
Coasian Dynamics under Informational
Robustness

Jonathan Libgober* and Xiaosheng Mu**

*University of Southern California
**Princeton University

April 15, 2022

Abstract. �is paper studies durable good monopoly without commitment under
an informationally robust objective. A seller cannot commit to future prices and
does not know the information arrival process available to a representative buyer.
We introduce a formulation whereby the seller chooses prices to maximize pro�t
against a dynamically-consistent worst-case information structure. In the gap case,
the solution to this model is payo�-equivalent to a particular known-values envi-
ronment, immediately delivering a sharp characterization of the equilibrium price
paths. Furthermore, for a large class of environments, allowing for arbitrary (pos-
sibly dynamically-inconsistent) worst-case information arrival processes would not
lower the seller’s pro�t as long as these prices are chosen. We call a price path with
this property a reinforcing solution. As other formulations of our problem introduce
dynamic-inconsistency, the notion of a reinforcing solution may be useful for re-
searchers seeking to tractably relax the commitment assumption while maintaining a
robust objective. To highlight the non-triviality of these observations, we show that
while the analogy to known values can hold under an equilibrium selection in the
no-gap case, it does not hold more generally.
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1. INTRODUCTION

�is paper adds the possibility of buyer learning to the classic durable goods monopoly environ-
ment where the seller lacks commitment to future prices. In our model, a buyer does not know
their willingness-to-pay for a seller’s product, but learns about it over time according to some
information arrival process. Meanwhile, the seller chooses prices over time, but only has the
ability to commit to a price during the period in which it is posted. �e Coase conjecture states
that, were the buyer perfectly informed of their willingness-to-pay, the monopolist should be
expected to obtain arbitrarily low levels of pro�t. Intuitively, a monopolist charging a high price
would be expected to cannibalize their future demand; as a result, a buyer anticipates future price
drops, creating an additional incentive to delay purchase. �e monopolist would respond to the
possibility of delay by lowering the price in the initial period; provided players are su�ciently
patient, this process unravels to the point where the monopolist is le� charging a price close to
the lowest possible buyer value.

It is well known that the Coase conjecture relies upon particular economically meaningful
restrictions on the seller’s environment. Our starting point is the observation that the assumption
of exogeneity of buyer information over willingness-to-pay is one of them. If the buyer does not
exactly know their value for the seller’s product, then the possibility emerges that information
might only be decision-relevant were the seller to choose certain prices. In this paper, we note that,
if the buyer’s scheme for acquiring information were necessarily known to the seller, then this
feature could completely reverse the Coase conjecture (Proposition 2). While the Coase conjecture
obtains under known values, information arrival can complicate the forces which deliver Coasian
dynamics, to the point where the main conclusions are undone. While this observation does rely
upon a particular learning process, it is not obvious a priori which constraints on information
arrival can be imposed without ruling out economically meaningful possibilities.1

Along these lines, our interest in this paper is determining whether the same conclusion holds
when the seller does not know how the buyer learns about the product. To formalize this, we
seek to adopt a worst-case objective for the seller, so that at every point in time the seller seeks
to maximize their payo� given some benchmark for the worst-case information arrival process.
Recent years have seen a �ourishing of theoretical work using robust objectives in order to describe
how mechanism designers may deal with limited understanding (or limited con�dence in their
understanding) of their relevant environment. �ese papers have shown that such concerns can
justify mechanisms much simpler than those seeking to optimize against the precise details of
1One such restriction would be to assume information is independent of prices. While a sensible assumption when
the seller only moves ones, this appears much less plausible when the seller re-optimizes in every period. It seems
natural to posit that, for instance, that buyers might pay more a�ention to the product if the seller does something
unexpected; this kind of reaction would be ruled out if we assumed information were independent of prices.
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the environment. O�en, these approaches yield a dramatic gain of tractability to the point where
certain unstudied (or understudied) applications can be formally analyzed. �e informationally
robust objective is a particular special case, where a designer (o�en a seller) maximizes payo�s
against a worst-case information structure. �e robust approach is well-suited to cases where the
uncertainty relates to the informational environment; indeed, a large part of its popularity is due
to the in�uence of the Wilson Critique, which posited that the strong epistemic assumptions made
by mechanism design have severely limited its applicability.

�e key novelty of our use of the robust approach in this se�ing arises due to the assumption
that the seller lacks commitment. Despite the growth of this �eld and many important contri-
butions, the robust approach signi�cantly lags the classical Bayesian approach in terms of how
to model commitment issues while seeking robustness. In classical mechanism design, once the
commitment assumption is relaxed, the principal and the agent engage in a game, since the agent
chooses actions anticipating that the principal may o�er a di�erent option to the agent in the
future. While these se�ings still typically require some added structure to analyze fully,2 (typically
motivated by details of an application) there nevertheless appears to be a consensus approach
about how to tackle such problems (namely, using the PBE solution concept).

It is safe to say that a similar understanding does not (yet) exist in the robust mechanism design
literature. As Carroll (2019) notes, “non-Bayesian models do face some extra hurdles…. trying
to write dynamic models with non-Bayesian decision makers leads to well-known problems of
dynamic inconsistency, except in special cases (e.g., Epstein and Schneider (2007)). �is may be one
reason why there has been relatively li�le work to date on robust mechanism design in dynamic
se�ings.” By contrast, Bergemann and Valimaki (2019) point out the importance of moving away
from strong assumptions of Bayesian mechanism design in dynamic se�ings, writing that the
literature on dynamic mechanism design has so for involved “… Bayesian solutions and relied on a
shared and common prior of all participating players. Yet, this clearly is a strong assumption and
a natural question would be to what extent weaker informational assumptions, and corresponding
solution concepts, could provide new insights into the format of dynamic mechanisms.”

�is paper makes progress toward �lling the gap outlined by Bergemann and Valimaki (2019)
in the context of durable goods sales with limited commitment. Insofar as limited commitment
mechanism design se�ings o�en require specialization to solve for optimal equilibrium policies,
there are are several reasons this is a natural �rst place to study. First, it is perhaps the most
thoroughly studied se�ing with limited commitment, and it is well-understood what forces drive

2As an example, Pavan (2017) writes: “‘�e literature on limited commitment has made important progress in recent
years…. However, this literature assumes information is static, thus abstracting from the questions at the heart of
the dynamic mechanism design literature. I expect interesting new developments to come out from combining the
two literatures.” By contrast, our paper allows for such information dynamics, albeit using a robust approach.
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the solution under the Bayesian benchmark. As one of our results shows a tight analogy between
a particular environment without information arrival or robustness concerns, we can therefore
immediately import the economic intuition from past work to provide insights in our se�ing.
Second, for durable goods pricing, we can make the comparison to the commitment case more
precisely. If seller could instead commit to their strategy, our main model coincides with the one
studied in past work, speci�cally Libgober and Mu (2021).

In this paper, we primarily focus on the gap case,3 where the Coase conjecture obtains in the
unique equilibrium in the absence of learning (but, as mentioned above, not necessarily in its
presence); we comment on the no-gap case below and more patiently in Section 5. Our �rst contri-
bution is to identify a way of specifying the robust objective under limited commitment whereby
the worst-case is dynamically-consistent; i.e., the worst-case the seller anticipates tomorrow will
still be the worst-case when tomorrow arrives. �is circumvents the hurdle identi�ed by Carroll
(2019) for our problem. Speci�cally, our �rst result considers a benchmark where the seller chooses
a price, assuming that at each point in the future, the buyer’s information structure will be chosen
to minimize the seller’s pro�t from that period on. In this approach, we take the idea of nature as a
player seriously (although we are happy to view “nature” as more of an expositional device to
explain why time-consistency is maintained in this benchmark). In this case, we show that the
equilibrium outcome essentially coincides with the unique4 equilibrium outcome in a particular
known-values environment (i.e., where the buyers know their willingness-to-pay for the product).
To see why, notice that when there is only a single period to sell, the commitment assumption
plays no role. Libgober and Mu (2021) showed that the outcome in the single period se�ing is
identical to that of a particular environment with known-values, under a transformation of the
value distribution (a process de�ned as pressing). By contrast, this paper shows that, provided the
information structure at every period is chosen to minimize the continuation payo� from that
time on, the key properties of the solution are maintained, despite some added technical details.

