sophistication makes it difficult to characterize
the decision value of a signal, unlike in the static/myopic case of Proposition 1. In our
formal analysis, we show an upper bound on the total value of a signal by assuming that
the agent can internalize all future signals at no cost. We then compare that bound to the
updating cost and establish conditions under which the latter is larger. Consequently, our
results below about the existence of belief traps and belief cycling extend without change
regardless of what the agent believes his future selves will do.'? That said, it is certainly
of interest to fully determine the optimal dynamic policy for a sophisticated agent. We
leave such a characterization for future work.

As a benchmark, we note that when there is no updating cost (i.e., ¢ = 0), the agent
learns the true model §* with certainty: p,(0*) =2 1.* Next, we examine the (dynamic)
implications of updating costs.

12Unlike in the model of Wilson (2014), we do not allow the agent to reflect on how he reaches his
current beliefs and perform delayed updating on signals that (he infers) have been ignored in the past.
I3 This result is standard, so we omit the proof.

11



Definition 2. A belief trap is a probability distribution p € A(©) such that an agent
with prior beliefs p will not internalize any signal s € S.

Note that an agent who starts a period in a belief trap will maintain his beliefs forever,
irrespective of the signals he receives. When updating is costless, the only belief trap is
one in which the agent knows the true model with certainty. However, we now show that
under general conditions, strong beliefs about any possible model of the world become
belief traps in the presence of a positive updating cost.

Definition 3. An information structure has full support if X(0)[s] > 0 for all 0 and s.

Proposition 3. Ifc > 0,0 < 1, and the information structure has full support, then there
exists € > 0 such that any belief py with po(0) > 1 — € for some 0 is a belief trap.

When § = 0, so that our agent is myopic, the characterization in Proposition 1 applies.
We can then directly show that when the prior beliefs are (close to) extreme, no signal
generates a decision value exceeding c.

When 6 > 0, Proposition 1 no longer holds because the updating decision in a given
period has repercussions for the future. In the absence of an analytic characterization, we
instead give an upper bound on potential future benefits of updating and show they are
smaller than ¢. The method of proof is to choose ¢ much smaller than what is required
in the case of 6 = 0, so that any notable utility gain only happens at least T" periods into
the future. For large T', these benefits are again negligible due to discounting. Details are
left to the appendix.

While Proposition 3 shows that extreme beliefs are stable under costly updating, it
does not ensure that belief traps are attractors. We find that when updating is costly,
beliefs may not even converge—they can exhibit permanent cycling with probability 1.

Proposition 4. Fiz ¢ > 0 and 0 < 1. There exists an information structure and an open
interval B C (0,1) such that if py € B, then almost surely lim;_,, p; is undefined.

The proof, which we present in the appendix, is by construction: For simplicity, we
restrict to the case of two possible outcomes Q2 = {0, 1}, two models © = {a, b} (with a
being the true model) and two signals S = {A, B}. The table below shows the conditional
probabilities of outcomes given models and of signals given models.

OUTCOMES/MODELS | a | b SIGNALS/MODELS || a | b
0 81 .2 A 851 .15 .
1 2 1.8 B 151 .85

Now consider an agent who repeatedly faces this information structure and makes
decisions. For illustrate we suppose 6 = 0, so Proposition 1 is sufficient to tell us whether
an agent will update given a signal. Figure 2 shows the decision value of accepting either
signal as a function of the prior. Observe that the value of accepting signal A falls quickly
as the agent comes to believe that a is very likely; thus, there is a point that the agent
stops accepting signal A. For example, if ¢ = .07, then the agent will not accept signal

12



How Can Belief Cycling Occur?
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Figure 2: Sufficient conditions for agents beliefs to cycle under costly updating.

A if he believes model a has probability at least .59. At that threshold belief, even if the
agent received and accepted signal A, his posterior probability estimate would only be
about .891. At that posterior belief, he would no longer accept signal A but he would still
accept signal B. This means the agent’s probability estimates of model a would never be
higher than .891. The same argument applies symmetrically for signal B. Thus, there is
no way for the agent to get into the region where he stops accepting both signals; hence,
the agent will exhibit persistent belief cycling.

