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1. INTRODUCTION

Suppose a monopolist has invented a new durable product, and is deciding how to set prices
over time to maximize pro�t. Consulting the literature on intertemporal pricing,1 the monopolist
would �nd that keeping the price �xed (at the single-period pro�t maximizing price) is an optimal
strategy when consumers understand the product perfectly and their willingness-to-pay does not
vary over time. But a wrinkle arises if consumers may learn something that in�uences how much
they like the product a�er pricing decisions have been made, a salient issue since the monopolist’s
product is completely new. For example, when the Apple Watch, Amazon Echo, and Google
Glass were released, most consumers had li�le prior experience to inform their willingness-to-pay.
In such a situation, the monopolist might suspect that purchase decisions will depend on the
available information–e.g., journalist reviews about the product–which may in turn depend on
pricing. �e potential for information arrival presents a challenge to the monopolist’s problem.

In isolation, components of this se�ing have been studied extensively. �e literature on
informative advertising takes as given that there is some information that would inform consumers
of their willingness-to-pay (see Bagwell (2007)). In the intertemporal pricing literature, Stokey
(1979) recognized that willingness-to-pay may change over time, and that such changes can
in�uence the optimal pricing strategy. And other papers on intertemporal pricing, such as Biehl
(2001) and Deb (2014), have used exogenous learning by consumers to motivate their studies of
stochastic changes in buyer values.

Despite this apparent interest, we are not aware of any papers that study dynamic pricing
while modeling information arrival explicitly. We suspect one reason for this absence relates to
technical di�culties. Buyers’ purchase decisions depend on the value of information, something
that can become intractable in general dynamic environments. While Deb (2014) and Garre� (2016)
restore tractability by considering speci�c evolutions of buyer values, the stochastic processes
they consider violate the martingale condition imposed by Bayesian updating. �eir approaches
are suitable for studying se�ings with taste shocks, but they do not fully capture learning. So the
question of how to price optimally in the face of information arrival is le� unanswered.2

We introduce a model of intertemporal pricing that incorporates dynamic information arrival,
and we demonstrate the optimality of constant price paths in this model. To do this, we adopt

1E.g., Stokey (1979), Bulow (1981), Conlisk, Gerstner and Sobel (1984), among others. �ese papers show that a seller
with commitment does not bene�t from choosing lower prices in later periods.
2One may think that allowing buyers to learn is simply a ma�er of making them more patient, since information
arrival provides incentives to delay purchase. By Landsberger and Meilijson (1985), this logic would imply that for
any �xed information arrival process, a constant price path should be optimal. However, in Appendix D.5 we show
that constant prices are not in general optimal without the robust objective we consider here.
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the approach of the active literature on robust mechanism design. A seller commits to a pricing
strategy, while buyers observe signals of their values, possibly over time, each according to some
information structure (or more precisely, information arrival process). We assume that the seller
does not know any part of the information arrival processes, and is concerned with the worst
possible information structures given the pricing decisions. One justi�cation for this worst-case
analysis is that the seller may want to guarantee a good outcome, no ma�er what the information
structures actually are.3 For our application, another justi�cation would be that an adversary
(e.g. a competitor or antagonistic journalist) may be interested in minimizing the seller’s pro�t. If
the �rm did not have total control over what information consumers might have access to, our
framework would be appropriate. As for the commitment assumption, introducing it circumvents
issues related to the Coase conjecture. Without seller commitment, this result implies that the
worst-case is approximately achieved when buyers know their values, delivering seller pro�t
equal to the minimum buyer valuation.4

Our �rst result is that a longer time horizon does not increase the amount of pro�t the seller can
ensure from each buyer. One explanation is as follows: In each period, the adversarial nature could
release information that minimizes the pro�t in that period.5 Doing so would make the seller’s
problem separable across time, eliminating potential gains from intertemporal price discrimination.
�is intuition is incomplete, because the worst-case information structures for di�erent periods
need not be consistent, in the sense that past information may prevent nature from minimizing
pro�ts in the future. �is feature makes it di�cult to �nd the exact worst case for an arbitrary
price path. Instead, we focus on the class of partitional information arrival processes. �ese
processes involve the buyer learning whether his value is above or below a given threshold, with
this threshold declining over time. We demonstrate that nature can use a partitional information
arrival process to hold the seller to a pro�t no greater than the single-period benchmark.

While the above argument shows that selling only once (at the single-period optimal price) is
an optimal strategy with only a single buyer, this pricing strategy forgoes potential future pro�t
when multiple buyers with i.i.d. values arrive over time. In the classic se�ing with known values,
a constant price path maximizes the pro�t obtained from each arriving buyer, who either buys
immediately upon arrival or not at all. �is argument does not extend to our problem, since nature
can induce delay by promising to reveal information in the future. Such delay could be costly for
the seller, due to discounting. However, we show that as nature a�empts to convince the buyer to

3A more complete discussion of this justi�cation can be found in the robust mechanism design literature, in particular:
Chung and Ely (2007), Frankel (2014), Yamashita (2015), Bergemann, Brooks and Morris (2017), Carroll (2015, 2017).

4See Section 3.1 for further discussion of the commitment assumption.
5For expositional convenience, we think of “nature” choosing the information arrival process to hurt the seller.

3



Libgober and Mu 4

delay her purchase, it must increase the probability of purchase to satisfy the buyer’s incentives.
With constant prices, the pro�t loss due to delayed sale is always o�set by the increased probability
of sale. We thus show that a constant price path ensures the greatest worst-case pro�t, equal to
the pro�t when buyers can only possibly buy upon arrival.

Together, this analysis delivers a result similar to one that has been shown under known values
(see e.g. Stokey (1979)): �e seller’s optimal strategy is to hold the price �xed at the single-period
optimal price, and (in the worst-case) buyers purchase either immediately or never. �is holds
even though the single-period optimum in our problem is di�erent due to buyer learning. In
Section 6.1, we extend our main model to nest the known-value se�ing. Constant prices remain
optimal in that extension, suggesting that our results strictly generalize Stokey (1979).

A crucial assumption in our main model is that buyer information in each period can depend
on the entire history of realized prices. In Section 7, we consider several variants of the model,
which allow for less interaction between prices and information. With only one period, these
alternative setups coincide with the single-period models studied by Roesler and Szentes (2017)
and Du (2018). �ough their one-period pro�t guarantee is typically higher than ours, we discuss
conditions on the information arrival processes that ensure their single-period benchmark is still
achievable with arriving buyers. We also show in Section 8 that with patient players as well as
common values and signals, how information depends on prices has vanishing impact on the
optimal pro�t guarantee per buyer.

We begin by reviewing the literature, and then proceed to present the main model. �e one-
period benchmark is studied in Section 4, and we show that intertemporal incentives do not help
the seller in Section 5. Using this result, we demonstrate that constant price paths are optimal in
Section 6. Section 7 discusses our timing assumption, while Section 8 presents the extension to
common values and public information. Section 9 concludes.

2. LITERATURE REVIEW

�is paper is part of an active literature that studies pricing under robustness concerns, where the
designer may be unsure of some parameter of the buyer’s problem. Informational robustness is a
special case, and one that has been studied in static se�ings. �e most similar to our one-period
model are Roesler and Szentes (2017) and Du (2018). Both papers consider a se�ing like ours,
where the buyer’s value comes from some commonly known distribution, but where the seller
does not know the information structure that informs the buyer of her value.6 Taken together,
6Du (2018) extends the analysis to a many-buyer common value auction environment. He constructs a class of
mechanisms that extracts full surplus when the number of buyers grows to in�nity. �e optimal mechanism for
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these papers characterize the seller’s maxmin pricing policy and nature’s minmax information
structure in the static zero-sum game between them.7 �e one-period version of our model di�ers
from these papers, since we assume that nature can reveal information depending on the realized
price the buyer faces (see Section 3.1 for further discussion). Moreover, our paper is primarily
concerned with dynamics, which is absent from Roesler and Szentes (2017) and Du (2018).

Other papers have considered the case where the value distribution itself is unknown to the
seller. For instance, Carrasco et al. (2017) consider a seller who does not know the distribution
of the buyer’s value, but who may know some of its moments. If the distribution has two-point
support, our one-period model becomes a special case of Carrasco et al. (2017) in which the
seller knows the support as well as the expected value. But in general, even in the static se�ing,
assuming a prior distribution constrains the possible posterior distributions nature can induce
beyond any set of moment conditions.

In our model, nature being able to condition on realized prices is su�cient to eliminate any
gains to randomization, even if the randomization is to be done in the future. �is may be
reminiscent of Bergemann and Schlag (2011), who show that a deterministic price is maxmin
optimal (in one period) when the seller only knows the true value distribution to be in some
neighborhood of distributions. However, the reasoning in Bergemann and Schlag (2011) is that a
single choice by nature yields worst-case pro�t for all prices. �is is not true in our se�ing, but we
are able to construct an information structure for every pricing strategy that shows randomization
does not have bene�ts.

While most of this literature is static, some papers have studied dynamic pricing where the
seller does not know the value distribution. Handel and Misra (2014) allow for multiple purchases,
while Caldentey, Liu, Lobel (2016), Liu (2016) and Chen and Farias (2016) consider the case of
durable goods. As discussed above, information arrival restricts how the value evolves, and
rules out the cases considered in the literature. In addition, these papers look at di�erent seller
objectives; the �rst three study regret minimization, whereas the last one looks at a particular
mechanism that approximates the optimum.

�e literature on robust mechanism design has been able to provide optimality foundations
for certain simple mechanisms, which tend to be observed in practice. For instance, Carroll
(2017) shows how uncertainty over the correlation between a buyer’s demand for di�erent goods

�nitely many buyers is solved in the special case of two buyers and two value types by Bergemann, Brooks and
Morris (2016), and in the general case by Brooks and Du (2018).

7Roesler and Szentes (2017) actually motivate their model as one where the buyer chooses her optimal information
structure; they show that the solution also minimizes the seller’s pro�t. See Appendix D.4 for a related interpretation
of our model.
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leads the seller to price the goods independently.8 In the moral hazard se�ing considered by
Carroll (2015), uncertainty over the mapping from an agent’s actions into output favors linear
compensation schemes. At the moment, however, this literature has had less to say about dynamic
environments. Important exceptions are Penta (2015) and Chassang (2013), but these are both
rather di�erent from our se�ing.9

Several intertemporal pricing papers (absent robustness concerns) allow for the value to change
over timewithout explicitly modeling information arrival. Stokey (1979) assumes the value changes
deterministically given the initial type. Deb (2014) assumes the value is independently redrawn
upon Poisson shocks. For Garre� (2016), the value follows a two-type Markov-switching process.
As mentioned above, these papers do not impose the martingale condition for expectations. We are
not aware of how to solve the buyer’s optimal stopping problem under an arbitrary information
arrival process. But the maxmin objective allows us to focus on simple and intuitive information
structures, making the buyer’s problem tractable.

Finally, the closely related literature on information design has also begun to study dynamics
(see Ely, Frankel and Kamenica (2015) and Ely (2017)). While we are ultimately concerned with
pricing strategies, our work connects to information design because we describe how receiver
(buyer) behavior varies depending on how sender (nature) chooses the information structure.
Several of our results—in particular, the proof of Lemma 2—bear resemblance to this literature,
and they may be of interest outside of our se�ing.

3. MODEL

A seller (he) sells a durable good at times t = 1, 2, . . . , T , where T ≤ ∞. In each period t, a single
buyer (she) arrives.10 We let t denote calendar time, and let a index a buyer’s arrival time. All
parties discount the future at rate δ. �e product is costless for the seller to produce,11 while each
buyer has unit demand. We assume that each buyer has (undiscounted) lifetime value va from
purchasing the object, where va is drawn from a distribution F and �xed over time; when there is
no confusion, we will omit the subscript and simply write the value as v. �e prior distribution

8�e general link between dynamic allocations and multi-dimensional screening has been long noted in Bayesian
se�ings (see e.g. Pavan et al. (2014) for discussion). While it is interesting that we obtain a result similar to Carroll
(2017), our focus on information arrival and single-object purchase is a signi�cant di�erence.
9Penta (2015) considers the dynamic implementation of social choice functions, and Chassang (2013) shows how
dynamics enable a principal to approximate robust contracts that may be infeasible under liability constraints.

