
JAVA SE

Quiz yourself: Security threats
and malicious code
modifications
Here’s what happens when good code
meets bad people.

by Simon Roberts and Mikalai Zaikin

December 21, 2020

If you have worked on our quiz questions in the past, you know
none of them is easy. They model the difficult questions from
certification examinations. We write questions for the certification
exams, and we intend that the same rules apply: Take words at
their face value and trust that the questions are not intended to
deceive you but to straightforwardly test your knowledge of the
ins and outs of the language.

The objective of this Java SE 11 quiz is to develop code that
mitigates security threats, such as denial of service attacks or
code injection.

Here’s your secret mission: You are developing a highly loaded,
multithreaded stock-quote analysis application. During a security
audit, you were advised to make a defensive copy of stock-quote
data as you receive it for analysis, isolating the calculations from
any modifications made to the original input data.

Given this class:StockQuoteStockQuote

class StockQuote {class StockQuote {
 public StockQuote(String n, LocalDateTime public StockQuote(String n, LocalDateTime
 name = n; name = n;
 time = t; time = t;
 price = p; price = p;
 } }

 private String name; private String name;
 private LocalDateTime time; private LocalDateTime time;
 private Double price; private Double price;

Quiz yourself: Security threats
and malicious code
modifications

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/java-se-3
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

and this method, which should protect itself by making a copy:

Which code line (if any) can protect you from malicious
modifications made to the stock-quote data during the
processing? Choose one.

A.

The answer is A.

B.

The answer is B.

C.

The answer is C.

D.

The answer is D.

E. None of the above

The answer is E.

Answer. In option A, the method of will
perform “shallow” cloning. This means that the result will be a
new list structure, but the values in that list will be references to
the same objects as were referred to by the original list. Because
of this, any changes made to the items in the original list will be
visible through the new list. The cloning operation will protect
only against additions, deletions, or changes of sequential order
made to the original list.

 // getters and setters hidden for brevity // getters and setters hidden for brevity
}}

public void analyzeQuotes(ArrayList<StockQuotpublic void analyzeQuotes(ArrayList<StockQuot
 List<StockQuote> sqListProtected = … // m List<StockQuote> sqListProtected = … // m
}}

List<StockQuote>)sqList.clone();List<StockQuote>)sqList.clone();

new ArrayList<StockQuote>(sqList);new ArrayList<StockQuote>(sqList);

(List)sqList.stream()(List)sqList.stream()
 .map(s -> s.clone()) .map(s -> s.clone())
 .collect(Collectors.toList()); .collect(Collectors.toList());

sqList.stream()sqList.stream()
 .map(s -> s.clone()) .map(s -> s.clone())
 .collect(Collectors.toCollection(ArrayLis .collect(Collectors.toCollection(ArrayLis

clone()clone() ArrayListArrayList

This observation about shallow cloning applies not only to
 but also to all objects that use the default

implementation of and contain references to
other mutable objects. If an object contains only primitives or
references to immutable instances such as , the cloned
copy will be protected against changes made to the original list.
From this you can determine that option A is incorrect.

If you were unsure whether the method performs a
shallow or deep copy, there’s another hint that could help to
determine that the code in option A doesn’t work. Because the

 class does not implement the
 marker interface, it cannot be cloned.

Therefore, if attempted a deep clone—including
duplicating its member objects—the attempt would throw a

.

Option B is essentially equivalent to option A. Passing a
collection to the constructor will create a new list
structure containing the same reference values, in the same
order, as in the original collection. But the objects
are shared between both, and changes made to any of those
objects via will result in changes visible through the new
list. Because of this, option B is also incorrect.

It’s worth noting that the approach demonstrated in option B can
be used to produce a different type of collection: perhaps
changing between an unmodifiable collection (that is, one that
disallows adding or removing elements or changing their order)
and a fully modifiable collection.

There are three problems with option C:

In view of all these problems, it’s clear that option C is incorrect.

Option D has all the same problems as with option C, so option
D is also incorrect.

ArrayListArrayList

Object.clone()Object.clone()

StringString

clone()clone()

StockQuoteStockQuote

java.lang.Cloneablejava.lang.Cloneable

ArrayListArrayList

java.lang.CloneNotSupportedExceptionjava.lang.CloneNotSupportedException

ArrayListArrayList

StockQuoteStockQuote

sqListsqList

The method is declared as
, so it can be called only from a subclass using the syntax

 or but not from some
arbitrary object reference in the manner of
shown in the code.

 Object.clone()Object.clone() protectedprotected

super.clone()super.clone() this.clone()this.clone()
s.clone()s.clone()

Even if the code were valid, the
 method throws a checked exception

. But the
argument to the method must be a

implementation, and the method of that
functional interface does not permit checked exceptions.
Hence, the code would still not compile.

 s.clone()s.clone()
Object.cloneObject.clone
java.lang.CloneNotSupportedExceptionjava.lang.CloneNotSupportedException

mapmap
java.util.function.Function<A,B>java.util.function.Function<A,B>

apply()apply()

Even if the first two problems didn’t exist and the code
could compile, it would still fail to execute. This is because,
as was noted earlier, the class does not
permit cloning, so the method would definitely fail
and throw a . This
exception would crash the stream operation.



StockQuoteStockQuote
cloneclone

CloneNotSupportedExceptionCloneNotSupportedException

In fact, option D has another difficulty, which is that the
 method returns . So even if all three

problems from option C were somehow avoided, the
operation would result in an , and that’s
not assignment-compatible with the variable in the method,
which is of type .

