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Abstract

We extend the indirect evolutionary approach to the selection of (possibly misspecified)
models. Agents with different models match in pairs to play a stage game, where
models define feasible beliefs about game parameters and about others’ strategies. In
equilibrium, each agent adopts the feasible belief that best fits their data and plays
optimally given their beliefs. We define the stability of the resident model by comparing
its equilibrium payoff with that of the entrant model, and provide conditions under
which the correctly specified resident model can only be destabilized by misspecified
entrant models that contain multiple feasible beliefs (that is, entrant models that permit
inference). We also show that entrants may do well in their matches against the residents
only when the entrant population is large, due to the endogeneity of misspecified beliefs.
Applications include the selection of demand-elasticity misperception in Cournot duopoly

and the emergence of analogy-based reasoning in centipede games.
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1 Introduction

In many economic settings, people draw misspecified inferences about the world: they learn
from data but exclude the true data-generating process from consideration. Esponda and
Pouzo (2016) introduce Berk-Nash equilibrium to accommodate this observation — a solution
concept where agents use data to infer the best-fitting mapping from actions to outcomes,
out of a set of mappings that are all wrong. A line of research (discussed below) uses this
and related solution concepts to study the implications of Bayesian learning under particular
misspecifications, with most papers treating misspecifications as exogenously given.

When should we expect misspecified inference to take hold in a rational society, as assumed
in much of this literature? A defining feature that distinguishes misspecified inference from
other kinds of errors and biases is the use of data to form beliefs — how does this belief
endogeneity affect its viability? We develop a framework to answer these questions from an
evolutionary perspective, studying the objective equilibrium payoffs of different agents. Unlike
contemporaneous work in single-agent settings (Fudenberg and Lanzani, 2023; Frick, Iijima,

and Ishii, 2024), we focus on strategic interactions where payoffs depend on equilibrium play.

1.1 Summary of the Setup

Each agent is endowed with a model that contains free parameters; the parameter values
correspond to feasible beliefs about the stage game and about others’ strategies. The model’s
adherents think that, for some parameter value, the instantiated model describes the true
stage game and opponents’ behavior. They estimate the best-fitting parameter value, which
determines their subjective preference. Models rise and fall in prominence based on objective
equilibrium payoffs of their adherents, as higher payoffs confer greater evolutionary success.

Society consists of the adherents of multiple competing models, who match up to play the
stage game every period. Agents can identify which subpopulation their opponent belongs
to, and (correctly) know that the game they play does not depend on opponent type.! Our
framework assumes that agents may face one of several possible stage games, so richer models
can in principle help agents by allowing them to adapt their behavior to the true game.

Conditional on a realized stage game, each agent forms in equilibrium a Bayesian belief about

'If the players thought that the stage game could change with the opponent, then this would give additional
channels for biases to invade a rational society. Our framework focuses on how the belief endogeneity that
plays a distinctive role in misspecified learning affects the viability of errors.



the game and about others’ strategies using data from all their interactions, and plays a
subjective best response to each opponent subpopulation given this belief.

We say model A is evolutionarily stable against model B if, for all sufficiently small
population shares of model B, model A’s equilibrium payoff (averaged across the distribution
of stage games) is weakly higher than that of model B. This criterion is familiar from the
literature on the indirect evolutionary approach, which considers evolution acting on some
trait that determines agents’ strategy choices, as opposed to acting on these choices directly.
Our stability concepts reduce to standard notions under this approach when models stipulate
a dogmatic belief about the stage game. Our main contribution is to study flexible models

that contain multiple feasible beliefs and, hence, the role of belief endogeneity in stability.

1.2 Belief Endogeneity and the Viability of Misspecifications

Consider an agent with a flexible model that contains multiple feasible beliefs. Equilibrium
belief is endogenous because the agent infers model parameters from data, and this data
depends on population composition and opponents’ strategies. By contrast, equilibrium belief
is exogenous for an agent whose model contains only one feasible belief — by construction,
data plays no role in shaping this (possibly distorted) belief. Our formal results identify two

novel stability phenomena that can only arise with belief endogeneity:

1. Endogenous beliefs allow agents to adopt different subjective best responses in different

games, so misspecified inference may confer greater strategic benefits than dogmatic
beliefs.

2. Agents with a fixed misspecification may be weak when rare but strong when common.

Section 4.1 discusses the former point by characterizing environments where the correctly
specified model is only evolutionarily fragile against invading models that contain multiple
feasible beliefs. One part of our argument constructs an optimal misspecified model for
invading a rational society. This misspecification resembles an “illusion of control” bias,
where agents think the game’s outcome only depends on their own strategy and not on the
opponent’s strategy. Adherents of this model end up adopting the optimal commitment
against a correctly specified opponent, game by game.

But in some environments, there exists a single commitment strategy that is beneficial

in every game, so belief endogeneity is not necessary for the invading model. The second



part of our argument in Section 4.1 identifies a geometric condition that ensures any model
with a fixed dogmatic belief across all stage games cannot outperform the correctly specified
model. Putting everything together: when the geometric condition holds and the rational
model fails to achieve the best commitment payoff in some stage game, misspecified inference
is necessary for the rational model’s fragility.

Section 4.2 then turns to the latter point and identifies a type of fluidity in a misspecified
model’s performance based on the population proportions. Two models are said to exhibit

stability reversal if:

o Whenever model A is dominant, its adherents strictly outperform model B’s adherents

not only on average, but even conditional on the opponent’s type; and

o Whenever model B is dominant, its adherents strictly outperform model A’s adherents

on average.

In the absence of belief endogeneity, the first condition would imply that A outperforms B
regardless of the two subpopulations’ sizes. But this no longer holds when belief is endogenous
due to misspecified inference. The reason is that the data from the B-vs-B matches may

induce more evolutionarily advantageous beliefs than the data from the B-vs-A matches.

1.3 Applications

Extending the indirect evolutionary approach to accommodate models with belief endogeneity
lets us analyze new applications. Our companion paper, He and Libgober (2025), illustrates
this point by studying the selection of misspecified higher-order beliefs in an incomplete-
information Cournot duopoly game. In the present paper, Section 3 presents a simpler
complete information duopoly game, while Section 5 considers the selection of analogy classes
in extensive-form games (Jehiel, 2005), based on the payoffs for players with different analogy
classes. Under analogy-based reasoning, players (incorrectly) believe opponents choose the
same action distribution at all nodes within an analogy class and infer that distribution from
empirical frequencies. Our approach predicts not only that analogy-based reasoning may
invade a correctly-specified society, but also that the two can coexist. By solving for the
corresponding stable population composition, we obtain sharp predictions on the relative

prominence of analogy-based reasoning as a function of the underlying stage game.



1.4 Related Literature

Our paper contributes to the literature on misspecified Bayesian learning by proposing a
framework to assess which specifications are more likely to persist based on their objective
payoffs. Misspecified inference in such a framework leads to endogenous beliefs, which in
turn generate new phenomena in payoff-based selection of biases. Most prior works on
misspecified Bayesian learning, by contrast, take the misspecification as exogenous, studying
the subsequent implications in both single-agent decision problems? and multi-agent games.?
Several papers establish general convergence properties of misspecified learning.*

Our interest in endogenizing misspecifications using objective payoffs® contrasts with
alternatives using subjective expectations of payoffs® or goodness-of-fit tests.” There are
several other papers that also use objective payoffs as the selection criterion. Our work differs
in that we assume agents update beliefs using Bayes’ rule and focus on the selection between
various misspecifications under Bayesian learning. Massari and Newton (2020) show that
learning rules departing from Bayes’ rule can achieve higher objective payoffs, while Massari
and Newton (2024) show that maximizing a combination of accuracy and payoffs can improve
performance along both dimensions. Similarly, Heller and Winter (2020) and Berman and
Heller (2024) study the evolution of different belief-formation processes under a reduced-form
(and possibly non-Bayesian) approach, considering arbitrary inference rules.

Two independent and contemporaneous papers, Fudenberg and Lanzani (2023) and Frick,
lijima, and Ishii (2024), also consider payoff-based criteria under Bayesian inferences for

selecting misspecifications, but restrict attention to single-agent decision problems.® We differ

2See Nyarko (1991); Fudenberg, Romanyuk, and Strack (2017); Heidhues, Koszegi, and Strack (2018); He
(2022); Cho and Libgober (2025). Also related is Fudenberg et al. (2024) who show how memory limitations
yield inferences resembling those in misspecified learning models.

3See Bohren (2016); Bohren and Hauser (2021); Jehiel (2018); Molavi (2019); Dasaratha and He (2020);
Ba and Gindin (2023); Frick, Iijima, and Ishii (2020); Murooka and Yamamoto (2023).

4See Esponda and Pouzo (2016); Esponda, Pouzo, and Yamamoto (2021); Frick, lijima, and Ishii (2023);
Fudenberg, Lanzani, and Strack (2021).

A separate line of work that has used objective payoffs to endogenize misspecified inference, restricting
attention to financial markets (Sandroni, 2000; Massari, 2020), while our approach applies to general strategic
environments.

6See Montiel Olea, Ortoleva, Pai, and Prat (2022); Levy, Razin, and Young (2022); Gagnon-Bartsch,
Rabin, and Schwartzstein (2021)

"See Cho and Kasa (2015, 2017); Ba (2025); Schwartzstein and Sunderam (2021); Lanzani (2025).

8Fudenberg and Lanzani (2023) study a framework where a continuum of agents with heterogeneous
misspecifications arrive each period and learn from their predecessors’ data. Frick, Iijima, and Ishii (2024)
assign a learning efficiency index to every misspecified signal structure and conduct a robust comparison of



in highlighting that belief endogeneity can strictly expand the possibility for misspecifications
to invade rational societies in strategic settings (relative to biased invaders who do not draw
inferences).

Our framework of competition between different specifications for Bayesian learning
is inspired by the evolutionary game theory literature. Relative to this literature, our
contribution is to accommodate misspecified inference. We follow past work that also uses
objective payoffs as the selection criterion for subjective preferences in games and decision
problems (e.g., Dekel, Ely, and Yilankaya (2007), see also the surveys Robson and Samuelson
(2011) and Alger and Weibull (2019)) and the evolution of constrained strategy spaces (Heller,
2015; Heller and Winter, 2016). Like us, Giuth and Napel (2006) allow for stage-game

heterogeneity, studying the ability to discriminate between these games.

2 Environment and Stability Concept

We start with our formal stability concept, defining equilibrium zeitgeist to determine the
evolutionary fitness of specifications that coexist in a society. Our general setup allows agents
to both learn about the fundamentals and draw inferences about others’ strategies: indeed,
misinference about opponent’s strategy is central to our application in Section 5. But most
of our results and applications concern a special case of the setup where agents correctly
know others’ strategies in equilibrium, so the focus is on misinference about fundamental
uncertainty and the role of such misinference on evolutionary selection. In the main text we
primarily focus on the steady-state characterization of equilibrium zeitgeists, but we provide

a learning foundation for this solution concept in Appendix C.

2.1 Objective Primitives

Agents in a population repeatedly match to play a stage game, which is a symmetric two-
player game with a common, metrizable strategy space A. There is a set of possible states of
nature G € G, called situations. The strategy choices a;,a_; € A of i and —i, together with
the situation, stochastically generate consequences y;,y_; € Y from a metrizable space Y.
Each agent i’s consequence y; determines their utility, according to a common utility function

7 :Y — R, which we take to be Borel measurable with respect to the sigma algebra generated

welfare under different misspecifications.



by the topology on Y. The objective distribution over consequences is F*(a;,a_;, G) € A(Y),
with an associated density or probability mass function denoted by f*(a;,a_;, G), where
f*(ai,a_;, G)(y) € R, for each y € Y. We suppress G from f* and F'* when |G| = 1. We
allow for Y to be general outside of the previous technical restrictions.

This setup captures mixed strategies (if A is the set of mixtures over some pure actions),
incomplete-information games (if .S is a space of private signals, A a space of actions, and
A = A% is the set of signal-contingent actions), and even asymmetric games. For the latter,
we consider the “symmetrized” version where each player is placed into each role with equal
probability (see Section 5 for one application where agents play an asymmetric game).

In addition, at the end of a match where the strategy profile (a;, a_;) is played, each agent
1 observes a monitoring signal m; about the opponent’s strategy which only depends on a_;
and not on a; or the situation. Let M be the space of monitoring signals, and let the objective
distribution over monitoring signals when the opponent plays a_; be given by the density
or probability mass function ¢®(a_;), where ¢*(a_;) : M — R, . The monitoring signal m;
is payoff irrelevant and is generated independently of the consequences. Our framework
separately defines the monitoring signal for the expositional simplicity of introducing the
special case of environments with strategic certainty (where the monitoring signal is perfect)
and for discussing the learning foundation of equilibrium in such environments (where we

make the monitoring signal “almost perfect”).

2.2 Models and Parameters

Throughout this paper, we will take the strategy space A, the set of consequences Y, the utility
function over consequences 7, the set of monitoring signals Ml and the strategy monitoring
structure ¢® to be common knowledge among the agents. But, agents are unsure about
how play in the stage game translates into consequences: that is, they have fundamental
uncertainty about the function (a;, a_;) — F*(a;,a_;, G). While we assume that the situation
G is unobserved, we allow agents to draw inferences about it by observing the consequences
from the matches they face. Agents may also be unsure about which strategies others use
(strategic uncertainty), but they could get some information about others’ play through their
consequences and monitoring signals.