10Our analysis is unchanged if the number of arriving buyers varies over time, provided the value distribution is �xed.
11Introducing a cost of c per unit does not change our results: It is as if the value distribution F were “shi�ed down”
by c, and the buyer might have a negative value. �e transformed distribution G in De�nition 1 below would also
be shi�ed down by c.
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F is common knowledge, with support on R+ and 0 < E[v] < ∞. Until Section 8, we assume
di�erent buyers have independent values.

However, buyers do not directly know their v; instead, they learn about it through signals that
arrive over time, via some information structure. To be precise, a dynamic information structure
(or information arrival process) Ia for a buyer arriving at time a consists of:

• A set of possible signals for every time t ≥ a, i.e., a sequence of sets (St)
T
t=a, and

• Probability distributions given by Ia,t : R+ × St−1
a × P t → ∆(St), for all t with a ≤ t ≤ T .

Without loss of generality, we assume that all buyers are endowed with the same signal sets St,
although each one privately observes any particular signal realization. To avoid measurability
issues, each signal set St is assumed to be at most countably in�nite.

We highlight that in the above de�nition, the distribution of the signal st at time t could
depend on the buyer’s true value va ∈ R+, the history of her previous signal realizations
st−1
a = (sa, sa+1, . . . , st−1) ∈ St−1

a , as well as the history of all previous and current prices
pt = (p1, p2, . . . , pt) ∈ P t. With independent buyer values, the seller’s pro�t can be minimized
on a per buyer basis. �us there is no need to correlate information across buyers, or to condition
a buyer’s signal on the purchase history of previous buyers.

�e timing of the model is as follows. At time 0, the seller commits to a pricing strategy σ,
which is a distribution over possible price paths pT = (pt)

T
t=1. We allow pt =∞ to mean that the

seller refuses to sell in period t. Note that the price the seller posts at time t must be the same
for all buyers that have arrived and not yet purchased.12 A�er the seller chooses the strategy,
nature chooses a dynamic information structure for each buyer. In each period t ≥ 1, the price in
that period pt is realized according to σ(pt | pt−1). A buyer arriving at time a with true value va
observes the signal st with probability Ia,t(st | va, st−1

a , pt) and decides whether or not to purchase
the product.

Given the pricing strategy σ and the information structure Ia, the buyer arriving at time a
faces an optimal stopping problem. Speci�cally, she chooses a stopping time τ ∗a adapted to the
joint process of prices and signals, so as to maximize the expected discounted value less price:

τ ∗a ∈ argmax
τ

E
[
δτ−a(E[va|sτa, pτ ]− pτ )

]
.

�e inner expectation E[va|sτa, pτ ] represents the buyer’s expected value conditional on realized
prices and signals up to and including period τ . �e outer expectation is taken with respect to the
12Otherwise, multiple buyers do not introduce any extra di�culty beyond the case of a single buyer.
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evolution of prices and signals. We allow the stopping time τa to take any positive integer value
≤ T , or τa =∞ to mean the buyer never buys.

�e seller evaluates payo�s as if the information structures chosen by nature were the worst
possible, given his pricing strategy σ and buyers’ optimizing behavior. Hence the seller’s payo� is:

sup
σ∈∆(pT )

inf
(Ia),(τ∗a )

T∑
a=1

E[δτ
∗
a−apτ∗a ] s.t. τ ∗a is optimal given σ and Ia for each a.

Note that when a buyer faces indi�erence, ties are broken against the seller. Breaking indi�erence
in favor of the seller would not change our results, but would add cumbersome details.13

3.1. Discussion of Assumptions

Several of our assumptions are worth commenting on. First, following the robust mechanism
design literature, we assume that the buyer has perfect knowledge of the information structure
whereas the seller does not. More precisely, each buyer knows her information structure, and is
Bayesian about what information will be received in the future. In contrast, the seller is uncertain
about the information structure itself. Our interpretation is that the buyer understands what
information she will have access to; for instance, she may always use some product review website
and hence know very well how to interpret the reviews.14 �e seller, on the other hand, knows that
there are many possible ways buyers can learn, and wants to do well against all these possibilities.
In Section 6.1, we will show that our results extend even if the seller knows that buyers begin
with at least some prior information. �us, a deterministic constant price path remains optimal
when nature is constrained to provide some particular information (but could provide more) in
the �rst period.

Second, we assume that the value distribution is common knowledge. �is restriction is for
simplicity, allowing us to focus on information arrival and learning. �e assumption also enables
us to compare our results to the classic literature on intertemporal pricing. In fact, the known-value
se�ing can be seen as an extreme case of our extended model in Section 6.1.

�ird, we assume that the seller commits to a pricing strategy. �e commitment assumption

13When ties are broken against the seller, it follows from our analysis that the sup inf is achieved as max min. �is
would not be true if ties were broken in favor of the seller.

14While it may be a strong assumption that buyers perfectly know the signal distribution far into the future, our
results do not rely on extra rationality of the buyers beyond what is typically assumed in static robust mechanism
design. Speci�cally, our analysis is unchanged if buyers are instead maxmin over future information, so long as they
know how to interpret signals in the current period. Developing that extension requires a conceptual framework
separate from the current paper, so we omit the details.
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avoids certain technical di�culties related to formalizing learning under ambiguity (see Epstein
and Schneider (2007)). In practice, �rms like Amazon and Apple are widely followed by consumers
and industry experts, meaning that they are able to credibly announce and stick to consistent
pricing strategies. And while some strategies may be di�cult for a seller to commit to, constant
price paths are signi�cantly simpler to implement since deviations are straightforward to detect.
On the other hand, we restrict the seller to using pricing mechanisms, and rule out for instance
mechanisms that randomly allocate the object as a function of reports. We view this as a restriction
on the environment, but one that is natural in our main applications of interest where prices
are typically utilized. �is restriction also allows us to avoid di�culties in working with general
dynamic mechanisms, where agent types must capture all future information.

Finally, our key timing assumption is that the information structure in each period is determined
a�er the price for that period has been realized. As discussed in the literature review, if the
information structure is determined before the price is realized, then our one-period model would
coincide with Roesler and Szentes (2017) and Du (2018). �e question of timing is more delicate
under dynamics. Although we believe our main model to be the most natural setup, we consider
several alternative models in Section 7, which generalize Roesler and Szentes (2017) and Du (2018)
to the dynamic se�ing. In any event, we think that information could depend (at least somewhat)
on price in practice. When shopping online, a buyer’s information about a product depends on
how prominently it is displayed in the search results. If she sorts products by how expensive they
are, then the information structure will be price-dependent.

4. SINGLE PERIOD ANALYSIS

We start with the case where the seller does not worry about intertemporal incentives. We do this
by taking T = 1, although the results would be identical if buyers were constrained to purchase
only upon arrival (or never). To solve this problem, we will de�ne a transformed distribution of
the prior F . For expositional simplicity, the following de�nition assumes F is continuous. All of
our results in this paper extend to discrete distributions, though the general de�nition requires
additional care and is relegated to Appendix A.

De�nition 1. Given a continuous distribution F , the transformed distribution G is de�ned as
follows. For y ∈ R+, let L(y) denote the conditional expectation of v ∼ F given v ≤ y. �en G is the
distribution of L(y) when y is drawn according to F . We call G the “pressed” version of F .

�e pressed distributionG is useful because for any realized price p, nature can only ensure that
the object remains unsold with probability G(p). To see this, �rst observe that any information

9
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structure is outcome-equivalent to another that directly recommends one of two actions: To
purchase the good or not. Given this simpli�cation, the worse-case information structure must
have the following property: As long as the buyer is recommended to buy with positive probability,
the buyer who is recommended not to buy must have expected value exactly p. Otherwise nature
could adjust its recommendation to further decrease the probability of sale.

Finally, subject to the constraint that a buyer who does not buy has �xed expected value (in
our case, p), one can show that partitional information structures maximize the probability of this
recommendation (see e.g. Kolotilin (2015)). In a partitional information structure, the buyer is
told whether her value is above or below a certain threshold. Using the above de�nition of G, we
argue that the threshold must be F−1(G(p)), making 1−G(p) the probability of sale.

�ese remarks give us the following proposition:

Proposition 1. In the one-period model, a maxmin optimal pricing strategy is to charge a determin-
istic price p∗ that solves the following maximization problem:

p∗ ∈ argmax
p

p(1−G(p)). (1)

We call p∗ the one-period maxmin optimal price and similarly Π∗ = p∗(1−G(p∗)) the one-period
maxmin pro�t.

It is worth comparing the optimization problem (1) to the standardmodel without informational
uncertainty. If the buyer knew her value, the seller would maximize p(1− F (p)). In our se�ing,
the di�erence is that the pressed distribution G takes the place of F . �is analogy will be useful
for the analysis in later sections.

�e following example illustrates:

Example 1. Let v ∼ Uniform[0,1], so that G(p) = min{2p, 1}. �en p∗ = 1
4
and Π∗ = 1

8
. With

only one period to sell the object, the seller charges a deterministic price 1/4. In response, nature
chooses an information structure that tells the buyer whether or not v > 1/2.15

In this example, relative to the case where the buyer knows her value, the seller charges a
lower price and obtains a lower pro�t under informational uncertainty. In Appendix D.1, we show
that this comparative static holds generally.
15�ere are other information structures that induce the same worst-case pro�t for the seller; for instance, nature can
fully reveal the value when it is above the threshold 1/2, since the buyer will buy anyways. Nonetheless, the lowest
element of the partition cannot be further re�ned. �at is, a buyer whose value is below the critical threshold will
be told so in every worst-case information structure.

10
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5. INTERTEMPORAL INCENTIVES DO NOT HELP

In this section we present our �rst main result, that having multiple periods to sell does not
allow the seller to extract more surplus from any buyer.16 Stokey (1979) proved this result for
the known-value case, provided buyer value does not change over time. On the other hand, she
also demonstrated that if value does change over time, le�ing the buyer delay purchase could
enable the seller to obtain higher pro�ts by facilitating price discrimination. One may wonder
whether information arrival, which a�ects the buyer’s expected value over time, could similarly
make price discrimination worthwhile. In Appendix D.5, we provide a simple example (with an
information arrival process known to the seller) where this is the case.

However, it turns out these concerns do not arise for worst-case information structures.
Consider the seller’s pro�t from the �rst buyer. �e seller could always sell exclusively in the �rst
period and ensure Π∗ as a lower bound. To show that Π∗ is also an upper bound, we explicitly
construct a dynamic information structure for any pricing strategy, such that the seller’s pro�t
under this information structure decomposes into a convex combination of one-period pro�ts.
Our proof takes advantage of the partitional form of worst-case information structures from the
single-period problem:

Proposition 2. For any pricing strategy σ ∈ ∆(pT ), there is a dynamic information structure I
and a corresponding optimal stopping time τ ∗ that lead to expected (undiscounted) pro�t no more
than Π∗ per buyer.

We focus on the �rst buyer and show that the seller’s worst-case pro�t from this buyer is
at most Π∗. We will present the proof under an additional assumption that the seller charges
a deterministic price path (pt)

T
t=1. �is is not without loss, because random prices in the future

may make it more di�cult for nature to choose an information structure in the current period
that minimizes pro�t. However, our argument does extend to random prices and shows that
randomization does not help the seller. We discuss this a�er the more transparent proof for
deterministic prices.

Let us �rst review the sorting argument when the buyer knows her value. In this case,
given a price path (pt)

T
t=1, we can �nd time periods 1 ≤ t1 < t2 < · · · ≤ T and value cuto�s

wt1 > wt2 > · · · ≥ 0, such that the buyer with v ∈ [wtj , wtj−1
] optimally buys in period tj (see e.g.

Stokey (1979)). �is implies that in period tj , the object is sold with probability F (wtj−1
)−F (wtj).

16We comment that the dynamics of information arrival are crucial for this result. For instance, suppose the seller
knew that information would not be released in some period t. �en he could sell exclusively in that period and (by
charging random prices) obtain the Roesler and Szentes (2017) pro�t level, which is generally higher than Π∗ (see
Section 7 for details). For δ su�ciently close to 1, this pricing strategy does be�er than a constant price path.
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Inspired by the one-period problem, we construct an information structure under which
in period tj , the object is sold with probability G(wtj−1

) − G(wtj) (that is, where the pressed
distribution G replaces F ). �e following information structure I has this property:

• In each period tj , the buyer is told whether or not her value is in the lowestG(wtj)-percentile.

