
Artificial Ecosystem Algorithm Applied to
Multi-Line Steel Scheduling

Manal T. Adham
University College London

Computer Science
m.adham@ucl.ac.uk

Peter J. Bentley
University College London

Computer Science
peter.bentley@ucl.ac.uk

Abstract—Steel production scheduling is recognised as a major
global industry with some of the most difficult industrial logistical
problems. Galvanised steel can be used as a raw material for
the automotive or construction industries. This paper focuses on
scheduling four lines involved in the production of galvanised
steel. Specifically, we consider lines in ArcelorMittal’s manufac-
turing plant. ArcelorMittal is one of the largest steel producers in
the world. The lines considered include the following: (a) Pickling
Line, (b) Tandem Mill Line, (c) Hot Dip Galvanizing Line 1, and
(d) Hot Dip Galvanizing Line 2. We apply four variants of the
Artificial Ecosystem Algorithm to the multi-line steel scheduling
problem. In addition, we compare their performance against
several alternative solutions including Simulated Annealing, Tabu
Search, Hill Climbing, Branch and Bound, Monte Carlo Tree
Search, Genetic Algorithm, Cuckoo Search and Particle Swarm
Optimisation.

Index Terms—scheduling, manufacturing, optimisation,
nature-inspired, real-world

I. INTRODUCTION

The primary goal in steel scheduling is to identify the
sequence whereby steel coils can be processed through lines
with minimum cost and within a limited time frame. The
sequences must respect a large number of predefined cost
functions and constraints, which consider the evolution of both
coil characteristics and line settings simultaneously.

Finding coil sequences with minimum cost is critical to
ensuring a smooth transition between coils, avoiding lost
coil strips due to bad quality and breakages in the line,
and reducing incidents in the manufacturing plant. Moreover,
identifying coil sequences within a limited time frame is
necessary, as lines can only process one coil at a time and
continuously process coils in the yard.

We consider four lines involved in the production of gal-
vanised steel. Each line abides by constraints and cost func-
tions. In the Pickling Line, coils are washed in an acid bath to
remove surface impurities. In the Tandem Mill Line, coils pass
through rolls which reduce thickness and increase strength. In
the Hot Dip Galvanizing Line 1 and Hot Dip Galvanizing
Line 2, steel is coated with zinc as a form of protection
from moisture. The two galvanizing lines are set to different
configurations. The selection of which galvanizing line the
coil needs to be processed by corresponds to production order
specification.

Each steel coil corresponds to a production order which
specifies processing settings such as speed, thickness and

temperature. Steel is stored in the form of coils in yards.
When these coils are ready to be processed, they are uncoiled
and welded together (the head of one coil is the tail of
another) before entering a line; thus, the input to each line
is a continuous strip.

The optimisation goal is twofold. (a) Find a coil sequence
with minimum cost. The machine settings of each line grad-
ually change; therefore coils in a sequence must have similar
properties to facilitate smooth transitions between coils. (b)
The sequence must be generated in less than two minutes.
Coils are continuously processed through lines, making it
important to identify sequences within a reasonable time.

II. RELATED WORK

Research on steel scheduling can be grouped into the
following streams: Operations research techniques, which use
mathematical programming approaches. These guarantee op-
timality, but become slow as the problem grows in size and
complexity, and the interdependence of different scheduling
functions makes the process of developing mathematical ap-
proaches difficult [1].

Artificial intelligence techniques, including Ant Colony
Optimisation [2] and Particle Swarm Optimisation [3]. They
cannot guarantee solution quality, but they are able to find
solutions effectively [4].

Puchinger and Raidl ([5]) classify research efforts which
combine these streams as either collaborative combinations,
where exact and heuristic approaches are intertwined, se-
quential or parallel, or integrative combinations, where one
technique is embedded in the other. This paper considers the
first option, in which a combination of approaches collaborate
in parallel within the Artificial Ecosystem Algorithm to tackle
the multi-line steel scheduling problem. In addition, a number
of alternative solutions have been described and implemented
in Section IV.