We focus on the case where society consists of two” observably distinguishable groups of

9We view the case of two groups of agents with different models as the natural starting point, though it is



agents, A and B, who may behave differently in the stage game due to different beliefs about
how y is generated and about the strategies of their opponents. The two groups of agents
entertain different models of the world that help resolve their fundamental uncertainty and
strategic uncertainty. A model © is a collection of parameters (as,ap, F') with as,ap € A
and F : A2 — A(Y). So, each parameter specifies conjectures a4, ap about how group A and
group B opponents will act when playing against the agent. It also contains a conjecture
I about how strategy profiles translate into consequences for the agent. So, we can view
each model as a subset of A2 x (A(Y))**. We assume the marginal of the model on (A(Y))*”
is indexed by some v € I' for a metric space I' acting as an indexing set, so this marginal
can be written as {F,;y € I'}. For each F, that is part of some parameter and for every
(ai,a_;) € A% we suppose F.(a;,a_;) is a Borel measure on Y and it has associated with it a
density or probability mass function f,(a;,a—;) : Y — R;. We also suppose that for every
(ai,a—;), the map v — Ey g (4,0, [7(y)] is Borel measurable.™

Each agent enters society with a persistent model, which depends entirely on whether
she is from group A or group B. We refer to the agents who are endowed with a given
model the adherents of that model. We call a model correctly specified if it is a superset
of A2 x {F*(-,-,G) : G € G} , so the agent can make unrestricted inferences about others’
strategies and does not rule out the correct data-generating process F'*(-, -, G) for any situation
G. We call © = A2 x {F*(-,-,G) : G € G} the minimal correctly specified model. A model
may exclude the true F'*(-,-, ) that produces consequences, at least in some situation G, or
it may exclude some strategies as feasible conjectures of others’ play. In this case, the model
is misspecified.

An important special case of the setup focuses purely on misinference about fundamental

uncertainty.
Definition 1. An environment has strategic certainty if
e M = A and ¢*(a_;) puts probability 1 on a_; for every a_; € A,

e The model of each group g € {A, B} is of the form A2 x F, for some F, C (A(Y))*",

and

straightforward to generalize Definition 2 to the case of more than two groups.

ONote that this measurability property would follow from the measurability of the mapping v +—
fy(ai,a—;)(y) for each fixed (a;,a—_;,y), under some further restrictions necessary to apply Fubini’s the-
orem to the function (a;,a—;,y) — 7(y)f(ai, a—;)(y).



!/
—1

G € G also satisfies f(al,a”;)(y) > 0 for every a”, € A and every f that is the density

« Every y € Y with the property that f*(a},a’;, G)(y) > 0 for some a},a’; € A and some

or probability mass function of some conjecture F' € F4 U Fg.

In environments with strategic certainty, monitoring signals perfectly reveal opponent’s
strategy and all agents can make unrestricted strategic inferences. Combined with the
assumption that all consequences that agents can observe when they play a; have positive
likelihood under any of their feasible conjectures about fundamental uncertainty, this will
imply that agents hold correct beliefs about their opponents’ strategies in the equilibrium
concept that we define below. In such environments, the focus is on different groups’ feasible
conjectures about the fundamental uncertainty, 74 and Fg. We will therefore sometimes
omit mention of the monitoring signal when analyzing environments with strategic certainty.

In environments with strategic certainty, a model © = A% x F with |F| = 1 is called
a singleton model. This terminology refers to the fact that such models stipulate a single
dogmatic belief about the fundamental uncertainty (though agents still make flexible inferences
about others’ strategies). Adherents of singleton models do not draw inferences about the
game from data. Since the situation is itself unobserved, this implies such agents also do
not change their preferences with the situation, since this is only possible through drawing

different inferences in different situations.

2.3 Zeitgeists

To study competition between two models, we must describe the social composition and
interaction structure in the society where learning takes place. We have in mind a setting
where each agent plays the stage game with a uniformly random opponent in every period
and uses their personal experience in these matches to calibrate the most accurate parameter

within their model. A zeitgeist describes the corresponding landscape.

Definition 2. Fix models ©4 and Op. A zeitgeist 3 = (ua(G), us(G), p, a(G))geg consists
of: (1) for each situation G, a belief over parameters for each model, pa(G) € A(B4) and
up(G) € A(Op); (2) relative sizes of the two groups in the society, p = (pa,pp) with
pa,pB > 0, pa+pp = 1; (3) for each situation G, each group’s strategy when matched against
each other group, a = (a44(G), aap(G), apa(G), app(G)) where a, (G) € A is the strategy

that an adherent of ©, plays against an adherent of © in situation G.



A zeitgeist outlines the beliefs and interactions among agents with heterogeneous models
living in the same society. Part (1) captures the belief of each group. Part (2) determines the
relative prominence of each model. Agents are matched uniformly at random across the entire
society, so an agent from group ¢ has probability p, of being matched with an opponent from
their own group and a complementary chance of being matched with an opponent from the
other group.!* Part (3) describes behavior in the society. Note that a zeitgeist describes each
group’s situation-contingent belief and behavior, since agents may infer different parameters
and thus adopt different subjective best replies in different situations. However, we emphasize
that since situations are not directly observed, they only influence strategies by changing the

distribution of the agents’ consequences (and hence their beliefs).

2.4 Equilibrium Zeitgeists

A model’s fitness corresponds to the equilibrium payoff of its adherents. An equilibrium
zeitgeist (EZ) requires behavior to be optimal given beliefs and beliefs to best fit the data
given behavior. As we make clear in the learning foundation for EZs in Appendix C, this
equilibrium concept relates to steady states in a society of long-lived Bayesian learners who
use consequences and monitoring signals to make Bayesian inferences among parameters
in their model, assuming there is convergence in beliefs and behavior. In the steady state,
agents choose subjectively optimal strategies given their beliefs about others’ strategies and
about the stage game.

We now formalize this criterion. For two distributions over consequences and mon-
itoring signals, ®, ¥ € A(Y x M) with density or probability mass functions ¢,, de-
fine the Kullback-Leibler divergence (KL divergence) from ¥ to ® as Dgn(® || V) =
J é(y,m)In <¢(y’m)) d(y,m). Recall that every data-generating process F, like the true fun-

Y(y,m)
damental F*(-,-,G), outputs a distribution over consequences for every strategy profile,

(a;,a_;) € A%

Definition 3. A zeitgeist 3 = (ua(G), us(G),p, a(G))geg is an equilibrium zeitgeist (EZ)
if, for every G € G and g, 9" € {A, B}, a,;(G) € argmax E(u, a5 F)opy (@) {Eyw(a,ag/)(ﬂ(y))

ach

"He and Libgober (2025) contains an example that varies the matching assortativity and discusses how
this affects the selection of biases.



and, for every g € {A, B}, the belief y,(G) is supported on

arg min
(dA,&B,F)EQg

{ (Py) - Dr1(F*(19,4(G). ag4(G), §) x ¢ (a05(@)) || Flag(G). ) x ¢°(ay)) }
+(1 = pg)  Drr(F*(ag,—4(G),a-g,4(G),G) X ©*(a—g4(G)) || F(ag,—g(G),a—g) X ¢*(a—g))

where —g means the group other than g and x indicates the product between a distribution
on Y and a distribution on M. When p, = 0 or (1 — p,) = 0 but it is multiplied by infinity,

we use the convention that 0 - oo = oo.

This definition requires agents from each group g to choose a subjective best response
against their opponents, given the belief 1, about the fundamental uncertainty and strategic
uncertainty. No matter which group the agent is matched against, these choices are always
made to selfishly maximize their (individual) subjective utility function. Each agent’s belief
ftg is supported on the parameters in their model that minimize a weighted KL-divergence
objective in situation GG, with the data from each type of match weighted by the probability
of confronting this type of opponent. The use of KL-divergence minimization as the inference
procedure is standard in the misspecified Bayesian learning literature (such as in Esponda and
Pouzo (2016)) and goes back to the basic result from Berk (1966) that the Bayesian posteriors
under misspecification concentrate in the long run on the KL-divergence minimizers. We
assume inference occurs separately across situations. This reflects situation persistence, with
agents having enough data to establish new beliefs and behavior before the situation changes.
Our learning foundation in Appendix C justifies this situation-by-situation updating, but we
omit the details here as it otherwise plays no role in our results.

In general, agents choose their best-fitting model parameters based on two kinds of data:
consequences and monitoring signals. In environments with strategic certainty, there is no
equilibrium zeitgeist where the equilibrium belief 1,(G) for any group g in any situation
G puts positive weight on any parameter (a4, ap, I3 ) where a4y # ay 4(G) for any groups
g € {A, B}. This is because any such parameter has a weighted KL divergence of infinity
(given that ¢* is perfectly informative about the opponent’s strategy), whereas parameters
with @4 = a4,(G) and ap = ap 4(G) have finite weighted KL divergence. So, in environments

of strategic certainty, we can view beliefs in equilibrium zeitgeists p,(G) as simply beliefs

10



over the fundamental uncertainty F,, with p,(G) supported on

arg min { (Py) - Dicr(F*(ag,0(G), g0 (G), G) || Flagy(G), a04(G))) } |

FeF, +(1 = pg) - Drr(F*(ag,—¢(G),a-4,4(G),G) || F(agrg(G)va—g,g(G)))

In environments with strategic certainty, we will therefore omit reference to beliefs about

others’ strategies in describing zeitgeists and simply view p,(G) as an element in A(Fy).

2.5 Evolutionary Stability of Models

Given a distribution ¢ € A(G) and an EZ, we define the fitness of each model as the expected
objective payoff of its adherents in the EZ when G is drawn according to ¢. We have in mind
an evolutionary story where the relative success of the two models depends on their relative
fitness: for instance, agents may play a large number of games in different periods possibly
facing different situations over time, and models of those agents with higher total objective
payoffs are more likely to be adopted in the next generation.'? Given this notion of fitness,
our question of interest is: Can the adherents of a resident model © 4, starting at a position
of social prominence, always repel an invasion from a small mass of agents who adhere to an
entrant model ©g?

Evolutionary stability depends on the fitness of models © 4, © 5 in EZs with py = 1—¢,pg =

€ for small € > 0.

Definition 4. Say © 4 is evolutionarily stable [fragile] against ©p if there exists some € > 0
so that for every 0 < € < €, there is at least one EZ with models © 4,05, p = (1 — ¢,¢) and
in all such EZs, © 4 has a weakly higher [strictly lower] fitness than Op.

Evolutionary stability is when © 4 has higher fitness than ©p in all EZs, and evolutionary
fragility is when © 4 has lower fitness in all EZs.!® These two cases give sharp predictions about
whether a small share of entrant-model invaders might grow in size, across all equilibrium
selections. We fix these rather stringent definitions of stability and fragility, and focus on

showing in Section 4 how the belief endogeneity in models can generate new stability /

120ne subtlety is that fitness maximization may require not maximizing expected payoffs, but rather
some other function of the distribution of payoffs, if shocks can be correlated (Robson, 1996). However, our
microfoundation in Appendix C posits that situations are fixed for long stretches of time, with no correlated
shocks across matches, making the expectation an appropriate measurement of fitness.

I3If the set of EZs is empty, then © 4 is neither evolutionarily stable nor evolutionarily fragile against ©p.

11



fragility phenomena. A third possible case, where © 4 has lower fitness than ©p in some but
not all EZs, corresponds to a situation where the entrant model may or may not grow in the

society, depending on the equilibrium selection.

2.6 Discussion

We clarify some important aspects of our framework before proceeding further.

2.6.1 Equilibrium Zeitgeist Existence

Implicit in our definition of evolutionary stability and fragility is that we do not have to
worry about whether EZs exist in the first place. However, this is not a given, as we have
not imposed the continuity and integrability conditions necessary to ensure existence and
the well-definedness of expected utilities, KL divergences, and best responses. These issues
are familiar from past work, so we do not belabor them in the main text. Appendix B
provides sufficient conditions that guarantee existence, as well as that the set of EZs is upper
hemicontinuous in population shares. This latter result is particularly useful for moving
between the € > 0 case and the limit as € — 0 in the definition of stability. Throughout, we
focus on the case where expected utilities, KL divergences, and best responses are well defined
and EZs exist, and refer interested readers to the appendix for the technical conditions that

guarantee these.

2.6.2 Comparison with Other Evolutionary Frameworks

We apply the “indirect evolutionary approach” (see Robson and Samuelson (2011)) to settings
where agents can draw inferences (especially misspecified inferences). In environments with
strategic certainty with singleton models and |G| = 1, our framework reduces to the setup
studied by the literature on preference evolution Alger and Weibull (2019), since singleton
models are equivalent to subjective preferences. But in general, models with multiple
parameters allow agents to adapt their beliefs (which determine their subjective preferences)
endogenously. Allowing for multiple situations is the most direct way for inference to be
beneficial. With only a single situation, any steady-state outcome that emerges for some
model can also emerge with a singleton model. That said, one could also study settings with
multiple situations without inference (see Guith and Napel (2006) for an example of such an

exercise).

12



2.6.3 Framework Assumptions

An important assumption is that agents (correctly) believe the economic fundamentals
(represented by () do not vary depending on which group they are matched against. That is,
the mapping (a;,a_;) — A(Y) describes the stage game that they are playing, and agents
know that they always play the same stage game even though opponents from different
groups may use different strategies in the game. As a result, the agent’s experiences in games
against both groups of opponents jointly resolve the same fundamental uncertainty about the
environment.'* If adherents could believe that the fundamentals can change depending on
their opponent, then this would give a trivial way for in-group preferences to emerge and
also trivialize the question of which errors could invade. For expositional simplicity, we do
not consider this elaboration.

Our framework assumes that agents can identify which group their matched opponent
belongs to, though we do not assume that agents know the data-generating processes contained
in other models or that they are capable of making inferences using other models. (In other
words, models are primitives and cannot be changed even after agents see their opponents’
actions. Players do not “read into” what others do when learning.) Some other works in
the literature on the indirect evolutionary approach (e.g., Dekel et al. (2007)) consider a
more general setup where agents only observe their opponent’s group membership with
some probability in each match, and receive no information about their opponent with
the complementary probability. We expect the main insights to carry through when the
probability of observation is high enough. At the other end of the spectrum, if agents never
observe whether their matched opponent is from group A or group B, then results can change
dramatically. For instance, consider an environment of strategic certainty with only one
situation. There is no EZ where the minimal correctly specified resident model has strictly
lower fitness than an entrant model. This is because both models face the same distribution
of opponents’ strategies and must play a single strategy against this distribution. If the
correctly specified model has strictly lower fitness, then its adherents are not playing an
objective best response, which contradicts the fact that they correctly know the game and

have correct beliefs about others’ strategies in EZ under strategic certainty.

4We note that play between two groups g and g/ is not a Berk-Nash equilibrium Esponda and Pouzo
(2016), since adherents from one group draw inferences about the game’s parameters from the matches against
the other group, which may adopt a different strategy. A Berk-Nash equilibrium between groups g and g’
would require inferences to only be made from data generated in the match between g and ¢'.
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Even as agents update their beliefs and optimize their behavior, population proportions
pa and pp remain fixed. We imagine a world where the relative prominence of models changes
much more slowly than the rate of convergence to an EZ. This assumption about the relative

rate of change in the population sizes follows the previous work on evolutionary game theory

(See Sandholm (2001) or Dekel et al. (2007)).