�is benchmark assumes that the information structure is “reoptimized” at every point in time,
just as the seller “reoptimizes” prices. �is speci�cation eliminates from consideration information
structures which would hurt the seller’s overall pro�t, if these would possibly be more favorable
to the seller in the future. To what extent is this solution plausible as a “true-worst case,” that is,
as maximizing the seller’s pro�t against all possible information arrival processes? Our second
contribution is to show that the answer to the question depends on how the seller believes the
information structure is determined. Perhaps surprisingly, despite allowing reoptimization in

3�at is, where there is a gap between the seller’s cost and the lowest possible buyer value
4Part of the reason we focus primarily on the “gap” case is to avoid conceptual di�culties which emerge when the
worst-case depends on equilibrium selection. In the no-gap case, the worst-case pro�t will not be uniquely pinned
down, since multiple payo� levels can be achieved depending on which equilibrium strategy the buyer follows.
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our main benchmark, we illustrate a sense in which the solution is a true worst-case, under
some assumptions about the prior distribution of consumer values. As perhaps anticipated by
Bergemann and Valimaki (2019), we make this point formally by studying a distinct solution
concept. Speci�cally, we introduce what we refer to as a reinforcing solution, and show that it
is o�en satis�ed by the benchmark solution outlined above. In a reinforcing solution, while
the seller may be misspeci�ed about how nature selects the buyer’s information arrival process,
this misspeci�cation cannot possibly lead them to obtaining a lower payo�. In other words, the
requirement states that, if the seller believed nature did not have commitment, then the pro�t
would not be lower against any arbitrary dynamic information arrival process.

�e su�cient condition we identify for our baseline solution to be a reinforcing one is fairly
weak and satis�ed by many natural value distributions. Roughly speaking, the requirement is
that there is not too much mass “toward the top” of the prior value distribution. In these cases, a
worse information structure may withhold information from buyers, in order to induce additional
delay. We also show that this requirement will always be satis�ed in the gap-case toward the
bo�om of the distribution; a corollary of this is the observation that, in any environment where
the purchasing threshold become concentrated around the minimum of the value distribution
(e.g., if buyers are much more patient than sellers), then our baseline model’s solution will always
be reinforcing.

We brie�y comment that the characterization might not be as sharp when there is no gap.
Under no gap and known values, the Coase conjecture need not emerge in every equilibrium. In
this paper, we further show that the added richness in equilibrium outcomes under known values
can be used to sustain other equilibria where the outcome is not analogous to any known values
environment. �is highlights the non-triviality of our results, and raises many natural questions
for follow-on work regarding which other assumptions on a designer’s problem could single out
unique (and sensible) worst-case solutions.

Nevertheless, since we do obtain unique, intuitive solutions under some economically rea-
sonable assumptions, our main message in many cases, the dynamic inconsistency for robust
limited commitment objectives issue may be less severe than originally thought—though this
should not be taken for granted. While we focus on a particular se�ing in order to obtain a sharp
characterization of the optimum (in the tradition of the literature on optimal mechanisms under
limited commitment, referenced by Pavan (2017)), we believe this solution concept could be used
elsewhere. Notice that a correctly speci�ed Bayesian decisionmaker would vacuously choose a
reinforcing solution. So, a natural question is whether other interesting mechanism design se�ings
also possess intuitive reinforcing solutions. Our hope is that by providing some clear intuition for
our baseline model’s solution, we can suggest a path forward in order to �ll this important gap
between Bayesian and robust approaches.
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1.1. Relevant Literature

�e early literature on robust mechanism design was motivated by the goal of relaxing strong
reliance on common knowledge assumptions implicit in Bayesian mechanism design (Bergemann
and Morris (2005), Chung and Ely (2007)). While these papers focused on the “known values” case
(i.e., where participants are assumed to know their values), subsequent literature considered the
case of “unknown values” case where the designer also faced uncertainty about what participants
knew about their own preferences (Bergemann et al. (2017), Du (2018), Brooks and Du (2021),
Brooks and Du (2020), Libgober and Mu (2021)).5 Ultimately, the economic motivation behind
these papers strikes us as entirely orthogonal to the issue of whether the designer has commitment
power—namely, we see no reason that a designer who faces uncertainty about the environment
should necessarily be able to commit to their mechanism, given that o�en they cannot.

Actually, this failure may be more severe than it seems at �rst blush. If anything, there is
a tension between the use of a maxmin se�ing on the one hand and a stark reliance upon the
commitment assumption on the other. One criticism of the literature on robust mechanism design
with commitment is that it is not clear how a seller would reliably obtain commitment power
without also obtaining some greater certainty in the environment.6 Despite this, as far as we are
aware, the vast literature on robust mechanism design in general and the informationally robust
objective in particular has only focused on the cases where the designer has commitment power,
and in fact mostly focused on cases where the environment is static by assumption.7 �ese papers
typically acknowledge that the maxmin assumption is quite strong, but view it as an important
step to understand the implications of other strong assumptions behind the Bayesian framework
(which, we should stress, we view as convincing). As far as we are aware, the main di�culty
in relaxing commitment relates to dynamic consistency issues with the maxmin objective, as
highlighted by Epstein and Schneider (2007), among others.

�erefore, our paper is part of an agenda that seeks to resolve conceptual issues that arise
when extending the robust framework to domains that have been productively analyzed under

5See also Lopomo et al. (2020) for a generalization of the robust framework to accommodate more “intermediate”
cases where the designer may not resolve uncertainty in the precise way as outlined in these other papers.

6Commitment is o�en justi�ed using a “repeated interactions” microfoundation; namely, if the designer broke a
commitment promise, then future participants could “punish” them by reverting to a non-commitment equilibrium
where presumably the designer would do worse. Yet in this case, presumably the designer would also have a be�er
understanding of their environment having engaged in it for a long period of time, and therefore may very well wish
to reoptimize using their be�er knowledge of the environment.

7Interestingly, while not explicitly about the robust objective, perhaps closest to this particular problem is Ravid
et al. (2020). �ey consider the case of buyer optimal information when the choice of information structure is not
observed by the seller. If information choice is observed, the buyer optimal information structure is worst-case for
the seller (Du (2018)). Relaxing the assumption that the buyer can commit to their information structure, as in Ravid
et al. (2020), is similar to relaxing the assumption that nature can commit to choices under the robust objective.

6



Bayesian objectives. �ough to the best of our knowledge we are the �rst to study relaxing
commitment, other work �ts into this larger agenda as well. Bolte and Carroll (2020) study the
problem of a principal who can choose investment in the course of interacting with an agent, and
show this provides a foundation for linear contracts, echoing an earlier result of Carroll (2015).
Ocampo Diaz and Marku (2019) also extend Carroll (2015), but this time to consider the case of
competing principals in a common agency game. Both of these papers address a similar conceptual
issue, namely how the strategic choices of the designer should interact with their corresponding
use of the maxmin objective. However, in both of these papers, the “worst-case” is only considered
once, and hence the issue of time inconsistency does not arise directly.

A less related literature considers mechanism design where agents (instead of the designers)
have non-Bayesian preferences, including the maxmin case. �e motivation of these papers is
quite di�erent from the robust mechanism design literature, however, since the concern there is
how the designer should react to the presence of non-Bayesian buyers (Wolitzky (2016), Bose and
Renou (2014), Di Tillio et al. (2017)). Some papers in this literature explicitly consider dynamic-
inconsistency issues under dynamic formulations, and demonstrate how a designer may be able
to exploit this particular feature (Bose et al. (2006), Bose and Daripa (2009)). Notice that in our
case, for similar reasons as under commitment (see Appendix F of Libgober and Mu (2021)), the
“Bayesian agent” case is worst-case for the seller (at least under some forms of ambiguity aversion).