III. PROPOSED APPROACH

Four variants of the Artificial Ecosystem Algorithm were
applied and empirically evaluated against alternative solutions
(described in Section IV). A more detailed description of
the aforementioned approaches can be found in [6]. All the
algorithms considered have been evaluated both as separate

978-1-7281-2153-6/19/$31.00 c�2019 IEEE 959

entities and with the decomposition techniques (described in
Section III-E).

The utility function used to evaluate the quality of a
complete solution sequence is defined in Eqn 2 and the fitness
function is defined in Eqn 1.

A. Artificial Ecosystem Algorithm 1

We present a holistic solution to the multi-line steel schedul-
ing problem by applying the Artificial Ecosystem Algorithm
(AEA1) [7, 8]. The ecosystem-inspired phenomena harnessed
include: environment, population, homeostasis, evolution, nice
and diversity. In AEA1, the problem (environment) is divided
into subproblems (niches), and each subproblem is tackled
using a subpopulation. An individual in a population corre-
sponds to the transition between two coils. The population is
formed by randomly creating complete solutions, which are
subsequently split into solution building blocks (individuals).
Tournament selection [9] is used to assemble individuals to
form a solution. This involves: (1) Selecting t individuals
from a population, (2) copying the best-fit individual to an
intermediate population, and (3) repeating n times.

Individuals with low fitness values are removed using the
REMOVEINDIVIDUALS procedure, and new individuals are
created to replace them using the REPLACEINDIVIDUALS
procedure. In the REPLACEINDIVIDUALS procedure, a portion
of individuals are recreated using the CROSSOVER procedure
and others are recreated randomly. CROSSOVER focuses on
producing building blocks that are close to reaching optimality,
while replacing individuals randomly allows the algorithm
to jump out of local optima and move towards the global
optimum by exploring the solution space. Edges not contained
within the parents and perhaps not within the population
can be introduced into the created individuals. As duplicate
individuals are permitted, a BALANCEFITNESS procedure was
devised to allow duplicates to maintain uniform fitness.

The subsolutions formed are connected based on the width
constraint, which specifies that the difference in width between
two consecutive coils must be less than a predefined threshold.
The ability to satisfy this constraint has a strong influence on
the quality of the solution. Thus a complete solution is formed
using a combination of subsolutions obtained from different
subpopulations. AEA1 is presented in Algorithm 1.

B. Artificial Ecosystem Algorithm 2

The parallelism of AEA1 is further developed by enabling
it to simultaneously build multiple subsolutions for each
subproblem as opposed to developing just one solution at a
time. The subsolution with the greatest utility is selected from
each subproblem and connected to form a complete solution.
In this way, multiple solutions are evolved simultaneously.

C. Artificial Ecosystem Algorithm 3

In the original AEA1 formulation, a population of individu-
als was initialised by randomly generating a complete solution
sequence, which was split into equally sized building blocks.
This implies that it is possible to have duplicate individuals

Algorithm 1 Artificial Ecosystem Algorithm 1
1: Initialise: Environment, Population, Iteration = 1
2: repeat
3: Select individual ii at random
4: repeat
5: Use tournament selection to select a subsequent

individuals ij
6: until Candidate solution (Ci) formed
7: if U(Ci) < U(Cbest) then
8: Cbest = Ci

9: Update F1(ji) for all individuals in (Ci)
10: REMOVEINDIVIDUALS
11: REPLACEINDIVIDUALS
12: BALANCEFITNESS
13: Iteration + +
14: until Stopping Criteria Satisfied

in one population. AEA3 reformulates the representation of a
population and an individual to frame it as a matrix:

P =

��������

A B C
A 1 5 1
B 4 1 8
C 2 9 1

��������

Each letter corresponds to a coil, and the matrix shows the
cost of each potential coil combination. Each number repre-
sents an individual building block, and the matrix represents
a population. A set of the widest coils is identified, and used
to randomly select a start point. An example starting point
is the transition from Coil A to Coil B. The algorithm then
starts to build a solution Xi using tournament-based selection,
considering all the transition costs from Coil B, which have
not been visited previously. Once Xi represents a complete
solution, the best solution obtained so far is updated if Xi

has a lower cost. These steps are repeated until the stopping
criterion is met: in this case, a predefined maximum number
of iterations. Each iteration builds one solution; future variants
of AEA3 could build multiple solutions simultaneously in one
iteration in a manner similar to that used in AEA2.