• In all other periods, no information is revealed.

�is information structure is similar to the one-period problem, in that a buyer is told whether
her value is above or below a threshold. In the dynamic se�ing, this threshold F−1(G(wtj)) is
now declining over time. We refer to any such dynamic information structure as a partitional
information arrival process, since di�erent signal realizations partition the support of the buyer’s
value distribution into disjoint intervals. Note that the thresholds are chosen to make the buyer
indi�erent between purchasing and continuing without further information. �e buyer therefore
prefers to delay purchase when her value is below the threshold. On the other hand, a buyer
whose value is above the threshold does not expect to receive further information, and hence
purchases immediately. �ese observations are summarized in the following lemma:

Lemma 1. Given prices (pt)
T
t=1 and the information structure I constructed above, an optimal

stopping time τ ∗ involves the buyer buying in the �rst period tj when she is told her value is not in
the lowest G(wtj)-percentile.

�e formal proof can be found in Appendix A, where we prove a general result for random prices.

Using this lemma, we can now prove Proposition 2 by computing the seller’s pro�t under the
information structure I and the stopping time τ ∗:

Proof of Proposition 2 for Deterministic Prices. We assume T =∞, but the same proof works for
�nite T (with a minor modi�cation to the Abel summation formula used below). Since the
buyer with true value v in the percentile range (G(wtj), G(wtj−1

)] buys in period tj , the seller’s
discounted pro�t is given by

Π =
∑
j≥1

δtj−1ptj ·
(
G(wtj−1

)−G(wtj)
)

=
∑
j≥1

(δtj−1ptj − δtj+1−1ptj+1
) · (1−G(wtj))

=
∑
j≥1

(δtj−1 − δtj+1−1)wtj · (1−G(wtj))

≤ δt1−1 · Π∗,

(2)

12



Robust Intertemporal Pricing 13

where the second line is by Abel summation,17 the third line is by type wtj ’s indi�erence between
buying in period tj or tj+1, and the last inequality uses wtj(1−G(wtj)) ≤ Π∗,∀j. �

Relative to the potential complexity of an arbitrary information arrival process, the partitional
information structures constructed above are intuitive: Consumers buy when they �nd out that
their value is above some (price-contingent) threshold. Intertemporal pricing cannot help the
seller as long as he is concerned at least with this special class of information arrival processes.

Despite the analogy to the known-value case, we highlight that for an arbitrary declining price
path, the parititional information structures considered in our proof may not be the worst case
(even among partitional processes). �e following example illustrates:

Example 2. Let T = 2, v = 0 or 1 with equal probabilities, and δ = 1/2. Suppose the seller
sets prices to be p1 = 11/40 and p2 = 1/10. Under these prices, a buyer with value 9

20
would

be indi�erent (in the �rst period) between purchase and delay. Hence the partitional information
structure constructed in Lemma 1 induces expected value 9

20
when recommending the buyer not to

purchase in the �rst period. �e information structure further induces expected value p2 = 1/10

when recommending the buyer not to purchase in the second period either.

If the probability of being recommended to buy in period t (conditional on not having bought)
is rt, we have 1

2
= r1 + 9

20
(1 − r1) and 9

20
= r2 + 1

10
(1 − r2). �ese equations give r1 = 1

11
and

r2 = 7
18
. Hence the seller’s expected pro�t against this information structure is

p1 ·
1

11
+ (δp2) ·

(
1− 1

11

)(
7

18

)
≈ 0.0427 < 0.0858 ≈ Π∗.

Now suppose that instead, nature were to provide no information in the �rst period and reveal the
value perfectly in the second period. Note that the buyer would be willing to delay, since

E[v]− p1 ≤ δ · P[v = 1] (1− p2) ,

which in fact holds with equality. Under this alternative information structure, the seller’s pro�t is
therefore δp2P[v = 1] = 1

40
< 0.0427.

�e important feature of the example is that by promising more information to the buyer in
the second period, nature can create option value and induce delay. �is turns out to hurt the
seller’s expected pro�t when prices decrease over time, although we show in the next section that

17Abel summation says that
∑
j≥1 ajbj =

∑
j≥1

(
(aj − aj+1)

∑j
i=1 bi

)
for any two sequences {aj}∞j=1, {bj}∞j=1

such that aj → 0 and
∑j
i=1 bi is bounded. We take aj = δtj−1ptj and bj = G(wtj−1

)−G(wtj ).
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the seller can be guarded against such damage with non-decreasing prices.
We mention that in the particular example above, the (la�er) information structure we con-

sidered is indeed the worst case. However, it is in general challenging to characterize the worst
case against a given decreasing price path. As that is not necessary for our main result on the
optimality of constant prices, we leave the characterization for future work.

To conclude the section, we brie�y discuss how random prices complicate our argument.
When prices are random, the threshold values wtj , if de�ned using the buyer’s indi�erence
condition, will be random variables. A technical di�culty arises because these thresholds may not
be monotonically decreasing. When such non-monotonicity occurs, we will not be able to express
the seller’s discounted pro�t as a convex sum of one-period pro�ts, and the pro�t bound in (2)
will not be valid.

In Appendix A we show that the basic intuition from the deterministic case extends to random
prices, but we need additional tools to generalize the construction appropriately. Speci�cally,
we modify the relevant indi�erence thresholds so that they are forced to be decreasing. Let vt
be the smallest value (in the known-value case) that is indi�erent between buying in period t at
price pt and optimally stopping in the future, and then let wt = min{v1, v2, . . . , vt}. We think of
this as keeping track of the “binding” thresholds, above which the buyer has already purchased.
�is circumvents the potential non-monotonicity issue, and we can use the re-de�ned wts to
specify the otherwise identical partitional information structure. �e rest of the proof proceeds as
before, with the assistance of a key lemma (Lemma 4) that expresses the price as the expectation
of present and discounted future threshold wts. �is identity replaces the indi�erence condition
we utilized to derive the third line of (2). Proposition 2 thus continues to hold for random prices.

6. OPTIMALITY OF CONSTANT PRICES

We now demonstrate the optimality of constant price paths. By Proposition 2, the seller’s dis-
counted pro�t from the buyer arriving at time a is bounded above by δa−1 · Π∗. �is gives us an
upper bound for the seller’s overall worst-case pro�t. In the other direction, if the seller were
able to set personalized prices, this upper bound could be achieved by selling only once to each
arriving buyer. We will show that the seller can achieve the same pro�t level by always charging
p∗, without conditioning prices on the arrival time.

Under known values, any arriving buyer facing a constant price path would buy immediately
or never, due to impatience. In contrast, the promise of future information in our se�ing may
induce the buyer to delay, even with constant prices. Nevertheless, in the following lemma, we
show that against non-decreasing price paths, nature cannot hurt the seller more than providing

14
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information only upon arrival. So by commi�ing to never lowering the price, the seller obtains
the single-period pro�t guarantee from each buyer.

Lemma 2. In the multi-period model with only the �rst buyer, the seller can guarantee Π∗ with any
deterministic price path (pt)

T
t=1 satisfying p

∗ = p1 ≤ pt,∀t.

Wepresent the intuition here and leave the formal proof to Appendix A. Fixing a non-decreasing
price path and an arbitrary dynamic information structure, we consider an alternative informa-
tion structure that gives a single recommendation to the buyer (to purchase or not) in the �rst
period. �e probability that the buyer is recommended to purchase at time 1 in this replacement
information structure leaves the discounted probability of sale unchanged. In other words, we
“push and discount” nature’s recommendation to the buyer’s arrival time.

Our proof shows that for non-decreasing prices, the �rst buyer would follow the recommen-
dations of this replacement information structure, while the seller’s pro�t is weakly decreased.
Since the seller receives at least Π∗ under any information structure that releases information
only in the �rst period, we obtain the lemma. Note that Example 2 shows this argument relies
upon non-decreasing prices.

Armed with this lemma, we can show our main result of the paper. �e proof is straightforward
given our discussions.

�eorem 1. �e seller can guarantee Π∗ · 1−δT
1−δ with a constant price path charging p∗ in every

period. �is deterministic pricing strategy is maxmin optimal, and it is uniquely optimal whenever
the one-period maxmin optimal price p∗ is unique.

Against a constant price path, a worst-case dynamic information structure simply gives each
buyer the same information she would have obtained with only one period to purchase. �is
completes our analysis of the main model.

6.1. Initial Information

Before proceeding, we point out one extension of our model where constant price paths remain
optimal. So far we have assumed that the seller has no knowledge over what information buyers
receive. But in practice, the seller may know that buyers observe some speci�c signals. For
example, he may conduct an advertising campaign, and understand its informational impact very
well. In that case, the seller would only seek robustness against a subset of the possible information
arrival processes.
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�is situation can be modeled by assuming that in addition to having the prior belief F , each
buyer observes some signal s0 ∈ S0 before arrival. �e seller does not observe the realization of
s0, but the signal set S0 and the distribution of s0 given v are common knowledge. �is initial
information structure is denoted byH. We allow nature to provide information conditional on s0

but keep all other aspects of the model identical.
Let Fs0 be the posterior value distribution following signal s0, and Gs0 be its pressed distribu-

tion. �e same analysis shows that, against Fs0 , the (one-period) worst-case information structure
involves each buyer being told whether her value is above or below some threshold. Hence,
Proposition 1’. In the one-period model where the buyer observes initial information structureH,
the seller’s maxmin optimal price p∗H is given by:

p∗H ∈ argmax
p

p(1− E[Gs0(p)]). (3)

�e expectation is taken with respect to the distribution of s0.

�e expression (3) is familiar in two extreme cases: ifH is perfectly informative, then Fs0 is
the point-mass distribution on s0. �is means Gs0(p) is the indicator function for p ≥ s0, so that
E[Gs0(p)] = F (p). In the other extreme,H is completely uninformative and we return to (1).

We can similarly show that a constant price path is optimal for this extended model:
�eorem 1’. In the multi-period model where each buyer observes initial information structureH
upon arrival, the seller’s (maxmin) discounted average pro�t per buyer is independent of the time
horizon T and the discount factor δ. A constant price of p∗H guarantees this pro�t.

�e optimality of constant prices in this result can be viewed as a generalization of Stokey
(1979), which corresponds to a perfectly informative initial information structure. �e proof
directly adapts the proof for our main model, so we omit it from the appendix.

7. TIMING

�is section analyzes the implications of our assumption regarding the timing of information
arrival relative to pricing. �is assumption is captured in how we de�ne dynamic information
structures, since we allow them to be contingent on all past prices as well as the current price.

When T = 1, the alternative model where information cannot depend on price is studied
in Roesler and Szentes (2017) and Du (2018), which together solve the optimal selling strategy
and the worst-case information structure.18 For completeness, we recall their result. To make
18One may be further interested in cases where information interacts somewhat, but not arbitrarily, with the price.
We do not pursue this here.
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the connection with our paper most clear, we impose as in these papers that the buyer’s value
distribution F is supported on [0, 1]. Roesler and Szentes (2017) observe that in choosing an
information structure, nature is equivalently choosing a distribution F̃ of posterior expected
values, such that F is a mean-preserving spread of F̃ .19 �ey solve for the worst-case distribution
F̃ as summarized below:
�eorem 1 in Roesler and Szentes (2017). For 0 ≤ W ≤ B ≤ 1, consider the following
distribution that exhibits unit elasticity of demand (with a mass point at x = B):

FB
W (x) =


0 x ∈ [0,W )

1− W
x

x ∈ [W,B)

1 x ∈ [B, 1]

(4)

In the one-period zero-sum game between the seller and nature, an optimal strategy by nature is
to induce posterior expected values given by the distribution FB

W , such that F is a mean-preserving
spread of FB

W , andW is smallest possible subject to this constraint.

�e seller’s optimal single-period pro�t guarantee is equal to the smallestW de�ned above,
which we denote by ΠRSD. Conversely, Du (2018) constructs a particular mechanism the seller
can use to guarantee pro�t ΠRSD against any information structure. While Du (2018) allows
buyers to choose an allocation probability other than 0 or 1, for a single buyer this turns out to
generate the same outcome as a random price mechanism (see Appendix B.1 for details). We note
that ΠRSD ≥ Π∗ holds, and in Appendix D.3 we characterize when the inequality is strict.