3 Illustrative Example

In this section, we use an example to illustrate our framework, explain the different stability
implications of entrant models that expand the resident model versus entrant models that
shift the resident model, and preview an “illusion of control” entrant model that will play a
key role in our general results.

Consider an environment with strategic certainty and only one situation (so we omit
mention of (). Suppose each player i is a Cournot duopolist with constant marginal
cost c¢. Each player ¢ simultaneously chooses a quantity a;. A random market price P =
pB* — r*(a; + ay) + € realizes and is observed by both players, where r* > 0, 5* > ¢ are
constants and € is a mean-zero random variable with full support on R. The utility of player
iis a;- (P —c).

Mapping back into the formalism from Section 2, we can let i’s consequence be y; = (a;, P)
so that ¢’s utility is a function of the consequence with 7 (y;) = 7(a;, P) = a; - (P — ¢). The
true distribution over consequences F'*(a;, a_;) given the strategy profile (a;, a_;) is such that
the first dimension of y; is always a;, while the second dimension is distributed according to
g —r*(a; +a_;) +e.

For r > 0 and 8 € R, let F} g represent the conjecture about the stage game where for
each strategy profile (a;,a_;), F;.5(a;,a_;) is the distribution over consequences with the
first dimension always being a; and the second dimension being distributed according to
B —r(a; + a—;) + . The residents (group A) are correctly specified, so their model has
Fa =A{F.p5: [ € R} Wesay the entrants (group B) have a slope perception of 7 if their
model has Fp = {F; g : f € R}. The idea is that all agents hold dogmatic beliefs about the
slope of the demand curve and use market-price data to make inferences about the intercept
of the demand curve. The residents’ belief about the slope is correct, while the entrants’
belief is possibly wrong.

When entrants misperceive the slope to be 7# # r®, they misunderstand how quantity
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choices affect market prices and thus misinfer the intercept of the demand curve. This in
turn distorts their behavior: we can show that an agent who believes the slope and intercept
of the demand curve to be r and S has a subjective best response of 6762% when their
opponent plays a_;. Proposition 1 summarizes how the entrants’ slope misperception affects

their equilibrium behavior and welfare in the equilibrium zeitgeist with p4 = 1, pgp = 0.

Proposition 1. Suppose pa = 1,pg = 0, and the residents are correctly specified.

1. In every equilibrium zeitgeist, we have a,sn = ﬁ?:T_.C and the fitness of the residents is
(B*—c)?
9re -

2. In every equilibrium zeitgeist, the fitness of the entrants is a function of their equilibrium

strategy: 3[(apa) - (B° — ¢) — (apa)® - (r*)]. In particular, the entrant’s fitness strictly
decreases in the distance between apa and the Stackelberg strategy,'® agqcr = %
3. Suppose the entrants have slope perception 7. Then in every equilibrium zeitgeist, we

_ B°—c
have aga = pran=p

We conclude with the following three observations, motivated by this result:

(1) Local vs. global mutations of the correctly specified model. Since aps = 2@:;6,,
_ B°—c

entrants who correctly perceive 7 = r® will play ags = e and have the same fitness as

the residents. As this is lower than the Stackelberg strategy agacc = B°=< the fitness of

2re

the entrants strictly decreases as 7 increases above r* and strictly increases as 7 decreases

below r* up until # = r*/2. Suppose we consider the set of possible entrants that have a
“local” mutation relative to the correctly specified model: that is, entrants who have a slope
perception 7 with | — r*| < ¢ for some small 6 > 0 with 6 < 7°/2. Among this family of
possible entrants, the entrant with the slope perception 7 = r®* — § has the highest fitness in
equilibrium. But, if we do not limit the entrants to only have these local mutations, then the

entrant who has the slope perception 7# = r*/2 would have an even higher fitness.

(2) Shifts vs. expansions of the correctly specified model. The model of the
entrants who have a slope misperception 7 # r* can be viewed as a “shift” of the correctly
specified model. Indeed, the entrants have Fp = {F; 3 : § € R} while the residents have

15This strategy is the one chosen by the first-mover in the game where each player moves sequentially, with
the second-mover observing the action of the first mover—in other words, in cases where one player can
commit to an action and the other player chooses a best reply to that action.
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Fa={F3: 0 €R}, two disjoint sets of conjectures about how consequences are generated
in the stage game. Fudenberg and Lanzani (2023) study the stability of models under
local mutations, but their notion of local mutation is that of a local expansion, where
the mutated model contains all the parameters of the resident models and also some new
parameters. In this Cournot example, if the entrants simply entertain more possible values
for the slope of the demand curve than the residents, that is to say the entrants’ model has
Fp={F,p:|r—r <6, 0 R}, then there is an EZ where the entrants and the residents
come to the same (correct) beliefs about both the slope and intercept of the demand curve,
play the same strategies, and have the same fitness.

Going beyond this example, it is not difficult to see that in any environment with strategic
certainty, the correctly specified model is never evolutionarily fragile against any expansions
of it for the same reason. If the resident model is evolutionarily fragile against an entrant

model, some of the feasible beliefs under the former must be impossible under the latter.

(3) An “illusion of control” entrant model that maximizes entrant fitness. There
is another entrant model outside of the slope misperception class discussed so far that also
maximizes entrant fitness across all possible entrant models. This is a singleton model with
Fp = {F*}, where the conjectured distribution of consequences F*(a;, a_;) only depends on
a; and not on a_;. In particular, F*(a;, a_;) specifies that the first dimension of y; is always
a;, and the second dimension is distributed according to f* — r*(a; + %) +¢e. The
conjecture F™* features “illusion of control,” for it stipulates that the distribution of market
prices only depends on ¢’s strategy and not on that of —¢. In particular, it says that whatever
strategy the opponent actually chooses, the realized market price distribution when ¢ chooses
a; is the objective market price distribution when —¢ plays the rational best response against

it. It is easy to see that under the belief F*, ¢’s strictly dominant strategy is to choose

the Stackelberg strategy apa = astack = 627:0 in every EZ. The rational residents must play
the rational best response against it, so the entrants obtain the Stackelberg payoff as their
fitness. In the next section, we construct a similar illusion of control model for more general
environments to find the highest possible fitness among all entrants when the residents are

correctly specified.
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4 Stability Implications of Belief Endogeneity

In this section, we focus on environments with strategic certainty to illustrate some stability
phenomena that distinguish misspecified inference from dogmatic beliefs in our framework.
The main novelty of our framework relative to past work on the indirect evolutionary approach
is that agents’ beliefs about the game (and hence, subjective preferences) are endogenously
determined. We showcase some of the unique implications of this belief endogeneity.

Belief endogeneity adds new ways for biased individuals to develop strategic commitments
in games. First, unlike agents with fixed subjective preferences, misspecified learners with a
fixed model can develop situation-specific commitments that are better tailored to the stage
game. We show this mechanism expands the scope for invading rational societies. Second,
misinference can induce different beliefs for a misspecified agent depending on who they
most frequently interact with. This leads to new stability phenomena and adds nuance to
extrapolations of the welfare implications of a misspecified model across different societies,

relative to that of a distorted subjective preference.

4.1 When Is Misinference Necessary to Defeat Rationality?

Our first result characterizes when misspecified models can only invade a rational society
when inference is possible. More precisely, when does there exist a distribution over situations
such that the correctly specified model is not evolutionarily fragile against any singleton
model, but it is evolutionarily fragile against some models with multiple parameters?

When the stage game is fixed, the preference evolution literature has long recognized that
commitment to the game’s Stackelberg strategy can allow entrants to outperform rational
residents (see, for example, Section 2.5 of Robson and Samuelson (2011)). In our setting, if
there is only one situation and the highest symmetric Nash equilibrium payoff is lower than
the game’s Stackelberg payoff, it is straightforward to show that the correctly specified model
is evolutionarily fragile against any singleton model that misperceives the Stackelberg strategy
to be strictly dominant. Adherents of this entrant model play the Stackelberg strategy against
every opponent and enjoy strictly higher fitness than the rational residents when the entrant
population share is close to zero.

When there are multiple situations, the analogous conclusion that the rational residents
must have the Stackelberg payoff situation-by-situation to avoid invasion by a misspecified

entrant requires the existence of an entrant who can behave differently in different situations,
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since the Stackelberg strategy can vary by situation. The proof of the first part of Theorem 1
constructs such an entrant, using the same “illusion of control” idea from Section 3. The
entrant makes inferences among multiple parameters in their model, where the different
parameters are different illusion-of-control beliefs meant to be adopted in different situations.
Under the suitable beliefs for situation G, the agent thinks their consequence is solely
controlled by their own action and views the Stackelberg strategy for situation G as strictly
dominant. Also, the entrant’s model is constructed so that there is no equilibrium zeitgeist
where entrants adopt a belief meant for situation G’ in a different situation G # G’, as
inference from data would cause the entrants to revise their beliefs in favor of a better-fitting
parameter in such a scenario.

The second part of Theorem 1 characterizes distributions over situations so that no
singleton entrant model can invade the correctly specified residents. In some environments
with multiple situations, singleton models that are unable to make inferences and adapt to
the different situations can nevertheless still obtain higher fitness than the rational residents.
In the Cournot duopoly setup from Section 3, for instance, we know that entrants with the
slope misperception # = r*/2 can outperform the residents. But now suppose there are two
situations with true slope coefficients of r* = 1 and r* = 1.001, equally likely. Then the
singleton entrant model with the slope misperception # = 1/2 continues to outperform the
residents on average, across the two situations. The content of the second part of Theorem
1 is to provide a condition that ensures the multiple situations are “sufficiently different”
strategically so that the correctly specified resident model is not evolutionarily fragile against
any singleton model.

Theorem 1 is stated for an environment with a finite strategy space. We require some no-
tation. For F': A — A(Y), let U;(a;,a_;, F) represent i’s expected payoff under the strategy
profile (a;, a_;) if consequences are generated by F', that is U;(a;, a—i, F') = Eyp(a;a_[7(y)].
In each situation G, let v3F € R be the highest symmetric Nash equilibrium payoff in G, when
agents choose strategies from A. For each a; € A, let BR(a;, G) be a rational best response
against the strategy a; in situation GG, breaking ties against the user of a;. Let vg € R be the
Stackelberg equilibrium payoff in situation G, breaking ties against the Stackelberg leader,

ie.,

VG = maz%XUi(ai,@(ai,G),F'(G)). (1)
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Call the strategy ag that maximizes Equation (1) the Stackelberg strategy in situation G. We
assume the Stackelberg strategy is unique in each situation, and furthermore that there is a
unique rational best response to ag in each situation G’, where possibly G # G’. Finally, for
b: A = A a subjective best-response correspondence (which may be induced by some belief
about how consequences are distributed under different strategy profiles in the stage game),
let v% denote the worst equilibrium payoff of an agent with the best-response correspondence
b when she plays against a rational opponent in situation G. That is, v% € R is i’s lowest
payoff across all strategy profiles (a;, a_;) such that a; € b(a_;) and a_; is a rational response
to a; in situation G.'6

We impose two identifiability conditions:

Definition 5. Situation identifiability is satisfied if for every a;,a_; € A and G # G,
we have F*(a;,a_;,G) # F*(a;,a_;, G'). Stackelberg identifiability is satisfied if whenever
G # G’ and a_;, a’; are rational best responses to ag in situations G and G’, we have
F*(ag,a_;,G) # F*(ag,d’_;,G').

Under situation identifiability, a minimal correctly specified agent can identify the true
situation. Under Stackelberg identifiability, playing the Stackelberg strategy ag for any
situation G generates consequence data that can statistically distinguish whether the true
situation is G or not, provided the opponent chooses a rational best response to the strategy
for the true situation.

The following result presents our characterization of when misinference is required for
misspecified models to outperform rationality, for some distribution over situations. The
first part of the result says, under identifiability assumptions and other regularity conditions,
the rational residents are always evolutionarily fragile against some entrants unless they
are already getting the Stackelberg payoff in every situation. The second part of the result
provides a condition for the rational residents to not be evolutionarily fragile against any
singleton entrant. Whenever both conditions in Theorem 1 are satisfied, there is some
distribution over situations so that the minimal correctly specified model is evolutionarily
fragile against some entrant model, but not evolutionarily fragile against any singleton entrant
model. In these environments, the ability to adapt preferences endogenously to the relevant

situation (i.e., belief endogeneity) is a necessary condition for an invading entrant to displace

16Tf no such profile exists, let vg = —o0.
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the rational resident. Hence, this result shows that entrants with misspecified models cannot

in general be represented simply as entrants with fixed subjective preferences.

Theorem 1. Suppose there are finitely many situations and there is a symmetric Nash

equilibrium in A X A for every situation G.

1. If v¥ < vg for some G, situation identifiability and Stackelberg identifiability hold, and
there are finitely many strategies, then there exists a model © such that the minimal
correctly specified model is evolutionarily fragile against O under any full-support
distribution g € A(G).

2. If there is no point (ug)geg in the convexr hull of {(v&)geg | b : A = A} with the

property that ug > vi¥

for every G € G, then there exists a full-support distribution
q € A(G) so that the minimal correctly specified model is not evolutionarily fragile

against any singleton model.

One environment where v3F = 0 for every situation G is when agents face decision

problems — that is, a player’s payoff in every situation G is independent of the action of the
matched opponent. When all situations are decision problems, the condition in the first part
of Theorem 1 is violated: in fact, the correctly specified model is not evolutionarily fragile
against any other model, regardless of whether such invaders infer from data.

For the second part of the theorem, if there is no subjective best-response correspondence b
such that v% > vXE for every G € G, then for every singleton entrant model there exists some
distribution over situations so that the correctly specified model is not evolutionarily fragile
against it. But the stronger condition we impose ensures that there exists one distribution
over situations for which the correctly specified model is not evolutionarily fragile against
any singleton entrant model.

Next, we use a numerical example to illustrate how we might verify the two sets of

conditions from Theorem 1.