Lastly, we mention that recent work has considered the sensitivity of the Coase conjecture to
the presence of information arrival (though as highlighted by Pavan (2017), this seems relatively
unexplored in other limited commitment se�ings). �e key conclusions from the literature on
the Coase conjecture with known values are outlined in Ausubel et al. (2002). Under somewhat
restrictive assumptions on either the type distribution or the learning process, Duraj (2020), Laiho
and Salmi (2020) and Lomys (2018) consider how the conclusion of the Coase conjecture may
be in�uenced by the presence of learning. �e reason departures might emerge is that learning
can change the direction and magnitude of selection pressures, both of which are crucial for the
Coasian dynamics to emerge (see Tirole (2016)). We show that such forces are essentially absent
in the robust case—at least, in the gap case, and in at least one equilibrium in the no-gap case.

2. MODEL

A seller of a durable good interacts with a buyer in discrete time until some terminal date T , where
T ≤ ∞, though we will handle the case of T =∞ and T <∞ separately. �e buyer can purchase
the good at any time t = 1, . . . , T . �e buyer’s value v is drawn from a continuous distribution F
which the buyer and seller commonly know. However, the buyer does not know v and instead
learns about it over time—our assumptions on how the buyer learns is described in Section 2.1.

7



Our main focus in this paper is on the “gap” case, where the cost of producing the good is 0 for
the seller, and the support of F is bounded away from 0. We comment on the no-gap case only in
Section 5.

Within a period t, the seller chooses a price pt ∈ R+, a�er which the buyer decides whether
to purchase or not. �e seller does not have commitment—while she is able to choose the price at
which the buyer would purchase at time t, she cannot commit to prices o�ered in future periods.

2.1. Information Structures

In every period before deciding whether to purchase the object or not, the buyer receives informa-
tion about her value for it. Speci�cally, at time t, prior to the deciding whether to purchase the
object, the buyer observes a signal st ∈ St which is drawn according to an information structure
It(st−1) : V → ∆(St). We emphasize that the signal at time t can depend upon the signal history
up until time t. �roughout the paper, we assume that It is observed by the buyer. We let I
denote the space of all possible (static) information structures, and we let It denote the space of
sequences of information structures between time 1 and time t.

2.2. Strategies, Payo�s and Equilibrium

A major conceptual di�culty with our exercise is that we seek to use the robust objective when
the seller does not have commitment. Such a formulation is known to be somewhat elusive, as the
worst information structure for the seller at some future time may di�er from the worst case when
that time arrives (i.e., the worst-case may be dynamically inconsistent under maxmin preferences).

To address this, we consider the case where we treat the information structure as chosen
by an adversarial nature. Such an interpretation is common from the robust mechanism design
literature; in our case, it is useful in that it forces the seller to have a dynamically consistent view
of the buyer’s information. Speci�cally, we posit that the information structure is determined
according to the following game:

• Within each period, the seller �rst chooses the price to be charged in that period, pt. In
principle, the seller can choose a randomization over pt, say γt ∈ ∆(R+) but the realization
of this randomization will be known to nature prior to its choice.

• Next, an adversarial nature chooses an information structure It for that period (so that
information in a given period may depend on the price in that period). We assume this
information structure is observed both by the seller and the buyer.

• �e buyer decides whether to purchase in that period, given the signal observed and the
equilibrium strategies being used by the seller and nature. Let σst−1,It : St → ∆{0, 1}
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denote the buyer’s strategy (i.e., a probability of purchase as a function of time t signal) if
the information structure sequence up until time t has been I t ∈ It and the signal sequence
prior to time t has been st−1 ∈ St−1.

Payo�s in period t are discounted by a factor of δt−s relative to payo�s in period s. In any
period where the buyer does not buy, the payo�s are 0. If the buyer does buy in period t at price
pt, then the time 1 utility obtained by the seller is δt−1pt (and nature’s utility is therefore −δt−1pt).
�e buyer’s payo� from purchasing in period t is E[v − pt | I1, s1, . . . , It, st].

To summarize, the buyer’s strategy must be such that if σst−1,It(st) = 1, then:

E[v − pt | I1, s1, . . . , It, st] ≥ E
[

max
τ :t<τ≤T

δτE[v − pτ | I1, s1, . . . , Iτ , sτ ]
]
.

whereas if σst−1,It(st) = 0 then this inequality is �ipped. If the buyer purchases at some time s at
a price of ps, then from the perspective of time t < s the seller obtains payo� δs−tps. �e seller
therefore chooses the time t price, as a function of p1, . . . , pt−1 alone, to maximize:

ptP[σst−1,It(st) = 1 | p1, . . . , pt, σ] +
T∑

k=t+1

δk−t+1Epk∼γk[pkP[σsk−1,Ik(sk) = 1 | p1, . . . , pk] (1)

By contrast, at each time t, nature chooses the information structure to maximize:

−ptP[σst−1,It(st) = 1 | p1, . . . , pt, σ]−
T∑

k=t+1

δk−t+1Epk∼γk[pkP[σsk−1,Ik(sk) = 1 | p1, . . . , pk], (2)

i.e., the negative of (1). Note that, even though nature maximizes the negative of the seller’s payo�
(and visa versa), since this is a three player interaction (due to the presence of the buyer), strictly
speaking this is not a zero-sum game.

2.3. Discussion

Our explicit use of “nature” as a player is primarily expositional device to explain why one might
expect dynamic- consistency of the information structure to be maintained. In subgame perfect
equilibrium, actions are required to maximize payo�s, given that future actions are determined
according to the equilibrium pro�le (and in turn, these actions must satisfy the same requirements).
�us, when a player chooses an action, they do so (correctly) anticipating future actions, and do
not change their conjecture of future actions when the future arrives. By framing the information
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structure choice as emerging from a game, we seek to highlight that this consistency is maintained.
By contrast, in single-agent problems under a maxmin objective, generally it is possible for some
action to be taken anticipating a future worst-case which would not actually be worst-case when
the future arrives. �is possibility we rule out in our model, though we will discuss the role of it
again in our analysis.

Our assumption that the seller observes nature’s choice re�ects a strong pessimism that the
information structure is actually chosen in order to minimize the seller’s pro�t. Note that when
this choice is observed, nature always has the option of choosing the information structure
they would have picked were it not observed. �erefore, the choice of making the information
structure observable re�ects one of the subtleties of specifying the robust objective under limited
commitment. �is re�ects a high degree of con�dence in pessimism from the seller. An interesting
question, which we address in part by studying reinforcing solutions below, is whether the
assumption of pessimism would change the outcomes that one might expect to emerge.

One issue that emerges more generally in dynamic models under a robust objective is how the
timing of nature’s moves interactions with the individual seeking robustness. While we allow the
seller to randomize the price in every period, we also allow the information structure in a given
period to depend on that price. Our view is that this is the most natural benchmark given the focus
on limited commitment. �e reason is that with limited commitment, the seller seeks robustness
at every time. �erefore, it is natural to think that the information the seller is concerned about
at time 10 may depend on their actions at time 5, immediately imposing at least some degree of
dependence of information on the price. Furthermore, to assume that the information structure
did not react to the seller’s choice in that period would imply, for instance, that information could
not react to a deviation for the seller. But it is easy to imagine that consumers might receive
some di�erent information if a seller acts unexpectedly. �erefore, while alternatives may be
interesting, our view is that this timing protocol is particularly natural for a durable goods seller
under limited commitment (more so than in the case of commitment, where—in contrast to this
paper—the seller’s actions are necessarily before any moves of nature).

A natural question relates to the solution to this model if the seller could commit to their
choice of strategy at time 1, instead of having to reoptimize their choice at every time given the
history of actions. �is problem was solved in Libgober and Mu (2021), which showed the optimal
selling strategy is a constant price path.8 More precisely, that paper identi�ed a known-values
environment which would deliver an identical pricing strategy as optimal. Despite the similarity,

8If the seller commits to a pricing strategy, then whether nature has commitment does not change the solution
whenever a constant price path emerges. �e reason is that in those cases, it turns out the worst-case involves all
information being revealed in the initial period. So, if the buyer does not buy immediately, then she never will and
hence nature could not gain by changing their actions in future periods.
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the conceptual di�culties are essentially orthogonal to those studied here. For one, a major
technical concern in that paper was the fact that with commitment, one might worry about the
ability for the seller to randomize, even though such randomizations would never be necessary in
a known-values model. Here, the fact that nature picks the information structure every period
immediately shuts down any gains to randomization in any future period. On the other hand, in
that paper the determination of the information structure was signi�cantly more straightforward,
in part since nature makes one choice and in part because the worst-case information structure is
dramatically simpler against constant price paths. On the other hand, the distinction between the
exercises disappears in the special case where T = 1.

