Nano-Ti$_5$Si$_3$ leading to enhancement of oxidation resistance

Y. Jiab, L.J. Huang$^{b, c}$, S.L. Weib, L. Geng$^{b, c}$, M.F. Qianb, S. Yuec

a State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, PR China
b School of Materials Science and Engineering, Harbin Institute of Technology, P.O. Box 433, Harbin 150001, PR China
c Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, H3A 2B2, Canada

ABSTRACT

Nano-Ti$_5$Si$_3$ particles were formed via solution and precipitation, which drastically increased mechanical properties of (Ti$_5$Si$_3$+TiBw)/Ti6Al4V composites. In the present work, compared with Ti6Al4V alloy at 700 and 800 °C, nano-Ti$_5$Si$_3$ particles led to remarkable enhancement of oxidation resistance, which increased with increasing Ti$_5$Si$_3$ fractions. The contributions of nano-Ti$_5$Si$_3$ particles were in two aspects: 1) were beneficial to forming dense and thin scale of mixed Al$_2$O$_3$ and SiO$_2$, which suppressed oxygen from permeating into matrix; 2) resulted in refinement of TiO$_2$ particles, which could enhance the toughness and relative density of oxide scale. The two-level hierarchical microstructure also stabilized oxide scale.

1. Introduction

The unique characteristics of high specific strength, low density and excellent corrosion resistance have made Titanium (Ti) alloys become candidate materials for aerospace, automotive, military and chemical applications [1,2]. However, the service temperature of Ti alloys is often restricted to below 600 °C, due to their strong oxidation propensity and low oxidation resistance [3]. When Ti alloys were exposed to oxygen atmosphere above 600 °C, non-protective oxide layer would form and serious surface spallation would occur [4]. Discontinuously reinforced titanium matrix composites (DRTMCs) have been extensively investigated to overcome such shortcomings, owing to their high temperature durability, high modulus as well as good oxidation and creep resistance [5–8]. However, traditional titanium matrix composites (TMCs) with a homogeneous structure had the defect of room-temperature brittleness, which seriously obstructs their practical applications [9]. Titanium matrix composites with a network structure have improved the plasticity and exhibited excellent mechanical properties at room and elevated temperatures [5].

TiB whiskers (TiBw) were regarded as appropriate reinforcement for reinforcing Ti alloys, on account of their high strength, good thermal and chemical compatibility with Ti [5,10]. However, TiBw reinforced Ti matrix composites showed lower oxidation resistance than Ti alloys at elevated temperatures. For example, Zhang et al. [11] presented that TiB reduces the oxidation resistance of Ti-6Al-1.2B alloy, due to the formation and evaporation of B$_2$O$_3$ at 750–900 °C. Hu et al. [6] reported that compared with the Ti60 alloy from 600 °C to 900 °C, the oxidation resistance of TiBw/Ti60 composites is decreased by TiBw reinforcements introducing more boundaries. Owing to good oxidation and creep resistance, Ti$_5$Si$_3$ has been widely studied as promising materials for high-temperature applications [12]. The Ti$_5$Si$_3$ particles could continuously release silicon into oxide layer, and improved oxidation resistance with increasing oxidation time [13]. The addition of Si was an effective method to improve oxidation resistance and oxide layer adherence of Ti alloys [14,15]. The formation of SiO$_2$ on the surface of Ti alloys was beneficial to increasing oxidation resistance [16]. The interactions of O-Ti atoms could be weakened by the segregation of Si on a TiAl surface [17]. However, when Si content exceeded 2 wt.%, the formation of coarse Ti$_5$Si$_3$ phase caused a rapid reduction of ductility [18], which could be improved by nano-scaled Ti$_5$Si$_3$ effectively [19]. In our previous work [20], the mechanical properties of (Ti$_5$Si$_3$+TiBw)/Ti6Al4V composites were increased via nano-Ti$_5$Si$_3$ and the second-level network microstructure. As well as maintaining high mechanical properties, the introduction of fine Ti$_5$Si$_3$ reinforcement into the TiBw/Ti composites (through the effects of sintering pressure and the first-level network microstructure) is a promising way to enhance oxidation resistance.