Example 1. Suppose A = {ay, as, a3}, the consequences are Y = {g, b} with u(g) =1 and
u(b) = 0. Suppose there are two situations, G4 and Gp, and the probability a given player

obtains ¢ given a strategy profile and situation is determined by the table below.
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| Ga |

|

|

G

al as as ay as as
a; | 0.1,0.1 | 0.1,0.1 | 0.1, 0.11 a; | 0.11,0.11 | 0.5, 0.5 0.12, 04
az | 0.1,0.1 | 03,03 0.1,0.1 as 0.5,0.5 | 0.12,0.12 | 0.14, 0.55
as | 0.11,0.1 | 0.1,0.1 | 0.2,0.2 a3 | 0.4,0.12 | 0.55,0.14 | 04,04

It is easy to verify that the payoff-maximizing symmetric Nash equilibria in A x A are (ag, as)
for G4 and (as,as) for Gp, so vgf = 0.3 and vgg = 0.4. The unique Stackelberg strategy
in G4 is ag and the unique Stackelberg strategy in G is a;, and we have vg, = 0.3 and
VU, = 0.5. There is a unique rational best response to every strategy in every situation.

: NE
Since vg,,

< Vg, the first set of conditions of Theorem 1 will be satisfied if we have
situation identifiability and Stackelberg identifiability. By inspection, the probability of the g
outcome under every strategy profile differs across the two situations, so situation identifiability
holds. For Stackelberg identifiability, note that the unique rational best response to a is as
in G4 and ag in G, and we have F*(as,as, G4) # F*(as, a3, Gg). The unique rational best
response to a; is as in Gp and a3 in G4, and we have F*(ay, a9, Gg) # F*(a1,a3,GA). So,
Stackelberg identifiability also holds.

To check the second set of conditions of Theorem 1, we consider three cases for the

subjective best-response correspondence b.

o If a; € b(as), then since ag is a rational best response to a; in G4 and the highest
possible payoff in G is 0.55, we get v* < (0.1,0.55).

o If ay € b(a3), then since ajz is a rational best response to ay in Gp and the highest
possible payoff in G 4 is 0.3, we get v° < (0.3,0.14).

o If a3 € b(as), then since a3 is a rational best response to az in both G4 and Gg, we get

W < (0.2,0.4).

These three cases are exhaustive since b(a3) cannot be empty. The half space in R? below the
line that runs through (0.1,0.55) and (0.2,0.4) contains all three points (0.1,0.55), (0.3,0.14),
and (0.2,0.4). So, the convex hull of {(v%)geg | b: A = A} is contained in this half space.
But we have vN¥ = (0.3,0.4), which is outside of the half space. Thus, the second set of
conditions of Theorem 1 are satisfied.

We conclude, by Theorem 1, that there exists some full-support distribution over the two
situations G4 and Gp such that the correctly specified model is evolutionarily fragile against

some entrant model, but it is not evolutionarily fragile against any singleton model. In fact,
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we can take this distribution to be the one where the two situations are equally likely, and we
can construct the invading entrant model as one that features illusion of control. This model
has F = {F4, Fp}, where both F4 and Fjp stipulate that the consequence only depends on
the agent’s own strategy and not on the opponent’s strategy. Under Fa, a1, as, and a3 lead to
consequence g with probabilities 0.1, 0.3, and 0.2 respectively (which are the probabilities of
g if opponent plays a rational best response to these strategies in situation G4). Under Fp,
playing aq, as, and ag lead to consequence g with probabilities 0.5, 0.14, and 0.4 respectively
(which are the probabilities of g if opponent plays a rational best response to these strategies

in situation Gp).

4.2 Stability Reversals

We now highlight another consequence of the endogeneity of misspecified beliefs: the potential
for a greater indeterminacy in the emergence of stable biases. For expositional simplicity, we
assume that |G| = 1 throughout this section. We will refer to a model’s conditional fitness

against group g, i.e., the expected payoff of the model’s adherents in matches against group g.

Definition 6. Two models © 4, O p exhibit stability reversal if (i) in every EZ with (pa, pg) =
(1,0), © 4 has strictly higher conditional fitness than ©p against group A opponents and
against group B opponents, but also (ii) in every EZ with (pa,pg) = (0, 1), ©p has strictly
higher fitness than O 4.

When pp = 0, how © 4 performs against ©p does not actually affect group A’s fitness.
Condition (i) encodes the strong requirement that ©4 outperforms ©p even on the zero-
probability event of being matched against a ©g opponent. A stability reversal occurs if
this stronger requirement holds (when ©4 dominates in society), and yet Op still strictly
outperforms 0, if ©p starts from a position of prominence.

We begin with two general results on when stability reversals cannot emerge. First, it

cannot emerge without belief endogeneity:

Proposition 2. Suppose |G| = 1. Two singleton models (i.e., two subjective preferences in

the stage game) cannot exhibit stability reversal.

The reason is that for two singleton models, the conditional fitness of group g against

group ¢’ does not depend on the relative sizes of the groups. The subjective preference
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associated with a singleton model never changes with the social composition, so a strategy
profile between groups g and ¢’ that can be sustained in an EZ with (pa,pg) = (1,0) can
also be sustained in an EZ with (pa,pg) = (0, 1).

Stability reversals also cannot emerge in decision problems. We show this by introducing
a class of models where agents always believe that strategic interactions do not matter:
Definition 7. A model © is strategically independent if for all u € A(O), arg max U;(a;, a_;; 1)

a; EA
is the same for every a_; € A.

The adherents of a strategically independent model believe that while an opponent’s action

may affect their utility, it does not affect their best response.

Proposition 3. Suppose |G| = 1, suppose © 4, Op exhibit stability reversal and © 4 is the
correctly specified singleton model. Then, the beliefs that the adherents of ©p hold in all EZs
with p = (1,0) and the beliefs they hold in all EZs with p = (0,1) form disjoint sets. Also,

Op is not strategically independent.

The first claim of Proposition 3 underscores that stability reversal requires inference—it cannot
happen if group B agents merely have a different subjective preference. The second claim
shows that stability reversal can only happen if the misspecified agents respond differently to
different rival play, immediately implying they cannot emerge in decision problems. The idea
is that when the group B agents are prominent in the society, their misperception that the
stage game is a decision problem implies that they will always choose the same strategy (say,
d;) against both group A and group B opponents. But this means their fitness cannot be
strictly higher than that of the rational group A agents, who play a rational best response
against a; when they match up against group B opponents.

We now show by example that stability reversal can emerge with models that allow for
inference. Consider a two-player investment game where player ¢ chooses an investment level
a; € {1,2}. A random productivity level P is realized according to 0°®(a; + a_;) + € where € is
a zero-mean noise term, b* > 0. Player i’s payoffs are a; - P — (a; — 1) - ¢. Consequences are

y = (a;,a_;, P). We record the payoff matrix of this investment game:

1 2
2b°, 2b° 3b°,6b° — ¢
2| 6b* —c,3b° | 8b* — ¢, 8b° — ¢
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Condition 1. 5b°* < ¢ < 6b°.

In words, we assume that a; = 1 is a strictly dominant strategy in the stage game,
but the investment profile (2,2) Pareto dominates the investment profile (1,1) (so that the
corresponding game is a prisoner’s dilemma). Consider two models in the society. Take © 4
to be a correctly specified singleton (thus knowing the true mapping from actions to payoffs),
while © 5 wrongly stipulates P = b(a; + a—;) —m + €, where m > 0 is fixed, while b € R is a
parameter that the adherents infer. We impose a condition on ©p, which holds whenever

m > ( is large enough:
Condition 2. ¢ < 4b°* + %m and ¢ < 5b°* + im.
We show that in this example models © 4 and ©p exhibit stability reversal.

Example 2. In the investment game, under Condition 1 and Condition 2, © 4 and © 5 exhibit

stability reversal.

The idea is that the ©p adherents hold endogenous beliefs about the value of b. They
overestimate the complementarity of investments, and this overestimation is more severe
when they face data generated from lower investment profiles. As a result, the match between
©4 and ©p plays out differently depending on which model is resident: it results in the
investment profile (1,2) when O 4 is resident, but results in (1,1) when ©p is resident. (We
relegate the formal argument to Appendix A.5.) Due to Propositions 2 and 3, we conclude
that this example is possible due to the non-trivial strategic interactions and ©g’s inference
about b.

Stability reversals provide a clear demonstration of the endogeneity of beliefs and hence the
fluidity of conditional fitness in models that permit inference. An entrant model may appear
weak when present in small proportions, doing worse than the resident model conditional on
every type of opponent. Yet, if the population share of the entrant model reaches a critical
mass, its adherents infer a more evolutionarily advantageous model parameter based on their
within-group interactions, change their best-response correspondence, and hence outperform

the adherents of the resident model.

5 Evolutionary Stability of Analogy Classes

We apply the stability notions introduced in this paper to study coarse thinking in games.
Jehiel (2005) introduced analogy-based expectation equilibrium (ABEE) in extensive-form
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games, where agents group opponents’ nodes into analogy classes and only keep track of
aggregate statistics of opponents’ average behavior within each analogy class. An ABEE is a
strategy profile where agents best respond to the belief that at all nodes in every analogy
class, opponents behave according to the average behavior in the analogy class. The ensuing
literature typically treats analogy classes as exogenously given, interpreted as arising from
coarse feedback or agents’ cognitive limitations.!” We showcase the practical value of our
approach by using the framework from Section 2 to endogenize analogy classes based on their

objective expected payoffs in equilibrium.!®

5.1 Defining Stable Population Shares

In this section, we will focus on an environment where agents know the stage game but may
have misspecified beliefs about others’ strategies. We will no longer work in the special case
of strategic certainty, and in fact we turn off the monitoring signals by assuming that m; is
fully uninformative about the matched opponent’s strategy a_;. We will also be interested in
stable population shares in a society that contains positive fractions of both rational and
misspecified players. This is because the environment we analyze features a rational model
and a misspecified model with neither model being evolutionarily stable against the other (as
we will see later in Proposition 4).

We briefly introduce the following solution concept.

Definition 8. Call population share (p,1 — p) with p € (0, 1) a stable population share if
there is an EZ with (p, 1 — p) where both models have the same fitness, and there exists €
such that:

1. For any 0 < € < ¢, there is an EZ with population share (p+¢€,1 —p — €) where © 4 has

strictly lower fitness than Op

2. For any 0 < € < €, there is an EZ with population share (p —€,1 — p+ €) where © 4 has
strictly higher fitness than Op.

17Section 6.2 of Jehiel (2005) mentions that if players could choose their own analogy classes, then the finest
analogy classes need not arise, but also says “it is beyond the scope of this paper to analyze the implications
of this approach.” In a different class of games, Jehiel (1995) similarly observes that another form of bounded
rationality (having a limited forecast horizon about opponent’s play) can improve welfare.

18Other approaches to endogenizing analogy classes are pursued in Jehiel and Mohlin (2023); Jehiel and
Weber (2025).
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Whereas Definition 4’s stability notion involves comparing the performance of the two models
when one of them is present in an arbitrarily small fraction, stability with an interior
population share as in Definition 8 refers to both models co-existing with equal fitness in a
way that is robust to local perturbations of population sizes.

Another difference between Definition 4 and Definition 8 is that the former requires a
uniform welfare comparison across all EZs and the latter just requires a welfare comparison in
one EZ. Indeed, we will select a particular focal EZ, because the environment has trivial EZs
where misspecified agents always “opt out” of playing the game, receive no information about
how others play, and hold beliefs about others’ strategies that make opting out subjectively
optimal. In such EZs, misspecified agents have the same fitness as the rational agents, but

not for any interesting reasons that relate to their misspecified models.

5.2 Centipede Games and Analogy-Based Reasoning

We now analyze analogy-based reasoning in the centipede game in Figure 1 (there is only
one situation, given by the payoffs in this game). P1 and P2 take turns choosing Across (A)
or Drop (D). The non-terminal nodes are labeled n* 1 <k < K where K is an even number.
P1 acts at odd nodes and P2 acts at even nodes, where choosing Drop at n* leads to the

nd

terminal node z*. If Across is always chosen, then the terminal node 2¢"? is reached. Every

time a player i chooses Across, the sum of payoffs grows by g > 0. However, if the opponent
chooses Drop next, ¢’s payoff is £ > 0 smaller than i’s payoff had they chosen Drop, with
¢ > g. Thus, if 2™ is reached, both get Kg¢/2; if 2* is reached when k is odd, both players
g(k—1) 2

5—; and if if 2% is reached when k is even, P1 obtains % — (¢, and P2 obtains

A A A A (gK/2,
g ()

D D D (9(K-2)2, (g(K-2)/2-1,
(0,0) (-Lg+l)  (9.9) 9(K-2)/2) gK/2+1)

obtain
Eg+ 0.

Figure 1: The centipede game. P1 (blue) and P2 (red) alternate in choosing Across (A) or
Drop (D). Payoff profiles are shown at the terminal nodes.

While this is an asymmetric stage game, we study a symmetrized version where two
matched agents are randomly assigned into the roles of P1 and P2. Let A = {(d*)E_, € [0, 1]¥},

so each strategy is characterized by the probabilities of playing Drop at various nodes in
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the game tree. When assigned into the role of P1, the strategy (d*) plays Drop with
probabilities d', d?,...,d5~! at nodes n',n?,..n 1. When assigned into the role of P2, it
plays Drop with probabilities d?,d*, ...,d" at nodes n?,n*,..n. The set of consequences
is Y =1{1,2} x ({2 : 1 <k < K} U{zena}), where the first dimension of the consequence
returns the player role that the agent was assigned into, and the second dimension returns the
terminal node reached. Let F'* : A> — A(Y) be the objective distribution over consequences.

All agents know the game tree (i.e., F'*), but some might adhere to a model which
mistakenly assumes that their opponent plays Drop with the same probabilities at all of
their nodes. Formally, define the restricted space of strategies A4" := {(d*) € [0,1]¥ : d* =
d* if k = k'(mod 2)} C A. The correctly specified model is ©® := A x A x {F*}. The
misspecified model of interest is ©4" := A" x A4" x {F*}, reflecting a dogmatic belief that
opponents play the same mixed action at all nodes in the analogy class. We emphasize these
restriction on strategies only exists in the subjective beliefs of the model ©4” adherents. All

agents, regardless of their model, actually have the strategy space A.

5.3 Results

The next proposition provides a justification for why we might expect agents with coarse

analogy classes given by A4™ to persist in the society.