3. SOLUTION TO THE BASELINE MODEL

We now proceed to solve the previous model.9 Note that in the T = 1 case, the issue of non-
commitment does not arise, and the solution is exactly as articulated in Libgober and Mu (2021).
Intuitively, one can use results from Bayesian persuasion to show that the worst-case information
structure takes a partitional form, where the partition depends on the price charged by the seller.
Using the mapping between prices and thresholds, one can then derive a value distribution which,
under an assumption of known values, gives an identical solution to the seller’s problem. We
review the de�nition of this corresponding value distribution, dubbed the pressed-distribution:

De�nition 1 (From Libgober and Mu (2021)). Given a continuous distribution F , its “pressed
version” G is another distribution de�ned as follows. For y > v, let L(y) = E[v | v ≤ y] denote the
expected value (under F ) conditional on the value not exceeding y. �en G(·) = F (L−1(·)) is the
distribution of L(y) when y is drawn according to F .

Now, Libgober and Mu (2021) also showed by example that one should generally not expect
the pressed distribution to characterize the seller’s problem if a declining price path were used.
�e reason is that some information structures may lower the seller’s pro�t by revealing more
information to the buyer. �us, in dynamic environments, it is not immediately clear that one can
say that the seller’s problem is “as-if known values under the pressed distribution.” While that
paper does feature constant price paths as delivering the optimum, this feature should decidedly
not be the case here given that we are focused on the noncommitment case (where prices decline).

Our �rst result shows that those information structures are dynamically-inconsistent, in that
they rely upon giving the buyer more information than the worst-case at later times. If one forces
9We brie�y mention that the same results apply in the no-gap case with a �nite horizon, though as is well-known
under known values, the �nite horizon assumption is more restrictive in the no-gap case than the gap case. See
Section 5 for more on the no-gap case.
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those information structures to also minimize the seller’s pro�t from that time on, then we again
recover the tight analogy:

�eorem 1. When T <∞, equilibrium payo�s in the baseline game are unique. Furthermore, an
equilibrium is given by the following:

• �e information structure is partitional.

• �e prices the seller charges coincide with the prices charged when the buyer’s value is drawn
according to the pressed version of F , and where the buyer knows his value.

�e intuition behind this result is as follows. At every time, nature chooses information
to minimize the seller’s total discounted payo� from that time on. Given this, in adjusting the
threshold, nature knows that the next period choice of threshold depends only on the price the
seller is expected to charge in that period. As a result, a small change in the threshold today
would have no change in the threshold in the future, meaning that the optimal choice is simply
to minimize the seller’s expected pro�t from that period on. Note that a technical issue is that
there may be multiple equilibria, as di�erent information structure choices of nature might induce
identical behavior from the buyer, as a function of the buyer’s true value. However, we show that
this possibility does not change the conclusion of the result.

�e key property of this result is that the worst-case is time consistent. In the last period,
say period T , the worst-case information structure involves a price-dependent threshold. In
the next-to-last period, the equilibrium determines what the last period price should be. �e
seller anticipates that the worst-case information will be of a threshold form, with the threshold
depending on this (anticipated) price. Crucially, the worst-case for IT is both the worst case when
period T begins, as well as at any t < T . �is same reasoning applies to earlier information
structures as well, although the thresholds for these information structures will depend on the
value at which the buyer would be indi�erent between purchasing and not, instead of the price.

Due to our focus on the gap case, we can also show the following:

Proposition 1. Suppose the distribution F involves v > 0 and satis�es the Lipschitz condition of
�eorem 4 of Ausubel et al. (2002).10 When T =∞, there exists some �nite period T̂ such that the
market clears by T̂ ; therefore, the same conclusion from �eorem 1 holds when T =∞.

�is result uses the fact that the equilibrium outcome under known values features a �nite
horizon. In our problem, if the outcome were that of �eorem 1, then we would have the same
10In our notation, this requires that

F−1(q)− v ≤ Lq,

for some L and all q ∈ [0, 1].
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objective de�ning the seller’s objective. �e di�cult part is showing that this is in fact all that can
happen. �at the seller has no pro�table deviation, if information is chosen to minimize their total
discounted payo� at every period, is fairly straightforward, since this is true under known-values,
and hence true even if nature only uses partitional information arrival processes. �e argument
for nature is that, for any candidate equilibrium information structure, the best-case reaction
from buyers for the seller would be to assume no further information were received. �erefore, to
derive an upper bound on the seller’s equilibrium pro�t (i.e., ask “how badly can nature possibly
do?”), it is enough to assume that this is the inference the buyer would make following a deviation
of nature. �us, the highest pro�t the seller could obtain in a given period does not necessarily
depend on future information structure choices, allowing us to derive an upper bound on the
equilibrium pro�t. Noting that this coincides with the value function assuming the partitional
equilibrium, we then conclude the worst-case information structure is again essentially unique
(i.e., induces a unique response from the buyer).

�eorem 1 and Proposition 1 provide a sharp characterization of the equilibrium payo�s.
�e reason the outcome is not unique is due to the possibility that nature provides some richer
information structure to the buyers, which nevertheless induces the same behavior. However,
the result allows us to provide some sharp descriptions of the outcome in the worst-case. �is
sharpness should not be taken for granted. �e proof of Proposition 1 uses the result that under
known values, there are a �nite number of periods a�er which the market clears (stated in Ausubel
et al. (2002)). �is need not hold for an arbitrary (non-worst case) information arrival process.
�e issue more generally is that information arrival in principle can generate a gap between the
seller’s “on-path” payo� and the “o�-path” punishment payo�. �e existence of such a gap drives,
for instance, the folk theorem of Ausubel and Deneckere (1989). �is contrasts with stationary
equilibria, such as the one in �eorem 1, where even o�-path the strategy only depends on the
size of the remaining market. As an example, consider the following proposition, which stands in
stark contrast to the equilibrium outcomes in the known-values model:

Proposition 2. Fix F , δ and T . Suppose the equilibrium outcome under known values with distri-
bution F does not involve the market clearing at time 1. �en there exists an information structure,
optimal stopping time for the buyer and equilibrium price path for the seller such that:

• �e seller uses a constant price path.

• �e seller obtains continuation value of v∗ at every point in time, where v∗ is less than EF [v]

but larger than the minimax pro�t from �eorem 1 given any time horizon k ≤ T .

• �e market does not clear in any �nite time.
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�e clearest failure of Coasian forces identi�ed in the previous Proposition is the impossibility
of bound the time at which the market will clear over the set of all information structures. �e
other two could arguably be obtained under speci�c known-values environments, where the
market clears at time 1. By contrast, a key result from the known-values gap case is that such
a uniform time at which the market clears can be found, under general conditions. Even in the
no-gap case, we are not aware of any model which delivers the market failing to clear in �nite time
and the seller using a constant price path, which the equilibrium constructed in 2 features. We
therefore view this proposition as a proof of concept, illustrating the di�culty of deriving analogies
between the Coasian known-values se�ings and those with information arrival in full generality.
�is observation highlights our claim that the robust approach is appealing in that it maintains
analogies to the known-values case, and that certain conclusions should not immediately be taken
for granted when seeking to accommodate information arrival into the Coasian se�ing without
this approach.

Looking ahead, it turns out that when there is no gap, such equilibria may emerge even in our
baseline model (though restricting buyer behavior to minimize seller pro�t would rule them out).
As a result, the analogy to known-values requires the no-gap assumption. �is contrasts with the
case where the seller has commitment, where no such quali�ers emerge.

4. RICHER NATURE COMMITMENT

�eorem 1 provides a striking characterization of the solution to the baseline model—it coincides
with a certain known-values environment, which was previously identi�ed in the commitment
version of the same model. We have therefore identi�ed an environment where the value of
commitment under an informationally robust objective can be determined from the value of
commitment under known values.

