
Java Magazine

Quiz yourself: The plus + and equals-equals
== operators in Java

Simon Roberts | December 22, 2021

Mikalai Zaikin | December 22, 2021

These common Java operators work differently with numeric and
string operands.

Given the class

Java SE, Quiz

   

public class StringComparison {

 public static void main(String[] args) {

 var str1 = "Java 11";

 var str2 = "Java 11";

 var res = "The" + " " + "same:" + str1 == str2;

 System.out.print(res);

 }

}

C d i

Java Magazine

https://blogs.oracle.com/javamagazine/authors/Blog-Author/COREA9F279C10386469EA700CC8C4432672B/simon-roberts
https://blogs.oracle.com/javamagazine/authors/Blog-Author/COREBA165B7190C0449BB51E98BF7E51D3B1/mikalai-zaikin
https://blogs.oracle.com/javamagazine/category/jm-java-se
https://blogs.oracle.com/javamagazine/category/jm-quiz
https://www.facebook.com/dialog/share?app_id=209650819625026&href=/javamagazine/post.html
https://twitter.com/share?url=/javamagazine/post.html
https://www.linkedin.com/shareArticle?url=/javamagazine/post.html
https://blogs.oracle.com/javamagazine/post/placeholder.html
https://blogs.oracle.com/
https://blogs.oracle.com/javamagazine/

What is the output? Choose one.

A. The same:true The answer is A.

B. The same:false The answer is B.

C. true The answer is C.

D. false The answer is D.

Answer. This question investigates operators and their precedence with particular attention to the plus
(+) and equals-equals (==) operators.

The code in the question evaluates an expression that has three uses of the plus operator and one use
of the equals-equals operator. Additive operations have higher precedence than equality operations
(see the documentation for operators). This means that all three + operations will be performed, from
left to right, before the == operator is evaluated.

If you take the initial expression

"The" + " " + "same:" + str1 == str2

You can add parentheses to clarify the order of execution. The result would look like this.

((("The" + " ") + "same:") + str1) == str2

Because the first two concatenations involve literal text, it’s easy to see that the expression quickly
reduces to this.

(("The same:") + str1) == str2

Next, the concatenation with str1 is performed resulting in

("The same:Java 11") == str2

Finally the identity of the computed String on the left of the == is tested against the identity of the

Copy code snippet

The plus operator performs numeric addition if both operands have a numeric type. Otherwise, it
performs string concatenation and requires that at least one of the operands have the String type
(the other argument is converted to String if it is not already so). If neither of these situations
applies, using the + operator raises an error during compilation.

The equals-equals operator tests primitive values for equivalence, and it tests object references for
identity. That is, if it’s used with two object references, == tells whether those references both refer
to the same object.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Finally, the identity of the computed String on the left of the is tested against the identity of the
String referred to by str2. Of course, these strings must be different objects in memory since they
have different contents, so the result is false. Consequently false is printed to the console, making
option D correct and the other options incorrect.

It’s worth considering some variations on this expression. First, consider that in Java, if multiple String
literals in a program have the same text, they will all be reduced to a single object in memory. This
optimization is performed by the compiler but is also performed by the class loader, so even if the
literals are in different source files that are compiled separately, this will still be true.

Thus, if you simply performed the comparison str1 == str2 in isolation, the result would be true.
However, if you use parentheses to force the == test to happen before the string concatenation, like this

var res = "The" + " " + "same:" + (str1 == str2);

The output would be

The same:true

As a final note, observe that the left side of the == comparison is a String object with the following
value:

"The same:Java 11"

Now imagine that the value of str2 were initialized to that same text. In that case, the output would still
be false, because the two String objects, despite having the same textual contents, are different
objects in memory. Thus, they would fail the identity check that == performs.

Conclusion. The correct answer is option D.

Related quizzes

Simon Roberts

Quiz yourself: The scope of variables and dividing by zero

Quiz yourself: Use primitives such as the % operator

Quiz yourself: String manipulation

Quiz yourself: Initializing standard and final variables in Java

https://blogs.oracle.com/javamagazine/post/quiz-yourself-the-scope-of-variables-and-dividing-by-zero
https://blogs.oracle.com/javamagazine/post/quiz-yourself-use-primitives-such-as-the-operator
https://blogs.oracle.com/javamagazine/post/quiz-yourself-string-manipulation-intermediate
https://blogs.oracle.com/javamagazine/post/java-variable-initialize-final

 Previous Post

2021 © Oracle Site Map Privacy / Do Not Sell My Info Cookie Preferences Ad Choices Careers

Simon Roberts

Simon Roberts joined Sun Microsystems in time to teach Sun’s first Java classes in the UK. He created
the Sun Certified Java Programmer and Sun Certified Java Developer exams. He wrote several Java
certification guides and is currently a freelance educator who publishes recorded and live video training
through Pearson InformIT (available direct and through the O’Reilly Safari Books Online service). He
remains involved with Oracle’s Java certification projects.

Mikalai Zaikin

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus. During his career, he has helped
Oracle with development of Java certification exams, and he has been a technical reviewer of several
Java certification books, including three editions of the famous Sun Certified Programmer for Java study
guides by Kathy Sierra and Bert Bates.

https://blogs.oracle.com/javamagazine/post/java-math-bitwise-boolean-precedence
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
https://www.oracle.com/legal/privacy/privacy-choices.html
https://www.oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/corporate/careers/

