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Abstract

We develop a model of social learning from complementary information: Short-

lived agents sequentially choose from a large set of (flexibly correlated) information

sources for prediction of an unknown state, and information is passed down across

periods. Will the community collectively acquire the best kinds of information? Long-

run outcomes fall into one of two cases: (1) efficient information aggregation, where

the community eventually learns as fast as possible; (2) “learning traps,” where the

community gets stuck observing suboptimal sources and information aggregation is

inefficient. Our main results identify a simple property of the underlying informational

complementarities that determines which occurs. In both regimes, we characterize

which sources are observed in the long run and how often.

1 Introduction

Research is a central input into economic and social policies. As a society gains in its

understanding of basic scientific facts, it can better tailor policy choices and investment

decisions to the present world. The rate of accumulation of knowledge—as produced through

research—is a key contributor to the rate of improvements in social welfare.

The process of research itself appears quite path-dependent—varying substantially across

countries and time, for instance. This path-dependence arises due to interdependencies

inherent to research: Past research often affects current researchers’ information and their
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incentives to undertake various investigations. Because research and its implications can be

so consequential, it is important to understand the nature of this interdependence and how

it affects the rate of learning. What helps a society efficiently refine its knowledge over time?

What, in contrast, can account for research getting trapped in slower, less productive paths?

If research were centrally planned, then a planner’s directives would account for the

externalities of researchers’ activities. But researchers—even in the academy and public

sector—are often motivated by more immediate and individual goals, such as making the

biggest possible discoveries now (rather than enabling others to make better discoveries

later). So it is worth considering how the research process looks when these externalities are

not internalized. In this paper, we develop a model to contrast the social planner’s research

process with a decentralized one that results from the choices of short-lived researchers. We

find that the structure of the aforementioned interdependencies—or, more precisely, infor-

mational complementarities—is crucial in determining whether the decentralized process is

essentially efficient, or whether it gets trapped at a learning rate inferior to the optimal one.1

In more detail, consider a sequence of researchers working on a single scientific problem,

which we model as learning over time about the value of an unknown parameter. For a

concrete example, we take the parameter to be the effect of carbon emissions on the global

mean temperature a century from now. Each researcher can choose a study to learn more

about this parameter. A study is modeled as a noisy Gaussian signal, whose realization is

informative about the value of the parameter—for example, the researcher can measure the

rise in the ocean’s temperature, or the shrinkage of Arctic ice sheets. We capture the limits

on the researcher’s time, funding, and other resources by restricting him to choose one signal

(study) from a finite but potentially large set. The researcher’s payoffs are determined by

how well he can predict the parameter of interest—in the example, he seeks to maximally

reduce uncertainty about the effect of carbon emissions on global warming.

The linkage between successive researchers comes from informational complementarities,

which we now describe. In our model, each signal observation contains idiosyncratic noise

but also some persistent confounds, which the researcher must learn in order to correctly

de-bias the signal observation. Formally, each signal realization is a (noisy) combination

of the parameter of interest, various confounding variables, and idiosyncratic noise. For

example, measurements of ocean temperatures reflect the impact of carbon emissions, but

also the impact of natural climate drivers (e.g., solar radiation and geological movements).

A better understanding of these confounding variables increases the informativeness of ocean

measurements about the parameter of interest (effect of carbon emissions on temperature);

1Prior work studying the rate of learning include Vives (1992), DeMarzo, Vayanos and Zwiebel (2003),

Golub and Jackson (2012), Hann-Caruthers, Martynov and Tamuz (2017), and Harel et al. (2018) among

others.
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in this sense, information about confounding variables, and observations of measurements

confounded by those variables, are complementary.

Whether researchers end up acquiring information efficiently depends critically on how

the available signals are related through these confounding variables. To describe the relevant

relationships, we introduce a definition for complementary sets of signals, inspired by Borgers,

Hernando-Veciana and Krahmer (2013). If the smallest complementary set of signals is of size

K—where K is the number of unknown variables (including both the parameter of interest

and all of the confounds)—then a decentralized research process nonetheless achieves efficient

learning in the long run. In contrast, if the smallest complementary set of signals contains

fewer than K sources, then early suboptimal information acquisitions can propagate across

time, creating persistent inefficiencies in information gathering. We call these outcomes

“learning traps.”

The key intuition is as follows. As Sethi and Yildiz (2016) point out, an agent who

repeatedly observes a signal confounded by an unknown variable learns both about the payoff-

relevant parameter and about the confounding variable. In the example above, measurements

of ocean temperatures teach researchers about the impact of carbon emissions (the parameter

of interest), but also about the impact of solar radiation. Thus, as researchers take more

measurements of the ocean’s temperature, they learn more about the role of solar radiation,

and are better able to interpret future ocean measurements.

In our setting, different signals may be confounded by the same variables. Thus, ob-

servations of a given signal not only help agents interpret future observations of signals of

the same kind, but also potentially aid in the interpretation of other kinds of signals. We

show that learning traps emerge exactly when the extent of these spillovers is limited—for

example, if learning about the impact of solar radiation on ocean temperatures only helps

with interpreting ocean measurements. Formally, this corresponds to our condition above

regarding the existence of small complementary sets.

In contrast, suppose that solar radiation confounds many kinds of measurements—e.g.,

it also affects the shrinkage of ice caps. In this case, repeated measurements of ocean

temperatures will allow future researchers to better interpret ocean measurements as well as

measured shrinkage in ice mass. We show that with knowledge of all confounding variables

that affect each of these two measurements, researchers can identify which of the two permits

faster long-run learning. More generally, we show that if all complementary sets are of size

K, then agents eventually learn all K unknown variables (including all confounds) and from

this discover the best set of signals. Despite decentralized incentives, efficient information

aggregation is achieved.

The main technical innovation behind these results is to establish a formal connection

between society’s learning dynamics and a limiting dynamical system (see Section 6 for
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details). We demonstrate that a set of signals is observed in the long-run (under some prior

beliefs) if and only if it corresponds to a stable point in this system. This connection enables

us to completely characterize the possible long-run observation sets.

We next study interventions for breaking learning traps. We show that policymakers

can restore efficient information aggregation by providing sufficiently many kinds of free

information about the relevant confounding variables (for example, a forward-looking funding

agency can support research about confounding variables that are not of direct societal

interest). Another successful intervention is to reshape the reward structure so that agents

can be rewarded for information acquired over sufficiently many periods.

The final part of our paper considers the size of welfare losses associated with learning

traps. We show that the rate of information aggregation can be arbitrarily slow (relative to

the efficient benchmark), and payoffs can be arbitrarily inefficient when we consider the ratio

of achieved and feasible payoffs in a patient limit. However, when the payoff-relevant param-

eter is persistent across time, agents eventually learn its value even while in a learning trap.

Thus payoff losses are negligible when measured as the difference of achieved and feasible

payoffs, both of which vanish in the patient limit. We next consider a generalization of the

model where the unknown variables are changing over time.2 We show that welfare losses in

learning traps—measured either by the payoff ratio or payoff difference—can be arbitrarily

large in nearby models with almost perfect persistence. This suggests that learning traps

generally lead to long-run payoff inefficiencies.

1.1 Related Literature

The basic feature that information acquisitions are complementary appears in many settings

besides research—for example, informational complementarities are relevant for auctions

(Milgrom and Weber, 1982a,b), for firms (Athey and Schmutzler, 1995), for team composition

(Chade and Eeckhout, 2018), and within markets (Goldstein and Yang, 2015; Chen and

Waggoner, 2016). We build on this literature—which has primarily focused on one-time

information acquisitions—by asking how informational complementarities affect learning in

a dynamic setting.

This focus on dynamic implications connects to another body of work regarding invest-

ment in human capital (Jovanovic and Nyarko, 1996; Cunha and Heckman, 2007; Lizzeri and

Siniscalchi, 2008). These papers typically consider complementarities in a production tech-

nology, in contrast to complementarities in information. At a high level certain effects are

2This is a technically challenging setting to analyze, and correspondingly prior work is limited: Jovanovic

and Nyarko (1996), Moscarini, Ottaviani and Smith (1998), Frongillo, Schoenebeck and Tamuz (2011),

Vivi Alatas and Olken (2016), and Dasaratha, Golub and Hak (2018) are the only social learning settings

with a dynamic state that we are aware of.
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similar: For example, early investment choices impact the incentives to invest in the future,

potentially leading to worse long-run outcomes. And related to our Section 7, interventions

can push agents onto better skill-acquisition paths. When the relevant complementarities

are caused by informational correlations, the learning traps that emerge permit sharp char-

acterizations, as we demonstrate.

The framework that we study is a social learning model, but we depart from the classic

model (Banerjee, 1992; Bikhchandani, Hirshleifer and Welch, 1992) in assuming all informa-

tion to be public, thus turning off the inference problem essential to cascades. We instead

allow for endogenous information acquisition—see Burguet and Vives (2000), Mueller-Frank

and Pai (2016), and Ali (2018)—with the new feature that agents choose from a finite set of

complementary signals.

Our paper is related to, but does not fall within, the classic multi-armed bandit framework

(Gittins, 1979; Easley and Kiefer, 1988). The key difference is that in our model, agents’

choices of which signal to observe influence their learning, but do not directly influence their

payoffs. Thus, agents engage in exploration but not exploitation, and our paper is what

one might call a pure learning problem. This feature relates to a number of recent papers

also studying dynamic information acquisition from different kinds of information—see for

example Che and Mierendorff (2017) and Mayskaya (2017), who study learning from two

Poisson signals, and Sethi and Yildiz (2016) and Fudenberg, Strack and Strzalecki (2018),

who study learning from multiple Gaussian signals.

In earlier work (Liang, Mu and Syrgkanis, 2017), we studied dynamic learning from flexi-

bly correlated Gaussian signals, but focused on a special case of the environment considered

here, for which efficient information aggregation was guaranteed.3 This restriction allowed

us to (under some conditions) fully characterize the optimal information acquisition path

for any discount factor. But it precluded the welfare comparisons that are the focus here

(indeed, learning traps could not emerge).

Finally, our setting is related to Sethi and Yildiz (2017): In that paper, people are

sources of information, and they belong to disjoint communities with community-specific

bias terms. Individuals choose whom to listen to over time. Sethi and Yildiz (2017) show

that individuals can exhibit homophily in the long run, listening only to other individuals

from the same community; this phenomenon is related to the observation of learning traps

in the present paper.

3Formally, Liang, Mu and Syrgkanis (2017) assume that the set of available signals consists of a single

complementary set (see Section 3).
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2 Setup

Informational Environment. There are K persistent unknown states: a real-valued

payoff-relevant state ω and K − 1 real-valued confounding variables b1, . . . , bK−1. We as-

sume that the state vector θ := (ω, b1, . . . , bK−1)′ follows a multivariate normal distribution

N (µ0,Σ0) where µ0 ∈ RK , and the prior covariance matrix Σ0 has full rank.4,5

There are N (fixed) kinds or sources of information available at each discrete period

t ∈ Z+. Observation of source i in period t produces a realization of the random variable

X t
i = 〈ci, θ〉+ εti, εti ∼ N (0, 1)

where ci = (ci1, . . . , ciK)′ is a vector of constants, and the noise terms εti are independent

from each other and across periods. Normalizing these noise terms to have unit variance

is without loss of generality, since the coefficients ci are unrestricted. We will often drop

the time indices on the random variables, associating Xi = 〈ci, θ〉 + εi with source i and

understanding that the noise term is independently realized with each new observation.

The payoff-irrelevant states b1, . . . , bK−1 produce correlations across the sources, and can

be interpreted for example as:

• Confounding explanatory variables : Observation of source i produces the (random)

outcome y = ωc1
i + b1c

2
i + . . . bK−1c

K
i + εi, which depends linearly on an observable

characteristic vector ci. For example, y might be the change in ocean temperature

given physical measurements ci. The state of interest ω is the coefficient on a given

characteristic c1
i (i.e., increase in carbon emissions), and the payoff-irrelevant states

are the unknown coefficients on the auxiliary characteristics c2
i , . . . , c

K
i (i.e., change in

solar radiation).

• Knowledge and technologies that aid in information extraction: Interpret the confound-

ing variables as “disturbance” terms. For example, measurement of the rise in ocean

temperatures may correspond to observations of the signal X = ω + b + ε, where the

confounding variable b corresponds to a systematic bias in the sensors used to measure

ocean temperatures. The difference between the term b and the term ε is that the

former is persistent over time while the latter is i.i.d.—so the variance of b can be

reduced over time, but the variance of ε is fixed. Separating these terms allows us to

distinguish between reducible and irreducible noise in the signal.

4The full rank assumption is without loss of generality: If there is linear dependence across the states,

the model can be reduced to a lower dimensional state space that satisfies full rank.
5Unless otherwise indicated, vectors in this paper are column vectors.
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Decision Environment. Agents indexed by discrete time t move sequentially. Each agent

chooses one of the N sources and observes a realization of the corresponding signal. He

then predicts ω, selecting an action a ∈ R and receiving the payoff −(a − ω)2. We assume

throughout that all signal realizations (but not payoffs) are public. Thus, each agent t faces a

history ht−1 ∈ ([N ]×R)t−1 = H t−1 consisting of all past signal choices and their realizations,

and his signal acquisition strategy is a function from histories to sources. The agent’s optimal

prediction of ω is his posterior mean, and his expected payoff is the negative of his posterior

variance of ω. At every history ht−1, the agent’s expected payoffs are maximized by choosing

the signal that minimizes his posterior variance of ω.

Since the environment is Gaussian, the posterior variance of ω is a deterministic function

V (q1, . . . , qN) of the number of times qi that each signal i has been observed so far.6 Thus,

each agent’s signal acquisition is a function of past signal acquisitions only (and not of the

signal realizations). This allows us to track society’s acquisitions as deterministic count

vectors

m(t) = (m1(t), . . . ,mN(t))′ ∈ ZN+

where mi(t) is the number of times that signal i has been observed up to and including

period t. The count vector m(t) evolves according to the following rule: m(0) is the zero

vector, and for each time t ≥ 0 there exists i∗ ∈ argmini V (mi(t) + 1,m−i(t)) such that

mi(t+ 1) =

{
mi(t) + 1 if i = i∗

mi(t) otherwise

That is, the count vector increases by 1 in the coordinate corresponding to the signal that

yields the greatest immediate reduction in posterior variance. We allow ties to be broken

arbitrarily, and there may be multiple possible paths m(t).

We are interested in the long-run frequencies of observation limt→∞
mi(t)
t

for each source

i—that is, the fraction of periods eventually devoted to each source. As we show later in

Section 5, these limits exist under a weak technical assumption.

3 Complementary Information

In this section, we introduce a definition for complementary sets of sources.

Let τ(q1, . . . , qN) = 1/V (q1, . . . , qN) be the posterior precision about the payoff-relevant

state ω given qi observations of each source i, with τ0 := τ(0, . . . , 0) representing the prior

precision. We define the informational value of a set of sources S ⊆ [N ] := {1, . . . , N}
6See Appendix A.1 for the complete closed-form expression for V .
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to be the largest feasible improvement on precision (averaged across many periods), given

observations of signals from S alone.7

Definition 1. The (asymptotic) informational value of the set S is the maximal per-period

increase in the precision about ω over a long horizon:

val(S) = lim sup
t→∞

[
max
qt∈QtS

(
τ(qt)− τ0

t

)]
where

Qt
S =

{
q ∈ ZN+ :

∑N
i=1 qi = t and supp(q) ⊂ S

}
is the set of all count vectors that allocate t observations across (only) the sources in S.

We emphasize that the informational value is defined with respect to learning about ω. But

since we fix the payoff-relevant state throughout this paper, we will omit the dependence of

this value on ω. Separately, we highlight that a key property of the above definition is that

informational value is prior-independent (see Proposition 1 below).

The following definition of a complementary set is based on Borgers, Hernando-Veciana

and Krahmer (2013).

Definition 2. The set S is complementary if val(S) > val(∅) and

val(S)− val(S\S ′) > val(S ′)− val(∅)

for all nonempty proper subsets S ′ of S.

Informally, a set S is complementary if the set is informative (the set’s informational value

exceeds that of the empty set), and the marginal value of having access to the sources in any

S ′ ⊂ S is enhanced by also having access to sources S\S ′. We note that the first condition

that val(S) > val(∅) is implied by the second condition whenever S is not a singleton.8

Rewriting the condition in Definition 2 as

1

2
val(S) +

1

2
val(∅) > 1

2
val(S ′) +

1

2
val(S\S ′)

we can interpret the definition a second way. Suppose the set of available sources is to be

determined by a lottery at time t = 0, after which the social planner acquires information

7This definition of informational value closely resembles the definition of the value of a team in Chade

and Eeckhout (2018), although we consider belief precision instead of negative posterior variance. Using

posterior variances in Definition 1 would yield a value given by val(S) = lim supt→∞

[
maxqt∈Qt

S
(−tV (qt))

]
.

