Overview of CQAs Measurement and other Key Applications with Raman

Charlotte JAVALET – Product Marketing Manager
Laure PETILLOT – Scientist, Bioprocess Analytics
Raman in biopharma processes

Product and process characterization across the traditional monoclonal antibody manufacturing workflow (from BPOG)
Agenda

1. Raman real-time monitoring of CQAs
 a) Antibody aggregation
 b) Antibody glycosylation
2. Raman real-time monitoring of CPPs
 a) Fermentation
 b) Perfusion
 c) Amino acids
3. Conclusion
Real-Time Monitoring of CQAs: Antibody Aggregation
Real-Time Monitoring of CQAs: Antibody Aggregation

- **Publication:**
 - Engaging with Raman Spectroscopy to Investigate Antibody Aggregation
 - Ilokugbe Ettah and Lorna Ashton, Department of Chemistry, Lancaster University, UK
 - Antibodies, 2018

- **Challenge:**
 - Key issue: control and understanding of aggregation, which can compromise not only product quality but also safety ➔ propensity of aggregates to trigger immune responses
 - Antibody aggregates occurs in various forms and there is currently no standard definition for an aggregate
Real-Time Monitoring of CQAs: Antibody Aggregation

- **Aggregation, Secondary and Tertiary structure:**
 - Key cause of protein aggregation is the formation of non-native, partially unfolded intermediates with exposed regions capable of inter-molecular interactions
 - changes in physiochemical conditions (e.g., temperature, pressure, pH and excipients)
 - intrinsic conformational properties of the protein (e.g., primary sequence, secondary and tertiary structure)

- **Raman spectroscopy of Proteins**
 - amide I region (~1630–1700 cm$^{-1}$) assigned to C=O stretching of carbonyl groups,
 - amide III region (~1230–1340 cm$^{-1}$) assigned to NH bending and Cα–N stretching modes,
 - backbone skeletal stretch (~870–1150 cm$^{-1}$) is assigned to Cα–C, Cα–Cβ, Cα–N stretches

From Ettah and Ashton 2018
Real-Time Monitoring of CQAs: Antibody Aggregation

- **Aggregation, Results:**
 - Evolution of **aromatic amino acid** signal indicating aggregation
 - Raman regions of **~760-770 and 875-880 cm\(^{-1}\)** assigned to tryptophan, displayed the most significant changes

<table>
<thead>
<tr>
<th>Peak (cm(^{-1}))</th>
<th>Spectral Change</th>
<th>Sample (Perturbation)</th>
<th>Structural Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>510/531/547 (S-S stretch)</td>
<td>Observable peaks at 510, 531 & 545 in aggregate spectra vs. 531 for soluble Fc</td>
<td>Fc (unspecified)</td>
<td>GGG, TGG and TGT conformations present in aggregates vs mainly TGG in soluble Fc</td>
</tr>
<tr>
<td>Increased perturbation in (I_510/540) for ND aggregates</td>
<td>Anti-streptavidin IgG1 (temperature)</td>
<td>ND aggregation pathway showed greater sensitivity to this marker.</td>
<td></td>
</tr>
<tr>
<td>850/830 (Tyr)</td>
<td>No change</td>
<td>rhuMab * (Lyophilisation)</td>
<td>-</td>
</tr>
<tr>
<td>Increased ratio</td>
<td>IVIG * (temperature)</td>
<td>Change in tertiary structure</td>
<td></td>
</tr>
<tr>
<td>770/875 (Trp)</td>
<td>Increased/decreased intensity</td>
<td>IgG4 variant (temperature)</td>
<td>Less exposure to solvent/more exposure to solvent</td>
</tr>
<tr>
<td>1000 (Phe)</td>
<td>Increased intensity</td>
<td>Rabbit IgG (storage)</td>
<td>Pre-aggregation</td>
</tr>
<tr>
<td>1230 (β-sheet)</td>
<td>Broadening and shift to 1245 cm(^{-1})</td>
<td>Human IgG1 (pH)</td>
<td>Formation of intermolecular β-sheet</td>
</tr>
<tr>
<td>I_{1340}/I_{1360} (Trp)</td>
<td>Decreased ratio</td>
<td>IVIG (temperature)</td>
<td>Reduced hydrophobicity (change in tertiary structure)</td>
</tr>
<tr>
<td>1555 (Trp)</td>
<td>Downshift</td>
<td>IVIG/temperature</td>
<td>Change in tertiary structure</td>
</tr>
<tr>
<td>Redshift</td>
<td>Anti-streptavidin IgG1 (temperature)</td>
<td>Change in tertiary structure</td>
<td></td>
</tr>
<tr>
<td>1630 (β-structure)</td>
<td>Increased/decreased intensity</td>
<td>IgG4 variant (temperature)</td>
<td>Increase in intermolecular H-bonding of β-structure/Loss of bonding or loss of secondary structure</td>
</tr>
<tr>
<td>1669 (β-sheet)</td>
<td>Decreased intensity</td>
<td>Human IgG1 (pH)</td>
<td>Loss of Intramolecular β-sheet</td>
</tr>
<tr>
<td>1686 (β-sheet)</td>
<td>Increased intensity</td>
<td>Human IgG1 (pH)</td>
<td>Intermolecular β-sheet formation</td>
</tr>
</tbody>
</table>