Proposition 4. Suppose K > 4 and g > ﬁﬁ. The correctly specified model ©° is evolu-
tionarily stable against itself, but it is not evolutionarily stable against the misspecified model

04", Also, ©4" is not evolutionarily stable against ©°.

Thus, the correctly specified model is not evolutionarily stable against a coarse reasoner.
Here, the conditional fitness of ©4" against both ©* and ©4" can strictly improve on the
correctly specified residents’ equilibrium fitness. This is because the matches between two
adherents of ©® must result in Dropping at the first move in equilibrium, while matches
where at least one player is an adherent of ©4" either lead to the same outcome or lead to
a Pareto dominating payoff profile as the misspecified agent misperceives the opponent’s
continuation probability and thus chooses Across at almost all of the decision nodes.

However, ©4" is not evolutionarily stable against ©* either. The correctly specified agents
can exploit the analogy reasoners’ mistake and receive higher payoffs in matches against them

than the misspecified agents receive in matches against each other. Hence, no homogeneous
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population can be stable, as the resident model would have lower fitness than the entrant
model in equilibrium. Thus we determine stable shares as defined in Section 5.1, focusing on
the EZs where Across is played as often as possible.

Suppose K > 4 and g > %E. Consider the mazimal continuation EZ: (1) misspecified
agents always play Across except at node K where they choose Drop, and (2) correctly
specified agents (i) when matched with misspecified agents, play Drop at nodes K — 1 and
K and Across otherwise, and (ii) when matched with correctly specified agents, always play
Drop. We verify this indeed forms an EZ.

Proposition 5. Suppose K > 4 and g > 25/. The only stable population share (p%,p};)

supported by the maximal continuation EZ described above is pj; =1 — m. We have pj

is strictly increasing in g and K, and strictly decreasing in £.

Intuitively, p}; reflects the fraction of society expected to be analogy reasoners if long-run
population changes are determined by fitness. Under the maintained assumption g > %6,
the stable population share of misspecified agents is strictly more than 50%, and the share
grows with more periods and a larger increase in payoffs from continuation. The main
intuition is that the misspecified model has a higher conditional fitness than the rational
model against rational opponents. The former leads to many periods of continuation and
a high payoff for the biased agent when the rational agent eventually drops, but the latter
leads to 0 payoff from immediate dropping. On the other hand, the misspecified model has a
lower conditional fitness than the rational model against misspecified opponents. For the
two groups to have the same expected fitness, there must be fewer rational opponents (i.e., a
smaller stable population share p%) when g and K are higher.

Note that, when payoffs are specified as above, two successive periods of continuation
lead to a strict Pareto improvement in payoffs. Consider instead the so-called “dollar game”
Reny (1993) in Figure 2, a variant with a more “competitive” payoff structure, where an
agent always gets zero when the opponent plays Drop, at all parts of the game tree. Assume
total payoff increases by 1 in each round. If the first player stops immediately, payoffs are (1,
0). If the second player continues at the final node n, payoffs are (K + 2,0).

Proposition 6. For every population size (p, 1 —p) with p € [0, 1], the maximal continuation
EZ is an EZ where the fitness of ©° is strictly higher than that of ©4™.

While maximal continuation remains an EZ, the rational model strictly outperforms the

misspecified model for all population shares. Provided the maximal continuation EZ remains
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D D D D D

(10 (0,2 (30 (K-1,0)  (0,K)
Figure 2: The dollar game. Players 1 (blue) and 2 (red) alternate in choosing Across (A) or
Drop (D). Payoff profiles are shown at the terminal nodes.

focal, we would expect no analogy reasoners in the long run with this stage game. Intuitively,
the payoffs imply one player can only do better at the expense of the opponent. This implies
the less cooperative strategy will be selected.

In a recent survey, Jehiel (2020) points out that the misspecified Bayesian learning
approach to analogy classes should aim for “a better understanding of how the subjective
theories considered by the players may be shaped by the objective characteristics of the
environment.”' Taken together, our analysis in this section provides predictions regarding
when coarse reasoning should be more prevalent, specifically when the payoff structure is
“less competitive.” When this is indeed the case, the bias becomes more prevalent with a

longer horizon and with faster payoff growth.

6 Concluding Discussion

We have introduced an evolutionary approach to predict the persistence of misspecified
models under Bayesian learning. We have emphasized the implications and significance of
belief endogeneity for evolutionary stability and the viability of models. Our contributions are
twofold. First, we show that belief endogeneity may confer strategic benefits in cases where
dogmatic beliefs do not. This is because endogenous beliefs enable flexible commitments that
are tailored to the realized situation. Second, we show that the endogeneity of misspecified
beliefs makes it difficult to extrapolate the performance of a fixed bias across environments.
More broadly, we hope to have shown that incorporating inference enables the evolutionary
approach to speak to new applications and patterns.

We acknowledge that our framework does not account for which errors appear in the first
place. It is plausible that some first-stage filter prevents certain obvious misspecifications

from ever reaching the stage that we study in the evolutionary framework. For this reason,

19 Jehiel (2020) interprets ABEEs as players adopting the “simplest” explanations of observed aggregate
statistics of play with coarse feedback. An objectively coarse feedback structure can lead agents to adopt the
subjective belief that others behave in the same way in all contingencies in the same coarse analogy class.
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the applications we focused on reflected misspecifications that seem psychologically plausible.

We have used an otherwise off-the-shelf framework to describe the selection of specifications.
The goal of this paper is not to identify suitable definitions of fitness to justify particular
errors (which is the focus for many of the papers that Robson and Samuelson (2011) survey).
Rather, our goal has been to determine what evolutionary forces would suggest about the
persistence of misspecified models. We have therefore focused more on the implications of

belief endogeneity in an otherwise standard evolutionary setup.
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Appendix
A  Omitted Proofs from the Main Text

A.1 Proof of Proposition 1

Proof. We first note that for an agent i who believes in the parameters r > 0 and [, the
subjective expected utility from the strategy profile (a;,a_;) is a; - (8 — r(a; + a_;) — ¢) (since
¢ is mean zero). The second derivative in a; is —2r < 0, so the maximizer is characterized by
the first-order condition. Taking FOC, we get the subjective best response a; = ﬁf%%

We also note that the correctly specified residents must have an equilibrium belief that
assigns probability 1 to 8 = [* in every EZ. This is because in an EZ where the residents play
the strategy asa, f = * has zero KL divergence whereas any other value of § has strictly
positive KL divergence.

Now we prove the three parts of the proposition.

B —c
3re

the rational best response function is linear). So, the fitness of the residents is given by

5:»,.1«_-6 (B =12 53';.0 — ¢), which simplifies to (%%)2

Part 2: In an equilibrium zeitgeist where the entrants use the strategy apa, the correctly

Part 1: The only Nash equilibrium of the game is for both players to choose (since

specified residents (who have correct beliefs about all the parameters in equilibrium) best

respond with a,p = W. So, the fitness of the entrant is given by aga - (5° —

r*(apa+E=554) — ¢). Simplifying we get 3[(aga) - (8° —c)— (apa)?- (r*)]. This expression

2r®
is quadratic in ags and it must be maximized at the Stackelberg strategy of the game,
hence the fitness of the entrants is strictly decreasing in the distance between a4 and the
Stackelberg strategy. The Stackelberg strategy is found by taking the first-order condition of
the expression 3[(apa) - (8° —¢) — (apa)? - (r*)], which gives agac = 62.7;0.

Part 3: In an EZ where entrants with slope misperception 7 play a; against residents who

play a_;, the distribution of consequences has zero KL divergence only for the parameter
/3 that solves 3* — r*A = 3 — PA, so entrants must infer § = 3° + (a; + a_;)(# — r*). But
if the entrants play a;, in equilibrium the residents must play the rational best response
against it, which is a_; = % So the entrants infer 3 = 5°* + (a; + W)(f —r®)in

an EZ where they choose ags = a;. Under the beliefs (3, 7), the entrants’ subjective best

A~ L4 L ~ . L
_fB —c—r-a; ~B%—c—1r ag

response to 5.72‘3;7".% is 2 22 —° and so we must have a; = % Making
the substitution that 5 = 5° + (a; + ’B_QC%)W — r*) on the right-hand side, we get
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a; = . Simplifying this linear equation in a; gives us the

2[1 e which is the unique EZ value of ag4 when entrants have the slope

misperception 7. O

unique solution a; =

A.2 Proof of Theorem 1

Part 1: Suppose the hypotheses hold and let us construct the misspecified model o= {Fg :
G € G}. Towards defining the parameter Fg for each situation G, first consider Fi where
Fg(ai, a_;) :== F*(a;, BR(a;, G), G) for every a_; € A. Now for each (a;,a_;, G) € A x A x G,
define the full-support distribution Fg(a;,a—;) € A(Y) as a sufficiently small perturbation
of Fg(as,a_;), such that for every a;, a_; € A and every G € G, mingeg KL(F*(a;,a_;,G) ||
Fg(a;,a_;)) has a unique solution. This can be done because there are finitely many strategies
and situations.

Consider any EZ 3 where the resident is the minimal correctly specified model and the
entrant is ©. By situation identifiability and because we are in an environment of strategic
certainty, in 3 the correctly specified residents must believe in the true F*(-,-, G) in every
situation G. When the fraction of entrants € > 0 is sufficiently small, the entrants cannot
hold a mixed belief in any situation GG, by the construction of the parameters in O to rule
out ties in KL divergence if entrants only use the consequences in their matches against
the residents to make inferences. We show further that entrants must believe in Fg in
situation G for € small enough. This is because if they instead believed in F for some
G' # @G, then they must play ag as the Stackelberg strategy is assumed to be unique.
Let a_; be the rational best response to a¢ in situation G and o’ ; be the rational best
response to ag in situation G’, both unique by assumption. In their matches against the
residents, the entrants’ expected distribution of consequences Fg(agr,a_;) is a perturbed
version of F*(agr,a’ ;, G'), while the true distribution of consequences F*(a¢/,a_;, G) is a
perturbed version of Fg(agr,a—;). We have F*(ag/,a’ ;,G") # F*(ag, a—;, G) by Stackelberg
identifiability, so KL(F*(ag,a_;,G) || Falag,a—;)) < KL(F*(acr,a_;,G) || Fo(ag,a_;))
when the perturbations are sufficiently small. When € > 0 is small enough, this contradicts
the entrants believing in Fi in situation G as the parameter Fi; generates smaller weighted
KL divergence across all of the entrant’s data (since data from matches against entrants
get weighted by € and the full-support nature of all processes in the model implies that KL
divergence of the data from such matches is bounded). So the entrants get the Stackelberg
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payoff in each situation when playing the resident, which means they have higher fitness than
the residents in every EZ for € small enough, since vg > vay” for at least one situation and ¢
has full support. Finally, there exists at least one EZ: for € > 0 small enough, it is an EZ for
the residents to believe in F*(-, -, G) in every situation G, to play the symmetric Nash profile
that results in vy when matched with other residents (this profile exists by hypothesis of the
theorem), and for the entrants to believe in Fy and play (ag, BR(ag, G)) in matches against
residents in situation G.

Part 2: Let V be the convex hull of {(v%)geg | b : A = A}, and let U = {(ug)ceg :
ug < vg for all G for some v € V}. Note U is closed and convex (since V is convex). By
hypothesis, vNF is not in the interior or on the boundary of . So by the separating hyperplane
theorem, there exists a real number ¢ and a vector ¢ € RlI9 with ¢ # 0 for every G, so
that ¢ - vN¥ > ¢ > ¢ - u for every u € U. Furthermore, go > 0 for every G. This is because if
gor < 0 for some G’, then since U contains vectors with arbitrarily negative values in the G’
dimension, we cannot have ¢ - vN® > ¢ - u for every v € U. We may then without loss view g
as a distribution on G. In fact, we can take ¢ to be full support. To see this, note that since

|G| < oo and U is convex, we have

lli%rilgd( (1—€)q—|—’2|(1,1,...,1) $U = maxg -,
by continuity of the support function of convex sets in R™ (given that the support function
on U is bounded for all ¢ > 0, since v is bounded above for every b and every ). Thus,
setting G(¢) = (1 —¢e)g + ﬁ(l, 1,...,1), we have ¢(e) is a full support distribution with
G(e) - vV > ¢ > G(e) - u whenever ¢ is sufficiently small, since we have that these inequalities
hold in the limit.
Now consider any singleton model F = {F'}, and let b : A = A be the subjective

best-response correspondence that F induces. If vl # —oco for every G, then, for each G we
G a

can find a strategy profile (af,a%,) where af € b(a%,), a%; is a rational best response to af
in situation G, and the strategy pair gives payoff v% to the first player. For any population
shares of the two models, there is an EZ where the resident correctly specified agents get
veF in situation G when playing against each other, and the entrants with model © play
(a;,a_;) in matches against the residents and get utility v% in the same situation. Under the
distribution of situations ¢, as the fraction of the entrants approaches 0, the residents’ fitness

approaches ¢ - vNF while that of the entrants approaches ¢ - v°, and the former is strictly
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larger by construction of g since v* € . This EZ shows the correctly specified model is not
evolutionarily fragile against {F}. Otherwise, if we have that v% = —oco for some G, then
there are no EZs, so the correctly specified model is not evolutionarily fragile against {F'} by

the emptiness of the set of EZs.

A.3 Proof of Proposition 2

Proof. Let two singleton models © 4, ©g be given. By contradiction, suppose they exhibit
stability reversal. Let 3 = (ua, up,p = (0,1), (a)) be any EZ where Op is resident. By the
definition of EZ, 3" = (14, i, p = (1,0), (a)) is also an EZ where © 4 is resident. Let Uy,
be model ©,’s conditional fitness against group g in the EZ 3. Part (i) of the definition of
stability reversal requires that uss > upa and uag > ugp. These conditional fitness levels
remain the same in 3. This means the fitness of © 4 is strictly higher than that of ©p in 3, a

contradiction. ]

A.4 Proof of Proposition 3

Proof. To show the first claim, suppose 3 = (ua, pg,p = (1,0), (@44, a4p,a54,app)) is an
EZ, and 3 = (a, pg,p = (0,1),(@aa,aap,a54,app)) is another EZ where the adherents of
©p hold the same belief g (group A’s belief cannot change as © 4 is the correctly specified
singleton model). By the optimality of behavior in 3, aga best responds to asp under the
belief g, and asp best responds to aga under the belief 4, therefore 3 = (a, g, p =
(0,1), (@aa,aap,apa,app)) is another EZ. This holds because the distributions of observations
for the adherents of © 5 are identical in 3 and 3', since they only face data generated from the
profile (app, app). At the same time, since app best responds to itself under the belief g, we
have that 3" = (ua, pig,p = (1,0), (@44, a4p, apa,dpp)) is an EZ. Part (i) of the definition
of stability reversal applied to 3" requires that U*(aap,apa) > U*(app,app) (where U® is
the objective expected payoffs), but part (ii) of the same definition applied to 3’ requires
U*(app,app) > U*(aap,apa), a contradiction.