This together with Definition 2 would return a similar notion of complementarity, but would present the

technical issue of evaluating ∞−∞ since value as defined this way (is always negative and) can be −∞.
8The first condition has bite when |S| = 1. Specifically, it rules out all singleton sets S, except those

consisting of a single unbiased signal X = cω + ε.
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optimally from the (realized) available set of sources, valuing each set S at val(S). Compare

the choice between: (1) access to all of the sources in S with probability 1/2, and otherwise

no access to information; and (2) an equal probability of access to the sources in S ′ ( S and

access to the sources S\S ′. If (1) yields a higher value than (2) for all nonempty S ′ ( S,

then we say that the set of sources S is complementary. Thus, the condition above implies

that there is extra value to having access to all of the sources in S.

3.1 Discussion

Our definition and interpretations above mirror the constructions in Borgers, Hernando-

Veciana and Krahmer (2013) for complementary pairs of signals, but differ in a few key

aspects:

First, Definition 2 is for sets of signals, while Borgers, Hernando-Veciana and Krahmer

(2013) focus on pairs. Our generalization to sets can be understood in either of two ways.

On one hand, we might consider a set to be complementary if all of the pieces combine to

enhance the whole. For example, the sources X1 = ω + b1 + ε1, X2 = b1 + b2 + ε2, and

X3 = b2 + ε3 are complementary, since the presence of each is critical to enhancing the value

of the others (ω can only be learned by observing all three sources).

Another interpretation of Definition 2 is that it requires each pair of subsets that partition

the whole set to be complementary. From this perspective, the relevant generalization is not

from “two complementary signals” to “many complementary signals,” but rather from “two

complementary signals” to “two complementary sets.” Given the signals X1, X2, X3 defined

above, we might say that access to the set {X1, X2} is complementary to access to {X3},
and likewise for the other combinations.9

Another difference from Borgers, Hernando-Veciana and Krahmer (2013) is that we con-

sider complementary sources as opposed to complementary signal observations. That is, our

definition does not ask whether a single observation of some signal improves the marginal

value of a single observation of another. Rather, we ask whether access to some source

improves the marginal value of access to another, where the social planner can optimally

allocate many observations across the available sources.

Finally, Borgers, Hernando-Veciana and Krahmer (2013) value information based on its

contribution to decision problems, while the val function that we use is more statistical

9Our proposed Definition 2 is stated more explicitly in terms of this second perspective, although it turns

out that complementary sets are also characterized by having an informational value strictly greater than

all proper subsets, thus relating to the first perspective that each piece contributes to the whole. Formally,

Proposition 1 and part (a) of Proposition 2 below imply that a set S is complementary according to Definition

2 if and only if val(S) > val(S ′) for every proper subset S ′ of S, including S ′ = ∅.
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in nature (based on asymptotic improvements to belief precision).10 Like the definition in

Borgers, Hernando-Veciana and Krahmer (2013), however, our notion of complementarity

does turn out to be uniform across prior beliefs.

3.2 Characterization

The following result characterizes complementary sets.

Proposition 1. S is a complementary set if and only if the first coordinate vector in RK

admits a unique decomposition (1, 0, . . . , 0)′ =
∑

i∈S β
S
i · ci, where all coefficients βSi are

nonzero.

Thus, a set S is complementary if its signals uniquely combine to produce an unbiased

signal about ω. This characterization allows us to easily identify complementary sets based

on their signal coefficient vectors:

Example 1. The set {X1, X2, X3} consisting of signals X1 = ω + b1 + ε1, X2 = b1 + b2 + ε2,

and X3 = b2 + ε3 is complementary. To see this, observe that (1, 0, 0)′ = c1 − c2 + c3 (where

c1 = (1, 1, 0)′ is the coefficient vector associated with X1, c2 = (0, 1, 1)′ is the coefficient

vector associated with X2, and c3 = (0, 0, 1)′ is the coefficient vector associated with X3). In

contrast, the set of signals {X4, X5} with X4 = ω+ε1 and X5 = 2ω+ε2 is not complementary,

since many different linear combinations of c4 and c5 produce (1, 0). The set {X1, X2, X3, X4}
is also not complementary, although it contains multiple complementary subsets.

The next claim characterizes the informational value of a complementary set.

Claim 1. Let S be a complementary set. Then, val(S) = 1/
(∑

i∈S |βSi |
)2

, where βSi are the

ones given in Proposition 1.

More generally, val(S) can be determined for an arbitrary set S as follows: If S contains at

least one complementary subset, then its value is equal to the highest value among its com-

plementary subsets ; otherwise the value of S is zero. This result will follow from Proposition

2 part (a) in the next section.

Throughout the paper, we assume that there is at least one complementary set, and also

that complementary sets can be completely ordered based on their informational values.

Assumption 1. There is at least one complementary set S ⊆ [N ].

Assumption 2. Each complementary set has a distinct informational value; that is, val(S) 6=
val(S ′) for all complementary sets S 6= S ′.

10Our definition is robust to monotone transformations of the val function; this follows from the charac-

terization in Proposition 1 below.
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The first assumption is without loss,11 while the second assumption is generically satisfied.

In particular, Assumption 2 implies the existence of a “best” complementary set, whose

informational value is largest among complementary sets. This set plays an important role,

and we will denote it by S∗ in the remainder of this paper.

4 Optimal Long-Run Observations

In this section, we show that optimal information acquisitions eventually concentrate on the

best complementary set S∗. Specifically, consider the distribution

λ∗i =


|βS∗i |∑
j∈S∗ |βS

∗
j |

∀ i ∈ S∗

0 otherwise

which assigns zero frequency to signals outside of the best set S∗, and samples sources within

S∗ proportionally to the magnitude of βS
∗

i . That is, each signal in S∗ receives frequency

proportional to its contribution to an unbiased signal about ω, as defined in Proposition 1.

The result below shows two senses in which λ∗ is the optimal long-run frequency over signals.

Proposition 2. (a) Optimal Information Aggregation: val([N ]) = val(S∗). Moreover, for

any sequence q(t) such that limt→∞
τ(qt)−τ0

t
= val([N ]), it holds that limt→∞

q(t)
t

= λ∗.

(b) Social Planner Problem: For any δ, let dδ(t) be the vector of signal counts (up to period

t) associated with any signal path that maximizes the δ-discounted average payoff

Uδ := E

[
−
∞∑
t=1

(1− δ)δt−1 · (at − ω)2

]

Then there exists δ < 1 such that limt→∞
dδ(t)
t

= λ∗ for every δ ≥ δ.

Part (a) says that the informational value of S∗ is the same as the informational value of the

entire set of available sources. In this sense, having access to all available sources does not

improve upon the speed of learning achievable from the best complementary set S∗ alone.

Moreover, this speed of learning is attainable only if the long-run frequency over sources is

11Our results extend to situations where ω cannot be identified from the available sources. To see this,

we first take a linear transformation and work with the following equivalent model: The state vector θ̃ is

K-dimensional standard Gaussian, each signal Xi = 〈c̃i, θ̃〉 + εi, and the payoff-relevant parameter is 〈u, θ̃〉
for some constant vector u. Let R be the subspace of RK spanned by c̃1, . . . , c̃N . Then project u onto R:

u = r + w with r ∈ R and w orthogonal to R. Thus 〈u, θ̃〉 = 〈r, θ̃〉 + 〈w, θ̃〉. By assumption, the random

variable 〈w, θ̃〉 is independent from any random variable 〈c, θ̃〉 with c ∈ R (because they have zero covariance).

Thus the uncertainty about 〈w, θ̃〉 cannot be reduced upon any signal observation. Consequently, agents only

seek to learn about 〈r, θ̃〉, returning to the case where the payoff-relevant parameter is identified.
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the distribution λ∗.12 Part (b) of Proposition 2 says that a (patient) social planner—who

maximizes a discounted average of agent payoffs—will eventually observe sources in the

proportions described by λ∗. Based on these results, we subsequently use λ∗ as the optimal

benchmark against which to compare society’s long-run information acquisitions.

5 Main Results

We now ask whether society’s acquisitions converge to the optimal long-run frequencies λ∗

characterized above. We show that informational environments can be classified into two

kinds—those for which efficient information aggregation is guaranteed (long-run frequencies

are λ∗), and those for which “learning traps” are possible (agents exclusively observe some

set of sources different from the efficient set S∗). Separation of these two classes depends

critically on the size of the smallest complementary set.

5.1 Learning Traps vs. Efficiency

The following example demonstrates that efficient information aggregation need not occur.

Indeed, the set of signals observed in the long run can be disjoint from the efficient set S∗.

Example 2. There are three available sources:

X1 = 3ω + b1 + ε1

X2 = b1 + ε2

X3 = ω + ε3

Both {X1, X2} and {X3} are complementary sets, but optimal information acquisitions (as

defined in Section 4) eventually concentrate on S∗ = {X1, X2}.13

Now suppose that agents’ prior beliefs are such that ω and b1 are independent, and

the prior variance of b1 is large (exceeds 8). In the first period, observation of X3 is most

informative about ω, since X1 is perceived as a noisier signal about ω than X3, and X2

provides information only about the confounding variable b1 (which is uncorrelated with ω).

Agent 1’s acquisition of X3 does not update the variance of b1, so the same argument shows

12This result builds on Chaloner (1984), who shows that a “c-optimal simultaneous experiment design”

exists on at most K points. Part (a) additionally supplies a characterization of the optimal design itself and

demonstrates uniqueness, with a minor technical difference that we impose an integer constraint on signal

counts. We are not aware of prior work on the discounted payoff criterion studied in Part (b).
13It is straightforward to verify that val({X3}) = 1 < 9/4 = val({X1, X2}). Note also that X1 −X2 is an

unbiased signal about ω, and it is more informative than two realizations of X3. This demonstrates {X1, X2}
is the better complementary set without direct computation of informational values.
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that agent 2 acquires X3. Iterating, we have that every agent observes signal X3. In this

way, the set {X3} represents a learning trap.14

Returning to researchers who sequentially acquire information to learn about the impact

of carbon emissions on climate change, we can interpret the source X1 as projections of

future temperatures using a new kind of climate model. Crucially, this model is biased due

to misspecification—for example, by assuming a particular ecosystem response to increased

temperatures—and the size and direction of this bias are unknown. The source X2 corre-

sponds to research into the actual feedback between climate and the ecosystem, which can

be used to correct for misspecifications in the underlying model. The new model, if correctly

de-biased, can lead to much improved projections, and socially it is optimal for researchers

to invest towards this path. But if research into the climate-ecosystem feedback is slow, each

researcher may choose instead to exploit existing models for measurement (observation of

X3), maximizing the marginal value of their work but reinforcing the learning trap.

Generalizing Example 2, the result below (stated as a corollary, since it will follow from

the subsequent Theorem 1) gives a sufficient condition for learning traps. We impose the

following generic assumption on the signal structure, which requires that every set of K

signals are linearly independent:

Assumption 3 (Strong Linear Independence). N ≥ K and every K signal coefficient vectors

ci1 , ci2 , . . . , ciK are linearly independent.

Corollary 1. Assume Strong Linear Independence. Then for every complementary set S
with |S| < K, there exists an open set of prior beliefs given which agents exclusively observe

signals from S.

Thus, every small complementary set (fewer than K signals) is a candidate learning trap.

Now suppose in contrast that no complementary sets are smaller than size K.15 Our

next result shows that a very different long-run outcome obtains: Starting from any prior,

society’s information acquisitions eventually approximate the optimal frequency. Thus, even

though agents are short-lived (“myopic”), they end up acquiring information efficiently.

Corollary 2. If there are no complementary sets with fewer than K sources, then starting

from any prior belief, limt→∞mi(t)/t = λ∗i holds for every signal i. Thus, efficient informa-

tion aggregation is guaranteed.

14The existence of learning traps is not special to the assumption of normality. We report a related example

with non-normal signals in Appendix D.2.
15It follows from Proposition 1 that there are no complementary sets with more than K sources, so this is

equivalent to assuming that all complementary sets are of size K.

13



This result, like Corollary 1 above, follows from the subsequent Theorem 1. (We note that

Strong Linear Independence is not assumed in Corollary 2, or in any subsequent results.)

An implication of these corollaries is that adding sources can worsen overall learning:

Example 3. Suppose the available sources are: X1 = 3ω + b1 + ε1 and X2 = b1 + ε2.

Then, {X1, X2} is the only complementary set, with size K = 2. It follows from Corollary 2

that agents will achieve the efficient benchmark with a value of val({X1, X2}) = 9/4. Now

suppose we add X3 = ω+ε3, returning Example 2. The efficient benchmark does not change,

but now there are priors that lead to exclusive observation of X3, achieving val({X3}) = 1.16

We provide a brief intuition for the above results, in particular for the importance of the

number K. Recall that each agent chooses the signal whose marginal value—reduction of

posterior variance of ω—is highest. Thus, if signal acquisitions eventually concentrate on

a set S, two properties must hold. First, all signals in the set must repeatedly have their

turn as “most valuable,” so that agents do not focus on a strict subset of S. This condition

requires that the long-run outcome is a complementary set, where (by definition) all sources

are critical to the value of the set.

Second, the marginal values of signals in that set must be persistently higher than

marginal values of other signals. Not all complementary sets satisfy this criterion, since

the sources within a given complementary set S could have even stronger complementaries

with sources outside of the set. If that were the case, observation of sources within S would

eventually push agents to acquire information outside of S.

Indeed, a complementary set S consisting of K sources cannot be self-reinforcing unless

it is the best set: As observations accumulate from such a set, agents learn about all of the

confounding variables and come to evaluate all sources according to “objective” (i.e. prior-

independent) asymptotic values. Repeated acquisitions of signals from S improve the value

of signals in S∗ over the value of signals in S. Thus, agents eventually turn to the sources

in S∗, achieving efficient information aggregation as predicted by Corollary 2.

In contrast, if agents observe only k < K sources, then they can have persistent uncer-

tainty about some confounding variables. This may cause society to persistently undervalue

those sources confounded by these variables and to continually observe signals from a small

complementary set. We saw this already in Example 2 where agents failed to obtain any

information about the confounding variable b1, and thus persistently undervalued the sources

X1 and X2. The same intuition applies to Corollary 1.

One may argue that the condition that no complementary set has fewer than K sources is

generically satisfied. However, if we expect that sources are endogenous to design or strategic

16In contrast, if the signal X4 = ω+b1+ε4 were added instead of X3 in this example, then the complemen-

tary sets would be {X1, X2}, {X1, X4} and {X2, X4}. By Corollary 2, (from all priors) agents necessarily

observe the efficient set {X1, X2} in the long run.
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motivations, the relevant informational environments may not fall under this condition.

For example, signals that partition into different groups with group-specific confounding

variables (as studied in Sethi and Yildiz (2017)) are economically interesting but non-generic.

Corollary 1 shows that inefficiency is a possible outcome in these cases.

5.2 General Characterization of Long-run Outcomes

Fixing an arbitrary signal structure, we now provide a complete characterization of the

possible long-run observation sets as the prior belief varies. We introduce a new definition,

which strengthens the notion of a complementary set:

Definition 3. S is a strongly complementary set if it is complementary, and val(S) >

val(S ′) for all sets S ′ that differ from S in exactly one source (|S − S ′| = |S ′ − S| = 1).17

The property of strongly complementary can be understood as requiring that the set is

complementary and also something more: These complementarities are “locally best” in the

sense that it is not possible to obtain stronger complementarities by swapping out just one

source. We point out that while the definition of complementary sets does not depend on

the ambient set (i.e., [N ]) of available sources, the notion of strong complementarity does.

Example 4. Suppose the available signals are X1 = ω + b1 + ε1, X2 = b1 + ε2, and X3 =

2b1 + ε3. Then the set {X1, X2} is complementary but not strongly complementary, as

val({X1, X3}) > val({X1, X2}).

Our main result generalizes both the learning traps result and the efficient information

aggregation result from the previous subsection. Theorem 1 says that long-run information

acquisitions eventually concentrate on a set S (starting from some prior belief) if and only

if S is strongly complementary.

Theorem 1. The set S is strongly complementary ⇐⇒ there exists an open set of prior

beliefs given which agents eventually exclusively observe signals from S (that is, long-run

frequencies exist and have support in S).18

When there is a single strongly complementary set, then all priors must lead to this

set. Our previous Corollary 2 provides a sufficient condition that implies this, and moreover

gives that the unique strongly complementary set is the best complementary set. When

17In fact, the requirement that S is complementary is extraneous: One can show using Proposition 1 that

if val(S) > val(S ′) for all sets S ′ differing from S in exactly one source, then S must be complementary.
18The “if” part of this statement can be strengthened as follows: The set S is strongly complementary if

there exists any prior belief given which agents eventually choose from S. Thus, the regions of prior beliefs

associated with different strongly complementary sets cover the whole space.
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there are multiple strongly complementary sets, then different priors lead to different long-

run outcomes, some of which are inefficient. Our previous Corollary 1 describes a sufficient

condition for such multiplicity.