In the present work, the oxidation behaviors of (Ti$_5$Si$_3$+TiBw)/Ti6Al4V composites with hierarchical microstructure were systematically investigated at 700 and 800 °C in air. The fractions of Ti$_5$Si$_3$ and TiBw reinforcements were optimized to achieve enhanced oxidation resistance. Microstructure characteristics of composites and morphology of oxide scale were observed, in order to reveal the anti-oxidation mechanisms of (Ti$_5$Si$_3$+TiBw)/Ti6Al4V composites. The present findings provide significant guidance for fabricating Ti alloys reinforced by nano-Ti$_5$Si$_3$ with high oxidation resistance.

* Corresponding author at: State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, PR China.
E-mail address: huangfujun@hit.edu.cn (L.J. Huang).

https://doi.org/10.1016/j.corsci.2018.05.043
Received 1 March 2018; Received in revised form 28 May 2018; Accepted 31 May 2018
Available online 02 June 2018
0010-938X/ © 2018 Elsevier Ltd. All rights reserved.
2. Experimental procedures

Based on our previous investigations \[10,20,21\], Ti6Al4V alloy (Fig. 1(a)), Ti5Si3/Ti6Al4V composite (Fig. 1(b) and (c)) and (Ti5Si3+TiBw)/Ti6Al4V composite with a two-level network architecture (Fig. 1(d), (e) and (f)) were fabricated by low-energy milling and reaction hot pressing successfully. Ti5Si3 particles distribute within the β-Ti phases and forms a second-level network microstructure. TiB whiskers locate around the Ti6Al4V particles and generates a first-level network microstructure.

In this study, the as-sintered Ti6Al4V alloys, 4 vol.%Ti5Si3/Ti6Al4V composites and (4 vol.%Ti5Si3+3.4 vol.%TiBw)/Ti6Al4V composites with different reinforcements fractions were used for oxidation tests at 700 and 800 °C, for a time period of 100 h. The dimension of samples subjected to oxidation was 8 \times 8 \times 3 [mm]. Prior to oxidation tests, the samples were prepared following standard metallographic techniques. Firstly, the samples were grinded by a series of abrasive papers. Afterwards, the samples were mechanically polished with Cr$_2$O$_3$ powder and etched in Kroll’s solution (5% HF + 10% HNO$_3$ + 85% H$_2$O) for 8 s. Isothermal oxidation experiments were performed in a laboratory air circulated furnace. The specimens were weighed by an electronic balance with accuracy of 0.1 mg, before and after oxidation tests. The weight gain values of three samples were averaged for each oxidation condition. After oxidation tests, the oxidized specimens were cut transversely to reveal the cross-section of the oxidized surface, and mounted by conductive powder. Following mounting, the specimens were prepared using standard metallographic techniques to observe the cross-profile characteristics.

Phase compositions of oxide scale on oxidized specimens were carried out using X-Ray Diffraction (XRD; Empyrean) with Cu-K$_\alpha$ radiation. The surface morphology of specimens was characterized by a scanning electron microscope (SEM; ZEISS SUPRA 55 SAPPHIRE) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscope (TEM; FEI Talos F200x).

3. Results and discussion

3.1. Oxidation thermodynamics

When the (Ti5Si3+TiBw)/Ti6Al4V composites are oxidized in air at 700 and 800 °C, there are four reactions can occur in the composites as follows.

\[
\begin{align*}
\text{Ti(s)} + \text{O}_2(g) &= R\text{-TiO}_2(s) \\
\frac{4}{3}\text{Al(s)} + \text{O}_2(g) &= \frac{2}{3}\text{Al}_2\text{O}_3(s) \\
\frac{1}{8}\text{Ti}_5\text{Si}_3(s) + \text{O}_2(g) &= \frac{5}{8}\text{R-TiO}_2(s) + \frac{3}{8}\text{SiO}_2(s) \\
\frac{4}{7}\text{TiB}(s) + \text{O}_2(g) &= \frac{4}{7}\text{R-TiO}_2(s) + \frac{2}{7}\text{B}_2\text{O}_3
\end{align*}
\]

\[(\text{B}_2\text{O}_3 : \text{solid if } T < 450 °C \text{ and liquid if } T > 450 °C).\]

Fig. 2 shows the calculation results of Gibbs free energy change (ΔG) of the above-mentioned reactions using the data of Liang et al. \[22\]. It
can be found that the ΔG value of each reaction is negative, which indicates that the four reactions can take place thermodynamically. In addition, Al element is most likely to react with O element. Compared with the TiBw and Ti5Si3 reinforcements, the Ti6Al4V matrix alloy tends to oxidize preferentially. Previous studies reported that the oxidation products of TiB are TiO2 and B2O3, respectively [23]. However, B2O3 can evaporate above 750 °C [24]. According to Vojtech et al. [15], the oxidation products of Ti5Si3 are TiO2 and SiO2, respectively. Ti5Si3 possesses excellent oxidation resistance below 850 °C [16].