D. Artificial Ecosystem Algorithm 4
Artificial Ecosystem Algorithm 4 mimics the diversity of

ecosystems by allowing subproblems to employ different
strategies. There is no one algorithm that can be applied to
effectively tackle all problems [10]. In AEA4, the problem
is first decomposed to form subproblems, and a collection
of different strategies are applied simultaneously for each
subproblem. The complementary strengths of a range of strate-
gies are exploited to solve a task. These strategies include
mathematical optimisation, nature-inspired and local search.

The best result found for each subproblem is then used
to construct the solution (the lowest cost with respect to
Eqn 2). Therefore, a complete solution is generated using
a combination of subsolutions created using different strate-
gies. In this way, AEA4 acts as an ensemble which holds

960

autonomous species that operate in a decentralised fashion,
thereby imitating the relative autonomy of species in an
ecosystem.

Currently, each subproblem executes all the approaches
considered in Section IV simultaneously. To date, ensembles
which apply optimisation algorithms have received little atten-
tion in the literature [11].

E. Decomposition Strategies
Using decomposition allows us to capitalise on scaling

enabled by dividing the problem space as opposed to the
solution space [12]. A partitioning strategy is implemented,
which divides the problem (set of coils) into subproblems
using coil characteristics. These characteristics vary according
to each line considered: they include width, thickness, strength
and zinc coating. Three decomposition strategies are used.
Domain-based strategy ([13]): this is essentially a sorting
mechanism which separates coils into a predefined number of
groups. k-modes [14]: k initial points are selected for each
cluster; then, coils are allocated to clusters by identifying
the nearest mode and the mode of each centroid is updated.
Self-Organising Map [15] allows the mapping from high
dimensional space to low dimensional space, whilst preserving
the topological structure. Neurons represent nodes of a 2-
dimensional lattice, then training and mapping phases are
applied for a predefined number of iterations. Each neuron
in the lattice is considered as a cluster; if the number of items
in the cluster is below a predefined threshold then it is merged
with its nearest cluster.

F. Fitness Function
Each individual is associated with a fitness value, which

reflects its ability to collaborate with other individuals to form
an effective solution. This value is calculated by using the
weighted function defined in Eqn 1.

F1(ji) = w1Fni + w2jti + w3jci (1)

where F1(ji) = the fitness value for job ji, Fni = number of
coils visited in the sequence, jti = transition cost of ji, jci =
cost of the solution sequence, and w1, w2 and w3 are weights.

G. Evaluation Measures
The goal is twofold: (a) minimise sequence cost and thereby

maximise productivity, (b) build a solution in less than two
minutes. The cost of the solution is defined in Eqn 2. The cost
functions and weights were defined by ArcelorMittal, thereby
enabling us to perform a direct comparison.

c(x) = CF + w1S + w2H (2)

where CF = sum of cost functions for a given line, S =
sum of soft constraints violated for a given line, H = sum of
hard constraints violated for a given line, and w1 and w2 are
the weights associated with the constraints violated.

Typically, hard constraints are fixed conditions that must
be satisfied. However in practice, it can be difficult to build

sequences that do not violate hard constraints. In an effort
to deal with this problem, ArcelorMittal accounts for hard
constraints by adding a substantially higher cost to sequences
which violate them.

IV. ALTERNATIVE SOLUTIONS

This section describes alternative solutions implemented
to tackle the multi-line steel scheduling problem, thereby
allowing us to gauge how well the Artificial Ecosystem Algo-
rithm variants are able to perform against solutions present
in the literature. The objective function used to determine
the solution quality is specified in Eqn 2, in which a lower
weighted cost entails a higher fitness value. The stopping
criterion used is a predefined maximum number of iterations.
A more detailed account of all the following algorithms is
provided in [6].