Now, we have shown that it is possible for beliefs to get stuck or to cycle forever. Our
final result shows that there exist situations in which the agent’s beliefs will converge to
a point away from the true model (unless his prior beliefs are very close to the truth).

Proposition 5. Fiz 6 < 1, po < 1 and n > 0. There exists an information structure
such that an agent with prior py, discount factor & and any small positive updating cost
exhibits the following belief dynamics:

prob (tliglopt(@*) < 77) = 1.

Again, here we just sketch the intuition behind the proof: Consider an information
structure with two models and two signals as follows:!

SIGNALS/MODELS a b
A 1—€e|1— Le .
B € Le

141n this construction, we assume for simplicity that the outcome is identical to the model.
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Suppose that € is very small and L is very large. In this case, signal A is weakly informative
that the true model is a; hence, its decision value is almost 0, and for any fired updating
cost it can be shown that the agent will never accept signal A. At the same time, \ is
large, so signal B is very informative that the true model is, in fact, b. Thus, even if the
true model is a, the agent will accept only signal B (unless he begins at a prior where he
accepts no signals). In a dynamic world, this means the agent will converge to believing
b very strongly, until the decision value of signal B also falls below c.

However, we highlight that the proposition asserts an information structure that ap-
plies to every c. As we fix the information structure and prior and consider very small
¢, the preceding argument fails because the agent will (initially) accept signal A. Despite
this, we can still show that at any belief, signal B is accepted whenever signal A is. This
property again implies that the agent will converge to the wrong belief b in the long run
under costly updating.

We mention that because Proposition 5 applies to any small updating cost, it suggests
a surprising discontinuity as we move away from the costless baseline. As far as we are
aware, such discontinuity does not occur in other forms of learning biases: For example,
Bohren and Hauser (2017) show that under model misspecification (and no updating
cost), agents with approximately correct models almost surely learn asymptotically.

5 Conclusion

We have shown that the addition of processing costs to Bayesian inference leads ratio-
nal agents to adopt strategies of “pre-screening” signals before fully internalizing them.
This causes individuals to ignore some information, and can have distortionary effects
on behavior even when processing costs are small. Additionally, costly processing pro-
duces a form of probability overweighting, leading individuals to react more strongly to
information suggesting that unexpected events are common than to equivalently strong
information suggesting that events believed to be likely are actually rare. Finally, individ-
uals for whom processing is costly can sometimes converge to having arbitrarily strong,
but wrong, beliefs even in a world of free-flowing information.

There is a large set of psychological findings on biases in human probability judgment.'®
However, oftentimes the observed biases can appear to be somewhat contradictory—e.g.,
some strands of research show that individuals do not update enough (i.e., they are too
conservative) while others show that individuals can update too much (e.g., ignore base
rates or otherwise overweight the likelihood of a rare event). Our model can help to
reconcile the range of these findings: When Bayesian updating is costly, individuals can
be maximally conservative in some situations (as when caught in a belief trap), and can
be over-attentive (overweighting rare events) in others.

15Recent contributions in this direction include Haruvy and Erev (2002), Barberis (2013), Fudenberg
and Peysakhovich (2014), Peysakhovich and Rand (2015), and Peysakhovich and Karmarkar (2016).
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A  Proofs Omitted from the Main Text

Proof of Lemma 1

We need to show that

plog (g) +(1—p)log G%Z) > qlog (%) + (1 —q)log G%i) :

or equivalently, that

(2—p—q)log G%g) —(p+q)log (%) > 0. (2)

The left-hand-side of (2) vanishes when p = ¢, so it suffices to show that the derivative
of that left-hand-side with respect to ¢ is strictly positive. This reduces to verifying

R R

Now, we observe that the left-hand-side of (3) vanishes when p = ¢ and its derivative

with respect to p is ——4— — —— < 0. Thus, we have (3) and, consequently, (2); the

p(1-p) q(1—-q)
lemma follows.
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Proof of Lemma 2

We fix A and show that the expression

p l—p
D A) =pl —_— 1—p)l —_— 4
(pllp+A4) pog(p+A>+( p)og(l_p_A> (4)
strictly increases in p. For the derivative of (4) to be positive, we need to check that

3 (asa)

1+z

(5)

At p = .5, (5) reduces to the easy-to-verify inequality log ;=
tive of (5) with respect to p again, it remains to show that

A(2p+2A 1) - A2p+A—1) .
(p+APA—=p—A2" p(l-p)p+A)Q1A—-p—A)

this is true whenever p > .5, and the lemma follows.