As alluded to in the introduction and Section 3.1, specifying the role of prices in dynamic
information structures is more subtle than in a single period. Over time, there are many more
ways for information to interact with price. Our main model provides the most cautious pro�t
guarantee, but one may also be interested in how Roesler and Szentes (2017) and Du (2018) extend
to dynamic se�ings.

In this section, we re-de�ne a dynamic information structure to be a sequence of signal sets
(St)

T
t=1 and probability distributions Ia,t : R+ × St−1

a × P t−1 → ∆(St). �e crucial distinction
from our main model is that the signal st may depend on previous prices pt−1 but not on the
current price pt. �us the dynamic information structures in this section are a subset of those
considered in our main model.

As a warm up, we note that under the alternative setup considered here, a longer horizon does

19�is equivalence is separately observed by Gentzkow and Kamenica (2016) in the context of Bayesian persuasion.
�e result appears in the early work of Rothschild and Stiglitz (1970).
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not a�ect the seller’s problem with a single buyer.

Proposition 3. Consider the re-de�ned class of dynamic information structures. For any T and δ,
the seller’s maxmin pro�t from the �rst buyer (against this class) is given by ΠRSD.

�e reasoning is as follows: With multiple periods and a single buyer, the seller can guarantee
ΠRSD by selling only once in the �rst period (using Du’s mechanism). On the other hand, suppose
nature provides the Roesler-Szentes information structure in the �rst period and no additional
information in later periods. �en the seller faces a �xed distribution of values given by FB

W . By
Stokey (1979), selling only once is optimal against this distribution, and the seller’s optimal pro�t
isW = ΠRSD. �is proves the result.

While both Proposition 2 and Proposition 3 show a longer selling horizon does not help the
seller, here the argument is more direct due to the duality between Roesler-Szentes and Du. �e
above proof shows that nature can provide an information structure such that for all pricing
strategies, the seller’s pro�t is at most ΠRSD. In our baseline se�ing, however, nature must
condition the information structure on realized prices (as well as the expected distribution of
future prices) in order to hold pro�t below Π∗.

�e same argument shows that even with arriving buyers, the seller cannot guarantee more
than ΠRSD from each buyer. �e question remains as to whether ΠRSD per buyer is still achievable
when buyers arrive over time (and personalized prices are not allowed). We consider three di�erent
cases: In the �rst case, all dynamic information structures as de�ned in this section are permi�ed,
and we show that ΠRSD per buyer is not a�ainable. In the la�er two cases, we show that ΠRSD

can be guaranteed from each buyer when nature is restricted to certain subsets of information
structures. Speci�cally, the pro�t bound is tight either if signals do not depend on realized prices,
or if each buyer receives a single signal upon arrival.20

7.1. Case One: Information can arrive over time and depend upon past prices

First, we allow arbitrary dynamic information structures, so long as information in any period
depends only on past realized prices. We show that the one-period pro�t ΠRSD cannot be guaran-
teed from each buyer.21 For simplicity, the following result assumes two periods, though the same
qualitative conclusion holds more generally.

20Note that the three cases coincide when T = 1.
21�is result may be expected given the discussion of Case Two and Case �ree below, since either of those cases
requires a di�erent generalization of Du’s mechanism to achieve ΠRSD .
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Claim 1. Consider the model with two periods and one buyer arriving in each period. Assume that
ΠRSD > Π∗ and that Du’s mechanism is uniquely maxmin optimal in the one-period problem.22

�en the seller’s total discounted pro�t guarantee is strictly below (1 + δ)ΠRSD for any δ ∈ (0, 1).

We prove this claim by constructing a speci�c information structure that nature provides.
When a buyer arrives, nature provides her with the Roesler-Szentes information structure. �is
yields pro�t at most ΠRSD from the second buyer, and similarly from the �rst buyer if she expects
no additional information in the second period. However, we let nature reveal more information
in the second period to induce some (�rst-period) buyers to delay their purchase. In more detail,
in the second period nature reveals the value perfectly to any buyer who would have purchased in
the �rst period without this additional information. �e key technical step of the proof shows
that delay occurs with positive probability and hurts the seller. We comment that we are only able
to show total pro�t is strictly below (1 + δ)ΠRSD for this speci�c information structure. Since it
is generally not the worst-case information structure for every pricing strategy, we do not know
how to solve for the actual maxmin pro�t in the current model.

Note that in our construction above, the information structure in the second period depends
on the previous signal and the realized price in the �rst period. �e possibility for information to
be both dynamic and price-dependent turns out to be crucial for the result of Claim 1, as we show
in the cases below.

7.2. Case Two: Information cannot depend on realized prices

Here we assume that information can arrive over time, but it is independent of realized prices.
Formally, we restrict to information structures given by Ia,t : R+ × St−1

a → ∆(St). It turns
out that an optimal strategy for the seller is to utilize a constant price path, where the price is
randomly drawn according to Du’s mechanism (instead of p∗ as in our main model).

�eorem 2. Suppose that information is independent of realized prices. For any T and δ, the seller’s
maxmin average pro�t per buyer is ΠRSD. �is can be achieved by randomizing over constant price
paths.

�is theorem involves new techniques that may be of independent interest. Recall that, in
accommodating random pricing strategies in Section 5, we de�ned “cuto� values” in two steps—
�rst using the buyer’s indi�erence condition, and then keeping track of the lowest realized values.
22ΠRSD > Π∗ is clearly necessary for the result: We have shown in our main model that (1+δ)Π∗ can be guaranteed.
On the other hand, we impose an extra assumption that Du’s mechanism is strictly optimal. �is is for technical
reasons that we explain in Appendix B, and it may not be necessary for the conclusion. In any event, we show in
Appendix D.2 that Du’s mechanism is indeed unique for generic value distributions F .

19



Libgober and Mu 20

Intuitively, these were the relevant binding thresholds, above which consumers would have already
bought. Using these cuto� values, we constructed an information structure under which the
seller’s pro�t is decomposed into a convex sum of one-period pro�ts.

Inspired by this technique, the proof of �eorem 2 introduces the dual de�nition of cuto� prices
for a given, price-independent, information structure. Assuming that the seller uses a constant
price path, these cuto� prices enable us to similarly decompose the seller’s pro�t into one-period
pro�ts. We then invoke several properties of Du’s mechanism to bound the pro�t from below.
Details are le� to Appendix B.

7.3. Case �ree: Information only upon arrival

Finally, we consider the case where each buyer is endowed with an information structure Ia :

R+ × P t−1 → ∆(Sa), and she receives the single signal upon arrival. In this way, we allow
information to respond to realized prices, although for each buyer information does not arrive
over time.

Here we immediately see that a constant price path does not in general guarantee ΠRSD: If
prices were perfectly correlated across periods, nature could provide the worst-case partition to
all buyers a�er the �rst period. Doing so would hold pro�t down to Π∗, which is generally lower
than ΠRSD. �is observation suggests that the seller should avoid correlated prices. Indeed, we
�nd that the seller can still guarantee ΠRSD per buyer by choosing independent prices across
periods:

�eorem 3. Suppose that each buyer only receives information once upon arrival, before the price
in that period realizes. For any T and δ, the seller’s maxmin pro�t average per buyer is ΠRSD. �is
can be achieved with a strategy that sets independent prices across periods.

Our proof shows how to set independent prices while replicating Du’s mechanism for each
arriving buyer. �is is based on a key lemma (Lemma 5) relating the outcome under a static price
distribution to that under a dynamic price distribution.

8. COMMON VALUES AND PUBLIC INFORMATION

�is section modi�es the model in Section 3 by allowing for common values and publicly observed
signals. Notice that making one change without the other would leave the seller’s problem
unaltered. Here we argue that with both modi�cations, the seller is able to guarantee higher
pro�ts. We do this by studying the stylized case of pure common values and perfectly correlated
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signals.23

Speci�cally, we assume that all buyers have the same value v, which is drawn from F at t = 0.
Nature chooses a single information arrival process, I , consisting of signal sets (St)1≤t≤T and
distributions It : R+ × St−1 × P t → ∆(St). As in our main model, signals can depend on past as
well as current prices. However, signals are “public,” so a buyer who arrives at time t observes all
signals up to period t. Each buyer decides when to purchase based on the signals she observes,
and it does not ma�er whether she also observes others’ purchase decisions, which reveal no
more information than the signals.24

Our �rst result restricts the set of relevant information arrival processes we need to consider.
It turns out that against increasing price paths, it is su�cient for nature to provide a single signal
at time 1, which is observed by all buyers:

Lemma3. Consider themodel with common values and public signals. Fix any price path (p1, . . . , pT )

with p1 ≤ p2 ≤ · · · ≤ pT . �en the worst-case pro�t is achievable by an information structure that
provides a single public signal in the �rst period.

�is result is the analog of Lemma 2 for the current se�ing. We use a similar argument to “push
and discount” nature’s recommendation. �e new di�culty here is to ensure that the resulting
replacement information structure is still public.

Lemma 3 implies that for increasing price paths, we can restrict a�ention to posterior expected
values that are �xed over time. Let F̃ denote the distribution of posterior valuations arising from
some information structure. �en the seller’s discounted pro�t can be rewri�en as:

(1− δ)ΠC = min
F̃

T∑
t=1

(1− δ)δt−1pt · (1− F̃ (pt)), (5)

Observe that if nature provides the Roesler-Szentes information structure, then the resulting
F̃ satis�es p · (1− F̃ (p)) ≤ ΠRSD for every p. Hence the RHS of (5) is at most (1− δT )ΠRSD.25

Below we show this upper bound is tight in the in�nite-horizon limit with patient players.

23Optimal pricing when information is conveyed across buyers has been studied in several other papers in the Bayesian
se�ing, such as Bose et al. (2006, 2008). �e distinction is that we allow buyers to delay purchase.

24If purchase decisions are observed and values (or signals) are imperfectly correlated, then buyers will face a
coordination problem in choosing when to purchase. In general there may be multiple equilibria. However, these
strategic considerations among the buyers are not the focus of this paper, and we leave them for future study.

25By Stokey (1979), this is an upper bound on seller’s pro�t even if prices are not increasing.
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Figure 1: Illustration of constructed price paths. Blue is δ = 0.9; Orange is δ = 0.95.

�eorem 4. Consider the model with common values and public signals. Let ΠC(δ, T ) be the seller’s
optimal pro�t with discount factor δ and time horizon T . We have:

lim
δ→1,T→∞

(1− δ)ΠC(δ, T ) = ΠRSD (6)

�e order of limits does not ma�er, and the maxmin pro�t guarantee is approximated by a sequence
of strictly increasing price paths.

�e proof adapts Du’s random price mechanism to construct a sequence of price paths such
that in the limit, the RHS of (5) converges to the single-period pro�t under Du’s mechanism. �ese
price paths, for uniformly distributed values and δ = 0.9 or δ = 0.95, are shown in Figure 1.
Prices rise steeply at �rst, eventually leveling out.

9. CONCLUSION

In this paper, we have studied optimal monopoly pricing with dynamic information arrival while
utilizing a robustness approach. With independent buyer values, the monopolist’s optimal pro�t
is what he would obtain with only a single period to sell to each buyer, and a constant price path
delivers this optimal pro�t. �e inability to condition on a buyer’s arrival time therefore imposes
no cost on the seller (in our main model). �ese conclusions depend on our assumption regarding
the timing of information release, and we have illustrated how this is the case.

Our paper contributes to a growing literaturewhich employs themaxmin approach in analyzing

22



Robust Intertemporal Pricing 23

the optimal design of mechanisms. For us, the maxmin objective is useful in two respects:

• Motivating our focus on partitional information structures, and

• Simplifying the set of relevant information structures with increasing price paths.

Whether similar simpli�cations can be obtained for di�erent seller objectives is an open question
for future research.

Most of the robust mechanism design literature has considered static se�ings. Introducing
dynamics complicates the characterization of agent behavior, which is essential for understanding
the performance of di�erent mechanisms. �is di�culty suggests durable-goods pricing as a
natural �rst se�ing to investigate robust dynamic mechanisms, because a buyer’s decision is
simply represented by the choice of a stopping time. Nonetheless, one can ask similar questions in
other contexts, and we hope the general question of how to design mechanisms under information
arrival will receive more a�ention in the future.
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A. PROOFS FOR THE MAIN MODEL

We �rst de�ne the pressed distribution G in cases where F need not be continuous.
DEFINITION 1’. Given a percentile α ∈ (0, 1], de�ne g(α) to be the expected value of the lowest
α-percentile of the distribution F . In case F is a continuous distribution, g(α) = 1

α

∫ F−1(α)

0
vdF (v).