Branch and Bound [16]: In our implementation an initial
greedy solution is generated by selecting coils with the low-
est costs present in the matrix. Nodes represent coils and
edges represent the transition between coils. The algorithm
selects a node k and children of k are generated with their
corresponding lower bounds. To help speed up the algorithm
multiple branches are explored simultaneously using threads
and a timer is added to stop the algorithm from running for
long periods of time.

Monte Carlo Tree Search [17]: In our implementation each
iteration begins at the root and descends the tree by using a
tree policy until a leaf node is reached. The tree policy selects
the root node with the highest reward. A simulation is executed
from the selected node, and the score is back-propagated and
used by the tree policy in subsequent iterations.

Genetic Algorithm [18]: Candidate solutions represent com-
plete solutions initialised randomly. Fitness-proportionate se-
lection is used, making the probability of selecting a candidate
solution inversely proportional to the objective function. A
two-point crossover operator is used to generate offspring for
the next generation, and a random swap between two coils in
a candidate solution is used for mutation.

Cuckoo Search [19]: We randomly select a cuckoo and
replace its solution via Lévy flights, as per the original imple-
mentation. This solution is then evaluated to identify its fitness,
and a nest is chosen randomly. If the new solution improves the
quality of eggs in the nest, then a randomly selected solution
in the nest is replaced with the newly generated solution. Some
of the worst nests are then abandoned, and new solutions are
built.

Particle Swarm Optimisation [20]: We randomly initialise
particles, set their best known position as their current position,
and update the swarm’s best known position accordingly. The
velocity is used to update the position of each particle. If the
particles fitness is higher, then its best position is updated. The
global fitness is also updated if it has been improved.

Tabu Search [21]: The algorithm monitors the search and
reacts to cycling and repetition of solutions by adapting
the tabu list size and using long-term memory to promote
diversification across the search space.

961

TABLE I
THE NUMBER OF COILS IN EACH TEST CASE

Test Cases
1 2 3

Pickling Line 90 90 83
Tandem Mill Line 68 87 57

Hot Dip Galvanizing 1 Line 68 64 75
Hot Dip Galvanizing 2 Line 80 81 90

Simulated Annealing [22, 23]: The algorithm begins by
initialising a random solution x, then at each iteration 3-opt
is applied to modify the solution and generate a new solution
y. Next, an acceptance probability is used to decide whether
or not to move to the modified solution y. As the search
progresses and the solution space is explored, there is a slow
decrease in the probability of accepting worse solutions.

Hill Climbing Algorithm [24]: This algorithm starts with a
single, randomly generated solution; it then randomly modifies
the coil sequence whilst maintaining the best solution so far.
This is performed until the stopping criterion is met.

All of the aforementioned approaches are applied in the
following three ways: on their own without decomposition,
with each of the decomposition strategies described in Section
III-E, and as strategies to solve subproblems in AEA4.

V. BENCHMARK TEST CASES

Three test cases were provided by ArcelorMittal for each
of the four lines considered.

1) Test case 1: a typical batch taken from production
history.

2) Test case 2: a batch designed to mimic situations ex-
pected when working with lower stock levels, resulting
in a limited range of coils available. This test case is
harder to schedule as there are fewer options for finding
compatible coils.

3) Test case 3: another batch similar to test case 1, taken
from production history.

VI. EXPERIMENTS

The performance of the four Artificial Ecosystem Algorithm
variants are compared against the alternative approaches using
benchmark test cases described in Section V.

1) Experiment 1 - evaluates performance against the three
test cases.

2) Experiment 2 - evaluates performance on the four lines,
specifically the Pickling Line, Tandem Mill Line, Hot
Dip Galvanising Line 1 and Hot Dip Galvanising line
2. In addition, the overall performance across lines and
test cases is also considered.

A. Performance Metrics
Two metrics are used to evaluate the performance of the

proposed and alternative approaches. 1) Solution quality: the
goal is to minimise the cost of the coil sequence produced.
This is the cost in Eqn 2, which considers cost functions, soft

TABLE II
SETTINGS FOR THE ARTIFICIAL ECOSYSTEM ALGORITHM.