Obtaining a complete characterization of the sets of prior beliefs associated with dif-

ferent long-run outcomes is challenging, since society’s signal path may in general exhibit

complex dynamics—for example, switching multiple times between different complementary

sets (including the efficient set). This makes it difficult to relate the initial prior to eventual

learning behavior. In the next section we discuss the technical details that go into the proof

of Theorem 1. In particular, we will explain how we are able to determine the range of

possible long-run outcomes despite incomplete knowledge about which occurs under a given

prior.19

6 Proof Outline for Theorem 1

6.1 Limiting Dynamical System

We first introduce the following normalized asymptotic posterior variance function V ∗, which

takes frequency vectors λ ∈ ∆N−1 as input:

V ∗(λ) = lim
t→∞

t · V (λt).

This function is convex in λ and its unique minimizer is the optimal frequency vector λ∗ (see

Lemma 7 in the appendix).

For simplicity of explanation, we will assume throughout this section that at large t, the

signal choice that minimizes V also minimizes V ∗.20 Then, the frequency vector λ(t) := m(t)
t

evolves in the coordinate direction that minimizes V ∗. We will refer to this as coordinate

descent. Unlike the usual gradient descent, coordinate descent is restricted to move in

coordinate directions. This restriction corresponds to our assumption that each agent can

only acquire a discrete signal (rather than a mixture of signals).

One case where coordinate descent coincides with gradient descent is when V ∗ is every-

where differentiable: Differentiability ensures that all directional derivatives can be written

19In some cases, such as the signal structure in Example 2, a partial characterization is feasible. We

showed previously that if ω and b1 are independent under the prior, and the prior variance of b1 exceeds 8,

then every agent finds it optimal to observe X3, leading to a learning trap. If instead the prior variance of b1

is smaller than 8, then we can show that every agent chooses from the efficient set {X1, X2}. See Appendix

D.3 for the analysis as well as a related example.
20This is not in fact generally correct, and the potential gap is one of the technical challenges in the proof.

Nevertheless, we do show that at large t, the signal choice that minimizes V approximately minimizes V ∗.

16



as convex combinations of partial derivatives along coordinate directions. In that case, evo-

lution of λ(t) would necessarily end at the global minimizer λ∗, implying efficient information

aggregation.

6.2 Differentiability of V ∗

The function V ∗, however, is not guaranteed to be differentiable everywhere. Consider our

learning traps example with signals X1 = 3ω + b1 + ε1, X2 = b1 + ε2, X3 = ω + ε3, and fix

the frequency vector to be λ = (0, 0, 1). It is easy to verify that the asymptotic posterior

variance V ∗(λ) is increased if we perturb λ by re-assigning weight from X3 to X1, or from

X3 to X2. But V ∗ is reduced if we re-assign weight from X3 to both X1 and X2 in an even

manner.21 So V ∗ is not differentiable at λ. Such points of non-differentiability are exactly

why learning traps are possible: Coordinate descent can become stuck at these λ, so that

agents repeatedly sustain an inefficient frequency vector.22

A sufficient condition for V ∗ to be differentiable at some frequency vector turns out to

be that the signals receiving positive frequencies span all of RK . This explains the result in

Corollary 2: When each complementary set consists of K signals, society has to observe K

signals in order to learn the payoff-relevant state ω. Thus, driven by learning about ω, agents

end up observing signals that span RK , which leads to efficient information aggregation.

6.3 Generalization to Arbitrary Subspaces

Now observe that our arguments above were not special to considering the whole space RK .

If we restrict the available sources to some subset of [N ], and look at the subspace of RK

spanned by these sources, our previous analysis applies to this restricted space.

Specifically, given any prior belief, define S to be the set of sources that agents eventually

observe. Let S be the available signals that can be reproduced as a linear combination of

signals from S—these sources belong to the “subspace spanned by S.” We can consider

the restriction of the function V ∗ to all frequency vectors with support in S. Parallel to

21This follows from the formula V ∗(λ1, λ2, λ3) = λ3 + 9
1/λ1+1/λ2

. The derivative of V ∗ in either direction

(1, 0,−1) or (0, 1,−1) is positive, while its derivative in the direction ( 1
2 ,

1
2 ,−1) is in fact negative.

22The above intuition connects to a literature on learning convergence in potential games (Monderer and

Shapley, 1996; Sandholm, 2010). Define an N -player game where each player i chooses a number λi ∈ R+

and receives payoff −
(∑N

j=1 λj

)
·V ∗(λ) = −V ∗

(
λ/
∑N
j=1 λj

)
. Then, we have a potential game with (exact)

potential function −V ∗, and our long-run observation sets correspond to equilibria of this game. This is

an infinite potential game with a non-differentiable potential function. It is known that Nash equilibria in

such games need not occur at extreme points, and this is consistent with our observation of learning traps.

Nonetheless, we note that the connection to potential games is not sufficient to derive our main results, since

our agents receive payoff −V (λt) rather than its asymptotic variant V ∗.
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the discussion above, the restricted version of V ∗ is both convex and differentiable in this

subspace (at frequency vectors that assign positive weights to signals in S). Thus, coordinate

descent must lead to the minimizer of V ∗ in this subspace.

Recall that the overall optimal frequency vector λ∗ is supported on the best complemen-

tary set S∗. Analogously, the frequency vector that minimizes V ∗ in the restricted subspace

is supported on the best complementary set within S. So our assumption that agents even-

tually concentrate signal acquisitions on the set S is valid only if S is best in its subspace;

that is, val(S) = val(S).

6.4 An Equivalence Result

The lemma below relates the property of “best in its subspace” to the notion of “strongly

complementary.”

Lemma 1. The following conditions are equivalent for a complementary set S:

(a) val(S) = val(S).

(b) S is strongly complementary.

(c) For any i ∈ S and j /∈ S, ∂iV
∗(λS) < ∂jV

∗(λS), where λS (proportional to |βS |) is the

optimal frequency vector supported on S.

This lemma states that a strongly complementary set S is “locally best” in three different

senses. Part (a) says such a set has the highest informational value in its subspace. Part (b)

says its informational value is higher than any set obtained by swapping out one source. Part

(c) says that starting from the optimal sampling rule over S, re-allocating frequencies from

signals in S to any other signal increases posterior variance and reduces speed of learning.

The rest of this subsection is devoted to the proof of Lemma 1.

The implication from part (a) to part (b) is straightforward: Suppose S is best in its

subspace, and S ′ is obtained from S by removing signal i and adding signal j. Then the

informational value of S ′ is either zero, or equal to the highest value among its complementary

subsets. In the latter case, such a complementary subset necessarily includes signal j, and

Proposition 1 implies that j belongs to the subspace spanned by S. Thus S ′ ⊂ S, and

val(S ′) ≤ val(S) = val(S). The inequality is in fact strict, because complementary sets have

different values (see Assumption 2).

We next show that part (b) implies part (c). Suppose part (c) fails, so some perturbation

that shifts weight from source i ∈ S to source j /∈ S decreases V ∗. Then, by definition of

informational value, we would have val(S ∪ {j}) > val(S). But as Proposition 2 part (a)

suggests, the value of S ∪{j} is equal to the highest value among its complementary subsets.
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Strong complementarity of S ensures that S is the best complementary subset of S ∪ {j}.
Thus we obtain val(S ∪ {j}) = val(S), leading to a contradiction.

Finally, part (c) implies that λS is a local minimizer of V ∗ in the subspace spanned by S
(where the restriction of V ∗ is differentiable). Since V ∗ is convex, the frequency vector λS

must in fact be a global minimizer of V ∗ in this subspace. Hence S is best in its subspace

and part (a) holds.

6.5 Completing the Argument

The arguments above tell us that information acquisitions eventually concentrate on a

strongly complementary set, delivering one direction of Theorem 1: S is a long-run out-

come only if S is strongly complementary.

To prove the “if” direction, we directly construct priors such that a given strongly com-

plementary set S is the long-run outcome. The construction generalizes the idea in Example

2, where we assign high uncertainty to those confounding variables that do not afflict signals

in S (as well as those in the same subspace S), and low uncertainty to those that do. This

asymmetry guarantees that signals in S have persistently higher marginal values than the

remaining signals. Lastly, we use part (c) of the above Lemma 1 to show that agents focus

on observing from S, rather than the potentially larger set S. Indeed, if the historical fre-

quency of acquisitions is close to λS , then signals in S have higher marginal values than the

remaining signals in their subspace; and as these signals in S continue to be chosen, society’s

frequency vector remains close to λS . This completes the proof of Theorem 1.

7 Interventions

The previous sections demonstrate the possibility for agents to persistently acquire subop-

timal sources of information. This naturally suggests a question of what kinds of policies

might free agents from these learning traps. We compare several possible policy interven-

tions: increasing the quality of information acquisition (so that each signal realization is

more informative); restructuring incentives so that agents’ payoffs are based on information

obtained over several periods (equivalent to acquisition of multiple signals each period); and

providing a one-shot release of free information, which can guide subsequent acquisitions.

7.1 More Precise Information

Consider first an intervention in which the precision of each signal draw is uniformly in-

creased. We model this intervention by supposing that each signal acquisition now produces

B independent observations from that source (with the main model corresponding to B = 1).

19



The result below shows that providing more informative signals is of limited effectiveness:

Any set of signals that is a potential learning trap given B = 1 remains a potential learning

trap under arbitrary improvements to signal precision.

Corollary 3. Suppose that for B = 1, there is a set of priors given which signals in S are

exclusively viewed in the long run. Then, for every B ∈ Z+, there is a set of priors given

which these signals are exclusively viewed in the long run.

This corollary follows directly from Theorem 1.23

7.2 Batches of Signals

Another possibility is to restructure the incentive scheme so that agents’ payoffs are based

on information acquired from multiple signals. In practice, this might mean that payoffs are

determined after a given time interval: For example, researchers may be evaluated based on

a set of papers, so that they want to maximize the impact of the entire set. Alternatively,

agents might be given the means to acquire multiple signals each period: For example,

researchers may be arranged in labs, with a principal investigator directing the work of

multiple individuals at once.

Formally, we suppose here that each agent can allocate B observations across the sources

(where B = 1 returns the main model). Note the key difference from the previous interven-

tion: It is now possible for the B observations to be allocated across different signals. This

distinction enables agents to take advantage of the presence of complementarities, and we

show that efficient information aggregation can be guaranteed in this case:

Proposition 3. For sufficiently large B, if each agent acquires B signals every period, then

society’s long-run frequency vector is λ∗ starting from every prior belief.

Thus, given sufficiently many observations each period, agents will allocate observations in

a way that approximates the optimal frequency.

The number of observations needed, however, depends on details of the informational

environment. In particular, the required B cannot be bounded as a function of the number

of states K and number of signals N .24 See Appendix A.7.1 for further details.

23However, the set of prior beliefs that yield S as a long-run outcome need not be the same as B varies.

For a fixed prior belief, subsidizing higher quality acquisitions may or may not move society out of a learning

trap. To see this, consider first the signal structure and prior belief from Example 2. Increasing the precision

of signals is ineffective there: As long as the prior variance on b is larger than 8, each agent still chooses signal

X3 regardless of signal precision. In Appendix D.4, we provide a contrasting example in which increasing

the precision of signals indeed breaks agents out of a learning trap from a specified prior.
24The required B depends on two properties: first, on how well the optimal frequency λ∗ can be approxi-

mated by B (discrete) observations; second, on the difference in learning speed between the best set and the

next best complementary set, which determines the slack that is permitted in the approximation of λ∗.
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7.3 Free Information

Finally, we consider provision of free information to the agents. We can think of this as

releasing information that a policymaker knows, or as a reduced form for funding specific

kinds of research, the results of which are then made public.

Formally, the policymaker chooses several signals Yj = 〈pj, θ〉 + N (0, 1), where each

‖pj‖2 ≤ γ, so that signal precisions are bounded by γ2. At time t = 0, independent real-

izations of these signals are made public. All subsequent agents update their prior beliefs

based on this free information in addition to the history of signal acquisitions thus far.

We show that given a sufficient number of (different kinds of) signals, efficient learning

can be guaranteed. Specifically, if k ≤ K is the size of the best set S∗, then k − 1 precise

signals are sufficient to guarantee efficient learning:

Proposition 4. Let k := |S∗|. There exists a γ < ∞, and k − 1 signals Yj = 〈pj, θ〉 +

N (0, 1) with ‖pj‖2 ≤ γ, such that with these free signals provided at t = 0, society’s long-run

frequency vector is λ∗ starting from every prior belief.

The proof is by construction. We show that as long as agents understand those con-

founding variables that appear in the best set of signals (these parameters have dimension

k − 1), they will come to acquire information from this set.25

We point out the following converse to Proposition 4: Whenever agents begin with suffi-

ciently low prior uncertainty about the confounding variables that afflict the signals in S∗, it

is impossible for a malevolent third-party to provide free information and induce a learning

trap as the long-run outcome.

8 Welfare Loss Under Learning Traps

We conclude with a more detailed analysis of the size of welfare losses under learning traps,

and a generalization of our model in which the unknown states evolve over time.

8.1 Welfare Criteria

We focus on two classic welfare criteria: the speed of information aggregation and discounted

average payoffs.

25This intervention requires knowledge of the full correlation structure as well as which set S∗ is best. An

alternative intervention, with higher demands on information provision but lower demands on knowledge of

the environment, is to provide K − 1 (sufficiently precise) signals about all of the confounding variables.
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Information Aggregation. A small modification of Example 2 shows that society’s long-

run speed of learning can be arbitrarily slower than the optimal speed. Specifically, the

informational value of the best complementary set can be arbitrarily large relative to the

value of the set that agents eventually observe.

Example 5. There are three available sources: X1 = ω + b1 + ε1, X2 = b1 + ε2, and X3 =
1
L
ω+ε3, where L > 0 is a constant. In this example, the ratio val({X1, X2})/ val({X3}) = L2

4

increases without bound as L→∞. But for every choice of L, there is a set of priors given

which X3 is exclusively observed.26

Discounted Average Payoffs. Define

UM
δ = EM

[
−
∞∑
t=1

(1− δ)δt−1 · (at − ω)2

]
to be the δ-discounted average payoff across agents, who follow a “myopic” signal acquisition

strategy with optimal predictions at. Also define USP
δ to be the maximum δ-discounted

average payoff, where the social planner can use any signal acquisition strategy. Note that

both payoff sums are negative, since flow payoffs are quadratic loss at every period.

Again from Example 5, we see that for every constant c > 0, there is a signal structure

and prior belief such that the limiting payoff ratio satisfies27

lim inf
δ→1

UM
δ /U

SP
δ > c.

Thus, the payoff ratio can be arbitrarily large. Note that because payoffs are negative, larger

values of the ratio UM
δ /U

SP
δ correspond to greater payoff inefficiencies.

On the other hand, the payoff difference vanishes in the patient limit; that is,

lim
δ→1

(
USP
δ − UM

δ

)
= 0

in all environments. To see this, note that agents eventually learn ω even while in a

learning trap, albeit slowly. Thus flow payoffs converge to zero at large periods, implying

limδ→1 U
SP
δ = limδ→1 U

M
δ = 0.

In what follows, we show that this conclusion critically depends on the assumption that

unknown states are perfectly persistent. We outline a sequence of autocorrelated models that

converge to our main model (with perfect state persistence). At near perfect persistence,

welfare losses under learning traps can be large according to all of the above measures.

26The region of inefficient priors (that result in suboptimal learning) does decrease in size as the level of

inefficiency increases. Specifically, as L increases, the prior variance of b1 has to increase correspondingly in

order for the first agent to choose X3.
27Example 5 implies the ratio of flow payoffs at late periods can be arbitrarily large. As δ → 1, these later

payoffs dominate the total payoffs from the initial periods (since the harmonic series diverges). So the ratio

of aggregate discounted payoffs is also large.
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8.2 Extension: Autocorrelated Model

In our main model, the state vector θ = (ω, b1, . . . , bK−1)′ is persistent across time. We now

consider a state vector θt that evolves according to the following law:

θ1 ∼ N (0,Σ0); θt+1 =
√
α · θt +

√
1− α · ηt, where ηt ∼ N (0,M).

Above, means are normalized to zero, and the prior covariance matrix of the state vector at

time t = 1 is Σ0. We restrict the autocorrelation coefficient
√
α to belong to (0, 1). Choice

of α = 1 returns our main model, and we will be interested in approximations where α is

close to but strictly less than 1. The innovation ηt ∼ N (0,M) captures the additional noise

terms that emerge under state evolution, which we assume to be i.i.d. across time.28 Fixing

signal coefficients {ci}, every autocorrelated model is indexed by the triple (M,Σ0, α).

In each period, the available signals are

X t
i = 〈ci, θt〉+ εti, εti ∼ N (0, 1).

The signal noises εti are i.i.d. and further independent from the innovations in state evolution.