Since none of the options A–D provide a required solution, this
makes option E correct.

Before leaving this quiz, let’s consider how this code could be
protected. The fields in the class are of type

, , and . Each of these are
classes that create immutable instances, so it’s safe for two

 objects to share a reference to the same
attributes. So, one approach is to create copies of the

 objects and a new list to contain those copies.

You could pursue a solution that would work when used to build
on the code of option C (note this is not the only possible
solution). That code is built on the assumption that the

 items can be cloned in the method. So first
you must ensure that conforms to that
expectation. This requires two steps:

1. The class implements the interface (this
grants permission to the JVM to perform cloning)

2. You provide a useful implementation of the method

Step 1 is simply achieved like this:

At this point, it’s possible to clone the objects
successfully. However inherits the default
implementation of from , and this throws

, which is a checked
exception.

Checked exceptions are incompatible with Java’s functional
interfaces. In this code, if the exception arises, it is essentially
unrecoverable, so create an overriding implementation
and wrap the exception in a .

There are three further steps for how you implement the
method:

1. The default method is . However, you
want to be able to call this from inside the method.
Consequently you must make this .

2. The default method makes a shallow copy; that is,
it copies all the member variables. In this situation, this is
acceptable since all the fields are immutable objects (

, , and). So, the method
will delegate to to do the bulk of its work.

Object.clone()Object.clone() ObjectObject

collectcollect

ArrayList<Object>ArrayList<Object>

List<StockQuote>List<StockQuote>

StockQuoteStockQuote

StringString LocalDateTimeLocalDateTime DoubleDouble

StockQuoteStockQuote

StockQuoteStockQuote

StockQuoteStockQuote mapmap

StockQuoteStockQuote

CloneableCloneable

cloneclone

class StockQuote implements Cloneable {class StockQuote implements Cloneable {

StockQuoteStockQuote

StockQuoteStockQuote

clone()clone() ObjectObject

CloneNotSupportedExceptionCloneNotSupportedException

clone()clone()

RuntimeExceptionRuntimeException

cloneclone

cloneclone protectedprotected

mapmap

publicpublic

cloneclone

StringString LocalDateTimeLocalDateTime DoubleDouble

super.clone()super.clone()

Simon Roberts
Simon Roberts joined Sun Microsystems in
time to teach Sun’s first Java classes in the

3. The default method is declared to return ,
but Java permits an overriding method to provide a covariant
return. That means that you can return a more specific type:
something assignment-compatible with the overridden
method’s declared type. In your code, the sensible choice is
to return the type. After all, that’s what the
object will actually be. Doing so avoids creating a raw ,
and it allows you to remove the raw cast to in option C.
It also allows option D to work.

After all that, your implementation of looks like this.

Unfortunately, even now, you’re still not done! You still cannot
expect objects that are presented to you as
instances to reliably clone as intended. Certainly, actual
instances of the class presented here will clone as
you have defined; that part is correct.

However, you have not precluded an attacker from creating a
subclass of . Such a class could override the

 method so that it simply returns itself (the
reference). In so doing, it would completely bypass all your good
intentions. So, your last step should be to make the class itself,
or at least the method, .

By the way, control of subclassing is a focus of the sealed
classes feature that’s previewed in Java 15. This allows the
creator of a class to explicitly define the permitted subclasses,
so an inheritance tree can exist, but it prevents arbitrary
additions to that tree.

[You can read about sealed classes in “Inside the language:
Sealed types,” by Ben Evans. —Ed.]

In closing, we must acknowledge that the exact nature of the
security concerns isn’t clearly stated in the question, and other
excellent approaches to this are possible. But this was meant to
be a discussion, not a full analysis (which would require a
book!). So we’ll wrap this up here.

Conclusion: The correct answer is option E.

cloneclone ObjectObject

StockOptionStockOption

ListList

ListList

clone()clone()

@Override@Override
public StockQuote clone() {public StockQuote clone() {
 try { try {
 return (StockQuote)super.clone(); return (StockQuote)super.clone();
 } catch (CloneNotSupportedException e) { } catch (CloneNotSupportedException e) {
 throw new RuntimeException(e); throw new RuntimeException(e);
 } }
}}

StockQuoteStockQuote

StockQuoteStockQuote

StockQuoteStockQuote

clone()clone() thisthis

clone()clone() finalfinal

https://blogs.oracle.com/javamagazine/simon-roberts
https://blogs.oracle.com/javamagazine/inside-the-language-sealed-types

UK. He created the Sun Certified Java
Programmer and Sun Certified Java
Developer exams. He wrote several Java
certification guides and is currently a
freelance educator who publishes recorded
and live video training through Pearson
InformIT (available direct and through the
O’Reilly Safari Books Online service). He
remains involved with Oracle’s Java
certification projects.

Mikalai Zaikin
Mikalai Zaikin is a lead Java developer at
IBA IT Park in Minsk, Belarus. During his
career, he has helped Oracle with
development of Java certification exams,
and he has been a technical reviewer of
several Java certification books, including
three editions of the famous Sun Certified
Programmer for Java study guides by
Kathy Sierra and Bert Bates.

Share this Page

 
Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/simon-roberts
https://blogs.oracle.com/javamagazine/mikalai-zaikin
https://blogs.oracle.com/javamagazine/mikalai-zaikin
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