Parameter Setting
MaxGen 500
Turnover 10%
Xover 20%
PopulationSize 50
BalanceFitnessLimit 20
Solutions built (AEA2) 10

TABLE III
SETTINGS FOR MATHEMATICAL PROGRAMMING APPROACHES

Branch and Bound Monte Carlo Tree Search
Threads 6 Number of actions 5
Timer 30 seconds

constraints and hard constraints. 2) Computational effort: the
solution must be generated in 2 minutes or less.

The error bars in the following experiments represent the
standard deviation with two significant figures. Results are also
compared against ArcelorMittal’s current solution, Ant Colony
Optimisation (ACO) [2]. The only metric available for ACO
is solution quality. Data on time is not available, although it
was communicated that ACO was given 2 minutes to find a
solution.

B. General Experimental Setup

To ensure reliability 50 independent runs were conducted for
each experiment. All the following approaches were developed
using a combination of Java and Python. More implementation
details can be found in [6]. Experiments were performed on the
University College London computer cluster, which consists
of 628 nodes and 4370 cores, but only the specified resources
are allocated to a task. The specification for each task is: 2
symmetric multiprocessing, 7G virtual memory and 2 threads.
Each task represents one test case and there are three test cases
for each line.

The algorithm settings were identified through preliminary
tests and are specified in Tables II to V. Parameters were
selected using a trial and error approach. As a starting point
we used default parameter settings, then a range of values were
investigated to determine a final setting. This investigation was
performed by selecting three problems on which to test the
algorithms. For each problem, the algorithms were executed
10 times using the different configurations selected. The best,
average and worst solutions generated were then compared
against the best known solution and the best configuration was
used to obtain the final setting. To enable a fair comparison,
the same tuning process was used to derive each parameter.

TABLE IV
SETTINGS FOR NATURE-INSPIRED APPROACHES

Genetic Algorithm Particle Swarm Optimisation Cuckoo Search
MaxGen 500 Maximum epochs 300 MaxGen 500
Mutation Rate 0.025 Particle count 100 Nests 20
Tournament size 5 Maximum velocity 10 Abandon probability 0.01

962

TABLE V
SETTINGS FOR LOCAL SEARCH APPROACHES

Simulated Annealing Tabu Search Hill Climber
Temperature 10000 MaxGen 500 MaxGen 1000
Cooling rate 0.003 Tabu length 30

C. Experiment 1 - Test Case Comparison

This experiment compares the performance of the Artificial
Ecosystem Algorithm against the alternative approaches on the
benchmark test cases.

1) Performance Comparison: Figures 1 and 2 demonstrates
the performance of the algorithms considered for all three
test cases using Self-Organising Map as it achieved the most
promising results from preliminary experiments. More detailed
results can be found in [6]. Test case 1 demonstrates the most
favourable results, followed by test case 3 and then 2. This was
anticipated as test case 2 models a more constrained situation.

Figure 1 shows that AEA4 is competitive with Ant Colony
Optimisation. It is able to improve on Ant Colony Opti-
misation’s results for test case 1 by 34.35%, though Ant
Colony Optimisation still outperforms AEA4 in test case 2 by
14.12% and outperforms test case 3 by 27.11%. The error lines
for AEA4 represent consistency, thereby demonstrating the
reliability of the results attained. This is a promising result, as
Ant Colony Optimisation has been optimised by ArcelorMittal
to operate in the manufacturing plant.

We can also observe that Monte Carlo Tree Search and
Hill Climbing Search struggle to identify solutions effectively.
This is understandable, as Monte Carlo Tree Search was
originally developed to determine the best moves in a game
[17]. The results for Hill Climbing Search were anticipated,
as it is a local search method, which aims to find better
solutions through incremental changes. An effective way to
improve Hill Climbing Search is by using heuristics to identify
promising start points [25]. Nevertheless, neither of these
approaches were designed to find solutions to complex, real-
world problems. The Simulated Annealing approach taken
here is relatively simple. A more advanced and possibly
adaptive perturbation can be used in place of 3-opt to improve
its performance [23]. Nahar et al. ([26]) have shown that
perturbation functions have a substantial impact on Simulated
Annealing’s performance.