In general, g is continuous and weakly increasing.

Let v be the minimum value in the support of F . For β ∈ (v,E[v]], de�ne G(β) = sup{α :

g(α) ≤ β}. We extend the domain of this inverse function to R+ by se�ing G(β) = 0 for β ≤ v and
G(β) = 1 for β > E[v].26

We now provide proofs of the results for the main model, in the order in which they appeared.

A.1. Proof of Proposition 1

Given a realized price p, minimum pro�t occurs when there is maximum probability of signals
that lead the buyer to have posterior expectation ≤ p. First consider the information structure I
that tells the buyer whether her value is in the lowest G(p)-percentile or above. By de�nition of
G, the buyer’s expectation is exactly p upon learning the former. �is shows that, under I , the
buyer’s expected value is ≤ p with probability G(p).

Now we show that G(p) cannot be improved upon. To see this, note that it is without loss of
generality to consider information structures which recommend the buyer to “buy” or “not buy.”
Nature chooses an information structure that minimizes the probability of “buy.” By Lemma 1
in Kolotilin (2015), this minimum is achieved by a partitional information structure, namely by
recommending “buy” for v > α and “not buy” for v ≤ α. Since the buyer’s expected value given
v ≤ α cannot be greater than p, we have α ≤ F−1(G(p)). It is then easy to see that the particular
information structure I above is the worst case.

�us, for any realized price p, the seller’s minimum pro�t is p(1 − G(p)). �e proposition
follows from the seller optimizing over p.

A.2. Proof of Proposition 2

In the main text we showed that for any deterministic price path, nature can choose an information
structure that holds pro�t down to Π∗ or lower. Here we extend the argument to any randomized
pricing strategy σ ∈ ∆(P T ). For clarity, the proof will be broken down into three steps.
26If F does not have a mass point at v, g(α) is strictly increasing and G(β) is its inverse function which increases
continuously. If instead F (v) = m > 0, then g(α) = v for α ≤ m and it is strictly increasing for α > m. In that
case G(β) = 0 for β ≤ v, a�er which it jumps tom and increases continuously to 1.
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Step 1: Cuto� values and information structure. To begin, we de�ne a set of cuto� values.
In each period t, given previous and current prices p1, . . . , pt, a buyer who knows her value to be
v prefers to buy in the current period if and only if

v − pt ≥ max
τ≥t+1

E[δτ−t · (v − pτ )] (7)

where the RHS maximizes over all stopping times that stop in the future. It is easily seen that
there exists a unique value vt such that the above inequality holds if and only if v ≥ vt.27 �us, vt
is de�ned by the equation

vt − pt = max
τ≥t+1

E[δτ−t · (vt − pτ )] (8)

and it is a random variable that depends on realized prices pt and the expected distribution of
future prices σ(· | pt).

Next, let us de�ne for each t ≥ 1

wt = min{v1, v2, . . . , vt} = min{wt−1, vt}. (9)

For notational convenience, let w0 = ∞ and w∞ = 0. wt is also a random variable, and it is
decreasing over time.

Consider the following information structure I . In each period t, the buyer is told whether
or not her value is in the lowest G(wt)-percentile. Providing this information requires nature to
know wt, which depends only on the realized prices and the seller’s (future) pricing strategy.

Step 2: Buyer behavior. �e following lemma describes the buyer’s optimal stopping decision
in response to σ and I :
Lemma 1’: For any pricing strategy σ, let the information structure I be constructed as above. �en
the buyer �nds it optimal to follow nature’s recommendation: she buys when told her value is above
the G(wt)-percentile, and she waits otherwise.

Proof of Lemma 1’. Suppose period t is the �rst time that the buyer learns her value is above the
G(wt)-percentile. �en in particular, wt < wt−1, which implies wt = vt by (9). Given this signal,
she knows she will receive no more information in the future (because wt decreases over time).
She also knows her value is above theG(wt)-percentile, which is greater than wt = vt, the average
value below that percentile. By the de�nition of vt, such a buyer optimally buys in period t.

On the other hand, suppose that in some period t the buyer learns her value is below the
G(wt)-percentile. Since wt decreases over time, this signal contains more information than all
27�is follows by observing that both sides of the inequality are strictly increasing in v, but the LHS increases faster.
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previous signals. By the de�nition of the pressed distribution G, this buyer’s expected value is
wt ≤ vt. Such a buyer prefers to delay her purchase even without additional information in the
future; the promise of future information does not change the conclusion. �

Step 3: Pro�t decomposition. By this lemma, the buyer whose true value belongs to the
percentile range (G(wt−1), G(wt)] will buy in period t. �us, the seller’s expected discounted
pro�t can be computed as

Π = E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) · pt

]
.

We rely on a technical result to simplify the above expression:

Lemma 4. Suppose wt = vt ≤ wt−1 in some period t. �en

pt = E

[
T−1∑
s=t

(1− δ)δs−tws + δT−twT | pt
]

(10)

which is a discounted sum of current and expected future cuto�s.

Using Lemma 4, we can rewrite the pro�t as

Π = E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) · E

[
T−1∑
s=t

(1− δ)δs−tws + δT−twT | pt
]]

= E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) ·

(
T−1∑
s=t

(1− δ)δs−tws + δT−twT

)]

= E

[
T−1∑
s=1

(1− δ)δs−1ws(1−G(ws)) + δT−1wT (1−G(wT ))

]
≤ Π∗.

(11)

�e second line uses the law of iterated expectations, as well as the fact that wt−1 and wt only
depend on the realized prices pt. �e next line follows from interchanging the order of summation,
and the last inequality is because ws(1−G(ws)) ≤ Π∗ holds for every ws.

To complete the proof of Proposition 2, it only remains to show Lemma 4.

Proof of Lemma 4. We assume that T is �nite.28 We will prove the result by induction on T − t,
28�e in�nite-horizon version can be proved by using �nite-horizon approximations and applying the Monotone
Convergence �eorem. We omit the technical details.
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where the base case t = T follows from wT = vT = pT . For t < T , from (8) we can �nd an optimal
stopping time τ ≥ t+ 1 such that

vt − pt = E[δτ−t · (vt − pτ )]

which can be rewri�en as
pt = E[(1− δτ−t)vt + δτ−tpτ ]. (12)

We claim that in any period s with t < s < τ , vs ≥ vt so that ws = wt = vt by (9); while in period
τ , vτ ≤ vt and wτ = vτ ≤ wτ−1. In fact, if s < τ , then the optimal stopping time τ suggests that
the buyer with value vt weakly prefers to wait than to buy in period s. �us by de�nition of vs, it
must be true that vs ≥ vt. On the other hand, in period τ the buyer with value vt weakly prefers
to buy immediately, and so vτ ≤ vt.

By these observations, if τ =∞ (meaning the buyer never buys), we have

(1− δτ−t)vt + δτ−tpτ = vt =
T−1∑
s=t

(1− δ)δs−tws + δT−twT .

If τ ≤ T , we apply inductive hypothesis to pτ and obtain

(1− δτ−t)vt + δτ−tpτ =
τ−1∑
s=t

(1− δ)δs−tws + E

[
T−1∑
s=τ

(1− δ)δs−tws + δT−twT | pτ
]
.

Plugging the above two expressions into (12) proves the lemma. �

A.3. Proof of Lemma 2

Fix a dynamic information structure I and an optimal stopping time τ of the buyer. Because prices
are deterministic, the distribution of signal st in period t only depends on realized signals (but
not prices). Analogously, we can think about the stopping time τ as depending only on past and
current signal realizations.

As discussed in the main text, we will construct another information structure I ′ which only
reveals information in the �rst period, and which weakly reduces the seller’s pro�t. Consider a
signal set S = {s, s}, corresponding to the recommendation of “buy” and “not buy”, respectively.
To specify the distribution of these signals conditional on v, let nature draw signals s1, s2, · · ·
according to the original information structure I (and conditional on v). If, along this sequence of
realized signals, the stopping time τ results in buying the object, let the buyer receive the signal
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s with probability δτ−1. With complementary probability and when τ =∞, let her receive the
other signal s. In the alternative information structure I ′, nature reveals s or s in the �rst period
and provides no more information a�erwards.

We claim that under I ′, the buyer receiving the signal s has expected value at most p1. We
actually show something stronger, namely that the buyer has expected value at most p1 conditional
on the signal s and any realized signal s1.29 To prove this, note that since stopping at time τ is
weakly be�er than stopping at time 1, we have

E[v | s1]− p1 ≤ Es2,··· ,sT
[
δτ−1(E[v | s1, s2, · · · , sτ ]− pτ )

]
. (13)

Here and later, the superscripts over the expectation sign highlight the random variables which
the expectation is with respect to. In this case they are s2, . . . , sT , whose distribution is governed
by the original information structure I and the realized signal s1.

Since pτ ≥ p1, simple algebra reduces (13) to the following.

E[v | s1] ≤ Es2,··· ,sT
[
δτ−1E[v | s1, s2, · · · , sτ ] + (1− δτ−1)p1

]
. (14)

Doob’s Optional Sampling �eorem says that E[v | s1] = Es2,··· ,sT [E[v | s1, s2, · · · , sτ ]]. �us we
derive the inequality:

p1 ≥
Es2,··· ,sT [(1− δτ−1) · E[v | s1, s2, · · · , sτ ]]

Es2,··· ,sT [1− δτ−1]
. (15)

�e denominator Es2,··· ,sT [1− δτ−1] can be rewri�en as Es2,··· ,sT [P(s | s1, s2, . . . , sT )], which
is the probability of s given s1. Because τ is a stopping time, the numerator in (15) can be rewri�en
as

Es2,··· ,sT
[
(1− δτ−1) · E[v | s1, s2, · · · , sT ]

]
which can be further rewri�en as

Es2,··· ,sT
[
(1− δτ−1) · E[v | s1, s2, · · · , sT , s]

]
because s does not provide more information about v beyond s1, . . . , sT .

29Technically we only consider those s1 such that s occurs with positive probability given s1.
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With these, (15) states that

p1 ≥
Es2,··· ,sT [P(s | s1, s2, . . . , sT ) · E[v | s1, s2, · · · , sT , s]]

Es2,··· ,sT [P(s | s1, s2, . . . , sT )]
= E[v|s1, s] (16)

just as we claimed.
�us, under the information structure I ′ constructed above, a buyer who receives the signal s

has expected value at most p1, which is also less than any future price. Since information only
arrives in the �rst period, all sale happens in the �rst period to the buyer with the signal s. �e
probability of sale is at most E[δτ−1], and the seller’s pro�t is at most E[δτ−1] · p1. �is is no more
than E[δτ−1 · pτ ], the discounted pro�t under the original dynamic information structure. We
have thus proved that with a deterministic and non-decreasing price path, the seller’s pro�t is at
least what he would obtain by selling only once at the price p1. Taking p1 = p∗ proves the lemma.

A.4. Proof of �eorem 1

By Lemma 2, a constant price path p∗ delivers expected un-discounted pro�t Π∗ from each arriving
buyer. �is matches the upper bound given by Proposition 2 and shows that always charging p∗ is
optimal. Moreover, suppose p∗ is unique in the one-period problem, then from (11) we see that
the seller’s pro�t from the �rst buyer equals Π∗ only if ws = p∗ almost surely. �is together with
Lemma 4 implies p1 = p∗ with probability 1. Similar consideration for later buyers shows that the
seller must always charge p∗ to achieve the maxmin pro�t. Hence the theorem.

B. PROOFS FOR THE ALTERNATIVE TIMING MODEL

In this appendix, we �rst review the solution to the one-period model where information cannot
depend on realized price. �e analysis follows Du (2018), although we will represent his expo-
nential mechanism as a random price mechanism. A�er listing several useful properties of Du’s
mechanism, we will present the proofs of �eorem 2 and �eorem 3. We conclude with the proof
of Claim 1, which turns out to build on �eorem 3.