The agent in period t chooses the signal that minimizes the posterior variance of ωt, while

the social planner seeks to minimize a discounted sum of such posterior variances.

We have the following result:

Theorem 2. Suppose S is strongly complementary. Then there exist M and Σ0 such that

for every ε > 0, there is an α(ε) < 1 with the following property: In each autocorrelated

model (M,Σ0, α) with α > α(ε),

1. all agents only observe signals in S;

2. the resulting discounted average payoff satisfies

lim sup
δ→1

UM
δ ≤ −(1− ε) ·

√
(1− α)

(
M11

val(S)

)
,

while it is feasible to achieve a patient payoff of

lim inf
δ→1

USP
δ ≥ −(1 + ε) ·

√
(1− α)

(
M11

val(S∗)

)
by sampling from S∗.

28The coefficient
√

1− α in front of ηt is chosen so that when no signals are observed, society’s posterior

covariance matrix about θt will converge to M . This allows us to meaningfully consider the limit as α→ 1

while keeping M fixed.
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Part (1) generalizes Theorem 1, showing that every strongly complementary set is a

potential long-run observation set given imperfect persistence. This suggests that the notion

of strong complementarity and its importance extend beyond our main model.

Part (2) shows that whenever S is different from the best complementary set S∗, then

social acquisitions result in significant payoff inefficiency as measured by the payoff ratio.

Indeed, for α close to 1 the ratio limδ→1 U
M
δ /U

SP
δ is at least

√
val(S∗)/ val(S), which can be

arbitrarily large depending on the signal structure.

The following proposition strengthens this statement, using Example 5 to show that the

payoff difference between optimal and social acquisitions can also be arbitrarily large:

Proposition 5. For every ε > 0, there exists a signal structure as in Example 5 and a

corresponding autocorrelated model (M,Σ0, α) such that

lim inf
δ→1

USP
δ ≥ −ε;

lim sup
δ→1

UM
δ ≤ −

1

ε
.

From this analysis, we take away that learning traps in general result in average payoff

losses (and potentially large losses) so long as unknown states are not perfectly persistent

over time.

9 Other Extensions

General Payoff Functions. Our main results extend when each agent t chooses an action

to maximize an arbitrary individual payoff function ut(at, ω) (we have so far restricted to

ut(at, ω) = −(at − ω)2). Since in the Gaussian environment the signal that minimizes the

posterior variance of ω Blackwell-dominates every other signal (Hansen and Torgersen, 1974),

each agent’s signal acquisition remains unchanged.29

However, the interpretation of the optimal benchmark (that we defined in Section 4) is

more limited. Specifically, while the optimal frequency vector λ∗ can still be interpreted

as maximizing information revelation (part (a) of Proposition 2), the relationship to the

social planner problem (part (b) of Proposition 2) may fail. See Appendix A.8 for further

discussion.

29To be fully rigorous, we also need a mild regularity condition on individual payoff functions to ensure that

the signal minimizing the posterior variance yields strictly higher payoffs than other signals. The following

condition is sufficient: For every t, any variance σ2 > 0 and any action a∗, there exists a positive Lebesgue

measure of µ for which a∗ does not maximize E[ut(a, ω) | ω ∼ N (µ, σ2)]. That is, we require that for every

belief variance, the expected value of ω should affect the optimal action to take. This rules out cases where

some actions are dominant regardless of how much is learned.
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Low Altruism. We have assumed that each agent is short-lived and cares only to max-

imize the accuracy of his own prediction of the payoff-relevant state. Now suppose that

agents are slightly altruistic; that is, each agent t chooses a signal as well as an action at

to maximize discounted payoffs E
[∑

t′≥t ρ
t′−t · (at − ω)2

]
, assuming that future agents will

behave similarly. (ρ = 0 returns our main model.) We show in Appendix D.5 that for ρ

sufficiently small, part (a) of Theorem 1 continues to hold in every equilibrium of this game.

So the existence of learning traps is robust to a small degree of altruism. By Proposition 7

in the appendix, part (b) of Theorem 1 also extends, showing that strongly complementary

sets are the only possible long-run outcomes.

Multiple Payoff-Relevant States. In our main model, only one of the K persistent

states is payoff-relevant. Consider a generalization in which each agent predicts (the same)

r ≤ K unknown states and his payoff is determined via a weighted sum of quadratic losses.

We show in Appendix D.6 that our main results extend to this setting.

10 Conclusion

We study a model of sequential learning, where short-lived agents choose what kind of

information to acquire from a large set of available information sources. Because agents

do not internalize the impact of their information acquisitions on later decision-makers,

they may acquire information inefficiently (from a social perspective). Inefficiency is not

guaranteed, however: Depending on the informational environment, myopic concerns can

also endogenously push agents to identify and observe only the most informative sources.

Our main results separate these possibilities, and reveal that the extent of learning

spillovers is essential to determining which outcome emerges. Specifically, does information

about unknowns of immediate societal interest (i.e., the payoff-relevant state) also teach

about unknowns that are only of indirect value (i.e., the confounding variables)?

When such spillovers are present, simple incentive schemes for information acquisition—in

which agents care only about immediate contributions to knowledge—suffice for efficient

long-run learning. When these spillovers are not built into the environment, other incentives

are needed. For example, forward-looking funding agencies can encourage investment in

the confounding variables (our “free information” intervention). Alternatively, agents can

be evaluated on the basis of a body of work (our “multiple signal” intervention). These

observations are consistent with practices that have arisen in academic research, including

the establishment of third-party funding agencies (e.g., the NSF) to support basic science and

methodological research, and the evaluation of researchers based on advancements developed

across several papers (e.g., tenure and various prizes).
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We conclude below with brief mention of additional directions and interpretations of

the model. First, we have focused on a sequence of decision-makers with a common prior.

We might alternatively consider parallel sequences of decision-makers, each seeded with a

different prior belief—for example, in the absence of a global research community, researchers

in different countries may share different prior beliefs (and pass down their information

within their country only). Using this setup, our results can be interpreted as answering

the question: Will individuals from different communities end up observing the same (best)

set of sources, or will they persistently acquire information from different sources? Our

main results show that when there is a unique strongly complementary set of sources, then

different priors wash out; otherwise, different priors can result in persistent differences across

communities in what sources are listened to and consequently differences in beliefs.30

Second, while we have described our setting as choice between information sources, our

model may apply more generally to choice between complementary actions. For example,

suppose a sequence of politicians take actions that have externalities for future politicians,

and each politician seeks to maximize performance of the state during his tenure. The con-

cepts we have developed here of efficient information aggregation and learning traps have

natural analogues in that setting (i.e., actions that maximize society’s long-term welfare,

versus those that do not). Relative to the general setting, we study here a class of com-

plementarities that are micro-founded in correlated signals. It is an interesting question of

whether and how the forces we find here generalize to other kinds of complementarities.

30In our main model with persistent states, beliefs about ω end up converging across the population to

the truth. However, beliefs about other confounding variables need not converge. And when states are not

fully persistent (as in Section 8.2), even beliefs about ω can diverge across communities.
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A Proofs for the Main Model

The structure of the appendix follows that of the paper. In this appendix we provide proofs for

the results in our main model, where states are perfectly persistent. The next appendix provides

proofs for the autocorrelated model as discussed in Section 8.2. The only exception is that the

proof of part (b) of Proposition 2 is more technical, so it is given in a separate Online Appendix,

which also contains additional results and examples.

A.1 Preliminaries

A.1.1 Posterior Variance Function

Throughout, let C denote the N ×K matrix of signal coefficients, whose i-th row is the vector c′i
associated with signal i. Here we review and extend a basic result from Liang, Mu and Syrgkanis

(2017). Specifically, we show that the posterior variance of ω weakly decreases over time, and the

marginal value of any signal decreases in its signal count.

Lemma 2. Given prior covariance matrix Σ0 and qi observations of each signal i, society’s posterior

variance of ω is

V (q1, . . . , qN ) =
[
((Σ0)−1 + C ′QC)−1

]
11

(1)

where Q = diag(q1, . . . , qN ). The function V is decreasing and convex in each qi whenever these

arguments take non-negative real values.

Proof. Note that (Σ0)−1 is the prior precision matrix and C ′QC =
∑N

i=1 qi · [cic′i] is the total

precision from the observed signals. Thus (1) simply represents the fact that for Gaussian prior

and signals, the posterior precision matrix is the sum of the prior and signal precision matrices. To

prove the monotonicity of V , consider the partial order � on positive semi-definite matrices where

A � B if and only if A − B is positive semi-definite. As qi increases, the matrix Q and C ′QC

increase in this order. Thus the posterior covariance matrix ((Σ0)−1 + C ′QC)−1 decreases in this

order, which implies that the posterior variance of ω decreases.

To prove that V is convex, it suffices to prove that V is midpoint-convex since the function is

clearly continuous.31 Take q1, . . . , qN , r1, . . . , rN ∈ R+ and let si = qi+ri
2 . Define the corresponding

diagonal matrices to be Q, R, S. Note that Q + R = 2S. Thus by the AM-HM inequality for

positive-definite matrices, we have

((Σ0)−1 + C ′QC)−1 + ((Σ0)−1 + C ′RC)−1 � 2((Σ0)−1 + C ′SC)−1.

Using (1), we conclude that V (q1, . . . , qN ) + V (r1, . . . , rN ) ≥ 2V (s1, . . . , sN ). This proves the

(midpoint) convexity of V .

31A function V is midpoint-convex if the inequality V (a)+V (b) ≥ 2V (a+b2 ) always holds. Every continuous

function that is midpoint-convex is also convex.

27



A.1.2 Inverse of Positive Semi-definite Matrices

For future use, we provide a definition of [X−1]11 for positive semi-definite matrices X. When

X is positive definite, its eigenvalues are strictly positive, and its inverse matrix is defined as

usual. In general, we can apply the Spectral Theorem to write X = UDU ′, where U is a K ×K
orthogonal matrix whose columns are eigenvectors of X, and D = diag(d1, . . . , dK) is a diagonal

matrix consisting of non-negative eigenvalues. When these eigenvalues are strictly positive, we have

X−1 = (UDU ′)−1 = UD−1U ′ =
K∑
j=1

1

dj
· [uju′j ]

where uj is the j-th column vector of U . In this case

[X−1]11 = e′1X11e1 =
K∑
j=1

(〈uj , e1〉)2

dj
(2)

is well-defined. Even if some dj are zero, we can still use the RHS above to define [X−1]11, applying

the convention that 0
0 = 0 and z

0 =∞ for any z > 0. Note that by this definition,

[X−1]11 = lim
ε→0+

 K∑
j=1

(〈uj , e1〉)2

dj + ε

 = lim
ε→0+

[(X + εIK)−1]11,

since the matrix X + εIK has the same set of eigenvectors as X (with eigenvalues increased by

ε). Hence our definition of [X−1]11 is a continuous extension of the usual definition to positive

semi-definite matrices.

A.1.3 Asymptotic Posterior Variance

We can approximate the posterior variance as a function of the frequencies with which each signal

is observed. Specifically, for any λ ∈ RN+ , define

V ∗(λ) := lim
t→∞

t · V (λt).

The following result shows V ∗ to be well-defined and computes its value:

Lemma 3. Let Λ = diag(λ1, . . . , λN ). Then32

V ∗(λ) = [(C ′ΛC)−1]11 (3)

The value of [(C ′ΛC)−1]11 is well-defined, see (2).

Proof. Recall that V (q1, . . . , qN ) =
[
((Σ0)−1 + C ′QC)−1

]
11

with Q = diag(q1, . . . , qN ). Thus

t · V (λ1t, . . . , λN t) =

[(
1

t
(Σ0)−1 + C ′ΛC

)−1
]

11

.

Hence the lemma follows from the continuity of [X−1]11 in the matrix X.

32Note that C ′ΛC is the Fisher Information Matrix when signals are observed according to frequencies λ.

So this lemma can also be seen as an application of the Bayesian Central Limit Theorem.
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A.2 Key Object φ

We now define an object that will play a central role in the proofs. For each set of signals S,

consider writing the first coordinate vector e1 ∈ RK (corresponding to the payoff-relevant state ω)

as a linear combination of signals in S:

e1 =
∑
i∈S

βSi · ci.

Definition 4. φ(S) := minβ
∑

i∈S |βSi |.

That is, φ(S) measures the size of the “smallest” (in the l1 norm) linear combination of the signals

in S to produce an unbiased estimate of the payoff-relevant state. In case ω is not spanned by S,

this definition sets φ(S) =∞.

When S minimally spans ω (so that no subset spans), the coefficients βSi are unique and nonzero.

In this case φ(S) is easy to compute. In general, we have the following characterization:

Lemma 4. For any set S that spans ω, φ(S) = minT ⊂S φ(T ) where the minimum is over subsets

T that “minimally span” ω.

This lemma is a standard result linear programming, so we omit the proof. As a corollary, φ([N ]) =

φ(S∗) where S∗ is the set of signals that minimize φ among all sets that minimally span ω. The

following proposition makes clear that this set S∗ is exactly the best complementary set defined in

the main text.

Proposition 6. For any set of signals S, val(S) = 1
φ(S)2

.

Liang, Mu and Syrgkanis (2017) proves this proposition for sets S that minimally span ω. We will

prove this result in its general form shortly.

A.3 Proof of Proposition 1 and Claim 1

To see why Proposition 6 is useful, let us use it to show the results in Section 3 and 4. Indeed,

Claim 1 directly follows from Proposition 6 and the definition of φ.

As for Proposition 1, take any set of signals S. If these signals do not span ω, then Proposition

6 implies val(S) = 0 and S is not complementary by Definition 2. If a proper subset of S spans

ω, then Proposition 6 together with Lemma 4 implies that the informational value of S is equal

to the highest value among its subsets that minimally span ω. Let S ′ denote this subset that

achieves this highest value. For this S ′ the inequality in Definition 2 is violated, and S is again not

complementary.

Finally, suppose S itself minimally spans ω. In this case any nonempty proper subset of S does

not span ω and have zero informational value, whereas S has positive value. So Definition 2 is

satisfied and such sets S are complementary, as described in Proposition 1.
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A.4 Proof of Proposition 6 and Proposition 2 Part (a)

We will focus on proving val([N ]) = 1
φ(S∗)2 , which is thus equal to 1

φ([N ])2
by Lemma 4. Once this

is proved, it is a direct generalization that val(S) = 1
φ(S)2

whenever S spans ω. And in case S does

not span ω, the posterior variance of ω is bounded away from zero when agents are constrained to

observe from S. Thus τ(qt) is bounded and val(S) = lim supt→∞
τ(qt)−τ0

t = 0, which is also equal

to 1
φ(S)2

.

A.4.1 Reduction to Study of V ∗

Consider the asymptotic variance function V ∗ introduced previously. We claim that val([N ]) =
1

φ(S∗)2 will follow from the fact that λ∗ is the (unique) frequency vector that minimizes V ∗.

Lemma 5. Suppose λ∗ uniquely minimizes V ∗(λ) for λ ∈ ∆N−1. Then val([N ]) = 1
φ(S∗)2 , and

Proposition 6 as well as part (a) of Proposition 2 holds.

Proof. By definition, we always have val([N ]) ≥ val(S∗) = 1
φ(S∗)2 . In the opposite direction,

take any sequence qt with t → ∞ with lim supt
τ(qt)−τ0

t = val([N ]). Since τ0 is a constant, we

equivalently have lim supt
τ(qt)
t = val([N ]), which gives

lim inf
t→∞

t · V (qt) =
1

val([N ])

using the fact that the precision τ(qt) is just the inverse of the variance V (qt).

By passing to a subsequence if necessary, we may assume the frequency vector λ := limt→∞
qt

t

exists. Then by definition of V ∗, the LHS of the above display is simply V ∗(λ). We therefore

deduce val([N ]) = 1
V ∗(λ) for some λ ∈ ∆N−1. Since λ∗ minimizes V ∗, we conclude that val([N ]) ≤

1
V ∗(λ∗) = 1

φ(S∗)2 .

Combined with the earlier analysis, val([N ]) = 1
φ(S∗)2 must hold with equality. Moreover, since

λ∗ is the unique minimizer, equality can only hold when λ = λ∗, so that qt

t necessarily converges

to λ∗. This is what we desire to prove for Proposition 2.

A.4.2 Lemma on Linear Combinations

To show λ∗ uniquely minimizes V ∗, we need the following technical lemma.

Lemma 6. Suppose S∗ (which uniquely minimizes φ) involves exactly K signals, and without loss

let S∗ = {1, . . . ,K}. Let C∗ be the K × K submatrix of C corresponding to the first K signals.

Further suppose βS
∗

i = [(C∗)−1]1i is positive for 1 ≤ i ≤ K. Then for any signal j > K, if we write

cj =
∑K

i=1 αi · ci (which is a unique representation), then |
∑K

i=1 αi| < 1.