Notably, Tabu Search performs relatively well compared to
the other local search approaches, which can be attributed
to its adaptive nature and its ability to diversify in order to
escape from local optima. Furthermore, the Genetic Algorithm
also performs well compared to the other nature-inspired ap-
proaches considered. The results generated for this algorithm
are similar to that generated by Branch and Bound, whilst the
solution is generated in almost half the time.

Figure 2 demonstrates the time consumed by all the ap-
proaches considered. The figure shows that Monte Carlo Tree
Search consumes the most time. In addition to not producing
solutions effectively, Monte Carlo Tree Search exceeds the
two-minute time constraint. The remaining solutions were

found in under two minutes and therefore satisfy the runtime
constraint. Again, AEA4 takes a relatively long time, as per-
formance depends on the speed of the strategies implemented.
The trade-off between solution quality and time is clear in the
case of AEA4. This was anticipated, as AEA4 runs multiple
strategies simultaneously. Fine-tuning the strategies so that
only the most effective solutions are considered for a given
problem could reduce this time without compromising savings
in cost.

Fig. 1. Average cost for solutions generated for the different test cases
considered.

Fig. 2. Average time consumed to identify a solution for each test case.

963

D. Experiment 2 - Compare Performance on Lines
This experiment compares the performance of the different

approaches on different lines; pickling (pkl), tandem mill
(tdm), hot dip galvanizing 1 (hdg1) and hot dip galvanizing 2
(hdg2). The results presented are an average of all three test
cases.

1) Performance Comparison: Figures 3 and 4 demonstrate
the average weighted cost and time consumed to find a solution
for the four lines considered. Self-Organising Map was used
for all of these algorithms, as it achieved the most promising
results in Experiment 1. Complete details of this experiment
can be found in [6]. In addition, the solutions implemented
are compared against Ant Colony Optimisation. In Figure
3, AEA4 is again seen to be competitive with Ant Colony
Optimisation. AEA4 reduces the cost associated with the tdm
line by 20.89%, although it can be seen that Ant Colony
Optimisation still generates lower costs for pkl by 71%, for
hdg1 by 77.62% and for hdg2 by 149%.

AEA4 comes at the expense of a higher computational
cost than other approaches presented in Figure 4 (with the
exception of Monte Carlo Tree Search). Nonetheless, the
time consumed is still within two minutes. The figure also
demonstrates that tdm requires the least time to find a solution,
followed by the pkl, hdg1 and then hdg2. However, solutions
generated for tdm carry a relatively high cost compared to the
other lines, due to the extend of cost functions and constraints
violated. Allowing the algorithms to run on the tdm line for a
longer period of time could potentially allow a better solution
to be generated.

Fig. 3. Average cost for solutions generated for the different test cases
considered.

E. Overall Analysis
Figures 5 and 6 demonstrates the overall performance

of all the approaches considered across all the lines using

Fig. 4. Average time consumed to identify a solution for each test case.

Self-Organising Map. The results demonstrate the continuous
improvement of the Artificial Ecosystem Algorithms as we
evolve the algorithm. AEA2 was able to improve on AEA1 by
41.04%, AEA3 was able to improve on AEA2 by 14.28%, and
AEA4 was able to improve on AEA3 by 14.44%. Allowing
multiple solutions to evolve simultaneously in AEA2 permits
it to identify a solution with higher utility more quickly than
AEA1. In addition, all the approaches considered, with the
exception of Monte Carlo Tree Search, satisfy the two-minute
time limit.

Results also verify AEA4’s ability to match an optimised
variant of Ant Colony Optimisation. AEA4 was able to reduce
Ant Colony Optimisation’s overall cost by 25.61%. This is
mainly attributed to its performance in the tandem mill line,
where it was able to save substantially on cost. AEA4 also
outperformed Branch and Bound by 4%, Tabu Search by 5%,
and Genetic Algorithm by 22%. Although these are small
margins it is still a substantial gain especially in a real-world
application. This was enabled by allowing AEA4 to implement
different strategies to solve the subproblems. Within AEA4,
each line considered used different strategies for the subprob
lems encountered.