To show the second claim, by way of contradiction suppose ©p is strategically independent
and 3 = (ua, s, p = (0,1), (aaa,a48,ap4,app)) is an EZ. By strategic independence, the
adherents of ©p find it optimal to play agp against any opponent strategy under the belief
pg. So, there exists another EZ of the form 3" = (jua, ug,p = (0,1), (@44, @15, a5, aBs)),

where a/A 5 is an objective best response to agp. The belief 115 is sustained because in both 3
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and 3/, the adherents of ©p have the same data: from the strategy profile (agp,apg). In
3’ ©y's fitness is U*(a,p,app) and Op’s fitness is U*(app, app). We have U*(d g, app) >
U*(app,app) since a:4 5 1s an objective best response to app, contradicting the definition of

stability reversal. O

A.5 Details Behind Example 2

Let b*(a;, a_;) solve
min Dir(F*(ai, a—) || F(ai, a_i;b,m))),
S

where F*(a;,a_;) is the objective distribution over consequences under the investment profile
(a;,a_;), and a (ai,a_;;b,m) is the distribution under the same investment profile if produc-
tivity is given by P = b(x; + 2—;) —m + €. We find that b*(a;, a—;) = 0° + 72— It is clear
that Dy (F*(a;,a—;) || F(a;,a_i;b*(a;,a—;),m))) = 0, while this KL divergence is strictly
positive for any other choice of b.

Now we show that Example 2 exhibits stability reversal. In every EZ with p = (1,0),
we must have aqa = aap = 1. If aps = 2, then the adherents of ©p infer 6*(1,2) = b* + .
With this inference, the biased agents expect 1- (2(b* + %) —m) = 2b* — % from playing 1
against rival investment 1, and expect 2- (3(b* + %) —m) — ¢ = 6b* — ¢ from playing 2 against
rival investment 1. Since 40° + % — ¢ > 0 from Condition 2, there is an EZ with ap4 = 2 and
pp puts probability 1 on 0* + . It is impossible to have ag4 = 1 in EZ. This is because
b*(1,1) > b*(1,2), and under the inference b*(1,2) we already have that the best response to
1 is 2, so the same also holds under any higher belief about complementarity. Also, we have
app = 2, since 2 must best respond to both 1 and 2. So in every such EZ, © 4’s conditional
fitness against group A is 20°* and Opg’s conditional fitness against group A is 60° — ¢, with
2b* > 6b* — ¢ by Condition 1. Also, © 4’s conditional fitness against group B is 3b°, while
Op’s conditional fitness against group B is 80°* — ¢. Again, 30* > 8b* — ¢ by Condition 1.

Next, we show ©p has strictly higher fitness than © 4 in every EZ with pg = 1. There is no
EZ with app = 1. This is because b*(1,1) = b* 4 %. As discussed before, under this inference
the best response to 1 is 2, not 1. Now suppose agp = 2. Then up puts probability 1 on
b*(2,2) = b* 4 5. With this inference, the biased agents expect 1- (3(b* + ) —m) = 3b* —
from playing 1 against rival investment 2, and expect 2 - (4(b* + ) —m) —c = 8b* — ¢
from playing 2 against rival investment 2. We have 50° + 7 — ¢ > 0 from Condition 2, so 2

best responds to 2. We must have ay4 = asp = 1. We conclude the unique EZ behavior is
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(aaa,aaB,apa,app) = (1,1,1,2), since the biased agents expect 1-(2(b* +5) —m) = 20* — F

from playing 1 against rival investment 1, and expect 2- (3(b* + ) —m) —c=6b* — % — ¢
from playing 2 against rival investment 1. We have 40* — ¢ < 0 from Condition 1, so 1 best
responds to 1. In the unique EZ with p = (0, 1), the fitness of © 4 is 2b® and the fitness of

Op is 8b°* — ¢, where 80* — ¢ > 20* by Condition 1.

A.6 Proof of Proposition 4

Proof. When ©4 = Op = O°, with any (pa, pg), we show adherents of both models have 0
fitness in every EZ. Suppose instead that the match between groups g and g reach a terminal
node other than z; with positive probability. Let n; be the last non-terminal node reached
with positive probability, so we must have L > 2, and also that nodes nq,...,n;_; are also
reached with positive probability. So Drop must be played with probability 1 at ny. Since
ny, is reached with positive probability, correctly specified agents hold correct beliefs about
opponent’s play at ny, which means at ny_; it cannot be optimal to play Across with positive
probability since this results in a loss of £ compared to playing Drop, a contradiction.

Now let ©4 = ©°, O = ©4" and let pp € (0,1). We claim there is an EZ where d¥ , = 1
for every k, d¥%5 = 0 for every even k with k < K, d%5 = 1 for every other k, d%, = 0 for
every odd k and d%, = 1 for every even k, and d% = 0 for every k with k < K, d; = 1. Tt
is easy to see that the behavior (d44) is optimal under correct belief about opponent’s play.
In the © 4 vs. Op matches, the conjecture about A’s play d; = 2/K for k even, d% = 1 for
k odd minimizes KL divergence among all strategies in A4”, given B’s play. To see this, note
that when B has the role of P2, opponent Drops immediately. When B has the role of P1,
the outcome is always zx. So a conjecture with a?’jx p = « for every even k has the conditional

KL divergence of:

0 0
0m(5) + 0.l ( )
kgK; odd — ,_/O kSK;even (]‘/2) : (1 - x)(k/Q)_l X

(1,2x) for k<K—1 odd (1,2g) for k<K—1 even
1 1/2 0
3 () 0 (=)
(17ZK) (lyzend)

when matched with an opponent from ©4. Using 0 - In(0) = 0, the expression simplifies
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o :ln (W), which is minimized among = € [0,1] by = 2/K. Against this
conjecture, the difference in expected payoff at node nx_; from Across versus Drop is
(1-2/K)(g9)+(2/K)(—¢). This is strictly positive when g > -2-/. This means the continuation
value at nx_ is at least ¢ larger than the payoff of Dropping at nx_3, so again Across has
strictly higher expected payoff than Drop. Inductively, (d%,) is optimal given the belief
(d¥ 5). Also, (d¥ ) is optimal as it results in the highest possible payoff. We can similarly
show that the conjecture ci’fg p with ci’]g g = 2/K for k even, cifg g = 0 for k£ odd minimizes KL
divergence conditional on ©p opponent, and (d%z) is optimal given this conjecture.

As pg — 0, we find an EZ where adherents of A have fitness approaching 0, whereas the
adherents of B have fitness approaching at least %(((K /2) —1)g — ) > 0 since g > ﬁf.
This shows © 4 is not evolutionarily stable against ©p.

But consider the same (da,dap,dpa) and suppose d’ng =1 for every k. Taking pg — 1,
we find an EZ where adherents of B have fitness 0, adherents of A have fitness 5 - ((K/2)g+¢) >

0. This shows ©p is not evolutionarily stable against © 4. O

A.7 Proof of Proposition 5

Proof. Take g > %6 in the centipede game. The misspecified agent thinks a group

B agent in the role of P2 and a group A agent in either role has a probability 2/K of
stopping at every node. Under this belief, choosing to continue instead of drop means

there is a (K — 2)/K chance of gaining g, but a 2/K chance of losing ¢. Since we assume

g > K%é, it is strictly better to continue. When p fraction of the agents are correctly

specified, the fitness of ©° is p- 0+ (1 — p) - (2452 4 19K 4 p)) while the fitness of

04 is p - [L(AE2 gy 4 LoED) ()LD ) 4 L9 )] The difference in

fitness is —p[%(w —0)+ %@} + (1 — p)3¢. Simplifying, this is 3¢ —p- ( —2) 4 strictly

decreasing function in p. When P=y L )

from the assumption g > == in the centipede game, the two models have the same fitness.

, which is a number strictly between 0 and 1/2

Furthermore, since the payoff dlﬂerence is linear in p with a negative slope, the difference

in fitness is negative when p > SR S0 that ©4" outperforms ©° under these population

K 2)
shares—and conversely, the difference in fitness is positive when p < m. Thus, we have

this fraction of the population being correctly specified forms a stable population share. [
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A.8 Proof of Proposition 6

Proof. In the ©4" vs. ©4" match, the adherents of ©4" hold the belief that ci’jé 5 =2/K for
every even k. In the role of P1, at node k for k < K — 3, stopping gives them £ but continuing
gives them a (K — 2)/K chance to get at least k + 2, and we have k < £22(k+2) < 2k <
2K —4 < k< K —2. At node K — 1, the agent gets K — 1 from dropping but expects
(K +2) - £22 from continuing, and (K +2) - £22 — (K — 1) = K2’4}K2+K = £=4 > 0 since
K > 6.

In the ©° vs. ©4" match, the adherents of ©4" hold the belief that ci’jx 5 = 2/K for every

k. By the same arguments as before, the behavior of the adherents of 4" are optimal given

these beliefs. Also, the adherents of ©® have no profitable deviations since they are best
responding both as P1 and P2.

When p fraction of the agents are correctly specified, in the dollar game the fitness of ©°
isp-0.5+(1—p)- (5(K —1)+ 3K), while the fitness of 04" is p- 0+ (1 —p) - (3 - 0+ 3K).
For any p, the fitness of ©° is strictly higher than that of ©47. ]

B Existence and Continuity of Equilibrium Zeitgeists

We provide a few technical results about the existence of EZ and the upper-hemicontinuity of
the set of EZs with respect to population share. We suppose that |G| = 1 for simplicity, but
analogous results would hold for environments with multiple situations. Note that the same
belief endogeneity that generates new stability phenomena in Section 4 also leads to some
difficulty in establishing existence and continuity results, as agents draw different inferences
with different rates of interactions with the various groups.

We provide two sets of results. The first concerns environments where the expected KL
divergence of any parameter in the model is finite under any strategy profile (for example,
when every parameter conjectures a full-support distribution over consequences in Y under
every strategy profile, and the support of the monitoring signal does not vary with opponent’s
strategy). The second focuses on environments with strategic certainty, so monitoring signals
do not have full support and instead perfectly reveal opponent’s strategy. But, we impose
the same finite KL divergence requirement on the consequences.

For each g, ¢ € {A, B}, define K,y A*>xGx0, = Rby K, (a;,a_;,G;(aa,ap, F)) =
Drr(F*(ai,a—i, G)xp*(a—;) || F(ai, a,)x¢*(ay)). This is the KL divergence of the parameter
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(aa,ap, F) € O, in situation G based on the data generated from the strategy profile (a;, a_;).

B.1 Environments with Full-Support Monitoring Signals

Let two models, © 4,05 be fixed. Also fix population shares p. For g,¢9" € {A, B}, define
Voo : A2 x O, = R to be V, y(a;, a_i, (Ga,ap, F)) := Ey~r(a;,a,)(7(y)), the expected payoff
from choosing strategy a; under the parameter (a4, ap, F') when matched with an opponent
from group ¢’. Extend the domain of the third argument of V, , from ©, to A(©,) by

linearity. The K,, function defined above specializes in the case of of |G| = 1 to be
Kg,g/(ai7a—i; (Ga,a5, F)) = Dir(F*(ai,a—;) X ¢*(a—) | F(%&g’) X @*(ay)).

Assumption A.1. A, ©4,0p are compact metrizable spaces.

Assumption A.2. For every g,¢' € {A, B}, V, 4 is continuous.

Assumption A.3. For every g,q € {A, B}, K, s is well-defined and finite on its domain
A?x 0,.

Assumption A.4. For every g,9' € {A, B}, K, is continuous.

Assumption A.5. A is conver and, for g,¢9' € {A, B}, all a_; € A and all p, € A(O,),

a; =V g(ai,a_; pg) is quasiconcave.

We show the existence of equilibrium zeitgeists using the Kakutani-Fan-Glicksberg fixed
point theorem, applied to the correspondence which maps strategy profiles and beliefs over
parameters into best replies and beliefs over KL-divergence minimizing parameter. We start

with a lemma.

Lemma A.1. For g € {A, B}, a = (aaa,aap,apa,app) € A*, and 0 < p, <1, let

O, (a,py) == arég r@nin{ Dy Kgglagy,ag4:0)+ (1 —py)  Ky_g(ag_g,a_g4;0) } .
€9y

Then, ©} is upper hemicontinuous in its arguments.

This lemma says the set of KL-minimizing parameters is upper hemicontinuous in strategy

profile and population share. This leads to the existence result.
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Proposition A.1. Under Assumptions A.1, A.2, A.3, A.J, and A.5, an equilibrium zeitgeist

exists.

Next, upper hemicontinuity in p, in Lemma A.1 allows us to deduce the upper hemiconti-

nuity of the EZ correspondence in population shares.

Proposition A.2. Fix two models © 4,0p. The set of equilibrium zeitgeists is an upper

hemicontinuous correspondence in pg under Assumptions A.1, A.2, A.3, and A.4.