A natural question this raises is whether this is in fact a “true-worst case.” To be more precise,
note that our game features a timing protocol whereby the seller moves �rst in each period, and
nature then responds. It is possible that, were nature able to pick their strategy before playing the
game (so that the need to best reply to the seller were eliminated), the seller could be forced to an
even lower pro�t. Can dropping the incentive constraints of nature hurt the seller even more?

�ere is a special case where it cannot, which is when the solution to the previous model
involves p2 = v; that is, where the seller clears the market at time 2. �is is straightforward to
show—in this case, nature’s choice does not in�uence behavior at time 2, and so its problem is
essentially static. In this case, the problem of nature is essentially a Bayesian Persuasion problem,
and in the environment we study the worst-case is known to take a threshold form, where the
threshold is chosen so that a buyer who does not purchase is indi�erent between actions.
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More generally, the answer turns out to depend on what we assume about the seller’s view of
nature. Suppose we were to assume that the seller knew nature had such commitment power, and
therefore chose their strategy to best respond to this (commi�ed to) information arrival process.
�e theorem below shows that there does exist an information arrival process which delivers a
lower pro�t.

�eorem 2. Suppose the equilibrium outcome in �eorem 1 does not involve purchase by time 2 with
probability 1. �en there exists an information arrival process and sequential equilibrium such that
the seller obtains a lower expected pro�t than in the unique equilibrium outlined in �eorem 1.

�e following example illustrates:

Example 1. Suppose T = 2 and v ∼ U [0, 2]. Note that this implies the pressed distribution is
U [0, 1]. We can therefore compute (see the Appendix for details) that the equilibrium to the baseline
model involves the following as the solution for prices p1, p2 and seller pro�t, say π, as:

p1 =
(2− δ)2

8− 6δ
, p2 =

(2− δ)
8− 6δ

, π =
(2− δ)2

4(4− 3δ)
.

Moving back to the nature’s original problem, the information structure that nature chooses tells the
buyer at time 2 whether v is above or below 2p2; since, at time 1, a buyer with value 2p2 would be
indi�erent between purchasing and not, the time 1 threshold informs the buyer whether or not the
value is above or below 4p2.

We now exhibit the information structure which holds the seller down to a lower pro�t. Let π∗(ṽ)

denote the seller’s pro�t as a function of the �rst period threshold ṽ, above which consumers learn
their true value and purchase (i.e., ṽ is not the indi�erent value, but the partition threshold). Consider
the following second period outcome:

• In the second period, following any �rst period history, the seller charges price π∗(ṽ), nature
provides no information, and the buyer purchases.

• If the seller deviates in the second period, nature uses the worst-case partitional threshold.

By construction, the seller has no (strictly) pro�table second period deviation, no ma�er what
the �rst period price is. Furthermore, note that, since π∗(ṽ) < E[v | v < ṽ], the buyer is willing to
follow this strategy as well. �e calculation of the resulting optimal �rst period price is now similar
to the previous case. �e di�erence is in the calculation of the indi�erent value in the �rst period,
since the buyer now obtains additional surplus from delay. We can show that if nature were to choose
an information structure of this form, then the seller could prevent all sale in the �rst period when
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Figure 1: Comparison of seller pro�t between equilibrium of the baseline model vs. �eorem 2,
for Example 1

δ ≥ 4/5 (and in this case, the seller’s expected pro�t is δ/4, since the expected pro�t from the one
period problem is 1/4); otherwise, the seller’s pro�t is:

(4− 3δ)2

64(1− δ)
.

Figure 1 plots, as a function of δ, the pro�t the seller obtains in the equilibrium of the baseline
model (blue line) to the pro�t the seller obtains in the equilibrium under this di�erent information
structure (orange line). We have that this is uniformly lower, except for when δ = 0 and when δ = 1,
in which case the seller’s problem is essentially static (with only the �rst period ma�ering in the
former case and all sale happening in the second period in the la�er case).

�e�eorem essentially generalizes the example to any se�ing where the market does not
clear at time 2. �e key point is that the solution to the baseline model leaves additional scope
to transfer surplus to the buyer in order to induce additional delay. In the information structure
nature chooses, the seller obtains the exact same continuation pro�t as in the baseline model, but
the ine�ciency entailed disappears. Instead, the buyer obtains more surplus, which makes them
more willing to delay, thus hurting the seller’s pro�t.

�is result suggests that perhaps the solution to the previous model is not a “true worst-case.”
However, one criticism of the benchmark where nature has full commitment is that it requires
extreme con�dence from the seller regarding nature’s choice of information structure. It seems
reasonable to ask where this con�dence would come from.

To analyze this question, we consider the following criterion on price paths:

De�nition 2. An optimal pricing strategy from the baseline model is a reinforcing solution if the
seller’s anticipated equilibrium pro�t is equal to the worst-case pro�t guarantee over the set of all
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dynamic information arrival process.

We are not aware of any similar concept being studied elsewhere in the robust mechanism
design literature, though we view it as very natural. To maintain focus, we only de�ne reinforcing
solutions for the model at hand, though it seems straightforward to extend this to other robust
objectives in dynamic se�ings with limited commitment. �is de�nition re�ects some misspeci�-
cation about the commitment power of nature. In a reinforcing solution, even though nature may
have more commitment power, this extra commitment cannot hurt the seller. �e seller’s pro�t is
unchanged, even if nature has more commitment power.

In our exercise, we �nd reinforcing solutions intuitively appealing as the solution to the
following exercise:

• A seller chooses a model of how buyers learn about their values, doing so in an optimistic
way in order to maximize their own pro�ts.

• Upon making this choice, however, the seller becomes pessimistic and reconsiders; the worry
is that perhaps they were wrong, and they also lack con�dence in their understanding of the
environment. �erefore, the seller would abandon a model if there were some information
arrival process the buyer could have which would deliver lower expected pro�t for the
seller.

A reinforcing solution—and in particular, the one we highlight—resolves the “optimism–pessimism”
tradeo� highlighted by this thought experiment. An optimistic seller may assume an information
structure that delivers high pro�ts, but would reconsider this given their lack of understanding of
the environment. By contrast, an overly pessimistic seller may doubt their reasons for being so
pessimistic. If a price path satis�es the reinforcing criterion, a seller may think that they might as
well use it, and can then rest assured that their pro�t guarantee would not change if in fact they
were wrong—no ma�er how pessimistic they are.

�e condition we need for the solution we highlighted to be a reinforcing one is the following:

De�nition 3. We say that a distribution F satis�es pressed-ratio monotonicity if v
F−1(G(v))

is
weakly decreasing in v.

�is assumption is satis�ed for many distributions (for instance, all uniform distributions). Intu-
itively, the de�nition rules out cases where too much of the distribution is located at the top of
the distribution (see also Proposition 3). In this case, a small increase threshold used in order to
induce the buyer to delay leads to a larger change in the expectation of E[v | v ≤ y].

Under the assumption of pressed-ratio monotonicity, we can show the following:
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�eorem 3. Suppose the value distribution satis�es pressed-ratio monotonicity. �en the equilibrium
outcome in �eorem 1 is a reinforcing solution—that is, if the seller uses the outlined strategy, then
there is no information arrival process which leads to lower expected payo� for the seller.

�e �eorem explicitly solves for nature’s information structure under the assumption of
pressed-ratio monotonicity, and shows that this involves the same information structure choice
as in �eorem 1. �e �rst step to prove this theorem is to note that the worst-case information
structure is partitional. One may expect that this means the result is immediate; however, this is
incorrect, as Libgober and Mu (2021) showed via example that this property does not imply the
worst-case information structure is the one identi�ed in�eorem 1. �at is, nature’s optimal choice
of information structure against a given price path may involve the buyer strictly preferring to
delay purchase. Even when restricting to partitional information structures, nature’s optimization
problem still involves a non-trivial choice of a threshold for each time period, subject to satisfying
the obedience conditions of the buyer.