B.1. Properties of Du’s Mechanism

For the one-period model, Du (2018) constructs a mechanism that guarantees pro�t ΠRSD re-
gardless of the buyer’s information structure. By viewing interim allocation probabilities as a
distribution function, we can equivalently implement Du’s mechanism as a random price with the
following c.d.f.:
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D(x) =


0 x ∈ [0,W )
log x

W

log S
W

x ∈ [W,S)

1 x ∈ [S, 1]

(17)

Recall that W and B are parameters for the Roesler-Szentes information structure (see (4) in
Section 7). In the above we have an additional parameter S, which is characterized by S ∈ [W,B]

and ∫ S

0

FB
W (v) dv =

∫ S

0

F (v) dv (18)

where FB
W is the Roesler-Szentes worst-case information structure. To explain where S comes

from, note that the LHS in (18) must not exceed the RHS for all S because F is a mean-preserving
spread of FB

W . But whenW is smallest possible, such a constraint must bind at some S.

�e following observations will be crucial for Claim 1. Since the constraint
∫ x

0
FB
W (v) dv ≤∫ x

0
F (v) dv binds at x = S, the �rst order condition gives FB

W (S) = F (S). �is implies that not
only F is a mean-preserving spread of FB

W , but the truncated distribution of F conditional on
v ≤ S is also a mean-preserving spread of the corresponding truncation of FB

W . In other words:

Remark 1. �e Roesler-Szentes information structure has the property that any buyer with true
value v ≤ S has posterior expected value at most S, while any buyer with true value v > S expects
her value to be greater than S upon receiving the signal.

For completeness, we include a quick proof that the random price p ∼ D guarantees pro�t
W = ΠRSD. Consider the one-period model in which nature chooses a distribution F̃ of the
buyer’s posterior expected values. �en the seller’s pro�t is

Π =

∫ S

W

p(1− F̃ (p)) dD(p) =
1

log S
W

∫ S

W

(1− F̃ (p)) dp ≥ 1

log S
W

(
S −W −

∫ S

0

F̃ (p) dp

)
≥ 1

log S
W

(
S −W −

∫ S

0

F (p) dp

)
=

1

log S
W

(
S −W −

∫ S

0

FB
W (p) dp

)
= W.

�e penultimate equality uses (18) and the last one uses (4).

B.2. Proof of �eorem 2

Consider a constant price p randomly drawn according to Du’s distribution D(·) de�ned above.
We will show the seller’s discounted expected pro�t is at leastW = ΠRSD.
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By assumption, each buyer’s expected value follows a martingale process v1, v2, . . . that is
autonomous (independent of the realized p). As mentioned in the main text, we de�ne a sequence
of cuto� prices adapted to the v-process:

vt − rt = max
τ>t

E[δτ−t(vτ − rt)]

and then
qt = max {r1, . . . , rt}.

�is is exactly dual to the de�nition of cuto� values, and whenever qt = rt ≥ qt−1, we have (see
Lemma 4):

vt = E

[∑
s≥t

(1− δ)δs−tqs | v1, . . . , vt

]
.

With foresight, we de�ne the following one-period pro�t function

π(y) = min{(y −W )+, S −W}.

�at is, π(y) = 0 for y ≤ W , π(y) = y −W for y ∈ [W,S] and π(y) = S −W for y ≥ S.

Since purchase occurs in period t precisely when the random price p belongs to [qt−1, qt), we
can compute total pro�t to be

Π = E

[∑
t≥1

δt−1

∫ qt

qt−1

p dD(p)

]

=
1

log S
W

· E

[∑
t≥1

δt−1(π(qt)− π(qt−1))

]

=
1

log S
W

· E

[∑
t≥1

(1− δ)δt−1π(qt)

]

To facilitate further computation, we introduce a modi�ed version of the function π:

π̂(y) = min{y −W,S −W} = y −W − (y − S)+
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Intuitively, π coincides with π̂ when y ≥ W , and is strictly smaller otherwise. �en

log
S

W
· Π = E

[∑
t≥1

(1− δ)δt−1π(qt)

]

≥ E

[∑
t≥1

(1− δ)δt−1π̂(qt)

]

= E

[∑
t≥1

(1− δ)δt−1(qt −W − (qt − S)+)

]

= v0 −W − E

[∑
t≥1

(1− δ)δt−1(qt − S)+

]

where we use the fact that the ex-ante expected value v0 is a discounted sum of cuto� prices.

Let γ be a stopping time adapted to the v-process such that qγ �rst exceeds S. �en we can
continue the above computation as follows:

log
S

W
· Π ≥ v0 −W − E

[∑
t≥1

(1− δ)δt−1(qt − S)+

]

= v0 −W − E

[
δγ−1

∑
t≥γ

(1− δ)δt−γ(qt − S)

]
= v0 −W − E

[
δγ−1(vγ − S)

]
≥ v0 −W − E[(v∞ − S)+]

= E[v∞ −W − (v∞ − S)+]

= E[π̂(v∞)].

�e third line uses the fact that vγ is a discounted sum of future cuto� prices, which holds because
qγ ≥ S > qγ−1. To show the next inequality, observe that if γ is �nite, then vγ−S ≤ E[(v∞−S)+ |
v1, . . . , vγ] by convexity. And if γ is in�nite, then δγ−1(vγ − S) = 0 ≤ (v∞ − S)+.30

30We highlight that π̂ is a concave function, whereas the original π is not concave. It is exactly this concavity that
allows us to show E

[∑
t≥1(1− δ)δt−1π̂(qt)

]
≥ E[π̂(v∞)], which essentially says that the (limit) distribution of

posterior expected values v∞ is more dispersed than the distribution of cuto� prices qt. �us, replacing π with π̂ is
key to this proof.
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Let F̃ denote the distribution of v∞. We have

log
S

W
· Π ≥ E[π̂(v∞)]

=

∫ S

0

(v −W )dF̃ (v) + (S −W )(1− F̃ (S))

= F̃ (S)(S −W )−
∫ S

0

F̃ (v)dv + (S −W )(1− F̃ (S))

= S −W −
∫ S

0

F̃ (v)dv

≥ S −W −
∫ S

0

F (v)dv

= log
S

W
·W

�e inequality follows from F being a mean preserving spread of F̃ , and the last equality follows
from (4). Hence Π ≥ W as desired. �

B.3. Proof of �eorem 3

We will construct a dynamic pricing strategy that guarantees ΠRSD from each buyer. �e con-
struction relies on the following lemma regarding the outcome-equivalence between static and
dynamic pricing strategies:

Lemma 5. Fix any continuous distribution function D(·),31 any horizon T and any discount factor
δ ∈ (0, 1). �ere exists a distribution of prices σ ∈ ∆(pT ) such that if a buyer arrives in period t
and knows her value to be v, then her discounted probability of purchasing the object (discounted to
period t) is equal to D(v).

In words, for any static pricing strategy there is a dynamic pricing strategy which does not
condition on buyers’ arrival times, but which results in the same discounted purchase probabilities
for every type of each arriving buyer. As a consequence, a seller using strategy σ obtains the same
pro�t from any buyer as if he sells only once to this buyer at a random price drawn from D. �is
is true whenever the buyer’s value distribution is determined upon arrival and �xed over time,
which is what we assume for the current theorem. Since Du’s static mechanism guarantees pro�t
ΠRSD from each buyer, �eorem 3 will follow once we prove the lemma.

31Note that Du’s distribution D(·) is continuous except when it is a point-mass onW ; in that exceptional case we
have ΠRSD = Π∗, and �eorem 3 follows from �eorem 1.

33



Libgober and Mu 34

Proof of Lemma 5. We will �rst prove the result for T = 2, then generalize to all �nite T and lastly
discuss T =∞.

Step 1: �e case of two periods. In the second period, regardless of realized p1 the seller should
charge a random price drawn from D. �is achieves the desired allocation probabilities for the
second buyer.

Consider the �rst buyer. For any price p1 in the �rst period, de�ne v1 as the cuto� indi�erent
between buying at price p1 or waiting till the next period and facing the random price drawn from
D. �at is,

v1 − p1 = δ · Ep2∼D [max{v1 − p2, 0}] . (19)

As p1 varies according to the seller’s pricing strategy σ, v1 is a random variable. As in the proof
of Proposition 2, we de�ne w1 = v1 and w2 = min{v1, p2}, where p2 is independently drawn
according to D.

If the buyer has value x ≥ w1, she buys in the �rst period. Otherwise if she has value
w1 > x ≥ w2, she buys in the second period. �e discounted purchase probability of such a buyer
is thus

Pw1 [x ≥ w1] + δ · Pw1,w2 [w1 > x ≥ w2] = (1− δ) · Pw1 [x ≥ w1] + δ · Pw2 [x ≥ w2].

Let w be the random variable that satis�es w = w1 (or w2) with probability 1− δ (or δ), then the
seller seeks to ensure that w is distributed according to D.

Suppose H is the c.d.f. of v1. Since w1 = v1 and w2 = min{v1, p2}, the probability that w is
greater than x is given by (1− δ)(1−H(x)) + δ(1−H(x))(1−D(x)).32 �is has to be equal to
1−D(x), which implies

1−H(x) =
1−D(x)

1− δD(x)
. (20)

We are le� with the task of �nding a �rst-period price distribution under which v1 ∼ H . �is can
be done because the random variables v1 and p1 are in a one-to-one relation (see (19)). �e lemma
thus holds for T = 2.

Before proceeding, we remark that (20) implies the distribution H has the same support as
D. However, (19) suggests that when v1 achieves the maximum of this support, p1 is in general
strictly smaller than v1 (unless the support is a singleton point, a degenerate case). On the other
hand, the minimum price p1 is indeed equal to the minimum of the support of D; when D is Du’s
distribution, this minimum is exactlyW .

321−H(x) is the probability that w1 > x, and (1−H(x))(1−D(x)) is the probability that w2 > x.
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Step 2: Extension to �nite T . We conjecture a pricing strategy σ that is independent across
periods: dσ(p1, . . . , pT ) = dσ1(p1)× · · · × dσT (pT ), where we interpret each σt as a distribution.
De�ne the cuto� values v1, . . . , vT as in (8). Note that due to independence, vt only depends on
current price pt but not on previous prices.

Consider a buyer who arrives in period t. We can generalize the previous arguments and show
that if she knows her value to be x, then her discounted purchase probability is P[w(t) ≤ x]. �e
random variable w(t) is described as follows: for t ≤ s ≤ T − 1, w(t) = min{vt, vt+1, . . . , vs} with
probability (1− δ)δs−t; and with remaining probability δT−t, w(t) = min{vt, vt+1, . . . , vT}.

�e result of the lemma requires each w(t) to be distributed according toD. Simple calculation
shows this is the case if vT ∼ D and v1, . . . , vT−1 ∼ H (since vt depends only on pt, they are
independent random variables).33 We can then solve for the price distributions σ1, . . . , σT by
backward induction: σT must be D, and once the prices in period t + 1, . . . , T are determined,
there is a one-to-one relation between pt and vt by (8). �us, the distribution of pt is uniquely
pinned down by the desired distribution of vt.

Step 3: �e in�nite horizon case. If T = ∞, we look for price distributions σ1, σ2, . . . such
that v1, v2, · · · ∼ H . We conjecture a stationary σt. Recall that the cuto� v1 is de�ned by

v1 − p1 = max
τ≥2

E
[
δτ−1(v1 − pτ )

]
. (21)

�e stopping problem on the RHS is stationary. �us when p2 < p1 the buyer stops in period 2

and receives v1 − p2; otherwise she continues and receives v1 − p1. (21) thus reduces to

v1 − p1 = δ · Ep2 [max{v1 − p1, v1 − p2}]

which can be further simpli�ed to

v1 = p1 +
δ

1− δ
· Ep2 [max{p1 − p2, 0}] . (22)

Let P (x) denote the c.d.f. of p1 (and of p2). When p1 = x, (22) implies

v1 = x+
δ

1− δ
·
∫ x

0

(x− z) dP (z) = x+
δ

1− δ

∫ x

0

P (z) dz.