13”;2. Taking the deriva-

Proof of Proposition 3

As the information Structure has full support, there exists v > 0 such that A(0)[s] > ~
for every 6 and s. Let M = =. We observe a simple lemma.

Lemma 3. Whenever an agent’s prior belief satisfies po(0) > 1 —¢€ for some 6 and € > 0,
his posterior belief must be such that p1(0) > 1 — Me.

Proof. For the proof, it suffices to note that the posterior belief of any model 8’ £ 6 can
increase by a factor of at most M relative to the prior. O]

Now, we use the preceding lemma to provide a lower bound on the utility the agent
expects if he commits not to update. We assume without loss of generality that all
outcomes are possible given the prior pg, and denote N = || < co.

In each period t, a non-updating agent forgets the signals he has seen and starts with
the same prior py. Because he rejects all signals, the amount he allocates to outcome
w € N is always pit(w). His expected payoff in period ¢ is thus

ZM -log po( )) (6)

weN

where p{ is the posterior distribution on outcomes conditional on the signal realized in
period t. Lemma 3 implies that for any 6, p;(0) and py(0) differ by at most Me and by
at most a multiple of M. It follows that for any w, p{(w) and pf}(w) satisfy the same
properties. So we have from (6) that

>y py(w) - log(pg (@) = D Ipi(w) — pg ()] log(pg (w))|

weN weN

> “H(p) — NM]cloge
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where H(-) is the entropy function (Cover and Thomas (2012)).°
Our non-updating agent thus ensures a total payoff of

1
Zat_lﬂ-t > 1-35 (—H(py') — NMleloge|) . (7)

t>1

We can also give an upper bound to the agent’s total payoff assuming that updating
is costless and that the agent can freely choose to update. For this let ¢, € A(©) be the
posterior that the agent knows about 6 after seeing the signal in period ¢, and let p; be
the posterior that he retains. Regardless of the retention decision, ¢,(0) ~ p;_1(6) - A(0)[s']
(where s' denotes the signal realized in period t). However p, = ¢; only when the agent
accepts the signal; p, = p;_1 otherwise.

The agent allocates according to p; at the end of period ¢, for an expected payoff of

=> pl(w) - log(q(w)) < —H(q}) (8)

we

where the inequality is due to KL-divergence being non-negative. From Lemma 3 and
induction we have p;(6),q;(#) > 1 — M'e for each t. Thus the total variation distance
between ¢; and py is at most M'e, which also bounds ||g? — p|.

Now take T sufficiently large such that H (pi}) < &. For this T', we take e sufficiently

small such that 1= 00 ~|H(pf!) — H(q™)| < £ Whenever 1p§ — ¢®| < MTe. This can be done
independently of po because the entropy function is continuous in the total variation
norm, hence uniformly continuous (Rudin (1964, Thm. 4.19)). Making € even smaller if
necessary, we may assume that NM|eloge| < £

From (8), the non—negatlveness of H(-) and the preceding assumptions, we deduce that
the total payoff for a freely updating agent is bounded above by

ji:(v 1ﬂ} <:j£:(? 1 )

t>1 t>1
< Y &N (-H(g))
1<t<T
< Y STH=Hp) + (9)
1<t<T
1 Q 2c
< 1—_5(— (o)) + 3
< Z(Stflﬂt +c
t>1

where the last step follows from (7).

Now, (9) shows that even when updating is costless, the agent cannot improve her total
payoff by c relative to a counterfactual in which he commits not to update. As a corollary,
we see that when the updating cost is ¢, it is never worthwhile to pay the updating cost
of ¢ in any period (given any signal); this completes the proof of the proposition.