We get around this issue by identifying a particular adjustment of the partition thresholds
which leads to a decrease in pro�t whenever some threshold does not induce exact indi�erence
when given the recommendation to not buy. While lowering the threshold induces more sale in that
period, we require nature to adjust the previous period’s threshold so that the buyer’s indi�erence
condition is maintained. In the Appendix, we verify that under pressed-ratio monotonicity, this
will always lead to a loss of pro�t for the seller.

While the pressed-ratio monotonicity condition appears restrictive, we note that it will always
hold in some neighborhood of the lower bound of the value distribution:

Proposition 3. For any continuous distribution v ∼ f in the gap case, there exists some y∗ > v

such that the distribution of v conditional on being less than y∗ satis�es pressed-ratio monotonicity.

As a corollary of this proposition, all equilibria are reinforcing solutions if the initial threshold is
su�ciently close to v. Alternatively, the equilibria are eventually reinforcing (i.e., a�er su�ciently
many periods) if the threshold values approach v, which happens whenever price discrimination
becomes su�ciently �ne in the limit as δ → 1.

5. THE NO-GAP CASE

Our analysis so far has assumed that v > 0, which past work has shown is a key assumption to
deliver the Coase conjecture under known values. We note that, in the case of a �nite horizon,
identical results apply to the no-gap case as well. However, with an in�nite horizon, the story
is di�erent. On the one hand, Ausubel and Deneckere (1989) show that in the no-gap case, an
equilibrium exists ensuring that the monopolist obtains arbitrarily low levels of pro�t as the time
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between o�ers shrinks to 0. �ough trade does not end in �nite time (since values being arbitrarily
close to 0 means that, as long as the monopolist does not charge 0, the market is not cleared), this
equilibrium is otherwise Coasian, as the market anticipates that the monopolist will cannibalize
future demand. Using this equilibrium, however, they are able to derive a folk theorem which
ensures that the monopolist obtains a pro�t level very close to what would be obtained under
commitment. �e idea is simple: A monopolist is deterred from lowering prices too much, at
every point in time, via a punishment which reverts to the Coasian equilibrium where pro�t levels
are arbitrarily low.

�e lack of a gap does not change the construction of a worst-case equilibrium given a declining
price path. �erefore, we can obtain the same analogy to the known-values case, and obtain a
similar kind of folk theorem as in Ausubel and Deneckere (1989). However, in light of Proposition
2, one may wonder whether new kinds of equilibria, fundamentally di�erent from those under
known values, might arise in the no-gap case. As we have emphasized, when there is a gap, there
is essentially no di�erence.

However, since the folk theorem of Ausubel and Deneckere (1989) shows a range of possible
outcomes for the seller, we can use their constructions to not only discipline the behavior of
the seller, but nature as well. In this context, not only does this enable the possibility of an
indeterminacy in the seller’s payo�, but also that the corresponding outcome may be qualitatively
di�erent from any equilibrium under known values, thus also dramatically breaking the analogy
between the two se�ings.

Proposition 4. Suppose v = 0, and that the distributions F and G satisfy De�nition 5.1 of Ausubel
and Deneckere (1989). �en the information structure from Proposition 2 can emerge as an equilibrium
outcome.

�e proposition is noteworthy because not only does it demonstrate that in the gap case we
may have a failure of the Coase conjecture, but also a failure of the analogy to known-values. �e
equilibrium described in Proposition 2 is unlike any that can emerge under known (and constant)
values, since (a) the buyer obtains zero surplus and yet (b) the market never clears. It is worth
noting that subtleties such as these fail to emerge in the commitment case. �ere, the uniqueness is
much more immediate, since the seller essentially faces a decision problem, only taking an action
once before anyone else. However, the fact that the limited commitment se�ing is necessarily a
game means such uniqueness can no longer be taken for granted; and indeed, once uniqueness
fails, so too might the analogy to known values.

Of course, if the equilibrium selection were chosen to minimize the seller’s pro�t, then these
issues would not arise and the equilibrium would still feature Coasian dynamics. Nevertheless, it
is worth noting that in our se�ing, whether the equilibrium is chosen to minimize or maximize
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the seller’s pro�t plays a role, as static se�ings (where some form of the minmax theorem typically
holds) do not feature such dramatic discontinuities (see Brooks and Du (2020)).11

6. CONCLUSION

�is paper has grappled with the possibility of a dynamically-inconsistent worst-case inherent in
the robust approach applied to limited commitment se�ings. We felt our particular environment is
a natural laboratory for this exercise, for various reasons; �rst, since the commitment benchmark
was already solved; second, since the literature behind the Coase problem is well-explored and we
were able to appeal to a wealth of intuition behind the key forces driving equilibria; and third,
because the need to accommodate information arrival into these se�ings is recognized, given the
past work on this and related topics.

We hope this paper has provided a template which can be used to extend the reach of the
robust approach in order to obtain more insights about how limited con�dence in a designer’s
understanding of an environment may in�uence their choices. On the one hand, our “as-if known
values” solution in �eorem 1 seems aesthetically appealing, and appears about as simple as one
could hope for as a complete equilibrium description in such se�ings. On the other hand, a priori
it may appear at odds with our motivation of using the robust objective, since in order to obtain
time-consistency we are forced to move away from allowing the seller to be concerned with
all possible information arrival process. Nevertheless, this criticism, perhaps surprisingly, o�en
turns out to have no bite. By introducing the notion of a reinforcing solution, we hope that other
researchers may similarly be inspired to seek for tractable, intuitive solutions to se�ings with
limited commitment, and can plausibly argue that they do not sacri�ce anything signi�cant behind
the motivation behind their adoption of the robust approach in the �rst place. At the same time,
our analysis of the no-gap case suggests there are signi�cant subtleties involved with maintaining a
unique outcome under the limited commitment approach. �e lack of such uniqueness means that
the analogy to the known-values case, which necessarily emerges under commitment, requires
added assumptions in order to deliver. A natural question is what kinds of re�nements might
eliminate the possible multiplicity issues and derive intuitive solutions. Compelling solutions
would help bridge the signi�cant gap between the robust and Bayesian approaches to mechanism
design in the ability to speak to questions of limited commitment.

11Note that, since information is speci�ed to depend on the price in the single-period model, the outcome does not
depend on if the seller moves �rst or nature moves �rst, provided this “richer” action space for nature is still allowed.
Without this added richness, randomization may be necessary.
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A. PROOFS FOR SECTION 3

Proof of �eorem 1. To analyze this game, we �rst note that the buyer’s problem is relatively
simple. Since the buyer’s decision has no e�ect on future prices and information (which are
anyways conditional on her not purchasing), she faces an optimal stopping problem given any
history.

Using the fact that we have a �nite horizon, we can then turn to nature’s problem and apply
backwards induction. In the �nal period, given (pt)

T−1
t=1 , (It)T−1t=1 , nature chooses an information

structure IT : V × ST−1 → ∆(ST ) to minimize the seller’s pro�t. Our �rst goal below is to show
that IT can be taken to be the worst-case threshold information structure for p2, without a�ecting
the equilibrium outcome.

Let s = (s1, . . . , sT−1) be a generic signal history up until time T . Each signal history induces
a posterior distribution of v, denoted Fs. First suppose s is such that the buyer does not purchase
before the �nal period, according to the equilibrium strategy (given the price history and history
of information structure, as well as the expectations of the �nal period prices and information).
�en sequential rationality requires nature to minimize pro�t from this buyer type in the �nal
period, implying that IT (s) must be a worst-case information structure for the distribution Fs
and price pT . Denote the minimum value in Fs by vs, and its expected value by E[Fs]. �ere are
three cases:

1. If pT < vs or pT > E[Fs], nature’s problem is trivial and it is without loss to assume nature
provides no information in period T .

2. If pT ∈ (vs, E[Fs]], then for each ε > 0, nature could reveal the worst-case threshold for
pT − ε. �is would lead to pro�t pT · (1− Gs(pT − ε)) in period T , so equilibrium pro�t
must be bounded above by pT · (1−Gs(pT )) by taking ε→ 0 (note that G is continuous at
pT when pT > vs). On the other hand, we know that equilibrium pro�t cannot be lower
regardless of what nature and buyer do. Hence we can without loss assume that nature
provides the worst-case threshold information structure for pT , and that the buyer breaks
indi�erence against the seller.