Proof. By assumption, we have the vector identity

e1 =

K∑
i=1

βi · ci with βi = [(C∗)−1]1i > 0.
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Suppose for contradiction that
∑K

i=1 αi ≥ 1 (the opposite case where the sum is ≤ −1 can be

similarly treated). Then some αi must be positive. Without loss of generality, we assume α1
β1

is the

largest among such ratios. Then α1 > 0 and

e1 =
K∑
i=1

βi · ci =

(
K∑
i=2

(
βi −

β1

α1
· αi
)
· ci

)
+
β1

α1
·

(
K∑
i=1

αi · ci

)
This represents e1 as a linear combination of the vectors c2, . . . , cK and cj , with coefficients β2 −
β1
α1
·α2, . . . , βK− β1

α1
·αK and β1

α1
. Note that these coefficients are non-negative: For each 2 ≤ i ≤ K,

βi− β1
α1
·αi is clearly positive if αi ≤ 0 (since βi > 0). And if αi > 0, βi− β1

α1
·αi is again non-negative

by the assumption that αi
βi
≤ α1

β1
.

By definition, φ({2, . . . ,K, j}) is the sum of the absolute value of these coefficients. This sum

is
K∑
i=2

(
βi −

β1

α1
· αi
)

+
β1

α1
=

K∑
i=1

βi +
β1

α1
·

(
1−

K∑
i=1

αi

)
≤

K∑
i=1

βi.

But then φ({2, . . . ,K, j}) ≤ φ({1, 2, . . . ,K}), contradicting the unique minimality of φ(S∗). Hence

the lemma must be true.

A.4.3 Case 1: |S∗| = K

In this section, we prove that λ∗ is indeed the unique minimizer of V ∗ whenever the set S∗ contains

exactly K signals. Later on we will prove the same result even when |S∗| < K, but that proof will

require additional techniques. As discussed, this result will imply Proposition 6 and part (a) of

Proposition 2.

Lemma 7. The function V ∗(λ) is uniquely minimized at λ = λ∗.

Proof. First, we assume S∗ = {1, . . . ,K} and that [(C∗)−1]1i is positive for 1 ≤ i ≤ K. This is

without loss because we can replace ci with −ci without affecting the model.

Since V (q1, . . . , qN ) is convex in its arguments, V ∗(λ) = limt→∞ t·V (λ1t, . . . , λN t) is also convex

in λ. To show λ∗ uniquely minimizes V ∗, we only need to show λ∗ is a local minimum. In other

words, it suffices to show V ∗(λ∗) < V ∗(λ) for any λ that belongs to an ε-neighborhood of λ∗. By

definition, S∗ minimally spans ω and so its signals are linearly independent. Under the additional

assumption that S∗ has size K, we deduce that its signals span the entire space RK . From this it

follows that the K×K matrix C ′Λ∗C is positive definite, and by (3) the function V ∗ is differentiable

near λ∗.

We claim that the partial derivatives of V ∗ satisfy the following inequality:

∂KV
∗(λ∗) < ∂jV

∗(λ∗) ≤ 0, ∀j > K. (*)

Once this is proved, we will have, for λ close to λ∗,

V ∗(λ1, . . . , λK , λK+1, . . . , λN ) ≥ V ∗
(
λ1, . . . , λK−1,

N∑
k=K

λk, 0, . . . , 0

)
≥ V ∗(λ∗). (4)
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The first inequality is based on (*) and differentiability of V ∗, while the second inequality is because

λ∗ uniquely minimizes V ∗ when restricting to the first K signals. Moreover, when λ 6= λ∗, one of

these inequalities is strict so that V ∗(λ) > V ∗(λ∗) holds strictly.

To prove (*), we recall that

V ∗(λ) = e′1(C ′ΛC)−1e1.

Since Λ = diag(λ1, . . . , λN ), its derivative is ∂iΛ = ∆ii, which is an N ×N matrix whose (i, i)-th

entry is 1 with all other entries equal to zero. Using properties of matrix derivatives, we obtain

∂iV
∗(λ) = −e′1(C ′ΛC)−1C ′∆iiC(C ′ΛC)−1e1.

As the i-th row vector of C is c′i, C
′∆iiC is the K ×K matrix cic

′
i. The above simplifies to

∂iV
∗(λ) = −[e′1(C ′ΛC)−1ci]

2.

At λ = λ∗, the matrix C ′ΛC further simplifies to (C∗)′ · diag(λ∗1, . . . , λ
∗
K) · (C∗), which is a product

of K ×K invertible matrices. We thus deduce that

∂iV
∗(λ∗) = −

[
e′1 · (C∗)−1 · diag

(
1

λ∗1
, . . . ,

1

λ∗K

)
· ((C∗)′)−1 · ci

]2

.

Crucially, note that the term in the brackets is a linear function of ci. To ease notation, we write

v′ = e′1 · (C∗)−1 · diag
(

1
λ∗1
, . . . , 1

λ∗K

)
· ((C∗)′)−1 and γi = 〈v, ci〉. Then

∂iV
∗(λ∗) = −γ2

i , 1 ≤ i ≤ N. (5)

For 1 ≤ i ≤ K, ((C∗)′)−1 · ci is just ei. Thus, using the assumption [(C∗)−1]1i > 0, ∀i, we have

γi = e′1 · (C∗)−1 · diag

(
1

λ∗1
, . . . ,

1

λ∗K

)
· ei =

[(C∗)−1]1i
λ∗i

= φ(S∗). (6)

On the other hand, choosing any signal j > K, we can uniquely write the vector cj as a linear

combination of c1, . . . , cK . By Lemma 6,

γj = 〈v, cj〉 =
K∑
i=1

αi · 〈v, ci〉 =

K∑
i=1

αi · γi = φ(S∗) ·
K∑
i=1

αi, (7)

where the last equality uses (6). Since |
∑K

i=1 αi| < 1, the absolute value of γj is strictly smaller

than the absolute value of γK for any j > K. This together with (5) proves the desired inequality

(*), and Lemma 7 follows.

A.4.4 A Perturbation Argument

To summarize, we have shown that when φ is uniquely minimized by a set S containing exactly K

signals,

min
λ∈∆N−1

V ∗(λ) = V ∗(λ∗) = φ(S∗)2 = φ([N ])2.

We now use a perturbation argument to show this equality holds more generally.
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Lemma 8. For any coefficient matrix C,

min
λ∈∆N−1

V ∗(λ) = φ([N ])2. (8)

Proof. For general coefficient matrix C, the set S that minimizes φ may not be unique or involve

K signals. However, since society can choose to focus on S, we always have

min
λ
V ∗(λ) ≤ V ∗(λ∗) = φ(S∗)2 = φ([N ])2.

It remains to prove V ∗(λ) ≥ φ([N ])2 for every λ ∈ ∆N−1. By Lemma 3, we need to show

[(C ′ΛC)−1]11 ≥ φ([N ])2.

Note that we already proved this inequality for generic coefficient matrices C: specifically, those

for which φ(S) is uniquely minimized by a set of K signals. But even if C is “non-generic”, we can

approximate it by a sequence of generic matrices Cm.33 Along this sequence, we have

[(C ′mΛCm)−1]11 ≥ φm([N ])2

where φm is the analogue of φ for the coefficient matrix Cm.

As m→∞, the LHS above approaches [(C ′ΛC)−1]11. We will show that on the RHS

lim sup
m→∞

φm([N ]) ≥ φ([N ]),

which then implies [(C ′ΛC)−1]11 ≥ φ([N ])2 and the lemma. Indeed, suppose e1 =
∑

i β
(m)
i · c(m)

i

along the convergent sequence, then e1 =
∑

i βi ·ci for any limit point β of β(m). Using the definition

of φ, this enables us to conclude lim infm→∞ φm([N ]) ≥ φ([N ]), which is more than sufficient.

A.4.5 Case 2: |S∗| < K

We now consider the case where S∗ = {1, . . . , k} with k < K. We will show that λ∗ is still the

unique minimizer of V ∗(·). Since V ∗(λ∗) = φ(S∗)2 = φ([N ])2 by definition, we know from Lemma

8 that λ∗ does minimize V ∗. It remains to show λ∗ is the unique minimizer.

To do this, we will consider a perturbed informational environment in which signals k+1, . . . , N

are made slightly more precise. Specifically, let η > 0 be a small positive number. Consider an

alternative signal coefficient matrix C̃ with c̃i = ci for i ≤ k and c̃i = (1 + η)ci for i > k. Let φ̃(S)

be the analogue of φ for this alternative environment. It is clear that φ̃(S∗) = φ(S∗), while φ̃(S)

is slightly smaller than φ(S) for S 6= S∗. Thus with sufficiently small η, the set S∗ remains the

unique minimizer of φ (among sets that minimally span ω) in this perturbed environment, and the

definition of λ∗ is also maintained.

33First, we may add repetitive signals to ensure N ≥ K. This does not affect the value of minλ V
∗(λ)

or φ([N ]). Whenever N ≥ K, it is generically true that every set that minimally spans ω contains exactly

K signals. Moreover, the equality φ(S) = φ(S̃) for S 6= S̃ induces a non-trivial polynomial equation over

the entries in C. This means we can always find Cm close to C such that for each coefficient matrix Cm,

different subsets S of size K attain different values of φ, so that φ is uniquely minimized.
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Let Ṽ ∗ be the perturbed asymptotic posterior variance function, then our previous analysis

shows that Ṽ ∗ has minimum value φ(S∗)2 on the simplex. Taking advantage of the connection

between V ∗ and Ṽ ∗, we thus have

V ∗(λ1, . . . , λN ) = Ṽ ∗
(
λ1, . . . , λk,

λk+1

(1 + η)2
, . . . ,

λN
(1 + η)2

)
≥ φ(S∗)2∑

i≤k λi + 1
(1+η)2

∑
i>k λi

.

The equality uses (3) and C ′ΛC =
∑

i λicic
′
i =

∑
i≤k λicic

′
i +

∑
i>k

λi
(1+η)2

c̃ic̃i
′. The inequality

follows from the homogeneity of Ṽ ∗.

The above display implies that any frequency vector λ,

V ∗(λ) ≥ φ(S∗)2

1− 2η+η2

(1+η)2
∑

i>k λi
≥ φ(S∗)2

1− η
∑

i>k λi
for some η > 0. (9)

Hence V ∗(λ) > φ(S∗)2 = V ∗(λ∗) whenever λ puts positive weight outside of S∗. But it is easily

checked that V ∗(λ) is uniquely minimized at λ∗ when λ is supported on S∗. Hence λ∗ is the unique

minimizer of V ∗ over the whole simplex. This proves Lemma 7, which completes the proof of the

propositions via Lemma 5.

A.5 Proof of Theorem 1 Part (a)

Let signals 1, . . . , k (with k ≤ K) be a strongly complementary set; by Lemma 1 in the main

text, these signals are best in their subspace. We will demonstrate an open set of prior beliefs

given which all agents observe these k signals. Since these signals are complementary, Proposition

1 implies they must be linearly independent. Thus we can consider linearly transformed states

θ̃1, . . . , θ̃K such that these k signals are simply θ̃1, . . . , θ̃k plus standard Gaussian noise. This linear

transformation is invertible, so any prior over the original states is bijectively mapped to a prior

over the transformed states. Thus it is without loss to work with the transformed model and look

for prior beliefs over the transformed states.

The payoff-relevant state ω becomes a linear combination λ∗1θ̃1 + · · · + λ∗kθ̃k (up to a scalar

multiple). Since the first k signals are best in their subspace, Lemma 6 before implies that any other

signal belonging to this subspace can be written as
∑k

i=1 αiθ̃i + N (0, 1) with |
∑k

i=1 αi| < 1. On the

other hand, if a signal does not belong to this subspace, it must take the form of
∑K

i=1 βiθ̃i + N (0, 1)

with βk+1, . . . , βK not all equal to zero.

Now consider any prior belief with precision matrix P ; the inverse of P is the prior covariance

matrix (in terms of the transformed states). Suppose ε is a very small positive number, and P

satisfies the following conditions:

1. For 1 ≤ i ≤ k, Pii ≥ 1
ε2

;

2. For 1 ≤ i 6= j ≤ k, Pii
λ∗i
≤ (1 + ε) · Pjjλ∗j ;
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3. For k + 1 ≤ i ≤ K, Pii ∈ [ε, 2ε];

4. For 1 ≤ i 6= j ≤ K, |Pij | ≤ ε2.

It is clear that any such P is positive definite, since on each row the diagonal entry has dominant

size. Moreover, the set of P is open. Below we show that given any such prior, the myopic signal

choice is among the first k signals, and that the posterior precision matrix also satisfies the same

four conditions. As such, all agents would choose from the first k signals.

Let V = P−1 be the prior covariance matrix. Applying Cramer’s rule for the matrix inverse,

the above conditions on P imply the following conditions on V :

1. For 1 ≤ i ≤ k, Vii ≤ 2ε2;

2. For 1 ≤ i 6= j ≤ k, Viiλ
∗
i ≤ (1 + Lε) · Vjjλ∗j ;

3. For k + 1 ≤ i ≤ K, Vii ∈ [ 1
4ε ,

2
ε ];

4. For 1 ≤ i 6= j ≤ K, |Vij | ≤ Lε · Vii.

Here L is a constant depending only on K (but not on ε). For example, the last condition is

equivalent to det(P−ij) ≤ Lε · det(P−ii). This is proved by expanding both determinants into

multilinear sums, and using the fact that on each row of P the off-diagonal entries are at most

ε-fraction of the diagonal entry.

Given this matrix V , the variance reduction of ω =
∑k

i=1 λ
∗
i θ̃i by any signal

∑k
i=1 αiθ̃i+N (0, 1)

can be computed as

(
∑k

i,j=1 αiλ
∗
jVij)

2

1 +
∑k

i,j=1 αiαjVij
,

where the denominator is the variance of the signal and the numerator is the covariance between

the signal and ω. By the first and last conditions on V , the denominator here is 1 +O(ε2). By the

second and last condition, the numerator is((
k∑
i=1

αi +O(ε)

)
· λ∗1V11

)2

.

Since |
∑k

i=1 αi| < 1, we deduce that any other signal belonging to the subspace of the first k signals

is myopically worse than signal 1, whose variance reduction is
(λ∗1V11)2

1+V11
.

Meanwhile, take any signal outside of the subspace. The variance reduction by such a signal∑K
i=1 βiθ̃i +N (0, 1) is

(
∑K

i=1

∑k
j=1 βiλ

∗
jVij)

2

1 +
∑K

i,j=1 βiβjVij

By the second and last condition on V , the numerator here is O((λ∗1V11)2). If we can show that the

denominator is very large, then such a signal would also be myopically worse than signal 1. Indeed,
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since Vij = O(ε2) whenever i ≤ k or j ≤ k, it is sufficient to show
∑

i,j>k βiβjVij is large. This

holds by the last two conditions on V and the assumption that βk+1, . . . , βK are not all zero.34

Hence, we have shown that given any prior precision matrix P satisfying the above conditions,

the myopic signal choice is among the first k signals. It remains to check the resulting posterior

precision matrix P̂ also satisfies those four conditions. If the signal acquired is signal i (1 ≤ i ≤ k),

then P̂ = P + ∆ii. Therefore we only need to show the second condition holds for P̂ ; that is,
Pii+1
λ∗i
≤ (1 + ε) · Pjjλ∗j for each 1 ≤ j ≤ k. To this end, we note that since signal i is myopically best

given V , the following must hold:

(λ∗iVii)
2

1 + Vii
≥

(λ∗jVjj)
2

1 + Vjj
.

As 0 ≤ Vii, Vjj ≤ 2ε2, this implies λ∗iVii ≥ (1− ε2)λ∗jVjj . Now applying Cramer’s rule to V = P−1

again, we can deduce Vii = 1+O(ε2)
Pii

. So for ε small it holds that Pii
λ∗i
≤ (1 + ε

2) · Pjjλ∗j . As Pii ≥ 1
ε2

,

we also have 1
λ∗i
≤ ε

2 ·
Pjj
λ∗j

. Adding up these two inequalities yields the second condition for P̂ and

completes the proof.

A.6 Proof of Theorem 1 Part (b)

A.6.1 Restated Version

Given any prior belief, let A ⊂ [N ] be the set of all signals that are observed by infinitely many

agents. We first show that A spans ω.

Indeed, by definition we can find some period t after which agents exclusively observe signals

from A. Note that the variance reduction of any signal approaches zero as its signal count gets large.

Thus, along society’s signal path, the variance reduction is close to zero at sufficiently late periods.

If A does not span ω, society’s posterior variance remains bounded away from zero. Thus in the

limit where each signal in A has infinite signal counts, there still exists some signal j outside of A
whose variance reduction is strictly positive.35 By continuity, we deduce that at any sufficiently late

period, observing signal j is better than observing any signal in A. This contradicts our assumption

that later agents only observe signals in A.