33�e reason H(x) should be the c.d.f. of v1 is best understood in the in�nite horizon problem (see below). Under
stationarity, the buyer with value x buys in period t with probability H(x), conditional on not buying previously.
�us the discounted allocation probability is

∑
t δ
t−1(1−H(x))t−1H(x). Se�ing this equal to D(x) yields (20).
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�us v1 has c.d.f. H(x) if and only if

P (x) = H

(
x+

δ

1− δ

∫ x

0

P (z) dz

)
. (23)

To solve for P (x), we let

Q(x) = x+
δ

1− δ

∫ x

0

P (z) dz; U(y) = 1 +
δ

1− δ
H(y) =

1

1− δD(y)
. (24)

(23) is the di�erential equation
U(Q(x)) = Q′(x). (25)

Put V (y) =
∫ y

0
(1− δD(z)) dz, so that V ′(y) = 1

U(y)
. �en

∂V (Q(x))

∂x
= V ′(Q(x)) ·Q′(x) =

Q′(x)

U(Q(x))
= 1. (26)

Inspired by the analysis for �nite T , we conjecture that the minimum value of p1 isW . �at is,
we conjecture Q(W ) = W . Since V (W ) = W , we deduce from (26) that Q(x) is characterized by

V (Q(x)) = x with V (y) =

∫ y

0

(1− δD(z)) dz. (27)

Since V is strictly increasing, there is a unique solution Q(x) to the above equation, and the
corresponding distribution of prices is

P (x) =
1− δ
δ
· (Q′(x)− 1). (28)

Lemma 5 is proved, and so is �eorem 3. �

B.4. Proof of Claim 1

�e proof is somewhat long, and we will present it in several steps.

Step 1: �e information structure. Consider now the model with two periods and one buyer
arriving in each period. By providing the Roesler-Szentes information structure to the second
buyer, nature can ensure that seller obtains no more than ΠRSD from her.

For the �rst buyer, we construct the following dynamic information structure I :

• In the �rst period, nature provides the Roesler-Szentes information structure. We denote

36



Robust Intertemporal Pricing 37

the buyer’s posterior expected value by ṽ, so as to distinguish from her true value v. Note
that ṽ ∼ FB

W .

• In the second period, given the realized price p1 and the buyer’s expected value ṽ in the �rst
period, nature reveals the buyer’s true value v if ṽ ≥ v1(p1); otherwise nature provides no
additional information. Here the cuto� v1(p1) is de�ned as usual (assuming no information
arrives in the second period):

v1 − p1 = δ · Ep2∼σ(·|p1) [max{v1 − p2, 0}] .

Intuitively, nature targets the buyer who prefers to buy in the �rst period when she does
not expect to receive information in the second period. By promising full information to such a
buyer in the future, nature potentially delays her purchase and reduces the seller’s pro�t. In what
follows we formalize this intuition.

Step 2: Buyer behavior and seller pro�t. To facilitate the analysis, we consider a simpler
information structure I ′ in which nature reveals ṽ in the �rst period but does nothing in the
second period. Under I ′, the buyer’s value distribution FB

W does not change over time. �us by
Stokey (1979), the seller’s pro�t would at most be ΠRSD. We will show that the seller’s pro�t
under the dynamic information structure I could only be lower than under I ′ (for any pricing
strategy), and we also characterize when the comparison is strict.

�ere are three possibilities. First, if the price p1 is relatively high so that ṽ < v1(p1), then the
buyer does not buy in the �rst period under I ′. �is is also her optimal decision under I , because
she will not receive extra information in the second period. Second, if the price is very low, then
under both I and I ′ the buyer buys in the �rst period. Lastly, for some intermediate prices the
buyer buys in the �rst period under I ′ but not under I . �e opposite case cannot arise because I
provides more information than I ′ in the second period, so the buyer has a stronger incentive to
wait.

�us, when nature provides I rather than I ′, the seller’s pro�t changes only in the last
possibility above. Now observe that whenever the buyer chooses to delay purchase, the discounted
social surplus decreases by at least (1− δ)ṽ ≥ (1− δ)W . Since the buyer’s expected payo� cannot
decrease, this means the seller’s pro�t decreases by at least (1− δ)W .

To summarize, we have shown:

Lemma 6. Consider the information structures I and I ′ constructed above. �e seller’s pro�t under
I ′ is no greater than ΠRSD, and his pro�t under I is even smaller by at least (1 − δ)W times the
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probability that the buyer delays purchase.

Step 3: Proof of the claim for σD. Let σD be the pricing strategy given by Lemma 5, which we
recall is robust to information that arrives only upon arrival (for each buyer). Here we argue that
if the seller uses σD, then his pro�t from the �rst buyer is strictly less than ΠRSD under the above
dynamic information structure I . Later we generalize the result to other pricing strategies.

Recall from the proof of Lemma 5 that under σD, p2 is drawn from Du’s distribution D,
independently of p1. On the other hand, p1 is continuously supported on a smaller interval [W,S1],
with W < S1 < S. More precisely, the distribution of p1 is determined by the condition that
v1(p1) ∼ H ; see (20).

Suppose the buyer’s posterior expected value ṽ (in the �rst period) belongs to the open interval
(W,S). Further suppose that knowing her true value strictly improves her expected payo� in the
second period (given p2 ∼ D). �en, whenever p1 is smaller than but close to v−1

1 (ṽ), such a buyer
would buy in the �rst period under I ′ but delay purchase under I . Applying Lemma 6, it only
remains to �nd a positive measure of such buyers.

Indeed, from Remark 1 we know that ṽ < S implies the true value also satis�es v < S.
Moreover, because we assume ΠRSD > Π∗, Proposition 5 in Appendix D.3 givesW > v. �us
with positive probability, a buyer with ṽ ∈ (W,S) has true value v ∈ (v,W ). For any such buyer,
because her expected value ṽ exceedsW , she purchases at some price p2 ∼ D without additional
information. But if she were informed that v < W , she would not buy at any second-period
price p2 (which is at leastW ). Hence knowing her true value strictly improves her second-period
expected payo�, and we are done with the proof here.

Step 4: Proof for an arbitrary pricing strategy σ. Finally, we turn to prove the claim in its
full generality. �e argument is as follows (omi�ing technical details): Suppose for contradiction
that some pricing strategy σ guarantees pro�t almost ΠRSD from each buyer. �en because D is
uniquely optimal in the one-period problem, the distribution of p2 conditional on p1 is “close to”
D (in the Prokhorov metric) with high probability; otherwise nature could su�ciently damage the
seller’s pro�t from the second buyer. Next, we can similarly show that the distribution of v1(p1)

under σ must be close to H (which is its distribution under σD).34 �e rest of the proof proceeds
as in Step 3: With positive probability the buyer has true value v < W and posterior expected

34If Du’s mechanism is not unique in the one-period problem, then we cannot reach these conclusions. In fact, without
that technical assumption our proof presented here would fail: In an earlier version of this paper we show that if
nature provides the speci�c information structure I , then whenever Du’s mechanism is non-unique, the seller has a
pricing strategy that obtains ΠRSD from both buyers. Details are available upon request.
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value ṽ ∈ (W,S). For such a buyer, full information in the second period is strictly valuable, and
she delays purchase under the information structure I relative to I ′. Lemma 6 then implies that
under I , pro�t from the �rst buyer is bounded away from ΠRSD. �is leads to a contradiction,
and the proof of Claim 1 is complete. �

C. PROOFS FOR THE COMMON VALUE MODEL

C.1. Proof of Lemma 3

Fixing any (public) dynamic information structure I , we will replace it with another information
structure I ′ that only provides a single public signal in the �rst period. Moreover, as in the proof
of Lemma 2, we will ensure that each arriving buyer has lower discounted purchase probability
under the replacement I ′. �is will show that the seller obtains lower pro�t under I ′.

To do this, consider any possible signal history s1, s2, . . . under the original process I . For
each arriving buyer a, let τa denote her optimal stopping time along this history; that is, the buyer
who arrives in period a �nds it optimal to purchase in period τa given the signal realizations
s1, . . . , sτa . Note that we always have τa ≥ a, and τa+1 ≥ τa with equality whenever τa > a. �e
la�er property derives from our assumption that signals are publicly observed.

We de�ne a “critical” subset of buyers j1, j2, . . . as follows: To begin, j1 is the �rst buyer who
delays purchase (i.e. with τj1 > j1). Next, j2 is the �rst buyer a�er τj1 such that τj2 > j2. So on
and so forth, until every later buyer purchases immediately upon arrival. When that occurs we
complete the de�nition by including a hypothetical buyer j = T + 1 into the subset.

As an example, suppose T = 7, and buyers’ stopping times are 2, 2, 3, 6, 6, 6, 7. �en buyers
1, 4, 8(= T + 1) are critical. More generally, it is not di�cult to show that the critical buyers and
their stopping times uniquely determine the stopping behavior of all the buyers.

Now we are ready to construct the replacement information structure I ′. We assume the
signal set is {0, 1, . . . , T}, where the signal “i” represents nature’s recommendation that buyers
with a ≤ i purchase upon arrival and that other buyers do not purchase. Furthermore, given the
original signal history s1, s2, . . . , we assume that signal i realizes only if i = jm − 1 for some
critical buyer jm. We specify the probability of such a signal to be35

δ
∑

k<m τjk−jk · (1− δτjm−jm).

To interpret, these probabilities are such that i ≥ jm occurs with conditional probability
35Instead of introducing the critical subset and writing out the signal probabilities in closed form (as done here), one
can also prove the result by induction on T and recursively de�ne the signal probabilities.
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δτjm−jm conditional on i ≥ jm − 1. In other words, the replacement information structure
recommends the critical buyer jm to purchase with conditional probability δτjm−jm . �is is in
line with the proof of Lemma 2 since we “push and discount” nature’s recommendation to the
buyer’s arrival time. Due to conditioning, however, a di�erence arises here in that δτjm−jm is not
the probability of receiving a signal i ≥ jm (except form = 1). From the above formula, we see
that any critical buyer is recommended to purchase with probability smaller than δτjm−jm ; in fact,
this holds also for non-critical buyers.36

Recommending lower purchase probabilities serves our goal, which is to show that seller’s
pro�t is lower under I ′ than under I . Nonetheless, we still have to verify that buyers want to
follow nature’s recommendation when it comes to not purchasing the object.37 Suppose buyer
a receives a signal i < a, we need to argue that her expected value is lower than pa. Since all
buyers have the same expectation and prices are increasing over time, it is su�cient to consider
a = i+ 1. �en by de�nition, a must be a critical buyer jm.

We will prove a stronger result, that conditional on any realizations s1, . . . , sjm (and on the
signal i), expected value is at most pa. Indeed, once s1, . . . , sjm are �xed, so are the critical buyers
before jm as well as their stopping times. �us the term δ

∑
k<m τjk−jk is simply a multiplicative

constant in the probability of signal i. �is suggests that the expected value conditional on signal
i is unchanged if we instead specify the probability of this signal to be 1− δτjm−jm . But then we
return to the proof of Lemma 2, where the buyer is recommended to not purchase with probability
1− δτjm−jm . Hence the result here follows from that proof. �

C.2. Proof of �eorem 4

From (5) in the main text, the seller’s maxmin pro�t with an increasing price path is

(1− δ)ΠC = min
F̃

T∑
t=1

(1− δ)δt−1pt · (1− F̃ (pt)).

�e RHS can be interpreted as the pro�t in the one-period problem, when the seller charges a
random price that is equal to pt with probability (1− δ)δt−1. �us, as long as the seller chooses
p1, . . . , pT such that the distribution of this random price approximates Du’s distribution D(·), he
can guarantee pro�t close to ΠRSD.

36�e probability that any buyer a receives a signal i ≥ a is δ
∑

k≤m τjk−jk , where jm is the last critical buyer up to
and including a. Since we always have τjm − jm ≥ τa − a, this probability is lower than δτa−a.

37Recall that we also had to prove this for Lemma 2; on the other hand, whether or not the buyers follow the
recommendation to purchase does not a�ect our argument.
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To achieve this approximation, we equate the c.d.f.s at the discrete points p1, . . . , pT . �is
leads to prices de�ned by

D(pt) = 1− δt,

or equivalently
pt = W · (S/W )1−δt

As δ → 1 and T →∞, these points p1 ∼ pT are densely distributed on the interval (W,S). Hence
their distribution converges to D(·), which proves the theorem. �

D. OTHER RESULTS

D.1. Uncertainty Leads to Lower Price

We prove here that uncertainty over the information structure leads the seller to choose a lower
price than if the buyer knew her value.

Proposition 4. For any continuous distribution F , let p̂ be an optimal monopoly price under known
values:

p̂ ∈ argmax
p

p(1− F (p)). (29)

�en any maxmin optimal price p∗ satis�es p∗ ≤ p̂. Equality holds only if p∗ = p̂ = v.