16The latter step follows from considering the cases pf}(w) > € and pf(w) < € separately.
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Proof of Proposition 4

We will first consider a myopic agent facing the following information structure:

0 | 0
* 1 T
S r+1 r+1
S/ 3 1
r4+1 r4+1

with some small positive r. Assume throughout the proof that outcomes are simply gen-
erated by the point-mass distribution at the model.

For p € (0,1), define a pair of functions:

P

F’"(p):er(l—p)-r’
p-r

GT(p):pWJr(l—p)'

If an agent assigns prior probability p to model 6%, his posterior becomes F,.(p) given
the signal s* and G,(p) given the signal s’. Notice that F,. and G, are inverse functions,
corresponding to the fact that after an agent sees s* followed by s', his posterior equals
his prior. It follows that starting with any initial belief py, the agent’s posterior beliefs
all belong to the countable set {Frgk) P2 -

The decision value for the agent upon seeing s* is

Vir(p) == D(F:(p) || p)

_ p 1o A-p)r r
T+ (—pr 1g(p+<1—p>r)+p+<1—p>r 1g<p+<1—zo>r) (10)
= —log(p+ (1 —p)r) + ]% log .

Similarly the decision value of s’ is
pr

——— -logr. 11
pr+1—p & (11)

Var(p) :i=—log(pr +1—p) +

The following lemma establishes the cutoff structure for accepting signals:

Lemma 4. For allr € (0,1), when p > % Vi, (p) is strictly decreasing in p while Vi (p)
is first increasing then decreasing. Moreover, Vi, (p) > Vi, (p) for every p € (%, 1). In
words, the decision value of a “reinforcement” signal decreases in the prior probability,
and it is always smaller than the decision value of a “counteracting” signal.

Proof. We omit the subscript reference to r and calculate that

1—r rlogr
Vi(p) = — - ;
r(p) p+(1—pr (p+(1—pr)?
1—7r rlogr
V() &

= + .
pr+1—p (pr+(1-p))>?
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For Vi(p) < 0 we need (1 —7)(p+ (1 —p)r) > —rlogr. As p > 3, we only need to check
# > —rlogr. Differentiating twice, we see this inequality indeed holds for all » < 1.
For a similar reason, we see that V/(p) is first positive and then negative.

To show that Vi (p) > Vi(p) for p € (3,1), we notice first that the two functions are
equal at both endpoints of the interval. It then suffices to show that V/(p) — Vi (p) is first

positive then negative, crossing 0 exactly once. We calculate that

Va(p) = Vilp) =

1 1 1 1
=) (pr+1—p+p+(1—p)r) ~ (Friegr) <(p7“+1—p)2 " (p+(1—p)7“)2)‘

Now, the ratio between (

5 + ( BE and —L— + L equals

1 1
pr+1—p) p+(1-p) pr+l—p = p+(1-p)r

1 '<p7"+1—p p+(1—p)r>
1+r \p+(1—p)r pr+1—p )’

which is increasing in p. It follows that Vi (p) > Ve(p), and we have the lemma. O

We now define a pair of cutoffs

prs(c) = man{VF,r(p) > c};
par(c) = mgx{VGm(p) > c}. (12)

For every cost ¢ € (0,log2) and sufficiently small 7, we have Vp(3) = V(3) > ¢. Lemma 4
then implies that % < prr(c) < par(c). We will frequently omit the reference to ¢ to ease
notation.

Using Lemma 4 and the symmetry of the information structure, we deduce that
the interval [0, 1] is divided into five subintervals : [0,1 — pg,|,[1 — peyr, 1 — Pro)s [1 —
PEr DEr], [PErs Dar)s [Par, 1]. If the agent’s prior p is in the first or last subinterval, he is
in a belief trap and rejects both signals. If p is in the central subinterval, both signals are
accepted. If pp, < p < pg,r, the agent accepts the signal s’ and rejects s*. Similarly he
accepts s* and rejects s' if 1 —pg, <p <1—pg,.