3. �e remaining possibility is pT = vs. If Fs does not have a mass point at its lowest value,
then the same argument applies sinceGs is still continuous at pT . But if Fs has a mass point
ofm = Gs(pT ) at pT , then any pro�t level in the interval [pT (1−m), pT ] may be supported
in equilibrium, depending on how the buyer breaks ties.12 In this case it is without loss to

12For now we ignore the seller’s optimization in the �nal period, and whether nature would induce such a distribution
Fs in period 1. �ese considerations may imply that such a scenario only occurs o�-path.
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assume that nature reveals whether v = pT or not, and that the buyer breaks indi�erence in
some way. Note that in this case, the seller’s pro�t is hemicontinuous in pT ; as there is a set
of possible pro�t levels at pT = vs, and a unique (and continuous) pro�t level at pT < vs
and pT > vs.

Suppose instead that the signal realization s is such that the buyer purchases before the �nal
period. In this case, we may assume nature uses the worst-case threshold information structure
in the last period, which minimizes the buyer’s option value (since the buyer is made indi�erent
between purchasing and not according to this information structure), and ensures that the buyer
still purchases before the �nal period.

We now suppose that we have shown that nature will use a partitional information structure
for all periods a�er the �rst period. We We now turn to nature’s decision in period 1, showing
that nature will again seek to do this in the �rst period. Given any price p1 in period 1, nature
expects the possibly random price p2 = p̂2(p1) in period 2. De�ne the binding cuto�s w1, w2 by

w1 − p1 = δ · E
[
(w1 − p2)+

]
;

w2 = min{w1, p2}.

First note that given the previous analysis, nature’s information choice in period 2 leaves the
buyer with the same surplus as if no information were provided in that period. Knowing this, the
buyer’s purchase decision in period 1 depends entirely on whether E[Fs1 ] is bigger or smaller
than w1. For now, ties may be broken arbitrarily when indi�erent, although we will see shortly
that equilibrium requires breaking ties against the seller.

Note that, by assumption, the prior distribution F is continuous, and therefore does not
have a mass point at its lowest value. We will show that nature’s choice of I1 must be outcome-
equivalent to the worst-case threshold information structure for w1, and that the buyer must break
indi�erence against the seller. On the one hand, for each ε > 0 nature could provide the threshold
information structure for w1 − ε. Given what happens in period 2, and taking ε su�ciently small
so that this does not in�uence the decision at any time a�er the second period, this would lead to
total pro�t

p1(1−G(w1− ε))+δ ·E[p2 · (G(w1− ε)−G(w2))
+]+

T−2∑
s=0

δ2ps+2E[ps+2 · (G(ws+1)−G(ws+2)
+)]

Le�ing ε → 0, we know that equilibrium pro�t following the price p1 satis�es (taking the
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convention that G(w0) = 1:

Π ≤
T∑
t=0

pt+1δ
tE[pt(G(wt)−G(wt+1))].

On the other hand, we will show that the right hand side of this expression is also a lower
bound for pro�t, for any choice of I1 and any tie-breaking rule. Indeed, if w1 ≤ v then every type
of the buyer purchases in period 1, and the result holds. Suppose w1 > v, we �rst show that
every realization of p2 satis�es p2 ≤ w1. Recall that in period 2, any buyer who remains has
expected value at most w1. Knowing this, a price greater than w1 leads to zero pro�t for the seller
in period 2. �is can only be optimal if the seller expects nature’s equilibrium choice of Î1 to
clear the market in period 1. We claim that this cannot occur in equilibrium. Indeed, instead of
making everybody purchase, nature could reveal whether v ∈ [v, w1), making this interval of
buyers delay until period 2. �e e�ect on pro�t is a loss of p1 in period 1, and a gain of at most
δ · P(p2 < w1) · E[p2 | p2 < w1] in period 2, since these buyers purchase at p2 only if p2 < w1.
From the de�nition of w1 above, we have

w1 − p1 = δ · P(p2 < w1) · E[w1 − p2 | p2 < w1].

Rearranging yields p1 − δ · P(p2 < w1) · E[p2 | p2 < w1] = w1 − δ · P(p2 < w1) · w1 > 0. Hence
this deviation would lower the seller’s pro�t.

Now that we know p2 ≤ w1 almost surely, the de�nition of w1 further gives w1 − p1 =

δ · E[w1 − p2]. It follows that
p1 > δ · E[p2],

which will be useful below.
We claim that in order to minimize the seller’s pro�t, the buyer should break ties against the

seller. Indeed, the e�ect of delay on pro�t is a loss of p1 in period 1, and a gain of at most δ · E[p2]

in period 2, resulting in a net decrease in pro�t. Next, it is without to assume nature provides only
two signal realizations s1 and s1, which lead to buyer expected values> w1 and≤ w1, respectively.
�is is because any extra information in period 1 that does not change the buyer’s action can be
deferred to period 2. Moreover, s1 occurs with positive probability, since otherwise the market is
cleared in period 1, in which case nature could deviate to lower the seller’s pro�t as shown above.

Additionally, if s1 also occurs with positive probability, then s1 must lead to expected value
exactly w1. Otherwise, nature could mix a small fraction of s1 with s1, making this fraction of s1
no longer purchase in period 1. Suppose also that in period 2 nature separates this fraction of s1
from the s1 buyers and reveal the worst-case threshold for each group (which may not be optimal
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in period 2, but allows for easy comparison of pro�t). �en even if the fraction of s1 buyers always
purchases in period 2, the pro�t gain is bounded above by δ · E[p2]. �is is less than p1, proving
that the deviation would be pro�table.

We can now show that the seller’s pro�t is minimized when nature reveals the worst-case
threshold forw1 (and the buyer breaks indi�erence against the seller). Ifw1 ≥ E[v], then whenever
s1 occurs the other signal s1 must lead to expected value less than w1. �is contradicts optimality
as shown above. �us in this case nature optimally only provides a single signal s1, corresponding
to no information.

If instead w1 < E[v], then s1 must occur with positive probability. So s1 leads to expected
value exactly w1. We claim that s1 must correspond to all the buyer types below the worst-case
threshold for w1. Suppose this is not the case, then we can �nd v′ in the support of Fs1 and v

′′ in
the support of Fs1 such that v′ > v′′. If nature were to “swap” v′ and v′′ with small probability,
then the expected value following the modi�ed s1 would still exceed w1, leading to the same buyer
action. Moreover, the entire posterior distribution following the modi�ed s1 is shi�ed down in the
FOSD sense, so pro�t is weakly decreased. Now since the expected value following the modi�ed
s1 is strictly less than w1, there is room for further reducing the pro�t as described above. Hence
the desired contradiction.

In fact, we know from this analysis that in equilibrium, nature must minimize the probability
of purchase at w1, and the buyer must break indi�erence against the seller. We are not done,
however, since in period 1 nature could potentially provide more information than the worst-case
threshold (for example making the buyer’s posterior distribution supported on only two values).
�is would a�ect the seller’s belief about the buyer’s value distribution in period 2, and in�uence
the optimal price p2.

To address this issue, we are going to show that the price p2 would remain optimal if nature
were to simply provide the worst-case threshold information structure for w1 in period 1. To
this end, note that in this equilibrium, any realization of p2 must be maxmin optimal against a
buyer who knows her value to be in the lowest G(w1)-percentile and potentially knows more.
Moreover, as calculated above, the maxmin optimal pro�t in period 2 must be p2(G(w1)−G(w2))

(which must be the same number for all realizations of p2). Now, against a less informed buyer
who only knows her value to be below the G(w1)-percentile, the maximal optimal pro�t can only
decrease. But charging price p2 against such a buyer guarantees p2(G(w1)−G(w2)), so it remains
the seller’s best response.