3.2. Oxidation mass-gain analysis

Fig. 3 presents curves of the weight gain per unit surface area versus the oxidation time for Ti6Al4V alloys, 4 vol.%Ti5Si3/Ti6Al4V composites, and (Ti5Si3 + TiBw)/Ti6Al4V composites with different reinforcements fractions after oxidizing at 700 and 800 °C. Overall, the mass gain of Ti5Si3/Ti6Al4V and (Ti5Si3 + TiBw)/Ti6Al4V composites is lower than that of Ti6Al4V alloys at both temperatures. Firstly, the Ti5Si3/Ti6Al4V and (Ti5Si3 + TiBw)/Ti6Al4V composites with different fractions show similar oxidation weight gain at 700 °C for 40 h. After oxidation for 50 h, the Ti5Si3/Ti6Al4V composite exhibits the lowest oxidation rate, which may be due to two aspects, 1) more and finer Ti5Si3 particles in the matrix. The SiO2 scale formed by Ti5Si3 layer could further suppress the oxidation of TiAl alloy [25]; 2) the absence of TiBw reinforcement in the Ti5Si3/Ti6Al4V composite. According to Hu et al. [6], TiBw could bring in more boundaries and decrease oxidation resistance of composites. Moreover, the mass gain increases with increasing the content of TiBw. These results demonstrate that Ti5Si3 particles play a more important role in improving oxidation resistance of the composites at 700 °C, compared with TiB whiskers. Secondly, after the composites were oxidized at 800 °C, the mass gain reduces with the increase in Ti5Si3 fractions. As reported [26], the oxidation resistance of TiAlSiZr alloys is better than that of TiAlSi alloys, owing to the increased silicides in Ti matrix. However, the oxidation resistance of Ti5Si3/Ti6Al4V composite at 800 °C became lower than that of the composites with different TiBw fractions. This is may be attributed to that of Ti5Si3/Ti6Al4V composite, which is similar to the microstructure of Ti6Al4V matrix alloy, the matrix microstructure of composites was refined by TiBw and Ti5Si3 reinforcements inhibiting the growth of α phases (as shown in Fig. 1).

Additionally, the macro surface images of oxidized samples for different times are presented in Fig. 3. The images clearly reveal the improvement in oxidation resistance of (Ti5Si3 + TiBw)/Ti6Al4V composites, compared with the Ti6Al4V alloys. After oxidizing at 700 °C for 50 h and 800 °C for 20 h, spallation of oxide scale is evident in Ti6Al4V alloys, which is due to the internal stresses caused by a distortion of crystal lattice via oxygen diffusing into Ti matrix. Noticeable oxide scale spallation can be found in the (4 vol.%Ti5Si3 + 3.4 vol.%TiBw)/Ti6Al4V composite at 800 °C for 60 h. However, the surfaces of (8 vol.%Ti5Si3 + 3.4 vol.%TiBw)/Ti6Al4V composites remain relatively flat, and no oxidation spallation can be observed at 700 and 800 °C for 100 h. This phenomenon distinctly demonstrates that the addition of Ti5Si3 reinforcements significantly improves the adherence and impedes the spallation of oxide scale in the composites.

3.3. Phase identification

Fig. 4 shows XRD patterns for Ti6Al4V alloy, 4 vol.%Ti5Si3/Ti6Al4V composite, and (Ti5Si3 + TiBw)/Ti6Al4V composites with different reinforcements fractions after oxidation tests at 700 °C for 100 h. Rutile TiO2 phase is the dominant oxidation product, due to high Ti content in the composites. The diffusion rate of Al in Al2O3 is slower than that of Ti in TiO2, thus, the formation of Al2O3 scale were suppressed by TiO2 scale in the single Ti6Al4V system. However, a small number of Al2O3 and SiO2 phases were detected in the composites including nano-Ti5Si3 particles. It is well known that continuous and dense Al2O3 and SiO2 scales are beneficial to improving oxidation resistance [16].