To complete the argument for cycling, we have to show that starting with any initial
prior py € (1 — par, Par), the agent’s posterior never jumps out of this interval to one of
the two belief traps. For this it suffices that the agent’s belief never moves from the central
subinterval to the rightmost (or likewise leftmost) subinterval. Using the notation we have
introduced, we need to check F,(pg,) < pg,. But this follows directly from Lemma 1:
We have ¢ = D(F,(pr.)l|prr) < D(pry || Fr(prr)) = D(GH(Fo(prs)) || Fr(prr)). By
definition (12), we have pg, > F.(pr,). This proves the existence of belief cycling for
myopic agents.

21



We can extend the argument to cover patient agents. Hold ¢ and r fixed and consider
the following modified information structure parametrized by e:

o* o'
* 1 T
S m'e ﬁ'E
/ T
Sl s R I
sl 1—€e| 1—c¢

Notice that s° is totally uninformative, while conditional on s # s% the information
structure is the same as before.

Because s’ happens with overwhelming probability, the effective discount factor is
close to 0. So under this information structure the patient agent acts as if he is myopic.
The argument above can thus be applied with little change.!”

Proof of Proposition 5

We first consider a myopic agent whose information structure is given by

o* 0’
s*|1—e€|1— Le
sl € Le
with some L > 1 and € > 0 sufficiently small. As before, assume that the outcome is equal
to the model (that is, if the model is a the outcome 1 has probability 1 and vice versa for b).

Define r* = % and r’ = 11__L€6. Then using notation from the proof of Proposition 4, we

know that the signal s* takes the agent’s belief from p to F,.(p) when he updates, while
s’ renders his belief G, (p). Note that r* < 1 is independent of €, while v’ — 1_ as ¢ — 0.
Let us show that for »" sufficiently close to 1,

Ver(p) > Vi (p), Vp € (0,1). (13)

Intuitively, because the signal s* is very weakly information of 6*, its decision value is small
uniformly over p. The remaining technical difficulty is to establish the above inequality for
p close to 0 or 1. For this we calculate the derivatives of Vr and Vi near these endpoints.
From Lemma 4, V(, .(0) = 1 —r* + r*logr*, which is a fixed positive number. On the
other hand V,,(0) = —="H%" — 0 as v/ — 1. Thus V£, (0) < V{,-(0) and similarly
Vi (1) > Vi . (1) for e sufficiently small, establishing (13).

Moreover, from the expression for V{ .(p) in Lemma 4 we see that this derivative

becomes uniformly (over p) close to zero as " — 1. Since % becomes uniformly close
to 1, we can use a similar argument to deduce

VG,r* (F,«/ (p)) > VF,r’ (p),Vp c (0, 1) (14)

I"Even though the region of accepting any signal may no longer be an interval for any positive €, we
can leverage the fact that posteriors take only finitely many values. Thus, the places where the interval
property breaks down have vanishingly small length as ¢ — 0, and we can find an open interval of priors
from which these problematic beliefs will never be reached. The argument then goes through.

22



Now take any ¢ < min{Vg,+(po), Vo (n)} (recall r* is fixed). As in the proof of
Proposition 4, the interval [0,1] is divided into five subintervals L, CL, C, CR, R. In the
leftmost subinterval L. and the rightmost subinterval R, the agent rejects both signals. He
accepts both signals in the central subinterval C, which may be empty. Finally he accepts
s’ but rejects s* in both CL and CR, due to (13). The choice of ¢ ensures that the initial
belief py does not belong to R, and (14) implies that the belief will never enter R (as p
cannot jump from C to R). It follows that the agent’s belief will almost surely enter L,
after a finite number of consecutive s’ signals. By the choice of ¢, the final belief is lower
than 7 as desired.

Finally we can extend this argument to a patient agent by making e even smaller,
just as we did with the other proofs. A key observation in this setting is that a smaller €
not only makes signal s* less informative, but it also makes any s’ signal more valuable
because the agent won’t get another one for a long time. We omit the technical details.
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