Proof of Proposition 4. It su�ces to show that the function p(1−G(p)) strictly decreases when
p > p̂, until it reaches zero. By taking derivatives, we need to show G(p) + pG′(p) > 1 for p > p̂

and G(p) < 1.
From de�nition, the lowest G(p)-percentile of the distribution F has expected value p. �at is,

pG(p) =

∫ F−1(G(p))

0

vdF (v),∀p ∈ [v,E[v]]. (30)

Di�erentiating both sides with respect to p, we obtain

G(p) + pG′(p) =
∂

∂p
(F−1(G(p))) · F−1(G(p)) · F ′(F−1(G(p))) = G′(p) · F−1(G(p)). (31)

�is enables us to write G′(p) in terms of G(p) as follows:

G′(p) =
G(p)

F−1(G(p))− p
. (32)
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�us,
G(p) + pG′(p) =

G(p) · F−1(G(p))

F−1(G(p))− p
. (33)

We need to show that the RHS above is greater than 1, or that F−1(G(p)) < p
1−G(p)

whenever
p > p̂ and G(p) < 1. �is is equivalent to G(p) < F ( p

1−G(p)
), which in turn is equivalent to

p

1−G(p)
·
(

1− F
(

p

1−G(p)

))
< p. (34)

From the de�nition of p̂, we see that the LHS above is at most p̂(1− F (p̂)) ≤ p̂ < p, as we claim
to show. Moreover, when p̂ > v, the last inequality p̂(1− F (p̂)) < p̂ is strict. Tracing back the
previous arguments, we see that G(p) + pG′(p) > 1 holds even at p = p̂. In that case we would
have the strict inequality p∗ < p̂ as desired. �

D.2. Uniqueness of Du’s Mechanism

Recall the random price mechanism from Appendix B.1. In general, there could be more than
one point S for which (18) holds. �en there might not be a unique optimal mechanism for the
single-period model. Nonetheless, for “generic” distributions F , the point S is indeed unique.38 �e
following result veri�es that the optimal mechanism is unique whenever S is uniquely de�ned.39

Lemma 7. �ere is a unique maxmin-optimal mechanism in the one-period alternative timing model
if and only if (18) holds at a unique point S.

Proof of Lemma 7. We focus on the “if” direction. Suppose S is unique, we need to show any
random price that guaranteesW must follow Du’s distribution D. Let r(p) be the p.d.f. of the
random price, then seller’s pro�t is given by

Π =

∫ 1

0

p · r(p) · (1− F̃ (p)) dp. (35)

Given seller’s choice r(p), nature chooses a c.d.f. F̃ to minimize Π. Nature’s constraint is that F

38�e intuition is simple: (18) must bind at some S, but for it to bind at two di�erent points would impose a non-generic
constraint on F . We omit the formal proof, which is tangential to the paper.

39A su�cient condition is that the c.d.f. F (x) is convex. To show this, note that F (x)− FBW (x) = F (x) + W
x − 1 is

convex, so it has at most two roots x0 < x1. Since F (x) > FBW (x) for x < x0, (18) implies S cannot be the smaller
root x0. Hence S must be the bigger root x1.
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must be a mean-preserving spread of F̃ . �at is,∫ x

0

F̃ (v) dv ≤
∫ x

0

F (v) dv,

for all x ∈ (0, 1], with equality at x = 1.
By Roesler and Szentes (2017), F̃ = FB

W is a solution to nature’s problem. For this solution,
the above integral inequality constraint only binds at x = S. Standard perturbation techniques
thus imply that nature cannot improve upon F̃ = FB

W only if p · r(p) is a constant for p ∈ (W,S).
Indeed, suppose that p · r(p) > p′ · r(p′) for some p, p′ ∈ (W,S). �en starting with F̃ = FB

W ,
nature could increase F̃ around p and correspondingly decrease it around p′. �e perturbed
distribution F̃ is still feasible, but the pro�t is reduced.

Similarly, p · r(p) must also be a constant on the interval p ∈ (S,B). Let c be this constant,
and suppose nature �x F̃ to be FB

W on the interval [0, S]. �en, on the interval [S,B], it seeks to
minimize c ·

∫ B
S

(1− F̃ (v)) dv subject to
∫ 1

S
(1− F̃ (v)) dv =

∫ 1

S
(1− F (v)) dv. �is is equivalent

to maximizing c ·
∫ 1

B
(1− F̃ (v)) dv. Since the choice of F̃ = FB

W results in 0, we must have c = 0

in order for FB
W to be nature’s optimal strategy.

To summarize, we have shown that r(p) must be supported on [W,S] and p · r(p) is a constant.
�is condition together with

∫ S
W
r(p) dp = 1 uniquely pins down r(p), which must be the density

function associated with Du’s distribution. �

D.3. Comparison Between Π∗ and ΠRSD

Here we show that the pro�t benchmark ΠRSD is in general higher than Π∗, and the di�erence
may be signi�cant:

Proposition 5. ΠRSD ≥ Π∗ with equality if and only ifW = v (= p∗), whereW is as de�ned in
the Roesler-Szentes information structure (4). Furthermore, as the distribution F varies, the ratio
ΠRSD/Π

∗ is unbounded.

Proof of Proposition 5. �e inequality ΠRSD ≥ Π∗ is obvious. Next, recall that Π∗ ≥ v (seller can
charge v) andW = ΠRSD. �usW = v implies ΠRSD ≤ Π∗, and equality must hold.

Conversely suppose ΠRSD = Π∗, thenW = p∗(1−G(p∗)). �is implies p∗ ≥ W . Consider a
seller who charges price p∗ against the Roesler-Szentes information structure FB

W . By the unit
elasticity of demand property, this seller’s pro�t is either W (when p∗ < B) or 0. We have
shown in our one-period model that the seller can guarantee Π∗ with a price of p∗. �us the
seller’s pro�t must beW when he charges p∗ and nature chooses the Roesler-Szentes information
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structure. SinceW = Π∗ by assumption, the Roesler-Szentes information structure is a worst-case
information structure for the price p∗. �is yields W ≥ p∗, because a worst-case information
structure cannot include any signal that leads to a posterior expected value strictly less than p∗.
We conclude p∗ = W = p∗(1−G(p∗)), from which it follows that G(p∗) = 0 and p∗ = v. �us
W = v must hold.

To study the ratio ΠRSD/Π
∗, we restrict a�ention to a very simple class of distributions F :

with probability λ, the buyer’s true value is 1; otherwise her value is 0. �e optimal price in the
known-value case is p̂ = 1, and the corresponding pro�t is Π̂ = λ. In our main model, the maxmin
optimal price p∗ solves

p∗ ∈ argmax
p

p(1−G(p)) = argmax
0≤p≤λ

p · λ− p
1− p

Simple algebra gives p∗ = 1−
√

1− λ, and Π∗ = (1−
√

1− λ)2 which is roughly λ2

4
for small λ.

Because the distribution F has two-point support, it is clear that nature can induce any F̃
supported on [0, 1] with mean λ as the distribution of posterior expected values. �us the Roesler-
Szentes information structure involves the smallestW such that FB

W has mean λ for some B ≤ 1.
From (4), we compute that the mean of FB

W isW logB −W logW +W . We look for the smallest
W such that logB = λ

W
+ logW − 1 is non-positive. It follows thatW is the smallest positive

root of the equation
λ

W
+ logW = 1.

For λ small, we have the approximation ΠRSD = W ≈ λ
|log λ| . �us both ratios Π̂/ΠRSD and

ΠRSD/Π
∗ are unbounded.40 �

D.4. Alternative Interpretation of Π∗

In this appendix, we consider a static information acquisition game that also yields our solution
(to our main model). �e motivation borrows from Roesler and Szentes (2017), so we begin by
reviewing their result.

Roesler and Szentes (2017) consider a game with the following timing: �e buyer �rst chooses
an information structure I : R+ → ∆(S). �e seller then chooses a price p ∈ R. Finally, the
buyer observes her signal and decides whether or not to purchase the object. �ose authors show
that in order to maximize payo�, the buyer acquires information according to FB

W . �is turns out
to simultaneously minimize the seller’s pro�t.
40We conjecture that these pro�t ratios become bounded under certain regularity conditions on F .
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Recall that our one-period model di�ers from Roesler and Szentes (2017) in that we allow
nature to provide information depending on the realized price. Inspired by this di�erence, we
modify the above information acquisition game so that the buyer can acquire information based
on the price. �at is, we maintain the same timing as above, except that the buyer chooses a
price-dependent information structure I : V × P → ∆(S).41

We characterize the outcome of this game in the following result:

Proposition 6. Consider the above information acquisition game where the buyer (or benevolent
third party) chooses a price-dependent information structure. In any Nash equilibrium of this game,
the seller’s pro�t is Π∗ and the buyer’s expected payo� is E[v]− Π∗.42

Proof of Proposition 6. For each price p, let I∗(p) be the corresponding worst-case partitional
information structure in our main model. We �rst construct a (subgame-perfect) equilibrium as
follows: On the equilibrium path, the buyer chooses to acquire no information if p = Π∗, but for
any other price he acquires information according to I∗(p); the seller chooses p = Π∗. O� the
equilibrium path, the buyer chooses a di�erent information structure, and the seller best responds
with some price.

To see this is an equilibrium, observe that on path, trade occurs with probability 1 because
Π∗ < E[v] whenever F is non-degenerate. Hence seller’s pro�t is Π∗ and buyer’s payo� is
E[v] − Π∗, sharing all the surplus. By the de�nition of Π∗, choosing p = Π∗ is the seller’s best
response on the equilibrium path. It remains to check that the buyer cannot pro�tably deviate.
Indeed, regardless of the buyer’s choice of information structure, the seller can always set price
to be p∗ and guarantee pro�t Π∗. Since the seller best responds, her actual pro�t must be higher.
But total surplus cannot exceed E[v], which implies that buyer’s payo� is at most E[v]− Π∗. �is
veri�es our construction.

Since this is a sequential-move game, the same argument shows that buyer’s payo� must be
E[v] − Π∗ in every equilibrium. Again because total surplus is bounded by E[v], seller’s pro�t
cannot exceed Π∗. But we have argued that he can guarantee Π∗, so this must be his pro�t level
in every equilibrium. Hence the proposition. �

Note that the same argument works for an arbitrary horizon. �at is, suppose the buyer
chooses a (price-dependent) dynamic information structure to maximize his payo�, whereas the

41We implicitly require the buyer to commit to acquiring information according to I a�er the price is realized. It may
be di�cult to assume that the buyer literally does this in practice. However, such information may be provided by a
third party whose objective is to help the buyer (rather than directly hurt the seller).

42Similar to Roesler and Szentes (2017), trade occurs with probability 1 in equilibrium. Unlike in that paper, however,
for us the buyer’s payo� is higher in this game than in the worst-case scenario for the seller.
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seller responds with a pricing strategy. �en in every equilibrium of this game, buyer receives
E[v]− Π∗ and seller obtains Π∗.

D.5. Known Information Arrival Process

�is appendix supplies two simple examples, both with one buyer and two periods, where the
information arrival process is known to the seller. We show that optimal prices in such a problem
can be increasing or decreasing over time. �ese examples highlight the di�culty in obtaining
clear predictions without using the robustness approach. Buyer learning does not by itself predict
the optimality of constant prices; seller uncertainty (in our main model) is also important for this
conclusion.

Example 3. In the �rst example, consider any prior distribution F . Suppose nature reveals nothing
in the �rst period and everything in the second period. �en the seller can and should sell only in the
�rst period to obtain the full surplus. For high δ, any pair of optimal prices must satisfy p1 < p2 in
order to prevent the buyer from waiting.

Example 4. In the second example, suppose the buyer is one of two types, L or H , with equal
probabilities. Type H buyer has value equal to 1 with certainty. Type L buyer has value 2

3
with

probability 3/4 and value 0 with probability 1/4. Nature tells the buyer her type in the �rst period
and reveals her value in the second period; note that this is a partitional information arrival process.
It is not di�cult to show that the (uniquely) optimal prices are p1 = 1− δ

3
and p2 = 2

3
—the choice

of p1 is such that the H type buyer is exactly indi�erent between purchasing in either period. In
particular, the resulting pro�t 1

2
+ δ

12
is higher than selling only in the �rst period (pro�t 1

2
) or selling

only in the second period (pro�t 7δ
12
). Here, p1 > p2 and the seller bene�ts from intertemporal price

discrimination.
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