F. Conclusion

This paper further developed the Artificial Ecosystem Al-
gorithm and applied four variants of it to the multi-line steel
scheduling problem. We also developed and applied eight
alternative solutions to the multi-line steel scheduling problem.
Considering alternative solutions allowed us to gauge how
well the Artificial Ecosystem Algorithm performs in relation
to solutions present in the literature.

All the approaches were evaluated using three benchmark
test cases based on two quality metrics: solution quality and

964

Fig. 5. Average cost for solutions generated for the different test cases
considered.

Fig. 6. Average time consumed to identify a solution for each test case.

computational effort. In addition, the solutions implemented
were compared against the current solution implemented by
ArcelorMittal, Ant Colony Optimisation. As the cost functions
and weights used were those defined by ArcelorMittal, we
were able to perform a direct comparison. Moreover, all
the approaches considered were tested as separate entities
and with three different decomposition strategies including
Self-Organising Map, k-modes and domain-specific. Results
indicated that Self-Organising Map was effective in obtain-
ing high-quality solutions, demonstrating the most promising
results.

All the results demonstrated a continuous improvement of
the Artificial Ecosystem Algorithms as we improved the algo-
rithm from AEA1 to AEA4. Furthermore, results showed that
AEA4 using Self-Organising Map outperformed Ant Colony
Optimisation on test case 1 results by 34.35% (Experiment 2)
and outperformed Ant Colony Optimisation for the Tandem
Mill Line by 20.89% (Experiment 2). Moreover, on average,
and across all the lines, AEA4 outperformed Ant Colony
Optimisation by 25.61%. This is a substantial finding, as Ant
Colony Optimisation is the current solution implemented in
a real-world manufacturing plant. The success of AEA4 can
be attributed to the diversity of its approach, suggesting that
this is another useful ecosystem-inspired feature to incorporate
within our algorithm. In future work, the goal would be to
consider the most suitable set of strategies for a particular
problem instance.

ACKNOWLEDGMENT

The authors would like to thank ArcelorMittal for their help
and cooperation in this project.

REFERENCES

[1] Geoff Buxey. “Production scheduling: Practice and the-
ory”. In: European Journal of Operational Research
39.1 (1989), pp. 17–31.

[2] Silvino Fernandez et al. “Scheduling a galvanizing line
by ant colony optimization”. In: International Confer-
ence on Swarm Intelligence. Springer. 2014, pp. 146–
157.

[3] Tsung-Lieh Lin et al. “An efficient job-shop schedul-
ing algorithm based on particle swarm optimization”.
In: Expert Systems with Applications 37.3 (2010),
pp. 2629–2636.

[4] Karla L Hoffman. “Combinatorial optimization: Current
successes and directions for the future”. In: Journal of
computational and applied mathematics 124.1 (2000),
pp. 341–360.

[5] Jakob Puchinger and Günther R Raidl. “Combining
metaheuristics and exact algorithms in combinatorial
optimization: A survey and classification”. In: Inter-
national Work-Conference on the Interplay Between
Natural and Artificial Computation. Springer. 2005,
pp. 41–53.

[6] Manal Tarek Adham. “A Decomposition-Based
Ecosystem-Inspired Approach For Solving Real-World
Logistics Problems”. PhD thesis. UCL (University
College London), 2019.

[7] Manal T. Adham and Peter J. Bentley. “An Ecosystem
Algorithm for the Dynamic Redistribution of Bicycles
in London”. In: the proceedings of the 10th Interna-
tional Conference on Information Processing in Cells
and Tissues. IPCAT 15. San Diego, CA, USA: Springer
International Publishing, 2015, pp. 39–51. ISBN: 978-
3-319-23108-2. DOI: 10.1007/978-3-319-23108-2 4.
URL: http://dx.doi.org/10.1007/978-3-319-23108-2 4.

