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Quiz yourself: The plus + and equals-equals
== operators in Java
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These common Java operators work differently with numeric and
string operands.

Given the class
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public class StringComparison {

  public static void main(String[] args) {

    var str1 = "Java 11";

    var str2 = "Java 11";

    var res = "The" + " " + "same:" + str1 == str2;

    System.out.print(res);

  }

}
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What is the output? Choose one.

A. The same:true The answer is A.

B. The same:false The answer is B.

C. true The answer is C.

D. false The answer is D.

Answer. This question investigates operators and their precedence with particular attention to the plus
(+) and equals-equals (==) operators.

The code in the question evaluates an expression that has three uses of the plus operator and one use
of the equals-equals operator. Additive operations have higher precedence than equality operations
(see the documentation for operators). This means that all three + operations will be performed, from
left to right, before the == operator is evaluated.

If you take the initial expression

"The" + " " + "same:" + str1 == str2

You can add parentheses to clarify the order of execution. The result would look like this.

((("The" + " ") + "same:") + str1) == str2

Because the first two concatenations involve literal text, it’s easy to see that the expression quickly
reduces to this.

(("The same:") + str1) == str2

Next, the concatenation with str1 is performed resulting in

("The same:Java 11") == str2

Finally the identity of the computed String on the left of the == is tested against the identity of the

Copy code snippet

The plus operator performs numeric addition if both operands have a numeric type. Otherwise, it
performs string concatenation and requires that at least one of the operands have the String type
(the other argument is converted to String if it is not already so). If neither of these situations
applies, using the + operator raises an error during compilation.

The equals-equals operator tests primitive values for equivalence, and it tests object references for
identity. That is, if it’s used with two object references, == tells whether those references both refer
to the same object.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html


Finally, the identity of the computed String on the left of the  is tested against the identity of the
String referred to by str2. Of course, these strings must be different objects in memory since they
have different contents, so the result is false. Consequently false is printed to the console, making
option D correct and the other options incorrect.

It’s worth considering some variations on this expression. First, consider that in Java, if multiple String
literals in a program have the same text, they will all be reduced to a single object in memory. This
optimization is performed by the compiler but is also performed by the class loader, so even if the
literals are in different source files that are compiled separately, this will still be true.

Thus, if you simply performed the comparison str1 == str2 in isolation, the result would be true.
However, if you use parentheses to force the == test to happen before the string concatenation, like this

var res = "The" + " " + "same:" + (str1 == str2);

The output would be

The same:true

As a final note, observe that the left side of the == comparison is a String object with the following
value:

"The same:Java 11"

Now imagine that the value of str2 were initialized to that same text. In that case, the output would still
be false, because the two String objects, despite having the same textual contents, are different
objects in memory. Thus, they would fail the identity check that == performs.

Conclusion. The correct answer is option D.
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