B.2 Proofs of Results in Appendix B.1
B.2.1 Proof of Lemma A.1

Proof. Write the minimization objective as

A A A

Wia,py,0) = py - Kgglagg, agg;0)+ (1 —py) - Ky _g(ag g, agg4;0),

a continuous function of (a, py, é) by Assumption A.4. Suppose we have a sequence (a™, pé")) —
(a*,p}) € A% x [0,1] and let QNS @;(a("),pgn)) for each n, with 0™ — 0* € ©,. For any
other 0" € ©4, note that W (a*,p;,0') = lim,, I/V(a(”),pé")7 0") by continuity. But also by
continuity, W(a*, p;, 0%) = lim,, W(a("),pén), 0™) and W(a("),pgn), ) < W(a("),pgn), o)
for every n. It therefore follows W (a*, p, 0*) < W(a*, p;, 0'). ]

B.2.2 Proof of Proposition A.1

Proof. Consider the correspondence I' : A* x A(©4) x A(Op) = At x A(0,4) x A(Op),

I'(aaa,aap,apa,app, fta, ip) :=
(BRAa(14), BRap(pta), BRpa(pis), BRep(15), A(©%(a)), A(OF(a))),

where BRyy () := arg maxVj y(a;, a_;; py) (this is well-defined because V, ;» does not depend
a; €A
on its second argument) and, for each g € {A, B}, we have omitted the dependence of the

correspondence Oy on p,. It is clear that fixed points of I' are equilibrium zeitgeists.
We apply the Kakutani-Fan-Glicksberg theorem (see, e.g, Corollary 17.55 in Aliprantis
and Border (2006)). By Assumptions A.1 and A.5, A is a compact and convex metric space,

and each O, is a compact metric space, so it follows the domain of I' is a nonempty, compact
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and convex metric space. We need only verify that I' has closed graph, non-empty values,
and convex values.

To see that I' has closed graph, the previous lemma shows the upper hemicontinuity of
©%(a) and ©%(a) in a, and Theorem 17.13 of Aliprantis and Border (2006) then implies
A(©%(a)) and A(O%(a)) are also upper hemicontinuous in a. It is a standard argument that
since Assumption A.2 supposes Vaa, Vag, Vea Vep are continuous, it implies the best-response
correspondences BRaa(p4), BRag(11a), BRpa(ug), BRpp(1p) have closed graphs.

To see that I' is non-empty, recall that each a; — V, 4 (a;, a_;; p14) is a continuous function
on a compact domain, so it must attain a maximum on A. Similarly, the minimization
problem that defines each ©}(a) is a continuous function of the parameter over a compact
domain of possible parameters, so it attains a minimum. Thus each A(©}(a)) is the set of
distributions over a non-empty set.

To see that I' is convex valued, clearly A(©%(a)) and A(O%(a)) are convex valued by
definition. Also, a; — Vaa(a;,a_;; ua) is quasiconcave by Assumption A.5. That means if
a;,a; € BRaa(p4), then for any convex combination @; of a;, a; , we have V(@ a_; pa) >
min(Vaa(aj, a_i;pa), Vaa(a;,a_s;pa)) = maxg,ea Vaa(ai, a_g; pa). Therefore, BRya(jea) is

convex. For similar reasons, BRag(114), BRpa(p), BRep(up) are convex. O

B.2.3 Proof of Proposition A.2

Proof. Since A" x A(6,4) x A(Op) is compact by Assumption A.1, we need only show that

for every sequence (p))ez1 and (a®), f®)iz1 = (aiy, alip, aigh, ajgp, i) i) )iz such that

for every k, (a™, n*)) is an EZ with p = (1 —pg),pg)), pg) — ph, and (a®, u®) — (a*, p*),
then (a*, u*) is an EZ with p = (1 — p}, pj).

We first show for all g,¢° € {A, B}, ay o is optimal under the belief u7. By Assump-
tion A.2, V, s (a;,a_;; p1y) is continuous, so by the property of convergence in distribution,
Vg,g/(agfg),,a;’f?g; p) — Vg,g/(a;g,, ay ;). For any other a; € A, V, y(aj, aé’f?g; ul) —
Vg,g/(a;,a;y; ;) and for every k, ‘/5}79/(6152,@(;,67)9; u(gk)) > V:q,g/(a;-,a(g]f?)g; ugk)). Therefore as
best responds to the belief 7.

Next, we show parameters in the support of yj minimize weighted KL divergence for group
g. Since O (a, py) represents the minimizers of a continuous function on a compact domain (by
Lemma A.1), it is non-empty and closed. By Theorem 17.13 of Aliprantis and Border (2006),

the correspondence H : A* x [0,1] = A(0,) defined so that H(a,p,) := A(O}(a,pg)) is also
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upper hemicontinuous. For every k, ,u(gk) € ]:I(a(k),pgk)), and ,uék) — Hy, a® — a*,p(gk) — Dy
Therefore, 1} € H(a*, p;), that is to say y; is supported on the minimizers of weighted KL

divergence. O

B.3 Environments with Strategic Certainty

Let two models, © 4, ©p be fixed. Suppose we are in an environment with strategic certainty,
so each ©, has the form A? x F,, M = A, and for every a_; € A, ¢*(a_;) puts probability
1 on a_;. Fix population shares p. As discussed in Section 2.4, we omit the part of the
parameter that corresponds to conjectures about others’” strategies and simply view beliefs as
elements in A(F,).

For g € {A, B}, let U, : A* x F, — R be defined by Uy (a;, a—; F) = U;(a;, a—;; 0p) with
U - A? x (A(F4) UA(Fp)) as defined before. Extend the domain of the third argument of
U, from F, to A(F,) by linearity. Also, the K(a;,a_;; F') function specializes in the case of
|G| =1 to be K(a;,a_;; F) = Dg(F*(a;,a—;) || F(a;,a_;)).

Assumption A.6. A, F, Fg are compact metrizable spaces.
Assumption A.7. For each g € {A, B}, U, is continuous.
Assumption A.8. K is well-defined and finite on its domain A? x (F, U Fg).

Under Assumption A.8, we can define K4 : A2 x F4 — R and Kp : A? x Fg — R, with
Ky(a;,a_;; F) = K(a;,a_;; F) for each g € {A, B}, a;,a_; € A, and F € F,.

Assumption A.9. For each g € {A, B}, K, is continuous.

Assumption A.10. A is conver and, for g € {A, B}, all a_; € A and all py € A(F,),

a; — Uglai, a_i; pg) is quasiconcave.

We show the existence of equilibrium zeitgeists using the Kakutani-Fan-Glicksberg fixed
point theorem, applied to the correspondence which maps strategy profiles and beliefs over
parameters into best replies and beliefs over KL-divergence minimizing parameter. We start

with a lemma.

Lemma A.2. For g € {A, B}, a = (aaa,aap,apa,apg) € A*, and 0 < p, <1, let

O,(a,pg) = al;g rjr:in{ Py Kyagg, ag9: F) + (1= pg) - Ky (ag g, a4 F) } .
€S9
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Then, ©} is upper hemicontinuous in its arguments.

This lemma says the set of KL-minimizing parameters is upper hemicontinuous in strategy

profile and population share. This leads to the existence result.

Proposition A.3. Under Assumptions A.6, A.7, A.8, A.9, and A.10, an equilibrium zeitgeist

exists.

Next, upper hemicontinuity in p, in Lemma A.2 allows us to deduce the upper hemiconti-

nuity of the EZ correspondence in population shares.

Proposition A.4. Fiz two models © 4,0pg. The set of equilibrium zeitgeists is an upper

hemicontinuous correspondence in pg under Assumptions A.6, A.7, A.8, and A.9.

B.4 Proofs of Results in Appendix B.3
B.4.1 Proof of Lemma A.2

Proof. Write the minimization objective as

A A A

Wia,pg, ') == py - Kylagg,ag9; F) + (1 —pg) - Ky (ag—g,a_g4;F),

a continuous function of (a, pg,ﬁ ) by Assumption A 9. Suppose we have a sequence
(a™ p(")) — (a*,p;) € A* x [0,1] and let F ¢ @*( g”)) for each n, with FW — F* ¢

Fy. For any other F" € Fy, note that W (a*, p;, F') = hmn_>Oo W(a (”),p F/) by continuity.
But also by continuity, W (a*, p;, F*) = lim,, W(a("),pén), F®)) and W (a™ p(") F) <
W(a(”),pgn), F') for every n. It therefore follows W (a*, p;, F™*) < W (a*, p;, F'). ]

B.4.2 Proof of Proposition A.3

Proof. Consider the correspondence I' : A* x A(F4) x A(Fp) = A* x A(Fa) x A(Fp),

[(aaa, anB, aBa, app, pia, hB) =
(BR(GAA, MA)? BR<aBA7 ,UA)a BR‘(CLAB> MB)? BR(aBB7 ﬂB)a A(@Z<a))7 A(@E(Q))),

where BR(a_;, p14) = arg maxU,(a;, a_;; py) and, for each g € {A, B}, we have omitted the
A

dependence of the correspondence ©; on p,. It is clear that fixed points of I' are equilibrium

zeitgeists.
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We apply the Kakutani-Fan-Glicksberg theorem (see, e.g., Corollary 17.55 in Aliprantis
and Border (2006)). By Assumptions A.6 and A.10, A is a compact and convex metric space,
and each F, is a compact metric space, so it follows the domain of I' is a nonempty, compact
and convex metric space. We need only verify that I' has closed graph, non-empty values,
and convex values.

To see that I' has closed graph, the previous lemma shows the upper hemicontinuity of
©%(a) and ©%(a) in a, and Theorem 17.13 of Aliprantis and Border (2006) then implies
A(0%(a)) and A(©%(a)) are also upper hemicontinuous in a. It is a standard argument
that since Assumption A.7 supposes Uy, Up are continuous, it implies the best-response
correspondence BR has closed graph.

To see that I' is non-empty, recall that each a; — U,(a;, a_;; j14) is a continuous function on
a compact domain, so it must attain a maximum on A. Similarly, the minimization problem
that defines each ©7(a) is a continuous function of the parameter over a compact domain of
possible parameters, so it attains a minimum. Thus each A(©}(a)) is the set of distributions
over a non-empty set.

To see that I' is convex valued, clearly A(©%(a)) and A(O%(a)) are convex valued
by definition. Also, a; — U,(a;,a_;; py) is quasiconcave by Assumption A.10. That
means if a;,a; € BR(a_;,p,), then for any convex combination @; of a;,a;, we have
Uy(@i,a—i; pg) > min(Uy(a;,a—i; pg), Ug(a;,a_i;p,)) = maxgaen Uy(as, a_i;pg). Therefore,
BR(a_;, ptg) is convex. O

B.4.3 Proof of Proposition A.4

Proof. Since A* x A(F4) x A(Fg) is compact by Assumption A.6, we need only show that
f (k) d (a® _ (o) (k) (k) (k’) (k) (k) h th
or every sequence (pp )ig>1 and (a'™), u'™)i>1 = (aya, axp, apas app, ki’ 1t k=1 such that
for every k, (a®, u®) is an BZ with p = (1 —p}, p)), ply’ — pp, and (a®), u®) — (a*, "),
then (a*, p*) is an EZ with p = (1 — p}, p}).

We first show for all g, ¢ € {A, B}, a; g8 optimal under the belief u}. By Assumption A.7,

Ug(ai, a_i; pg) is continuous, so by property of convergence in distribution, Ug(a;k) (k). o u(k))

g

Ug(az 40 ;,u;) For any other a] € A, U,(al, a,(]f) ;,uék)) — Uy(aj, ay ;,u;) and for every k,
Ug(a;k;,, a;]f)g7 pi) > Uy(a),a /) ,,u( ). Therefore ay o+ best responds to the belief 1.

Next, we show parameters in the support of x; minimize weighted KL divergence for group

g. Since O} (a, py) represents the minimizers of a continuous function on a compact domain (by
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Lemma A.2), it is non-empty and closed. By Theorem 17.13 of Aliprantis and Border (2006),
the correspondence H : A* x [0, 1] = A(F,) defined so that H(a,p,) := A(O;(a, pg)) is also
upper hemicontinuous. For every k, ugk) e H(a®, pg’“)), and ué’“) — 5, a® — a*, pgk) — Py
Therefore, yy € H(a*, p;), that is to say 7 is supported on the minimizers of weighted KL

divergence. O]

C Learning Foundation of Equilibrium Zeitgeists

We provide a foundation for equilibrium zeitgeists as the steady state of a learning system.
This foundation considers a world where agents start with prior beliefs over parameters in
a model. As in our framework from Section 2, these parameters correspond to conjectures
about the stage game and about others’ strategies.

At the end of every match, each agent observes their consequence and a monitoring signal.
We show that under any asymptotically myopic policy, if behavior and beliefs converge,
then the limit steady state must be an EZ. If the models allow agents to make rich enough
inferences about opponents’ strategies, then sufficiently accurate monitoring signals about
opponent’s play imply that agents must hold correct beliefs about others’ strategies in the
limit steady state. In particular, in environments that approach strategic certainty (that is,
the monitoring signals are full support but they almost perfectly reveal opponent’s strategy),
limit steady state beliefs about others’ strategies must be correct. Finally, if the true situation
is redrawn every T periods and the agents reset their beliefs over parameters to their prior
belief when the situation is redrawn, then their average payoffs approach their fitness in the

EZ when T is large.

C.1 Regularity Assumptions

We make some regularity assumptions on the objective environments and on the two models
O 4,0p. These are similar to the regularity assumptions from Appendix B.

Suppose the strategy set A and the space of monitoring signals M are finite. Suppose the
marginals of the models © 4, ©p on the dimension of fundamental uncertainty, denoted as
Fa, Fp, are compact and metrizable spaces. Endow © 4 and ©p with the product metric.
Suppose that every (aa,ap, F) € ©4 U Ogp is such that for every (a;,a_;) € A? and every
situation G, whenever f*(a;,a_;, G)(y) > 0, we also get f(a;,a4)(y) > 0 and f(a;,ap)(y) > 0,
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where f is the density or probability mass function for F'. Suppose the monitoring signal has
full support on M for every a_; € A.

For each ¢,¢ € {A, B}, recall that we defined K, : A% x G x ©, — R in Appendix B by
K, s(ai,a;,G;(aa,ap, F)) = Dgr(F*(ai, a—, G) X ¢*(a;) || F(ai, ay) X 9*(ay)). Suppose
each K/ is well defined and a continuous function of the parameter (a4, ag, F').

For g € {A, B}, F € Fy, let Uy(a;, a_;; F') be the expected payoffs of the strategy profile
(a;,a_;) for i when consequences are drawn according to F. Assume Uy, Ug are continuous.

Suppose for every model ©, and every (as,ap,F) € O, and € > 0, there exists an
open neighborhood V' C O, of (as,ap, F), so that for every (&A,&B,ﬁ) eV, 1—-¢e<
[Pl aa) ) - @ (@a)m))/[F(a,80)(0) - 9(@a)(m)] < 1+ € and 1~ ¢ < [Fla,an)(s)
©*(ag)(m)]/[f(a;,a5)(y) - ¢*(ag)(m)] < 1+eforall a; € Ay € Y, m € M. Also suppose
there is some C' > 0 so that In(f(a;, a4)(y) - ¢*(aa)(m)) and In(f(a;, ap)(y) - ¢*(ag)(m)) are
bounded in [—C, C] for all (aa,ap, F) € Oy, aj,a_; € A,y € Y, m € M.