965

[8] Manal T. Adham and Peter J. Bentley. “An Artificial
Ecosystem Algorithm Applied to Static and Dynamic
Travelling Salesman Problems”. In: 2014 IEEE Sym-
posium Series on Computational Intelligence (SSCI).
IEEE. 2014, pp. 149–156. ISBN: 978-1-4799-4479-8.
DOI: 10.1109/ICES.2014.7008734.

[9] Tobias Blickle and Lothar Thiele. “A Mathematical
Analysis of Tournament Selection.” In: ICGA. Citeseer.
1995, pp. 9–16.

[10] David H Wolpert and William G Macready. “No free
lunch theorems for optimization”. In: IEEE transactions
on evolutionary computation 1.1 (1997), pp. 67–82.

[11] Emma Hart and Kevin Sim. “On constructing ensem-
bles for combinatorial optimisation”. In: Evolutionary
computation 26.1 (2018), pp. 67–87.

[12] Christine L Valenzuela and Antonia J Jones. “Evolution-
ary divide and conquer (I): A novel genetic approach
to the TSP”. In: Evolutionary Computation 1.4 (1993),
pp. 313–333.

[13] Iiro Harjunkoski and Ignacio E Grossmann. “A decom-
position approach for the scheduling of a steel plant
production”. In: Computers & Chemical Engineering
25.11-12 (2001), pp. 1647–1660.

[14] Zhexue Huang. “Clustering large data sets with mixed
numeric and categorical values”. In: Proceedings of the
1st pacific-asia conference on knowledge discovery and
data mining,(PAKDD). Singapore. 1997, pp. 21–34.

[15] Teuvo Kohonen. “Self-organized formation of topolog-
ically correct feature maps”. In: Biological cybernetics
43.1 (1982), pp. 59–69.

[16] Ailsa H Land and Alison G Doig. “An automatic
method of solving discrete programming problems”.
In: Econometrica: Journal of the Econometric Society
(1960), pp. 497–520.

[17] Diego Perez, Philipp Rohlfshagen, and Simon M Lucas.
“Monte-Carlo tree search for the physical travelling
salesman problem”. In: European Conference on the
Applications of Evolutionary Computation. Springer.
2012, pp. 255–264.

[18] David E Goldberg and Jon Richardson. “Genetic algo-
rithms with sharing for multimodal function optimiza-
tion”. In: Genetic algorithms and their applications:
Proceedings of the Second International Conference on
Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum.
1987, pp. 41–49.

[19] Xin-She Yang and Suash Deb. “Engineering optimisa-
tion by cuckoo search”. In: International Journal of
Mathematical Modelling and Numerical Optimisation
1.4 (2010), pp. 330–343.

[20] Russ C Eberhart and James Kennedy. “A new optimizer
using particle swarm theory”. In: Proceedings of the
sixth international symposium on micro machine and
human science. Vol. 1. New York, NY. 1995, pp. 39–43.

[21] Roberto Battiti and Giampietro Tecchiolli. “The reac-
tive tabu search”. In: ORSA journal on computing 6.2
(1994), pp. 126–140.

[22] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et
al. “Optimization by simulated annealing”. In: science
220.4598 (1983), pp. 671–680.

[23] Attahiru Sule Alfa, Sundresh S Heragu, and Mingyuan
Chen. “A 3-opt based simulated annealing algorithm for
vehicle routing problems”. In: Computers & Industrial
Engineering 21.1-4 (1991), pp. 635–639.

[24] Fabio Romeo. “Probabilistic Hill Climbing Algorithm:
Properties and Applications”. In: Chapel Hill Confer-
ence on VLSI, 1985. 1985.

[25] Craig A Tovey. “Hill climbing with multiple local op-
tima”. In: SIAM Journal on Algebraic Discrete Methods
6.3 (1985), pp. 384–393.

[26] Surendra Nahar, Sartaj Sahni, and Eugene Shragowitz.
“Simulated annealing and combinatorial optimization”.
In: Proceedings of the 23rd ACM/IEEE design automa-
tion conference. IEEE Press. 1986, pp. 293–299.

966