34Formally, we can without loss assume β2
KVKK is largest among β2

i Vii for i > k. Then for any i 6= j, the

last condition implies

βiβjVij ≥ −Lε · βiβj
√
ViiVjj ≥ −Lε · β2

KVKK .

This trivially also holds for i = j 6= K. Summing across all pairs (i, j) 6= (K,K) yields
∑
i,j>k βiβjVij >

(1−K2Lε)β2
KVKK , which must be large by the third condition on V .

35To see this, let s1, . . . , sN denote the limit signal counts, where si = ∞ if and only if i ∈ A. We

need to find some signal j such that V (sj + 1, s−j) < V (sj , s−j). If such a signal does not exist, then all

partial derivatives of V at s are zero. Since V is always differentiable (unlike V ∗), this would imply that all

directional derivatives of V are also zero. By the convexity of V , V must be minimized at s. However, the

minimum value of V is zero because there exists a complementary set. This contradicts V (s) > 0.
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Now that A spans ω, we can take S to be the best complementary set in the subspace spanned

by A; S is strongly complementary by Lemma 1. To prove Theorem 1 part (b), we will show that

long-run frequencies are positive precisely for the signals in S. By ignoring the initial periods,

we can assume without loss that only signals in A are available. It thus suffices to show that

whenever the signals observed infinitely often span a subspace, agents eventually focus on the best

complementary set S in that subspace. To ease notation, we assume this subspace is the entire

RK , and prove the following result:

Theorem 1 part (b) Restated. Suppose that the signals observed infinitely often span RK . Then

society’s long-run frequency vector is λ∗.

The next sections are devoted to the proof of this restatement.

A.6.2 Estimates of Derivatives

We introduce a few technical lemmata:

Lemma 9. For any q1, . . . , qN , we have∣∣∣∣∂jjV (q1, . . . , qN )

∂jV (q1, . . . , qN )

∣∣∣∣ ≤ 2

qj
.

Proof. Recall that V (q1, . . . , qN ) = e′1 · [(Σ0)−1 + C ′QC]−1 · e1. Thus

∂jV = −e′1 · [(Σ0)−1 + C ′QC]−1 · cj · c′j · [(Σ0)−1 + C ′QC]−1 · e1,

and

∂jjV = 2e′1 · [(Σ0)−1 + C ′QC]−1 · cj · c′j · [(Σ0)−1 + C ′QC]−1 · cj · c′j · [(Σ0)−1 + C ′QC]−1 · e1.

Let γj = e′1 · [(Σ0)−1 + C ′QC]−1 · cj , which is a number. Then the above becomes

∂jf = −γ2
j ; ∂jjf = 2γ2

j · c′j · [(Σ0)−1 + C ′QC]−1 · cj .

Note that (Σ0)−1 +C ′QC � qj · cjc′j in matrix norm. Thus the number c′j · [(Σ0)−1 +C ′QC]−1 · cj
is bounded above by 1

qj
.36 This proves the lemma.

36Formally, we need to show that for any ε > 0, the number c′j [cjc
′
j + εIK ]−1cj is at most 1. Using the

identify Trace(AB) = Trace(BA), we can rewrite this number as

Trace([cjc
′
j + εIK ]−1cjc

′
j) = Trace(IK − [cjc

′
j + εIK ]−1εIK) = K − ε · Trace([cjc′j + εIK ]−1).

The matrix cjc
′
j has rank 1, so K−1 of its eigenvalues are zero. Thus the matrix [cjc

′
j+εIK ]−1 has eigenvalue

1/ε with multiplicity K−1, and the remaining eigenvalue is positive. This implies ε ·Trace([cjc′j+εIK ]−1) >

K − 1, and then the above display yields c′j · [(Σ0)−1 + C ′QC]−1 · cj < 1 as desired.
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Since the second derivative is small compared to the first derivative, we deduce that the variance

reduction of any discrete signal can be approximated by the partial derivative of f . This property

is summarized in the following lemma:

Lemma 10. For any q1, . . . , qN , we have37

V (q)− V (qj + 1, q−j) ≥
qj

qj + 1
|∂jV (q)|.

Proof. We will show the more general result:

V (q)− V (qj + x, q−j) ≥
qjx

qj + x
· |∂jV (q)|,∀x ≥ 0.

This clearly holds at x = 0. Differentiating with respect to x, we only need to show

−∂jV (qj + x, q−j) ≥
q2
j

(qj + x)2
|∂jV (q)|, ∀x ≥ 0.

Equivalently, we need to show

−(qj + x)2 · ∂jV (qj + x, q−j) ≥ −q2
j · ∂jV (q),∀x ≥ 0.

Again, this inequality holds at x = 0. Differentiating with respect to x, it becomes

−2(qj + x) · ∂jV (qj + x, q−j)− (qj + x)2 · ∂jjV (qj + x, q−j) ≥ 0.

This is exactly the result of Lemma 9.

A.6.3 Lower Bound on Variance Reduction

Our next result lower bounds the directional derivative of V along the “optimal” direction λ∗:

Lemma 11. For any q1, . . . , qN , we have |∂λ∗V (q)| ≥ V (q)2

φ(S∗)2 .

Proof. To compute this directional derivative, we think of agents acquiring signals in fractional

amounts, where a fraction of a signal is just the same signal with precision multiplied by that

fraction. Consider an agent who draws λ∗i realizations of each signal i. Then he essentially obtains

the following signals:

Yi = 〈ci, θ〉+N
(

0,
1

λ∗i

)
, ∀i.

This is equivalent to

λ∗iYi = 〈λ∗i ci, θ〉+N (0, λ∗i ),∀i.

Such an agent receives at least as much information as the sum of these signals:∑
i

λ∗iYi =
∑
i

〈λ∗i ci, θ〉+
∑
i

N (0, λ∗i ) =
ω

φ(S∗)
+N (0, 1).

37Note that the convexity of V gives V (q) − V (qj + 1, q−j) ≤ |∂jV (q)|. This lemma provides a converse

that we need for the subsequent analysis.
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Hence the agent’s posterior precision about ω (which is the inverse of his posterior variance V )

must increase by at least 1
φ(S∗)2 along the direction λ∗. The chain rule of differentiation yields the

lemma.

We can now bound the variance reduction at late periods:

Lemma 12. Fix any q1, . . . , qN . Suppose L is a positive number such that (Σ0)−1 +C ′QC � Lcjc′j
holds for each signal j ∈ S∗. Then we have

min
j∈S∗

V (qj + 1, q−j) ≤ V (q)− L

L+ 1
· V (q)2

φ(S∗)2
.

Proof. Fix any signal j ∈ S∗. Using the condition (Σ0)−1 + C ′QC � Lcjc
′
j , we can deduce the

following variant of Lemma 10:38

V (q)− V (qj + 1, q−j) ≥
L

L+ 1
|∂jV (q)|.

Since V is always differentiable, ∂λ∗V (q) is a convex combination of the partial derivatives of V .39

Thus maxj∈S∗ |∂jV (q)| ≥ |∂λ∗V (q)|. These inequalities, and Lemma 11, complete the proof.

A.6.4 Proof of the Restated Theorem 1 Part (b)

We will show t · V (m(t)) → φ(S∗)2, so that society eventually approximates the optimal speed of

learning. Since λ∗ is the unique minimizer of V ∗, this will imply the desired conclusion m(t)
t → λ∗

(e.g., via the second half of Proposition 2 part (a)).

To estimate V (m(t)), we note that for any fixed L, society’s acquisitions m(t) eventually satisfy

the condition (Σ0)−1 + C ′QC � Lcjc
′
j . This is due to our assumption that the signals observed

infinitely often span RK , which implies that C ′QC becomes arbitrarily large in matrix norm. Hence,

we can apply Lemma 12 to find that

V (m(t+ 1)) ≤ V (m(t))− L

L+ 1
· V (m(t))2

φ(S∗)2

for all t ≥ t0, where t0 depends only on L.

We introduce the auxiliary function g(t) = V (m(t))
φ(S∗)2 . Then the above simplifies to

g(t+ 1) ≤ g(t)− L

L+ 1
g(t)2.

38Even though we are not guaranteed qj ≥ L, we can modify the prior and signal counts such that the

precision matrix (Σ0)−1 + C ′QC is unchanged, and signal j has been observed at least L times. This is

possible thanks to the condition (Σ0)−1+C ′QC � Lcjc′j . Then, applying Lemma 10 to this modified problem

yields the result here.
39While this may be a surprising contrast with V ∗, the difference arises because the formula for V always

involves a full-rank prior covariance matrix, whereas its asymptotic variant V ∗ corresponds to a flat prior.
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Inverting both sides, we have

1

g(t+ 1)
≥ 1

g(t)(1− L
L+1g(t))

=
1

g(t)
+

L
L+1

1− L
L+1g(t)

≥ 1

g(t)
+

L

L+ 1
. (10)

This holds for all t ≥ t0. Thus by induction, 1
g(t) ≥

L
L+1(t− t0) and so g(t) ≤ L+1

L(t−t0) . Going back

to the posterior variance function V , this implies

V (m(t)) ≤ L+ 1

L
· φ(S∗)2

t− t0
. (11)

Hence, by choosing L sufficiently large and then considering large t, we find that society’s speed of

learning is arbitrarily close to the optimal speed φ(S∗)2. This completes the proof.

We comment that the above argument leaves open the possibility that some signals outside of

S∗ are observed infinitely often, yet with zero long-run frequency. In Appendix D.1, we show this

does not happen.

A.7 Proofs for Interventions (Section 7)

A.7.1 Proof of Proposition 3

Given any history of observations, an agent can always allocate his B observations as follows: He

draws bB ·λ∗i c realizations of each signal i, and samples arbitrarily if there is any capacity remaining.

Here b c denotes the floor function.

Fix any ε > 0. If B is sufficiently large, then the above strategy acquires at least (1− ε) ·B · λ∗i
observations of each signal i. Adapting the proof of Lemma 11, we see that the agent’s posterior

precision about ω must increase by (1−ε)B
φ(S∗)2 under this strategy. Thus the same must hold for his

optimal strategy, so that society’s posterior precision at time t is at least (1−ε)Bt
φ(S∗)2 . This implies that

average precision per signal is at least 1−ε
φ(S∗)2 , which can be arbitrarily close to the optimal precision

val([N ]) = 1
φ(S∗)2 with appropriate choice of ε.

Since λ∗ is the unique minimizer of V ∗, society’s long-run frequencies must be close to λ∗. In

particular, with ε sufficiently small, we can ensure that each signal in S∗ are observed with positive

frequencies. The restated Theorem 1 part (b) extends to the current setting and implies that

society’s long-run frequency vector must be λ∗. This yields the proposition.40

40This proof also suggests that how small ε (and how large B) need to be depends on the distance between

the optimal speed of learning and the “second-best” speed of learning from any other complementary set.

Intuitively, in order to achieve long-run efficient learning, agents need to allocate B observations in the best

set to approximate the optimal frequencies. If another set of signals offers a speed of learning that is only

slightly worse, we will need B sufficiently large for the approximately optimal frequencies in the best set to

beat this other set.
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A.7.2 Proof of Proposition 4

Suppose without loss that the best complementary set S∗ is {1, . . . , k}. By taking a linear transfor-

mation, we further assume each of the first k signals only involves ω and the first k−1 confounding

terms b1, . . . , bk−1. We will show that whenever k−1 sufficiently precise signals are provided about

each of these confounding terms, the long-run frequency vector converges to λ∗ regardless of the

prior.

Fix any positive real number L. Since the k− 1 free signals are very precise, it is as if the prior

precision matrix (after taking into account these free signals) satisfies

(Σ0)−1 � L2
k∑
i=2

∆ii

where ∆ii is the K ×K matrix that has one at the (i, i) entry and zero otherwise. Recall also that

society eventually learns ω. Thus at some late period t0, society’s acquisitions must satisfy

C ′QC � L2∆11.

Adding up the above two displays, we have

(Σ0)−1 + C ′QC � L2
k∑
i=1

∆ii � Lcjc′j , ∀1 ≤ j ≤ k.

The last inequality uses the fact that each cj only involves the first k coordinates.

Now this is exactly the condition we need in order to apply Lemma 12: Crucially, whether or

not the condition is met for signals j outside of S∗ does not affect the argument there. Thus we

can follow the proof of the restated Theorem 1 part (b) to deduce (11). That is, for fixed L and

corresponding free information, society’s long-run precision per signal is at least L
(L+1)φ(S∗)2 . This

can be made arbitrarily close to the optimal average precision. Identical to the previous proof,

we deduce that for large L, society’s long-run frequency vector must be close to λ∗. The restated

Theorem 1 part (b) allows us to conclude that the frequency is exactly λ∗.

A.8 General Payoff Functions

We comment here on the possibilities for (and limitations to) generalizing Proposition 2 beyond the

quadratic loss payoff function. As discussed in the main text, the property that one-dimensional

normal signals are Blackwell-ordered implies that part (a) of the proposition extends to general

payoff functions. In other words, the frequency λ∗ always maximizes long-run average precision.

On the other hand, at least for some other “prediction problems,” λ∗ continues to be the optimal

frequency vector for maximizing the patient discounted average payoff. In a prediction problem,

every agent’s payoff function u(a, ω) is the same and depends only on |a−ω|. For example, we can

show that part (b) of Proposition 2 holds for u(a, ω) = |a− ω|γ with any exponent γ ∈ (0, 2].

Nonetheless, even restricting to prediction problems, that part of the proposition does not hold

in general. For a counterexample, consider u(a, ω) = −1{|a−ω|>1}, which punishes the agent for
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any prediction that differs from the true state by more than 1.41 Intuitively, the payoff gain from

further information decreases sharply (indeed, exponentially) with the amount of information that

has already been acquired. Thus, even with a forward-looking objective function, the range of

future payoffs is limited and each agent cares mostly to maximize his own payoff. This results in

an optimal sampling strategy that resembles myopic behavior, and differs from the rule that would

maximize speed of learning.

The above counterexample illustrates the difficulty in estimating the value of information with

an arbitrary payoff function. In order to make intertemporal payoff comparisons, we need to know

how much payoff is gained/lost when the posterior variance is decreased/increased by a certain

amount. This can be challenging in general, see Chade and Schlee (2002) for a related discussion.42

Finally, while it may not be necessary to assume that agents have the same payoff function,

part (b) of Proposition 2 can only hold under some restrictions on how the payoff functions differ.

Otherwise, suppose for example that payoffs take the form −αt(at − ω)2, where αt decreases ex-

ponentially fast. Then even with the δ-discounted objective, the social planner puts most of the

weight on earlier agents, making it optimal to acquire signals myopically.

B Proofs for the Autocorrelated Model (Section 8.2)

B.1 Proof of Theorem 2

We work with the transformed model such that the signals in S become the first k transformed

states θ̃1, . . . , θ̃k. The payoff-relevant state becomes a certain linear combination w1θ̃1+· · ·+θ̃k with

positive weights w1, . . . , wk. Choose M so that the innovations corresponding to the transformed

states are independent from each other. In other words, M̃ (the transformed version of M) is given

by diag( x
w1
, . . . , x

wk
, yk+1, . . . , yK). Here x is a small positive number, while yk+1, . . . , yK are large

positive numbers. We further choose Σ0 = M , which is the stable belief without learning.

With these choices, it is clear that if all agents only sample from S, society’s beliefs about the

transformed states remain independent at every period. Let vt−1
i denote the prior variance of θ̃ti

at the beginning of period t (before the signal acquisition in that period). Then as long as agent t

would continue to sample a signal θ̃j +N (0, 1) in S, these prior variances would evolve as follows:

v0
i = x

wi
for 1 ≤ i ≤ k and v0

i = yi for i > k. And for t ≥ 1,

vti =

 α · vt−1
i + (1− α)M̃ii, if i 6= j;

α · vt−1
i

1+vt−1
i

+ (1− α)M̃ii if i = j.

The particular signal j maximizes the reduction in the posterior variance of ωt =
∑k

i=1wiθ̃
t
i . That

is, j ∈ argmax1≤i≤k
(wi·vt−1

i )2

1+vt−1
i

.

41We thank Alex Wolitzky for this example.
42This difficulty becomes more salient if we try to go beyond prediction problems: The value of information

in that case will depend on signal realizations.
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By induction, it is clear that vti ≤ M̃ii holds for all pairs i, t, with equality for i > k. Thus at

the beginning of each period t, assuming that all previous agents have sampled from S, agent t’s

prior uncertainties about θ̃1, . . . , θ̃k are small while his uncertainties about θ̃k+1, . . . , θ̃K are large.

As such, our previous proof for the existence of learning traps with persistent states carries over,

and we deduce that agent t continues to observe from S.

Note that for α close to 1, agents will sample each signal i with frequency close to wi
w1+···+wk .

It follows that the prior variances vti approximately satisfy the following fixed-point equation:

vi = α ·
(
vi −

wi
w1 + · · ·+ wk

· v2
i

1 + vi

)
+ (1− α) · x

wi
.