From Ettah and Ashton 2018
“Raman spectroscopy is a powerful technique for the analysis of antibody aggregates, providing dynamic information about secondary structure, tertiary structure, and aggregation mechanisms. Raman features can clearly be used to identify changes, including solvent exposure of residues, conformation, molecular interaction and hydrogen bonding”

“Spectral markers of aggregation could be used to assure and monitor product quality”

From Ettah and Ashton 2018
Real-Time monitoring of CQAs: Antibody Glycosylation
Real-Time Monitoring of CQAs: Antibody Glycosylation

Publication:
- Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures
- Meng-Yao Li et al, CNRS-Lorraine University, France
- Biotechnology Progress, 2018

Context:
- Glycosylation characterization techniques are time- and labor-intensive analyses
- Glycosylation plays important role in properties and functionalities (e.g. in vivo half-life, immunogenicity,…) of the mAbs produced ➔ Essential to monitor and control mAbs glycosylation
- It’s challenging to distinct glycosylated antibody and non glycosylated with only 2-3% molecular weight

Challenge:
- To Raman monitor in real-time the glycosylation state of therapeutic monoclonal antibodies
Real-Time Monitoring of CQAs: Antibody Glycosylation

- **Experimental conditions:**

 Set-up characteristics
 - Bioreactor: **Pierre Guérin** Technologies bioreactors
 - Raman analysis: **BioViserion® Raman system**
 - Off-line analysis: **photometric analyzer Gallery** (Thermo Fisher Scientific) for mAb concentration and **UHPLC-MS** (Thermo Fisher Scientific) for peptides from mAb hydrolysis

 Culture characteristics
 - **CHO cell line** (CHO M250-9) producing an anti-Rhesus D IgG
 - **Fed batch** cell culture
 - 2L working volume
 - VCD max: **9.8 E6 cells/mL**

 Data acquisition
 - Integration time: **60 seconds**
 - Accumulation per acquisition: **6 spectra**
 - **92 data points** obtained to perform
Real-Time Monitoring of CQAs: Antibody Glycosylation

Results:
- Classical data pre-processing and PLS model

T-mAbs: NG-mAbs:
- on-line on-line
△ off-line ◇ off-line

RT monitoring of total monoclonal antibodies (T-mAbs) & non glycosylated monoclonal antibodies (NG-mAbs)

<table>
<thead>
<tr>
<th>PLS models</th>
<th>Range (mg.l⁻¹)</th>
<th>LV</th>
<th>R²c</th>
<th>RMSEC (mg.l⁻¹)</th>
<th>R²cv</th>
<th>RMSECV (mg.l⁻¹)</th>
<th>R²p</th>
<th>RMSEP (mg.l⁻¹)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-mAbs</td>
<td>0-380</td>
<td>5</td>
<td>0.98</td>
<td>12.9</td>
<td>3</td>
<td>33.6</td>
<td>9</td>
<td>0.95</td>
<td>17.9</td>
</tr>
<tr>
<td>NG-mAbs</td>
<td>0-97.6</td>
<td>7</td>
<td>0.99</td>
<td>1.8</td>
<td>2</td>
<td>7.0</td>
<td>7</td>
<td>0.95</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Adapted from Li et al. 2018
Real-Time Monitoring of CQAs: Antibody Glycosylation

“Raman spectroscopy can thus be considered as a promising PAT tool for feedback process control dedicated to on-line optimization of mAb quality”

“In situ Raman spectroscopy combined with appropriate chemometric methods proved to be a useful tool not only for real-time monitoring of mAb concentration throughout CHO cell culture processes, but also to distinguish between glycosylated and non-glycosylated molecules”