Fig. 5 exhibits XRD results for oxidized (8 vol.%Ti5Si3 + 3.4 vol.%TiBw)/Ti6Al4V composites at different temperatures and time periods. The oxidation products include rutile TiO2, Al2O3 and SiO2 phases.
Al₂O₃ and SiO₂ phases increase with increasing oxidation time. These composite and (Ti₅Si₃+TiB₆)/Ti₆Al₄V composites with different reinforce-ments fractions after oxidation tests at 700 °C for 100 h.

at 700 and 800 °C. Among TiO₂, rutile and anatase are the most common phases. The transition from anatase to rutile phase is irreversible at about 700 °C [1]. B₂O₃ was not observed in the XRD results, which is probably due to evaporation [6]. Compared with the oxidation products at 700 °C, the fractions of Al₂O₃ and SiO₂ phases increase at 800 °C. Therefore, the oxidation resistance of composites was improved by a large margin, compared with the Ti₆Al₄V alloy at 800 °C (Fig. 3(b)). Similar results are observed in Fig. 5(b). The fractions of Al₂O₃ and SiO₂ phases increase with increasing oxidation time. These results also indicate that nano-Ti₅Si₃ can increase the formation rate of dense Al₂O₃ and SiO₂ scales.

The oxidation process of Ti is complex, due to the existence of several stable oxides in Ti-O system, such as TiO, Ti₂O and Ti₃O. According to Ti-O diagram [30], TiO₂ is the main oxidation product under the conditions of atmospheric oxygen partial pressure and 1000 °C. TiO₂ scale is non-protective, due to the high solid solubility of oxygen in titanium, and more defects in the transition region. Ti alloys have lower oxidation resistance, owing to the formation of polyporous TiO₂ scale or TiO₂+Al₂O₃ mixed scale [31]. Thermodynamically, α-Al₂O₃ is one of the most stable oxides among the oxidation products of Al. Due to the low diffusion rate of oxygen in Al₂O₃ as well as the continuous and dense microstructure, the Al₂O₃ scale can protect Ti alloys from oxidation. It was reported that the oxidation rate of Ti alloys can be decreased by a continuous SiO₂ scale [32].

It can be seen from Figs. 4 and 5 that the oxidation products are TiO₂, Al₂O₃ and SiO₂. Under high temperatures, unstable B₂O₃ formed a vitreous layer or evaporated, which resulted in the depletion of B and the formation of TiO₂ scale with pores [24]. Compared with the unstable B₂O₃, SiO₂ possesses high viscosity and low vapor pressure, which is beneficial to improving oxidation resistance [24].

3.4. Morphology of oxide scale

Fig. 6 reveals SEM micrographs of the cross-section of the oxidized samples at 700 °C for 100 h. Thick and layered oxide scale with spallation are observed in Fig. 6(a). Cracks and pores present at the oxide/ alloys interface. The reason of the cracks and spallation in oxide scale is the brittleness of porous scale as well as thermal and growing stresses during the high-temperature oxidation process. Yu et al. [33] reported that the oxidation rate at 700 °C after 20 h is increased by the failure of oxide scale. According to Du et al. [34], due to alternate growth of Al₂O₃ and TiO₂ layers by outward diffusion of Al and inward diffusion of O, a multilayered oxide scale formed on the surface of Ti₆Al₄V alloy. Once the thickness of oxide scale exceeded critical value, cracks presented at the matrix/scale interface and interface bonding weakened.

In contrast, as seen in Fig. 6(b)-(e), the oxide scales of the composites including nano-Ti₅Si₃ are relatively thin and dense, and no spallation is observed. This result verifies that the oxidation resistance of composites is better than that of Ti₆Al₄V alloy. Nano-Ti₅Si₃ is beneficial to decreasing the oxidation rate of composites. As a previous study showed [35], a combination effect of matrix and Ti₅Si₃ phase enhanced the oxidation resistance of Ti₅Al alloys with Si addition. Moreover, with increasing the content of Si, the oxidation resistance of Ti₅Al alloys was increased at 800 °C. It is well known that a well adhered oxide scale can decrease oxidation rate effectively. For the oxidized Ti₆Al₄V alloy at 700 °C, the adhesion of oxide scale is weak and separated from the substrate. Coddet et al. [36] claimed that the adhesion strength of oxide scale in Ti alloys tends to be zero at 700 °C. However, the oxide scales of (Ti₅Si₃+TiB₆)/Ti₆Al₄V composites exhibit excellent spallation resistance at 700 °C for 100 h. Furthermore, it can be found from Fig. 6(f) that reinforcements pin oxide scale and improve interface adhesion. The aforementioned analysis of cross-section morphology demonstrates that the addition of Ti₅Si₃ reinforcement drastically enhances the oxidation resistance of Ti₆Al₄V alloy. The Ti₅Si₃ and TiB₆ reinforcements can fasten oxide scale effectively. Dai et al. [37] adopted first principles calculations and proved that Si can partially improve the adhesion between TiO₂ and TiAl substrate in addition, reinforcements can release the growth and thermal stresses generated during oxidation process.