This yields the first-order approximation vti ∼
√

(1−α)x·(w1+···+wk)

wi
as α → 1 and t → ∞. The

posterior variance of ωt is therefore approximated as

k∑
i=1

w2
i · vti ∼

√√√√(1− α)x · (
k∑
i=1

wi)3.

This is exactly

√
(1− α)

(
M11

val(S)

)
since M11 =

∑k
i=1w

2
i · M̃ii = x ·

∑k
i=1wi and val(S) = 1

φ(S)2
=

1
(
∑k
i=1 wi)

2
. We thus deduce the payoff estimate in part (1) of the theorem.

It remains to prove part (2). For that we just need to show society can achieve posterior

variances smaller than (1+ ε) ·
√

(1− α)
(

M11
val(S∗)

)
at every late period. In fact, we show below that

myopically choosing from the best set S∗ achieves this.

Let V t denote society’s prior covariance matrix at the beginning of period t + 1, under this

alternative sampling strategy. Note that for α close to 1, each signal in S∗ is observed with positive

frequency. Thus, for any L > 0 we have

[V t]−1 � L · cjc′j , ∀j ∈ S∗

for α close to 1 and t large.

Now, take v(t) := [V t]11 to be the prior variance of ωt+1. Then myopic sampling together with

Lemma 12 implies the posterior variance of ωt+1 is bounded above by

v(t)− L

L+ 1
· v(t)2

φ(S∗)2
.

Together with the innovation terms given by M , the next prior variance v(t+1) admits the following

upper bound:

v(t+ 1) ≤ α ·
(
v(t)− L

L+ 1
· v(t)2

φ(S∗)2

)
+ (1− α) ·M11.

Clearly, this implies

v(t+ 1) < v(t) + (1− α) ·M11 −
L

L+ 1
· v(t)2

φ(S∗)2
.

As a consequence, lim supt→∞ v(t) ≤
√

1 + 1/L ·
√

(1− α)M11 · φ(S∗)2. Since val(S∗) = 1
φ(S∗)2 ,

this yields the desired estimate if we choose L > 1
ε in the first place. We have thus completed the

proof of Theorem 2.
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B.2 Proof of Proposition 5

The environment in Example 5 is equivalent to one with three signals ω+b
2 , ω−b2 and 1

Lω, each

with standard Gaussian noise (just let b = ω + 2b1). We assume L is large, so that the best

complementary set consists of the latter two signals.

For the autocorrelated model, we choose M = Σ0 = diag(x, x) with x ≥ L2 (this is the

covariance matrix for the innovations associated with ω and b). Then assuming that all previous

agents have chosen the third (unbiased) signal, agent t’s prior variance of bt remains x ≥ L2. As

such, he (and in fact each agent) continues to observe the third signal. In this case the prior

variance vt about ωt+1 evolves according to

vt = α · L
2 · vt−1

L2 + vt−1
+ (1− α)x.

It is not difficult to show that vt must converge to the (positive) fixed point of the above

equation. Let us in particular take α = 1 − 1
L3 and x = L2, then the long-run prior variance v

solves v =
(L2− 1

L
)v

L2+v
+ 1

L . This yields exactly that v =
√
L. Hence long-run posterior variance is

L2·v
L2+v

>
√
L/2, which implies lim supδ→1 U

M
δ ≤ −

√
L/2.

Let us turn to the optimal sampling strategy. Write θ̃1 = ω+b
2 and θ̃2 = ω−b

2 . In this transformed

model, M̃ = Σ̃0 = diag(x2 ,
x
2 ), and the payoff-relevant state is the sum of θ̃1 and θ̃2. Consider now

a strategy that observes the first two signals alternatively. Then the beliefs about θ̃1 and θ̃2 remain

independent (as in M̃ and Σ̃0), and their variances evolve as follows: v0
1 = v0

2 = x
2 ; in odd periods t

vt1 = α · vt−1
1

1 + vt−1
1

+ (1− α)
x

2
and vt2 = α · vt−1

2 + (1− α)
x

2
,

and symmetrically for even t.

These imply that for odd t, vt1 converges to v1 and vt2 converges to v2 below (while for even t

vt1 → v2 and vt2 → v1):

v1 = α · αv1 + (1− α)x/2

1 + αv2 + (1− α)x/2
+ (1− α)x/2;

v2 = α2 · v2

1 + v2
+ (1− α2) · x

2
.

From the second equation, we obtain (1− α2)(x2 − v2) = α2 · (v2)2

1+v2
. With α = 1− 1

L3 and x = L2,

it follows that

v2 = (1 + o(1))
1√
L
.

where o(1) is a term that vanishes as L→∞. Thus we also have

v1 = α
v2

1 + v2
+ (1− α)

x

2
= (1 + o(1))

1√
L
.

Hence under this alternating sampling strategy, long-run posterior variances about θ̃1 and θ̃2

are both bounded above by 2√
L

. Since ω = θ̃1 + θ̃2, we conclude that lim infδ→1 U
SP
δ ≥ − 4√

L
.

Choosing L large proves the proposition.
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For Online Publication

C Proof of Proposition 2 Part (b)

We will first generalize part (b) of Theorem 1 to show that for any δ ∈ (0, 1) and any prior belief,

the social planner’s sampling strategy that maximizes δ-discounted payoff yields frequency vectors

that converge over time. Moreover, the limit is the optimal frequency vector associated with some

strongly complementary set. Later we will argue that that for δ close to 1, this long-run outcome

must be the best complementary set S∗ from all priors.

C.1 Long-run Characterization for All δ

Here we prove the following result:

Proposition 7. Suppose δ ∈ (0, 1). Given any prior, let dδ(t) denote the vector of signals counts

associated with any signal acquisition strategy that maximizes the δ-discounted average payoff. Then

limt→∞
dδ(t)
t exists and is equal to λS for some strongly complementary set S.

Proof. We follow the proof of Theorem 1 part (b) in Appendix A.6. The same argument there

shows that for any δ < 1, any strategy that maximizes δ-discounted payoff must infinitely observe

a set of signals that span ω. Therefore it remains to prove the analogue of the restated version of

Theorem 1 part (b).

To do that, let

W (t) = (1− δ)
∑
t′≥t

δt
′−t · V (d(t′))

denote the expected discounted loss from period t onwards; henceforth we fix δ and use d(t) as

shorthand for dδ(t). Suppose signal acquisitions in the first t periods satisfy C ′QC � Lcjc′j for each

signal j ∈ S∗, where L is some positive constant. Then we are going to show that

1

W (t+ 1)
≥ 1

W (t)
+

L

(L+ 1)φ(S∗)2
. (12)

Once this is proved, we can choose L large to show W (t) ≤ (1+ε)φ(S∗)2
t for any ε > 0 and all

sufficiently large t. Pick m so that δm ≤ ε. Then for t′ ∈ (t, t+m) we have V (d(t′)) ≥ (1−ε/2)φ(S∗)2
t′ ≥

(1−ε)φ(S∗)2
t , so that

(1− δ)
t+m−1∑
t′=t+1

δt
′−t · V (d(t′)) ≥ (δ − δm) · (1− ε)φ(S∗)2

t
≥ (δ − ε)(1− ε)φ(S∗)2

t
.

Subtracting this from W (t), we obtain

(1− δ) · V (d(t)) ≤ (1 + ε− (δ − ε)(1− ε))φ(S∗)2

t
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again for t sufficiently large depending on ε. Since ε is arbitrary, we would be able to conclude

t · V (d(t))→ φ(S∗)2, and d(t)
t → λ∗ would follow.

To prove (12), we consider a deviation strategy that chooses signals myopically in every period

t′ ≥ t + 1. Let the resulting signal count vectors be d̃(t′), and define d̃(t) = d(t). This deviation

provides an upper bound on W (t+ 1), given by

W (t+ 1) ≤ (1− δ)
∑
t′≥t+1

δt
′−t−1 · V (d̃(t′)).

Since W (t) = (1− δ) · V (d(t)) + δ ·W (t+ 1), we have

1

W (t+ 1)
− 1

W (t)
=

(1− δ) · (V (d(t))−W (t+ 1))

W (t+ 1) · ((1− δ) · V (d(t)) + δ ·W (t+ 1))
,

which is decreasing in W (t+ 1) (holding V (d(t)) equal). Thus from the previous upper bound on

W (t+ 1), we obtain that

1

W (t+ 1)
− 1

W (t)
≥ 1∑∞

j=0(1− δ)δj · V (d̃(t+ 1 + j))
− 1∑∞

j=0(1− δ)δj · V (d̃(t+ 1 + j))
(13)

By the assumption that C ′QC � Lcjc
′
j after t periods, we can apply (10) to deduce that for

each j ≥ 0,
1

V (d̃(t+ 1 + j))
− 1

V (d̃(t+ j))
≥ L

(L+ 1)φ(S∗)2
.

Given this and (13), the desired result (12) follows from the technical lemma below (with a =
L

(L+1)φ(S∗)2 , xj = V (d̃(t+ 1 + j)), yj = V (d̃(t+ j)) and βj = (1− δ)δj):

Lemma 13. Suppose a is a positive number. {xj}∞j=0, {yj}∞j=0 are two sequences of positive numbers

such that 1
xj
≥ 1

yj
+ a for each j. Then for any sequence of positive numbers {βj}∞j=0 that sum to

1, it holds that
1∑∞

j=0 βjxj
≥ 1∑∞

j=0 βjyj
+ a.

To see why this lemma holds, note that it is without loss to assume 1
xj

= 1
yj

+ a holds with

equality. Then

1− a
∑
j

βjxj =
∑
j

βj(1− axj) = βj
xj
yj

By the Cauchy-Schwarz inequality,∑
j

βj
xj
yj
≥ 1∑

j βj
yj
xj

=
1∑

j βj(1 + ayj)
=

1

1 + a
∑

j βjyj
.

So 1− a
∑

j βjxj ≥
1

1+a
∑
j βjyj

, which is easily seen to be equivalent to 1∑
j βjxj

≥ 1∑
j βjyj

+ a.

Hence Lemma 13 is proved, and so is Proposition 7.
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C.2 Efficiency as δ → 1

We now prove that for δ close to 1, the sampling strategy that maximizes δ-discounted payoff must

eventually focus on the best complementary set S∗. Recall that V ∗ is uniquely maximized at λ∗.

Thus there exists positive η such that V ∗(λ) > (1 + η)V ∗(λ∗) whenever λ puts zero frequency on

at least one signal in S∗.
Suppose for contradiction that sampling eventually focuses on a strongly complementary set

S different from S∗. Then at large periods t we must have V (d(t)) > (1+η)φ(S∗)2
t , using the fact

that V ∗ is the asymptotic version of V . As a result, there exists sufficiently large L0 such that

some signal in S∗ is observed less than L0 times under the optimal strategy for maximizing δ-

discounted payoff.43 Crucially, this L0 can be chosen independently of δ. As a consequence, under

the hypothesis of inefficient long-run outcome, V (d(t)) > (1+η)φ(S∗)2
t in fact holds for all t > t where

t is also independent of δ.

Now we fix a positive integer L > 2
η , and consider the following deviation strategy starting in

period t+ 1:

1. In periods t + 1 through t + Lk, observe each signal in the best set S∗ (of size k) exactly L

times, in any order.

2. Starting in period t+ Lk + 1, sample myopically.

Let us study the posterior variance after period t+ j under such a deviation. For j ≥ Lk + 1,

note that each signal j ∈ S∗ has been observed at least L times before the period t + Lk + 1. So

C ′QC � Lcjc
′
j holds, and we can deduce (similar to (11)) that the posterior variance is at most

(1+ 1
L) · φ(S∗)2

j−Lk . Since 1
L <

η
2 , there exists j (depending on η, t, L, k) such that the posterior variance

after period t+ j is at most (1+η/2)φ(S∗)2
t+j for j > j. Thus the flow payoff gain in each such period

is at least
η

2
· φ(S∗)2

t+ j
, ∀j > j

under this deviation strategy.

On the other hand, for j ≤ j we can trivially bound the posterior variance from above by the

prior variance V0. This V0 also serves as an upper bound on the flow payoff loss in these periods.

Combining both estimates, we find that the deviation strategy achieves payoff gain of at least

δt ·

∑
j>j

δj−1 · η
2
· φ(S∗)2

t+ j
−

j∑
j=1

δj−1 · V0

 .

Importantly, all other parameters in the above are constants independent of δ. As δ approaches

1, the sum
∑

j>j
δj−1

t+j approaches a harmonic sum which diverges. Thus for all δ close to 1 the

above display is strictly positive, suggesting that the constructed deviation is profitable. This

contradiction completes the proof of Proposition 2 part (b).

43Otherwise, C ′QC � L0cjc
′
j holds at large t, implying a contradicting upper bound on V (d(t)) (see the

argument in the previous subsection).
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D Other Results and Examples

D.1 Strengthening of Theorem 1 part (b)

Here we show the following result, which strengthens the restated Theorem 1 part (b) (see Appendix

A.6). It says that any signal observed with zero long-run frequency must in fact be observed only

finitely often.

Stronger Version of Theorem 1 part (b). Suppose that the signals observed infinitely often

span RK . Then mi(t) = λ∗i · t+O(1), ∀i.

The proof is divided into two subsections below.

D.1.1 Log Residual Term

Recall that we have previously shown mi(t) ∼ λ∗i · t. We can first improve the estimate of the

residual term to mi(t) = λ∗i · t + O(ln t). Indeed, Lemma 12 yields that for some constant L and

every t ≥ L,

V (m(t+ 1)) ≤ V (m(t))−
(

1− L

t

)
· V (m(t))2

φ(S∗)2
. (14)

This is because we may apply Lemma 12 with M = minj∈S∗mj(t), which is at least t
L .

Let g(t) = V (m(t))
φ(S∗)2 . Then the above simplifies to

g(t+ 1) ≤ g(t)−
(

1− L

t

)
g(t)2.

Inverting both sides, we have

1

g(t+ 1)
≥ 1

g(t)
+

1− L
t

1− (1− L
t )g(t)

≥ 1

g(t)
+ 1− L

t
. (15)

This enables us to deduce

1

g(t)
≥ 1

g(L)
+

t−1∑
x=L

(
1− L

x

)
≥ t−O(ln t).

Thus g(t) ≤ 1
t−O(ln t) ≤

1
t +O( ln t

t2
). That is,

V (m(t)) ≤ φ(S∗)2

t
+O

(
ln t

t2

)
.

Since t · V (λt) approaches V ∗(λ) at the rate of 1
t , we have

V ∗
(
m(t)

t

)
≤ t · V (m(t)) +O

(
1

t

)
≤ φ(S∗)2 +O

(
ln t

t

)
. (16)
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Suppose S∗ = {1, . . . , k}. Then the above estimate together with (9) implies
∑

j>k
mj(t)
t = O( ln t

t ).

Hence mj(t) = O(ln t) for each signal j outside of the best set.

Now we turn attention to those signals in the best set. If these were the only available signals,

then the analysis in Liang, Mu and Syrgkanis (2017) gives ∂iV (m(t)) = −
(

βS
∗

i
mi(t)

)2

. In our current

setting, signals j > k affect this marginal value of signal i, but the influence is limited because

mj(t) = O(ln t). Specifically, we can show that

∂iV (m(t)) = −
(
βS
∗

i

mi(t)

)2

·
(

1 +O

(
ln t

t

))
.

This then implies mi(t) ≤ λ∗i · t + O(ln t).44 Using
∑

i≤kmi(t) = t − O(ln t), we deduce that

mi(t) ≥ λ∗i · t−O(ln t) must also hold. Hence mi(t) = λ∗i · t+O(ln t) for each signal i.

D.1.2 Getting Rid of the Log

In order to remove the ln t residual term, we need a refined analysis. The reason we ended up with

ln t is because we used (14) and (15) at each period t; the “Lt ” term in those equations adds up to

ln t. In what follows, instead of quantifying the variance reduction in each period (as we did), we

will lower-bound the variance reduction over multiple periods. This will lead to better estimates

and enable us to prove mi(t) = λ∗i · t+O(1).

To give more detail, let t1 < t2 < . . . denote the periods in which some signal j > k is chosen.

Since mj(t) = O(ln t) for each such signal j, tl ≥ 2ε·l holds for some positive constant ε and each

positive integer l. Continuing to let g(t) = V (m(t))
φ(S∗)2 , our goal is to estimate the difference between

1
g(tl+1) and 1

g(tl)
.

Ignoring period tl+1 for the moment, we are interested in φ(S∗)2
V (m(tl+1−1)) −

φ(S∗)2
V (m(tl))

, which is just

the difference in the precision about ω when the division vector changes from m(tl) to m(tl+1− 1).