C.2 Learning Environment

We first consider an environment with only one true situation, |G| = 1. Time is discrete
and infinite, ¢ = 0,1,2,... A unit mass of agents, ¢ € [0, 1], enter the society at time 0. A
pa € (0,1) measure of them are assigned to model A and the rest are assigned to model
B. Each agent born into model g starts with the same full support prior over the model,
,u(go) € A(O,), and believes there is some (a4, ap, F') € ©4 so that every group g opponent
always plays a, and the consequences are always generated by F.

In each period t, agents are matched up uniformly at random to play the stage game.
Each person in group ¢ has p, chance of matching with someone from group ¢, and matches
with someone from group —¢ with the complementary chance. Each agent ¢ observes their
opponent’s group membership and chooses a strategy agt) € A. At the end of the match, the
(t) (

agent observes own consequence v, it) € M about the opponent’s

(t

)

and a monitoring signal m
play, where m ) is drawn from the distribution ©*(a_;) if their opponent uses strategy a_;.
One example of this would be M = A and mgt) is equal to the opponent’s strategy with
probability 7 € [0, 1) and is uniformly random on M with the complementary probability. Our
results for the case when 7 is close enough to 1 and each model has the form ©, = A? x F,
provide a foundation for EZs in environments with strategic certainty.

The space of histories from one period is {A, B} x A x Y x M, with typical element
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(Qz( )7 5 ), yf ), Z()) It records the group membership of i’s opponent g(t)

i
t
'S consequence y( )

)

1’s strategy agt) '

(®)

and ¢’s monitoring signal about the matched opponent’s strategy, m; .
Let H denote the space of all finite-length histories.

Given the assumption on the two models, there is a well-defined Bayesian belief operator
for each model ¢, p, : H — A(O,), mapping every finite-length history into a belief over
parameters in O, starting with the prior ,uéo).

We also take as exogenously given policy functions for choosing strategies after each
history. That is, a

agent uses against a group ¢ opponent after every history. Assume these policy functions

»: H — A for every g,g € {A, B} gives the strategy that a group g

are asymptotically myopic.

Assumption A.11. For every € > 0, there exists N so that for any history h containing
at least N matches against opponents of each group, ag7g/(h) is an e-best response to the

Bayesian belief j14(h).

From the perspective of each agent i in group g, i’s play against groups A and B, as
well as i’s belief over O, is a stochastic process (a 1(/2, fg, g )0 valued in A x A x A(O,).
The randomness is over the groups of opponents matched with in different periods, the
strategies they play, and the random consequences and monitoring signals drawn at the
end of the matches. Since there is a continuum of agents, the distribution over histories
within each population in each period is deterministic. As such, there is a deterministic
sequence (a%%,axg,agg, gfél,uﬁ‘), Vg ) € A(A) x A(A(O,)) x A(A(Op)) that describes

the distributions of play and beliefs that prevail in the two sub-populations in every period t.

C.3 Steady State Limits are Equilibrium Zeitgeists

We state and prove the learning foundation of EZs. For (a®), a sequence valued in A(A)

and a* € A, oY — a* means E, a—a*||— 0ast— oco. For (v); a sequence valued

a~a(t) ||

in A(A(Qy)) and p* € A(O,), v — p* means E; o || fi — p* ||— 0 as t — oo.

Proposition A.5. Suppose the reqularity assumptions in Appendix C.1 hold, and suppose As-

sumption A.11 holds. Suppose there exists (a% 4, g, W a, Qg 1y, 1) € AYXA(O4)x A(Op)

so that (04347 Oéf?B? Oég?A, a(Bt247 VX), Vg)) - (G’ZA7 aj:lBJ a*BAa a*BBa Mjlu IU*B) and fOT each agent i in
t * * * * * * * * * ;
group g, almost surely ( zA)v 5527 /JJE )) (agA7 agB? Mg) Then: (aAAa Aap;Qpa,App; LA MB) s

an equilibrium zeitgeist.
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Suppose further that for each g, the model ©, has the form A*x F,. There exists some T < 1
so that for every T € (,1) and (a% 4, a’yg, a4, g, 1, 1) satisfying the above conditions,

we have that ' puts probability 1 on (a* 4, a%g), py puts probability 1 on (a4, afkp).

Proof. For p a belief and g € {A, B}, let u*(a;; g) represent subjective expected payoff
from playing a; against group g. Suppose a’, ¢ argmax,.,u”4(a; A) (the other cases are
analogous). By the continuity assumptions on U, (which is also bounded because Fj4 is
bounded), there are some €;, €5 > 0 so that whenever p; € A(O4) with || p; — pfy [|< €1, we
also have u*i(a% 4; A) < maxaep u*(a; A) — €. By the definition of asymptotically empirical
best responses, find N so that as 4(h) must be a myopic es-best response when there are
at least NV periods of matches against A and B. Agent ¢ has a strictly positive chance to
match with groups A and B in every period. So, at all except a null set of points in the
probability space, i’s history eventually records at least N periods of play by groups A and

B. Also, by assumption, almost surely ﬂl(t)

— py. This shows that by asymptotically myopic
best responses, almost surely dl(-f‘) /> a’ 4, a contradiction.

Now suppose some 0% = (a’,al;, f*) in the support of p% does not minimize the weighted
KL divergence in the definition of EZ (the case of a parameter 63 in the support of u}; not

minimizing is similar). Then we have

0%, ¢ argmin

éG@A

{ (pa) - Do (F*(aly, @) X @ (@) || Flayg,da) X 0*(a)) }
(1= pa) - Dicr(F* (@ aa) % @ (ai) | F(aip 5) x ¢ (05))

where 0 = (a4, ap, F).

This is equivalent to:

0’ ¢ argmin
0€O 4

(pA) : ]E(y,m)wF'(aZA,aZA)X@'(aZA) ln(f(azlA> &A)<y) ¥ (d )(m>>
+<1 - pA) ’ E(y,m)wF‘(a’AB,aEA)Xso‘(a’l‘?A) ln(f(alev &B)(y) ¥ ( )(m))

Let this objective, as a function of 8, be denoted W L(0). There exists 07" = (a%", a%", f') €
©4 and 6, e > 0 so that (1 — &)W L(OF") — 26C — 3¢ > (1 — §)W L(6%). By assumption on the

primitives, find open neighborhoods Vo and V* of %", 6% respectively, so that for all a; € A,

ge{ABhyeY, meM 1—e<[f(a,ad)(y) ¢* (ag?) (m)]/[f (ai, ag)(y) - P (ag)(m)] <
1+e¢, forall = (Ga,ap, f) € V', and also 1 — e < [f*(a4, ay)(y) - ¢*(az)(m)]/[f(as, ag)(y) -
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©*(a,)(m)] < 1+¢€ for all @ = (aa,ap, f) € V*. Also, by convergence of play in the
populations, find 77 so that in all periods t > T7, ozf&(ajm) >1—9 and ozgl‘(a*BA) >1-0.

Consider a probability space defined by Q := ({A, B} x A? x (Y)** x M*)*® that de-
scribes the randomness in an agent’s learning process. For a point w € €2 and each
period t > 1, wy = (9,a-5,4,0—i B Yas,a_,)(as,a_)en2, (Ma_;)a_,en) specifies the group g of
the matched opponent, the play a_;4,a_; p of hypothetical opponents from groups A
and B, the hypothetical consequence y,,, , that would be generated for every pair of
strategies (a;,a—;) played, and the hypothetical monitoring signal m,_, that would be gen-
erated for every opponent strategy a_;. As notation, let o(w,t), a_; a(w,t), a_;p(w,1t),
Yasa_; (W, 1), mg_,(w,t) denote the corresponding components of w;. For T, > 11, define Py,
over QF = x5, ({4, B} x A* x (Y)A* x M*) in the natural way. That is, it is independent
across periods, and within each period, the density (or probability mass function if Y is finite)

of Wy = (g, a_; A, A—4 B, (yauaf )(az,a i)EAZ, (mafi)aﬂEA) is

P aai)aiasis) - TI F(ana ) Waa) - [] ©"(a i)(ma_,).

(ai,a—;)EA? a_;EA

For 0 = (a%,a%, F%) € ©4 with f? the density of F?, w € QF, consider the process in
s=1,2,3, ...

To+s

g (9 w Z ln fe aA o(wt 7 o(w t))(ya270<w7t>7a—i,o(w,t)(w7t) (w’ t))
t=Thr+1

) 90.<a7i,0(w,t) (wv t)) (ma—i,o(w,t)(w7t) (w> t))]

By choice of the neighborhood V*, for every s,

To+s

Sup 65(9A7 ) < € + - Z ln fe O w t Y aZ(w t))(yaz o(w t)’a—i,o(w,t)(w’t) (w’ t))
% S t=Th+1 ’ ’

: ()0. (aiivo(wﬂt) (w’ t)) (ma—i,o(w,t) (w7t) <w7 t) )]
To+s

0/ * *
<e+t g . TZ_H 1{a—z‘,o(w,t) (th):a:;(wyt),A} ) hl[f (aA,o(w,t)7 aa(w,t))(yaA o(wit)’ O(w 0,4 (w7 t))
=13

’ w.(aZ(w,t),A) (maZ(w,t),A (wa t))]

+ (1 o 1{a—i,o(w,t)(Wﬂt):aZ(wyt),A}> ’ C
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Since Ty > T1, in every period ¢, Pr, (@i o(w)(w,t) = a3, 4) = 1 — 0. Let (§)r>1 a related
stochastic process: it is i.i.d. such that each & has § chance to be equal to C, (1 —§)pa chance
to be distributed according to In(f*(a% 4, a%)(y)-¢*(a%)(m)) where y ~ f*(a% 4, a’4) and m ~
©*(a%4), and (1 — d)pp chance to be distributed according to In(f*(a* g, al)(y) - ¢*(a%)(m))
where y ~ f*(a’g,a54) and m ~ ¢*(a},). By law of large numbers, 375, & converges
almost surely to 6C' + (1 — §)W L(67). By this comparison, limsup, supg,cy« £s(04,w) <
e+0CH+(1—-9)W L(0%) Pr,-almost surely. By a similar argument, lim inf; infy, cyort £5(04,w) >
—e — 0C + (1 = O)WL(6F") Pr,-almost surely.

Along any w where we have both lim sup, supg , ey« £s(04, w) < € +6C + (1 — 0)W L(0%)
and lim inf, infy, cyort £5(04,w) > —€ — 6C + (1 — S)WL(OF"), if w also leads to i always
playing a’ 4 against group A and a’ z against group B in all periods starting with 75 + 1,
then the posterior belief assigns to V* must tend to 0, hence ﬁgt) /4 . Starting from any
length 75 history h, there exists a subset On C Q% that leads to i not playing the EZ strategy
in at least one period starting with 75 4+ 1. So conditional on h, the probability of ﬂgt) — 1y
is no larger than 1 — Py, (). The unconditional probability is therefore no larger than
En[1 — Pr, ()], where Ey, is taken with respect to the distribution of period Ty histories for
1. But this term is also the probability of ¢ playing non-EZ action at least once starting with
period T5. Since there are finitely many actions and (ELEQ, a\)) = (a*y, a’p) almost surely,
En[1 —Prp, ()] tends to 0 as T, — oo. We have a contradiction as this shows il 4 W with
probability 1.

Now we prove the second part of this proposition. Let K < oo be an upper bound on
Dgr(F*(a;,a_;) | ﬁ(ai,&,i)) across all a;,a_; € A, (dA,dB,F) € ©4UOp. Here K is finite
because A is finite and K,  is continuous in the parameter, which is from a compact domain.
Let ¢2(a—;) be the distribution over Ml when opponent plays a_; and the monitoring structure
is such that the monitoring signal matches the opponent’s strategy with probability 7 and is
uniformly random on M with the complementary probability. It is clear that there exists some
7 < 1so that for any a_; # a';, 7 € (1, 1), we get min(pa,pg)- Drr(0t(a_s) || ¢2(a’,)) > K.

Therefore, given any (a% 4, a% g, ak4) € A3, the solution to

[ ) Dra(F i i) % ot (@) | F(ah da) < ¢*(04)
i0u | (1= pa)  Dicn(F* (s aia) % ¢ (ai) | Pl ) % ()

must satisfy a4 = a4, Gp = ajy,, because (a%y 4, a4, F) for any F' € © 4 has a KL divergence
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no larger than K. On the other hand, any (G4, ap, F) with either a4 # a% 4 or ap # aj, has

KL divergence strictly larger than K by the choice of 7. O]

C.4 Multiple Situations

Now suppose there are multiple situations G € G and a distribution ¢ € A(G), with G finite.
At the start of period t = 1, Nature draws a situation G from G according to ¢, and
consequences are generated according to F*(-, -, G’(l)) until period t =T + 1. In period T + 1,
Nature again draws a situation G from G according to ¢, and consequences are generated
according to F*(-,-,G?) until period ¢t = 27 + 1, and so forth. Agents start with a prior
over parameters in their group’s model, ugo) € A(O,). In periods T'+ 1,27 + 1, ... agents
reset their belief to ,ugo), and their belief in each period over the parameters in their model
only use histories since the last reset. This belief corresponds to agents thinking that the
data-generating process is redrawn according to ,ugo) every T periods.

Suppose for every G € G, the hypotheses of Proposition A.5 hold in a society where G
is the only true situation. Denote (a’4(G), a’5(G), a5 4(G), aj5(G), ki (G), ui(G)) as the
limit of the agents’ behavior and beliefs with situation G. Then it is straightforward to see
that in a society with the situation redrawn every 7T periods, the expected undiscounted
average payoff of an agent in group g approaches the fitness of ¢g in the EZ characterized
by the behavior and beliefs (a%y4(G), a’5(G), as4(G), ak5(G), ui(G), us(G))ceg with the
distribution ¢ over situations, as 7" — oo. This provides a foundation for fitness in EZ as the

agents’ objective payoffs when the true situation changes sufficiently slowly.
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