SEM and TEM micrographs of oxide scales on Ti₆Al₄V alloy and (Ti₅Si₃+3.4 vol.%TiB₆)/Ti₆Al₄V composites with different Ti₅Si₃
fractions are shown in Fig. 7. In addition, the EDS results of the oxidation products in composites are exhibited in Fig. 7(b) and (d). According to XRD and EDS results, the oxide with cylindrical shape is rutile TiO$_2$, and the approximately equiaxed oxide is Al$_2$O$_3$. The result is consistent with that in our previous studies [29]. As shown in Fig. 7(a), the size of rutile TiO$_2$ particles in the Ti6Al4V alloy is larger than that in the composites (Fig. 7(b) and (c)). Introducing nano-Ti$_5$Si$_3$ particles refined the TiO$_2$ particles and reduced the size of α phases, which is beneficial to forming a compact oxide scale. This result is in agreement with the previous investigation: Si element promoted the formation of a dense TiO$_2$ layer [17].

Fig. 8 presents SEM morphologies of the oxidized surfaces of Ti6Al4V alloy, 4 vol.%Ti$_5$Si$_3$/Ti6Al4V composite and (Ti$_5$Si$_3$+TiBw)/Ti6Al4V composites with different fractions at 800 °C for 100 h. It is obvious that oxide scales of the Ti6Al4V alloy (Fig. 8(a)) and composites with 4 vol.%Ti$_5$Si$_3$ reinforcement exhibit spallation and cracks (Fig. 8(c), (d) and (e)). For alloy and composites, the sub-surface were oxidized constantly, after the spallation of surface (Fig. 8(a) and (c)). By comparing Fig. 8(d) and 8(e), it is recognized that the surface spallation becomes more serious with increasing the TiBw fractions from 1 vol.% to 3.4 vol.%. However, the surface morphology of (8 vol. %Ti$_5$Si$_3$+3.4 vol.%TiBw)/Ti6Al4V composite is smooth and flat, besides the crack presents at the corner of the specimen, as seen in Fig. 8(f). This phenomenon suggests that the oxidation extent of Ti6Al4V alloy and composites with 4 vol.%Ti$_5$Si$_3$ reinforcements is more serious than that of (8 vol.%Ti$_5$Si$_3$+3.4 vol.%TiBw)/Ti6Al4V composite. The oxidation resistance of composites improves with increasing Ti$_5$Si$_3$ fractions. Compared with the (4 vol.%Ti$_5$Si$_3$+3.4 vol. %TiBw)/Ti6Al4V composite, more and connected Ti$_5$Si$_3$ particles distribute around the matrix in the composite with 8 vol.%Ti$_5$Si$_3$ reinforcement. Ti$_5$Si$_3$ particles can decrease the oxidation rate of Ti-Si alloys [13]. Additionally, through comparing the high magnified SEM morphologies of oxide scales (Fig. 8(b) and 8(g)), it can be seen that the particle size of oxide in composites was refined by the addition of reinforcements.

The TiBw reinforcement cannot be easily observed, as shown in Fig. 8(d), (e) and (f). This phenomenon is due to the oxidation of TiB phase and the evaporation of B$_2$O$_3$ at 800 °C, as reported by Lee et al. [38]. In addition, the channels within oxide scale formed by B$_2$O$_3$ can accelerate the inward diffusion of oxygen. This confirms that increasing fractions of TiBw results in more serious oxidation of composites at higher temperature. Besides, Qin et al. [39] also deduced that TiB transfer into amorphous boron oxide partially at 700 °C. Therefore, the weight gain versus time plots (Fig. 3(b)) cannot estimate the true oxidation behavior at 800 °C, owing to the weight loss caused by TiB reinforcement. From the above analysis, it can be concluded that the oxidation resistance increases with increasing Ti$_5$Si$_3$ fractions, however, decreases with increasing TiBw fractions.