From the proof of Lemma 11, we can estimate this difference if the change were along the direction

λ∗:
φ(S∗)2

V (m(tl) + λ∗(tl+1 − 1− tl))
− φ(S∗)2

V (m(tl))
≥ tl+1 − 1− tl. (17)

Now, the vector m(tl+1 − 1) is not exactly equal to m(tl) + λ∗(tl+1 − 1− tl), so the above estimate

is not directly applicable. However, by our definition of tl and tl+1, any difference between these

vectors must be in the first k signals. In addition, the difference is bounded by O(ln tl+1) by what

44Otherwise, consider τ + 1 ≤ t to be the last period in which signal i was observed. Then mi(τ) is larger

than λ∗i · τ by several ln(τ), while there exists some other signal î in the best set with mî(τ) < λ∗i · τ . But

then |∂iV (m(τ))| < |∂îV (m(τ))|, meaning that the agent in period τ + 1 should not have chosen signal i.
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we have shown. This implies45

V (m(tl+1 − 1))− V (m(tl) + λ∗(tl+1 − 1− tl)) = O

(
ln2 tl+1

t3l+1

)
.

Since V (m(tl+1 − 1)) is on the oder of 1
tl+1

, we thus have (if the constant L is large)

φ(S∗)2

V (m(tl+1 − 1))
− φ(S∗)2

V (m(tl) + λ∗(tl+1 − 1− tl))
≥ −L ln2 tl+1

tl+1
. (18)

(17) and (18) together imply

1

g(tl+1 − 1)
≥ 1

g(tl)
+ (tl+1 − 1− tl)−

L ln2 tl+1

tl+1
.

Finally, we can apply (15) to t = tl+1 − 1. Altogether we deduce

1

g(tl+1)
≥ 1

g(tl)
+ (tl+1 − tl)−

2L ln2 tl+1

tl+1
.

Now observe that
∑

l
2L ln2 tl+1

tl+1
converges (this is the sense in which our estimates here improve

upon (15), where L
t leads to a divergent sum). Thus we are able to conclude

1

g(tl)
≥ tl −O(1), ∀l.

In fact, this holds also at periods t 6= tl. Therefore V (m(t)) ≤ φ(S∗)2
t +O( 1

t2
), and

V ∗
(
m(t)

t

)
≤ t · V (m(t)) +O

(
1

t

)
≤ φ (S∗)2 +O

(
1

t

)
. (19)

This equation (19) improves upon the previously-derived (16). Hence by (9) again, mj(t) = O(1)

for each signal j > k. And once these signal counts are fixed, mi(t) = λ∗i · t + O(1) also holds for

signals i in the best set, as already proved in Liang, Mu and Syrgkanis (2017). This completes the

proof.

D.2 Example of a Learning Trap with Non-Normal Signals

The payoff-relevant state θ ∈ {θ1, θ2} is binary and agents have a uniform prior. There are three

available information sources. The first, X1, is described by the information structure

θ1 θ2

s1 p 1− p
s2 1− p p

45By the mean-value theorem, the difference can be written as O(ln tl+1) multiplied by a certain directional

derivative. Since the coordinates of m(tl+1 − 1) and of m(tl) + λ∗(tl+1 − 1 − tl) both sum to tl+1 − 1, this

directional derivative has a direction vector whose coordinates sum to zero. Combined with ∂iV (m(t)) =

−(φ(S
∗)2

t ) · (1 +O( ln t
t )) (which we showed before), this directional derivative has size O( ln t

t3 ).
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with p > 1/2. Information sources 2 and 3 provide perfectly correlated signals (conditional on θ)

taking values in {a, b}: In state θ1, there is an equal probability that X2 = a and X3 = b or X2 = b

and X3 = a. In state θ2, there is an equal probability that X2 = X3 = a and X2 = X3 = b.

In this environment, every agent chooses to acquire the noisy signal X1, even though one

observation of each of X2 and X3 would perfectly reveal the state.46

D.3 Regions of Prior Beliefs

Here we analyze a pair of examples to illustrate which prior beliefs would lead to which strongly

complementary set as the long-run outcome.

D.3.1 Revisiting Example 2

First consider Example 2 in the main text, with signals X1 = 3ω+b1 +ε1, X2 = b1 +ε2, X3 = ω+ε3.

For simplicity, we restrict attention to priors beliefs that are independent across ω and b1. We have

shown that if the prior variance of b1 is larger than 8, every agent observes the last signal and

society gets stuck in a learning trap.

As a converse, we now show that whenever the prior variance of b1 is smaller than 8, every

agent chooses from the first two signals and learns efficiently in the long run. It is clear that the

first agent observes X1. The rest of the argument is based on the following claim: After any number

k ≥ 1 of observations of X1 and any number l ≥ 0 of observations of X2, the next agent finds either

signal X1 or signal X2 to be more valuable than X3.

We first prove this claim assuming l = 0. Let τω and τb be the prior precisions about ω and b,

with τb >
1
8 by assumption. After k + 1 observations of X1, society’s posterior precision matrix is

P =

(
τω + 9(k + 1) 3(k + 1)

3(k + 1) τb + k + 1

)

So the posterior variance of ω is [P−1]11, which is

f(k) =
τb + k + 1

τωτb + 9(k + 1)τb + (k + 1)τω
.

If society had observed X1 k times and X2 once, posterior variance is

g(k) =
τb + k + 1

τωτb + 9kτb + (k + 1)τω + 9k
.

If society had observed X1 k times and X3 once, posterior variance would be

h(k) =
τb + k

τωτb + (9k + 1)τb + kτω + k
.

46We thank Andrew Postlewaite for this example.
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Now we need to check min{f(k), g(k)} < h(k). The comparison reduces to

τb + k + 1

τb + k
<

max{τωτb + 9(k + 1)τb + (k + 1)τω , τωτb + 9kτb + (k + 1)τω + 9k}
τωτb + (9k + 1)τb + kτω + k

,

which further simplifies to

1

τb + k
<

max{τω + 8τb − k , τω − τb + 8k}
τωτb + (9k + 1)τb + kτω + k

.

Note that max{τω+8τb−k , τω−τb+8k} > 2
9(τω+8τb−k)+ 7

9(τω−τb+8k) = τω+τb+6k. The above

inequality (in the last display) thus follows from (τb+k)(τω + τb+6k) > τωτb+(9k+1)τb+kτω +k,

which is equivalent to the simple inequality τ2
b + 6k2 − k > (2k + 1)τb.

Next we consider the case with l ≥ 1 and show that whenever society has observed signals X1

and X2 both at least once, no future agent will choose X3. In this case we can apply Lemma 12

with L = 1 and S∗ = {X1, X2}. Note that φ(S∗) = 2
3 , so myopic sampling from this set leads to

posterior variance at most

V (m(t))− L

L+ 1
· V (m(t))2

φ(S∗)2
= V (m(t))− 9

8
· V (m(t))2 < V (m(t))− V (m(t))2.

On the other hand, observing signal X3 would lead to posterior variance V (m(t))
1+V (m(t)) , which is larger

than V (m(t)) · (1− V (m(t))). This proves the claim.

D.3.2 More Complex Dynamics

Here we study a more involved example, with signals

X1 = 3ω + b1 + ε1

X2 = b1 + ε2

X3 = 2ω + b2 + ε3

X4 = b2 + ε4

Note that the first two signals are the same as before, but X3 and X4 now involve another con-

founding term b2. The (strongly) complementary sets are {X1, X2} and {X3, X4}, which partition

the whole set as in Sethi and Yildiz (2017). We restrict attention to prior beliefs such that b1 is

independent from ω and b2.

We will show that learning trap is possible if and only if the the prior variance of b1 is larger

than 8. On the one hand, if prior uncertainty about b1 is large, we can specify prior beliefs over ω

and b2 such that 2ω + b2 and b2 are independent and have the same small variance. Given such a

prior, the reduction in posterior variance of ω by either signal X3 or X4 is close to the reduction

by the unbiased signal ω + ε (see the proof of Theorem 1 part (a)). This allows us to show that

agents alternate between observing X3 and X4, leading to a learning trap.

On the other hand, if the prior variance of b1 is smaller than 8, we claim that society eventually

focuses on the efficient set {X1, X2}. To see this, we assume for contradiction that the long-run
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outcome is {X3, X4}. Then at late periods, posterior beliefs have the property that 2ω+ b2 and b2

are approximately independent and have approximately the same small variance. This means both

signals X3 and X4 have approximately the same marginal value as the the unbiased signal ω + ε.

But then we return to the situation in Example 2, where future agents find it optimal to choose

from {X1, X2} instead (as analyzed in the previous section). This contradiction proves the claim.

Note however that unlike in Example 2, it may take a long time for society to eventually switch

to the best set. For example, with prior variances 1, 7, 1
100 of ω, b1, b2 respectively, the first 89 agents

observe X3 and signal X1 or X2 is only observed afterwards. Moreover, switching between different

complementary sets can also happen more than once: With a standard Gaussian prior of (ω, b1, b2),

society’s signal path begins with X1X3X1X2 · · · . These more complex dynamics make it difficult

to pinpoint the long-run outcome as a function of the prior.

D.4 Example Mentioned in Section 7.1

Suppose the available signals are

X1 = 10x+ ε1

X2 = 10y + ε2

X3 = 4x+ 5y + 10b

X4 = 8x+ 6y − 20b

where ω = x+ y and b is a payoff-irrelevant unknown. Set the prior to be

(x, y, b)′ ∼ N


 0

0

0

 ,

 0.1 0 0

0 0.1 0

0 0 0.039


 .

It can be computed that agents observe only the signals X1 and X2, although the set {X3, X4}
is optimal with φ({X1, X2}) = 1/5 > 3/16 = φ({X3, X4}). Thus, the set {X1, X2} constitutes a

learning trap for this problem. But if each signal choice were to produce ten independent realiza-

tions, agents starting from the above prior would observe only the signals X3 and X4. This breaks

the learning trap.

D.5 Low Altruism

Here we show that part (a) of Theorem 1 generalizes to agents who are not completely myopic, but

are sufficiently impatient. That is, we will show that if signals 1, . . . , k are strongly complementary,

then there exist priors given which agents with low discount factor ρ always observe these signals

in equilibrium.

We follow the construction in Appendix A.5. The added difficulty here is to show that if any

agent ever chooses a signal j > k, the payoff loss in that period (relative to myopically choosing
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among the first k signals) is at least a constant fraction of possible payoff gains in future periods.

Once this is proved, then for sufficiently small ρ such a deviation is not profitable.

Suppose that agents sample only from the first k signals in the first t−1 periods, with frequencies

close to λ∗. Then, the posterior variances V11, . . . , Vkk (which are also the prior for period t) are

on the order of 1
t . Thus, following the computation in Appendix A.5, we can show that for some

positive constant ξ (independent of t), the variance reduction of ω by any signal j > k is at least
ξ
t2

smaller than the variance reduction by signal 1. This is the amount of payoff loss in period t

under a deviation to signal j.

Such a deviation could improve the posterior variance in future periods. But even for the best

continuation strategy, the posterior variance in period t+m could at most be reduced by O(m
t2

).47

Thus if we choose ξ to be small enough, the payoff gain in each period t+m is bounded above by
m
ξt2

. Note that for ρ sufficiently small,

− ξ
t2

+
∑
m≥1

ρm · m
ξt2

< 0.

Hence the deviation is not profitable and the proof is complete.

D.6 Multiple Payoff-Relevant States

Here we consider an extension of our main model, where each agent chooses the signal that min-

imizes a weighted sum of posterior variances about some r payoff-relevant states. These states

and their weights are the same across agents. As before, let V (q1, . . . , qN ) denote this weighted

posterior variance as a function of the signal counts. V ∗ is the normalized, asymptotic version of

V .

We assume that V ∗ is uniquely minimized at some frequency vector λ∗. Part (a) of Proposition

2 extends and implies that λ∗ maximizes speed of learning. Unlike the case of r = 1, this optimal

frequency vector generally involves more than K signals if r > 1.48 We are not aware of any simple

method to characterize λ∗.

Nonetheless, We can generalize the notion of “complementary sets” as follows: A set of signals

S is complementary if both of the following properties hold:

1. each of the r payoff-relevant states is spanned by S;

2. the optimal frequency vector supported on S puts positive weight on each signal in S.

Similarly, we say that a complementary set S is “strongly complementary” if it is best in its

subspace: the optimal frequency vector supported on S only puts positive weights on signals in S.

When r = 1, these definitions agree with our main model.

47This is because over m periods, the increase in the precision matrix is at most linear in m.
48A theorem of Chaloner (1984) shows that λ∗ is supported on at most r(2K+1−r)

2 signals.
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By this definition, the existence of learning traps readily extends: For suitable prior beliefs, the

marginal value of each signal in S persistently exceeds the marginal value of each signal in S − S.

Since the marginal values of the remaining signals (those outside of the subspace) can be made

very low by imposing large prior uncertainty on the relevant confounding terms, we deduce that

society exclusively observes from the strongly complementary set S.

We mention that part (b) of Theorem 1 also generalizes. For that we need a different proof,

since there is no obvious analogue of Lemma 11 (and thus of Lemma 12) when r > 1. Instead, we

prove the restated Theorem 1 part (b) in Appendix A.6 as follows: When society infinitely samples

a set that spans RK , the marginal value of each signal j can be approximated by its asymptotic

version:

∂iV (q1, . . . , qN ) ∼ 1

t2
· ∂iV ∗(

q1

t
, . . . ,

qN
t

).

Together with Lemma 10, this shows that the myopic signal choice j in any sufficient late period

must almost minimize the partial derivative of V ∗, in the following sense:

Lemma 14. For any ε > 0, there exists sufficiently large t(ε) such that if signal j is observed in

any period t+ 1 later than t(ε), then

∂jV
∗
(
m(t)

t

)
≤ (1− ε) min

1≤i≤N
∂iV

∗
(
m(t)

t

)
.

Consider society’s frequency vectors λ(t) = m(t)
t ∈ ∆N−1. Then they evolve according to

λ(t+ 1) =
t

t+ 1
λ(t) +

1

t+ 1
ej .

whenever j is the signal choice in period t+ 1. So the frequencies λ(t) move in the direction of ej ,

which is the direction where V ∗ decreases almost the fastest. This suggests that the evolution of

λ(t) over time resembles the gradient descent dynamics. As such, we can expect that the value of

V ∗(λ(t)) roughly decreases over time, and that eventually λ(t) approaches λ∗ = argminV ∗.

To formalize this argument, we have (for fixed ε > 0 and sufficiently large t)

V ∗(λ(t+ 1)) = V ∗
(

t

t+ 1
λ(t) +

1

t+ 1
ej

)
= V ∗

(
t

t+ 1
λ(t)

)
+

1

t+ 1
· ∂jV ∗

(
t

t+ 1
λ(t)

)
+O

(
1

(t+ 1)2
· ∂jjV ∗

(
t

t+ 1
λ(t)

))
≤ V ∗

(
t

t+ 1
λ(t)

)
+

1− ε
t+ 1

· ∂jV ∗
(

t

t+ 1
λ(t)

)
=
t+ 1

t
· V ∗(λ(t)) +

(1− ε)(t+ 1)

t2
· ∂jV ∗(λ(t))

≤ V ∗(λ(t)) +
1

t
· V ∗(λ(t)) +

1− 2ε

t
· min

1≤i≤N
∂iV

∗(λ(t)).

(20)

The first inequality uses Lemma 9, the next equality uses the homogeneity of V ∗, and the last

inequality uses Lemma 14.
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Write λ = λ(t) for short. Note that V ∗ is differentiable at λ, since λi(t) > 0 for a set of signals

that spans the entire space. Thus the convexity of V ∗ yields

V ∗(λ∗) ≥ V ∗(λ) +
N∑
i=1

(λ∗i − λi) · ∂iV ∗(λ).

The homogeneity of V ∗ implies
∑N

i=1 λi · ∂iV ∗(λ) = −V ∗(λ). This enables us to rewrite the

preceding inequality as
N∑
i=1

λ∗i · ∂iV ∗(λ) ≤ V ∗(λ∗)− 2V ∗(λ).

Thus, in particular,

min
1≤i≤N

∂iV
∗(λ(t)) ≤ V ∗(λ∗)− 2V ∗(λ). (21)

Combining (20) and (21), we have for all large t:

V ∗(λ(t+ 1)) ≤ V ∗(λ(t)) +
1

t
· [(1− 2ε) · V ∗(λ∗)− (1− 4ε) · V ∗(λ(t))]. (22)

Now, suppose (for contradiction) that V ∗(λ(t)) > (1+4ε)·V ∗(λ∗) holds for all large t. Then (22)

would imply V ∗(λ(t + 1)) ≤ V ∗(λ(t)) − ε·V ∗(λ∗)
t . But since the harmonic series diverges, V ∗(λ(t))

would eventually decrease to be negative, which is impossible. Thus

V ∗(λ(t)) ≤ (1 + 4ε) · V ∗(λ∗)

must hold for some large t. By (22), the same is true at all future periods. But since ε is arbitrary,

the above inequality proves that V ∗(λ(t)) → V ∗(λ∗). Hence λ(t) → λ∗, completing the proof of

Theorem 1 for multiple payoff-relevant states.
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