From Li et al. 2018
Real-Time monitoring of CPPs: Fermentation
Real-Time Monitoring of CPPs: Fermentation

- **Publication:**
 - *Raman Spectroscopy and Chemometrics for On-Line Control of Glucose Fermentation by Saccharomyces cerevisiae*
 - Thiago C. Avila *et al.*, Institute of Chemistry, University of Campinas, Brazil
 - Biotechnology Progress, 2012

- **Context:**
 - Fermentation: first historical application of Raman spectroscopy in bioprocesses
 - Increased demands on cost reduction while also ensuring the quality of the end product
 - Analysis of CPPs by traditional methods, such as HPLC requires pretreatment of samples, analysis by specific equipment and they are time consuming

- **Challenge:**
 - To use Raman spectroscopy and chemometrics for on-line control of the fermentation process of glucose by *Saccharomyces cerevisiae*
Real-Time Monitoring of CPPs: Fermentation

- **Experimental conditions:**

 Set-up characteristics
 - Raman analysis: **Raman Station 400F Dispersive Spectrometer** (Perkin Elmer)
 - Off-line analysis: **HPLC Agilent 1200 Infinity Series LC.**

 Culture characteristics
 - **Saccharomyces cerevisiae** JAY270 (Laboratory of Genomic and Expression of the Institute of Biology of the University of Campinas)
 - Fed batch cell culture
 - 2L working volume

 Data acquisition
 - Integration time: **1 seconds**
 - Accumulation per acquisition: **100 spectra**
 - **57 data points** obtained for each batch
Real-Time Monitoring of CPPs: Fermentation

- **Treatments, Results:**
 - Classical data preprocessing and PLS model
 - Glucose, Ethanol, Glycerol concentrations and Cells densities are predicted with a good accuracy

<table>
<thead>
<tr>
<th>PLS Model</th>
<th>Sample Number</th>
<th>No. Latent Variables</th>
<th>% of Variance Explained</th>
<th>R²</th>
<th>RMSEC*</th>
<th>RMSECV*</th>
<th>RMSEP*</th>
<th>Range of the Calibration*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>18</td>
<td>9</td>
<td>2</td>
<td>97.93</td>
<td>0.980</td>
<td>0.55</td>
<td>0.74</td>
<td>0.54</td>
</tr>
<tr>
<td>Ethanol</td>
<td>18</td>
<td>9</td>
<td>2</td>
<td>99.07</td>
<td>0.981</td>
<td>0.13</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>Glycerol</td>
<td>18</td>
<td>9</td>
<td>2</td>
<td>99.57</td>
<td>0.992</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cell</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>97.74</td>
<td>0.979</td>
<td>1.34</td>
<td>2.06</td>
<td>1.02</td>
</tr>
</tbody>
</table>

* % for the glucose, ethanol, and glycerol and g L⁻¹ for the cell.

Adapted from Avila et al. 2012
“The concentration profiles obtained by PLS models calibrated against the references values revealed the ability of the model to satisfactorily predict the concentrations of the species involved during course of fermentation”

“These developments can be useful to industrial bioprocesses to help in the control of additions of substrates, amount, and purity of products formed and the presence of contaminants”

From Avila et al. 2012
Real-Time Monitoring of CPPs: Perfusion
Real-Time Monitoring of CPPs: Perfusion

- **Presentation:**
 - **Raman Spectroscopy for Real-Time Process Monitoring in Upstream Bioprocessing**
 - Nobel Vale, BMS
 - Presented at BioProcess International (BPI) West 2019

- **Context:**
 - Synthetic models built with 15 different samples varying from 0-8 g/L glucose range and 0-3 g/L lactate range, without cells
 - Synthetic models used in prediction in perfusion batches

- **Challenge:**
 - To Raman monitor glucose and lactate in perfusion from synthetic models in real-time
Real-Time Monitoring of CPPs: Perfusion

Glucose Monitoring

- Synthetic Model is displayed
- Raman trending on two different cell-lines - predicted vs offline → good agreement
- Glucose feedback control is essential as VCD increases (> 70 x 10^6 cells/mL) to prevent depletion
- Glucose feedback can be used to control the perfusion rate and ensure adequate glucose levels
Real-Time Monitoring of CPPs: Perfusion

Lactate Monitoring

- Synthetic model displayed - predicts more accurately at high viability
- Raman Lactate prediction vs offline - correlates well with offline data

Adapted from Nobel Val BPI West 2019
Real-Time Monitoring of CPPs: Perfusion

Synthetic Models allow to real-time Raman monitor glucose and lactate in perfusion.