3.5. Anti-oxidation mechanisms

In order to further elucidate the anti-oxidation mechanisms of titanium matrix composites, the microstructure of cross-section and corresponding EDS results, as well as the elemental line and surface scanning results of the oxidized (8 vol.%Ti$_5$Si$_3$+3.4 vol.%TiBw)/Ti6Al4V composite at 800 °C for 100 h are shown in Fig. 9. On the basis
of the EDS and scanning results (Fig. 9(a), (b) and (c)), the oxide scale of composite can be roughly divided into two layers. Combining with the XRD results in Fig. 4, it is identified that Al₂O₃ and SiO₂ are the dominant phases in the outer layer, while TiO₂ is the primary phase in the inner layer. The formation of SiO₂ in oxide scale is related to Ti₅Si₃ phase. The reasons for the formation of thin Al₂O₃ and SiO₂ mixed layer are as follows. Firstly, TiO₂ with faster growth rate restrained the formation of Al₂O₃. Secondly, the content of Al and Si within the composite is limited. In the Ti alloys, the maximum content of aluminum is 6 wt.% [1]. However, it was reported that in TiAl alloys, the content of Al for forming a protective scale is about 57–59 at.% [6]. For forming a protective SiO₂ scale, the concentration of Si must exceed 40 at.% [40]. The high concentration of Si or Al in Ti alloys can deteriorate mechanical properties, such as high-temperature strength and room-temperature ductility [41].

The formation of the layered oxide scales are attributed to the following aspects. At the early stage of oxidation process, TiO₂ formed on the substrate initially, as proved in the previous investigations [34]. Afterwards, the partial pressure of oxygen at the TiO₂/substrate interface decreased, then Al₂O₃ and SiO₂ occupied the external air/oxide interface. Using the data in Gale et al. [42], the diffusion coefficients (D) of Al and Si in α-Ti were calculated, and the results exhibit the D
value of Ti self-diffusion is lower, as shown in Fig. 9(d). The outer Al2O3 and SiO2 layer were formed by outward diffusion of Al and Si with continuous oxidation process. The inner TiO2 scale grew through oxygen diffusion into substrate, as reported by Hu et al. [6]. The polyporous TiO2 scale provides diffusion channel for oxygen, however, the mixed outer oxide scale of Al2O3 and SiO2 provides diffusion obstacles for oxygen. Therefore, the Al2O3 and SiO2 scale can alleviate oxidation progress of composite.

In addition, as shown in Fig. 9(b) and (c), a small quantity of Al2O3 and SiO2 presenting in the TiO2 scale were detected. In previous studies of Ti-Si alloys [15], the oxidation of silicide generated SiO2 particles, which were detected in oxide scale. This phenomenon was caused by the silicide particles in matrix dissolved into the TiO2 scale [15]. In the composite, the SiO2 particles changed the stress-relaxation process, and facilitated the formation of a more dense TiO2 scale with fewer defects and lower porosity, therefore, the oxidation resistance of composite was improved. Additionally, Ti5Si3 particles distributing at grain boundaries and phase interfaces can act as diffusion barriers and decrease diffusion rate of O into matrix. Ti5Si3 particles fastened the TiO2 scale and enhanced the interface adhesion.

4. Conclusions

(1) Nano-Ti5Si3 particles can significantly improve oxidation resistance of titanium matrix.

(2) After oxidized at 800 °C for 100 h, the weight gain of (8 vol.%Ti5Si3 + 3.4 vol.%TiBw)/Ti6Al4V composite accounted for 15% of the Ti6Al4V alloy. The oxide scale of Ti6Al4V alloy exhibited spallation and cracks. However, the oxide scale of (8 vol.%Ti5Si3 + 3.4 vol.%TiBw)/Ti6Al4V composite remained flat without spallation.

(3) The oxidation rate of composites decreased with increasing Ti5Si3 fractions, but increased with increasing TiBw fractions. Refining TiO2 particles and increasing Al2O3 and SiO2 fractions by nano-

Ti5Si3 particles are beneficial to forming dense oxide scale.

(4) The refinement of TiO2 particles, thin and protective Al2O3 and SiO2 mixed scale as well as oxide scale fastened by reinforcements result in the prominent enhancement in oxidation resistance of (Ti5Si3+TiBw)/Ti6Al4V composites.

Acknowledgements

This work is financially supported by the National Key R&D Program of China (No. 2017YFB0703100), the National Natural Science Foundation of China (NSFC) under Grant Nos. 51671068, 51731009 and 51471063. Y. Jiao would like to acknowledge China Scholarship Council (Grant No. 201606120109) for supporting her one year exchange (2016.9-2017.9) in McGill University, Canada.

References
