Compositional Semantics and Inference System for Temporal Order based on Japanese CCG

Tomoki Sugimoto and Hitomi Yanaka

{sugimoto.tomoki, hyanaka}@is.s.u-tokyo.ac.jp /

Introduction

- NLI involving temporal expressions is crucial and challenging
- Temporal adverbs, temporal expressions, verb tenses and temporal order are difficult to represent
 - e.g. "4月3日 (April 3rd)", "以前 (before)", "到着する/した (arrive/arrived)"
- We realize compositional semantics and a logical inference system for temporal inference in Japanese based on Combinatory Categorial Grammar (CCG) [Steedman 2000, Bekki 2010]

Inference Examples

- P 午後7時以降ロビンは両親を訪ねた。 (After 7 p.m. Robin visited her parents.)
- H 16時以降ロビンは両親を訪ねた。 (After 16:00 Robin went to visit her parents.) Gold answer: Yes (PLMUTE_ja Section: time_multi, No. 11)
- P_1 1992年以来、ITELはバーミンガムにある。 (Since 1992 ITEL has been in Birmingham.) P_2 現在、1996年である。 (It is now 1996.)
- H ITELは1993年にはバーミンガムにあった。(ITEL was in Birmingham in 1993.) Gold answer: Yes (JSeM No. 645)

Proposed System

- 1. Convert the premise and hypothesis into a CCG tree
- 2. Transform the obtained CCG tree
 - Temporal expressions are treated as a multi-word expression
- 3. Convert a modified CCG tree into a logical formula using ccg2lambda [Mineshima+ 2016]
- 4. Convert logical formulas and axioms into a certain format
- 5. Determine whether or not a hypothesis is provable from premises
 - Entailment: Yes, Contradiction: No, Neutral: Unknown

Syntactic Parsing Theorem Proving Semantic Parsing **Modifying Trees CCG Parser** ccg2lambda Vampire Yes / No / Modified Premise Logical Forms CCG Tree CCG Tree Hypothesis **Format** Unknown 到着する (e) orall A, B, C. (before(A, B)4月3日に到着する。 Axioms $\overline{(S/S)\backslash(S/S)}$ (I arrived in April 3rd. $\mathsf{before}(B,C) o \mathsf{before}(A,C)$

Experiments-Datasets

- JSeM [Kawazoe+ 2015]: Japanese version of FraCaS [Cooper+ 1006], the semantically challenging inferences
 dataset involving various linguistic phenomena
- We use 23 problems involving temporal order in temporal reference section
- PLMUTE_ja: The dataset that we translated into Japanese from PLMUTE [Thukral+ 2021], a English dataset consisting of temporal inferences involving various temporal adverbs

Experiments–Results

 Our system outperformed all models except BERT_all on PLMUTE_ja

	Accuracy on JSeM									
_	System	Accuracy								
_	BERT	JSNLI	.522							
		few	.217							
		all	.435							
	Onishi (.478								
Γ	Our sys	.783								

Experiments–Comparison Systems

- Logic-based system: Japanese logical inference system for temporal clauses [Onishi+ 2020]
- Deep learning-based systems
 - BERT_JSNLI: Japanese BERT fine-tuned on JSNLI [Yoshikoshi+, 2020] (533,005 examples)
 - BERT_few: Japanese BERT fine-tuned on the minimal PLMUTE_ja training set (360 examples)
 - BERT all: Japanese BERT fine-tuned on the entire PLMUTE ja training set (11,220 examples)

Accuracy on PLMUTE ja

System		year mon	month	n date	date	date	day	time	time	time
					_dmy	_my		_12	_24	_multi
Majority		.382	.421	.425	.403	.379	.396	.368	.415	.418
I J	JSNLI	.394	.413	.382	.400	.400	.380	.378	.415	.368
■ BERT f	few	.509	.517	.509	.491	.476	.518	.440	.453	.515
8	all	.997	1.000	.998	.985	.982	1.000	1.000	.998	.960
Onishi et al. (2020)		.238	.265	.239	.206	.244	.291	.290	.225	.253
Our system		1.000	1.000	.980	.971	.974	.984	.943	.970	.953

Analysis

- Our system did not solve the problems involving comparative deletion and temporal connectives such as "より先 (before)" and "より後 (after)"
- P_1 ジョーンズが契約書を修正した。 (Jones revised the contract.)
- P_2 スミスが契約書を修正した。 (Smith revised the contract.)
- P₃ ジョーンズがスミスより先に契約書を修正した。 (Jones revised the contract after Smith did.)
- H スミスはジョーンズより後に契約書を修正した。
 (Smith revised the contract before Jones did.)
 Gold answer: yes (JSeM No. 659)

Conclusion and Future Work

- We developed a logic-based NLI system for temporal order in Japanese
- Our system performed more robustly than previous logic-based systems as well as current deep learning-based models
- In the future, we plan to cover various temporal inferences (e.g. comparative deletion and temporal anaphora)
- We also plan to construct inference test sets for these challenging inferences