The main benefit is the ability to assess perfusion parameters (e.g. perfusion rate) and to adapt them in real-time.
Real-Time Monitoring of CPPs: Amino Acids
Real-Time Monitoring of CPPs: Amino Acids

- **Publication:**
 - *In-Line Monitoring of Amino Acids in Mammalian Cell Cultures using Raman Spectroscopy and Multivariate Chemometrics Models*
 - Hemlata Bhatia - Department of Biomedical Engineering and Biotechnology, University of Massachusetts
 - Hamidreza Mehdizadeh - Advanced Manufacturing Technology, Global Technology Services, Pfizer Global Supplies
 - Denis Drapeau - Bioprocess R&D, Pfizer-Inc.
 - Engineering in Life Sciences, 2017

- **Challenge:**
 - Developing more robust and consistent processes
 - Monitoring four amino acids important for cell growth and production: tyrosine, tryptophan, phenylalanine and methionine.
Real-Time Monitoring of CPPs: Amino Acids

- **Experimental conditions:**

 Set-up characteristics

 - Bioreactor: Applikon bioreactors (Applikon, Inc., Schiedam, Netherlands)
 - Raman analysis: Kaiser RXN2 Raman system (Kaiser Optics, MI)
 - Off-line analysis: Acquity UPLC-H class bio-system

 Culture characteristics

 - CHO monoclonal antibody (mAb) producing cell lines
 - Fed batch cell culture
 - 5L working volume
 - VCD range: 2.5-28 E6 cells/mL

 Data acquisition

 - Integration time: 10 seconds
 - Accumulation per acquisition: 75 spectra
 - 57 data points obtained to perform the model
Real-Time Monitoring of CPPs: Amino Acids

- **Results:**
 - Classical data pre-processing and PLS model
 - Tyrosine, tryptophan and phenylalanine are predicted with acceptable accuracy, while the developed model for measurement of methionine has lower performance than the other three models

<table>
<thead>
<tr>
<th>Data set/AA</th>
<th>Tyrosine</th>
<th>Tryptophan</th>
<th>Phenylalanine</th>
<th>Methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>0.19 – 4.97</td>
<td>0.19 – 2.20</td>
<td>1.20 – 4.35</td>
<td>0.59 – 3.80</td>
</tr>
<tr>
<td>Validation</td>
<td>0.28 – 4.05</td>
<td>0.29 – 1.81</td>
<td>1.23 – 3.05</td>
<td>1.70 – 2.50</td>
</tr>
</tbody>
</table>

All the amino acid concentrations are in mM

<table>
<thead>
<tr>
<th>A.A.</th>
<th>N</th>
<th># Factors</th>
<th>R²Y</th>
<th>Q²</th>
<th>RMSEE</th>
<th>RMSEcv</th>
<th>RMSEP</th>
<th>% error on max. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosine</td>
<td>56</td>
<td>2</td>
<td>0.90</td>
<td>0.86</td>
<td>0.41</td>
<td>0.53</td>
<td>0.35</td>
<td>8.6</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>55</td>
<td>2</td>
<td>0.82</td>
<td>0.78</td>
<td>0.24</td>
<td>0.27</td>
<td>0.07</td>
<td>3.8</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>56</td>
<td>2</td>
<td>0.79</td>
<td>0.64</td>
<td>0.35</td>
<td>0.47</td>
<td>0.32</td>
<td>10.5</td>
</tr>
<tr>
<td>Methionine</td>
<td>57</td>
<td>2</td>
<td>0.21</td>
<td>0.01</td>
<td>0.27</td>
<td>0.29</td>
<td>0.68</td>
<td>27.2</td>
</tr>
</tbody>
</table>

Adapted from Bhatia et al. 2017
“Accurate Raman-based calibration models eliminate the need for offline sampling and manual control in manufacturing processes and render more robust and automated processes”

“This study show that the combination of Raman spectroscopy with chemometrics models is a suitable method for real-time measurement of amino acids in cell culture processes”
Conclusion
Raman benefits

Promising PAT tool for:
- Real-time monitoring of CPPs and CQAs
- Real-time process intervention (early detection of deviation)
- Real-time assessment of product quality
- Enabling a total automation and moving to Pharma 4.0
- Leading from end product testing to real-time release testing (RTRT)

Quality Pharma 4.0 Critical Process Parameters
Speed Patient Safety Real-time
Critical Quality Attributes Automation
Cost Reduction Real-Time Release Testing
Thank you!

www.resolutionspectra.com