Hence, we have shown that every equilibrium is outcome-equivalent to an equilibrium in
which nature provides threshold information structures, where the threshold is chosen so that
conditional on having value below the threshold, the buyer is indi�erent between purchasing
in the current period or delaying until the future (without further information). Moreover, the
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seller thinks the buyer always breaks indi�erence against him (even though this is not necessarily
true in period 2, if nature has deviated in period 1). �erefore, given any equilibrium price path
shaping expectations, the seller’s probability of sale in each period under any deviation strategy is
the same as the known-values case, with G replacing F as the value distribution. It follows that
any equilibrium in our model is equivalent to an equilibrium in the known-values case with the
transformed value distribution G.

Proof of Proposition 1. Suppose the seller chooses price p1 in period 1, and suppose a candidate
equilibrium required nature to choose information structure I1. To deter a deviation from nature,
we suppose that the continuation play following nature’s deviation is as good as possible from
the seller. �erefore, if (p̂2, p̂3, . . . , ) is the conjectured price path the buyer would imagine the
seller would use, following this deviation, then we can de�ne ŵ(p1) to be the expected value of
the buyer which would be indi�erent between buying and not, assuming no further information:

ŵ(p1)− p1 = max
τ

δτ (ŵ(p1)− p̂τ )

Note that if the buyer were to receive information in future periods, then this would make
delay more a�ractive, therefore making the buyer strictly prefer delay to purchase. On the other
hand, since p1 > δE[p2] in any equilibrium (as argued in the Proof of �eorem 1).

So, let w∗(p1) = inf(p̂2,p̂3,...) ŵ(p1). Consider deviations of nature from I1 where the buyer is
told whether v is above or below F−1(G(w∗(p1)))− ε, for ε→ 0. �en if v is below this threshold,
there is no conjecture the buyer could make about the seller’s future behavior which would lead
them to want to purchase, by the de�nition of w∗(p1). On the other hand, above this threshold,
for ε small, we will have E[v | v ≥ F−1(G(w∗(p1)))− ε] > w∗(p1) and therefore the buyer will
buy, given this conjecture.

So, by deviating in this way, nature has the ability to enusre the seller only obtains p1(1 −
G(w∗(p1))) in period 1. With this in mind, let vt be the highest consumer value that has not
purchased by time t, and y(p1) thecorresponding choice of nature. We then have the following
recursive formulation for an upper bound of the seller’s pro�t, for every p1:

V (vt) = p1(1−G(w∗(p1))) + δV (y(p1))

�is is precisely the value function in the known values case of �eorem 4 of Ausubel et al.
(2002), when the buyer’s value is distributed according to G. While we emphasize that the above
expression has a less direct interpretation—namely, as an upper bound on the equilibrium pro�t—
nevertheless the result immediately implies that the equilibrium values of Vt must be equal to v at
some t.
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�erefore, the following pair of claims will deliver the proposition:
Claim 1: If Vt = v, then the market is cleared in �nite time.
Proof of Claim 1: Note that there exists a range of choices of p for the seller, say [v, p∗], such

that the seller optimally clears the market in the next period a�er charging a price of p. Indeed,
since nature can always choose the threshold F−1(G(p)), then there exists a range where, if the
seller were to charge a price in this range, nature could ensure this price lead to a total payo�
of less than v (since this holds under known values). �erefore, were we to have an equilibrium
with Vt = v for in�nitely many periods, then we must also have ps → p∗∗ for some p∗∗ ≥ p∗, and
the seller obtaining a total discounted payo� of ps under the information structure. On the other
hand, for any distribution of expected values of the buyer, the previous proof shows that if the
seller chooses the Coasian price path, the worst-case the seller can obtain is strictly larger than v.
�erefore, the seller would have a pro�table deviation in any such equilibrium.

Claim 2: If F satis�es the Lipschitz condition of �eorem 4 of Ausubel et al. (2002), then so
does G.

Proof of Claim 2: Note that, for every quantile q, the pressed distribution satis�esG−1(1− q) <
F−1(1−q), but the bo�om of the support is the same for each. �erefore, we haveG−1(1−q)−v <
F−1(1− q)− v, so that if F satis�es the Lipschitz condition—i.e., F−1(q)− v ≤ Lq for all q and
some L—then so does G.13

Finishing the proof: Claim 2 shows that the upper bound derived above does indeed ensure
that Vt = v in �nite time, since this result holds given any distribution under known values
satisfying the Lipschitz condition. Claim 1 therefore shows that, since Vt = v in every equilibrium,
and with an upper bound existing on the number of periods this takes, it therefore follows that
there exists an upper bound by which the market has cleared. �is shows that in the case of a gap,
the in�nite horizon game coincides with the outcome of a su�ciently long �nite horizon game,
completing the proof.

Proof of Proposition 2. We consider two cases for this proof; in the �rst case we take T =∞ and
in the second case we take T <∞. �e idea behind the construction in both cases is the following:

• On-path, the seller seller chooses a price equal to the buyer’s expected value, and no
information is provided.

• Meanwhile, the buyer randomizes purchase so that the seller has incentives to follow the
equilibrium strategy.

13�e Ausubel et al. (2002) is stated slightly di�erently, namely that v(q) − v(1) ≤ L(1 − q) for all q and some L.
Here, v(q) is a decreasing function, representing the value of the buyer at the 1− q quantile (so that v(1) is the
value of the buyer at the 0th quantile, i.e., v). In our notation, F (v) is the probability the buyer’s value is below v,
so that F (v) = 1− q. Our de�nition therefore replaces q with 1− q and v with F−1.
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• If the seller deviates, the equilibrium reverts to the worst-case outcome outlined in �eorem
1.

We emphasize that there is no choice of nature to consider, as this is simply exhibiting some
information structure where there is no bound on the market clearing time.

We now walk through the details more precisely. Take the strategy exactly as above. We
already know that following a deviation, buyer’s strategy forms an equilibrium. Indeed, since
the buyer’s purchasing decision does not depend on their value, the on-path distribution of v
conditional on not having purchased at time t is simply F . �us, the buyer’s problem is completely
unchanged relative to the case considered in �eorem 1. �e seller’s continuation strategy
following a deviation also forms an equilibrium, by construction. Note that, since we assume the
buyer randomizes, note that it is not possible for them to deviate, since all actions occur with
positive probability on-path.

�erefore, le�ing π∗(G) denote the pro�t achieved in the equilibrium from �eorem 1, the
seller obtains at most π∗(G) following a deviation. Suppose we seek an equilibrium where the
seller’s continuation value is v at every point in time, for v∗ > π∗(G). In this case, the buyer
purchases with probability ρ at every point in time, where ρ satis�es:

v∗ = ρEF [v] + (1− ρ)δv∗ ⇒ ρ =
v∗(1− δ)

EF [v]− δv∗
,

where ρ ∈ (0, 1) whenever v ∈ (π∗(G),Ev∼F [v]

�us, by charging EF [v], the seller obtains a higher payo� than what they could obtain from
deviating. We thus verify the conditions are satis�ed in the proposition: First, the seller uses a
constant price path. Second, the pro�t obtains is the arbitrary v∗ ∈ (π∗(G),Ev∼F [v]). And lastly,
the market does not clear by any �nite time; since ρ is constant, the probability the buyer has not
bought at or before time K is (1− ρ)K > 0.

In the case of a �nite horizon, the proof is identical except in the last period, we assume the
buyer purchases with probability v/EF [v]; here, we note that the seller’s minmax continuation
payo� following a deviation is time dependent, although no ma�er what the time horizon is it
is always strictly bounded away from EF [v] (indeed, it is always lower than the seller’s static
monopoly pro�t, which is lower than EF [v]). Accommodating this is straightforward and thus
omi�ed.

B. PROOFS FOR SECTION 4

Details for Example 1. We perform the familiar calculation for the equilibrium price path by
backwards induction using this known values distribution, using the fact that the equilibrium is
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of a threshold form. First, note that given an arbitrary �rst period indi�erence threshold v under
known values, we have the seller’s second period price must maximize p2(1− p2

v
), implying that

p2 = v
2
. Anticipating this and observing a �rst period price of p1, the buyer is indi�erent if:

v − p1 = δ

(
v − v

2

)
⇒ v =

2p1
2− δ

.

�erefore, the seller at time 1 choose p1 to maximize:

p1

(
1− 2p1

2− δ

)
+ δ

p1
2− δ

(
p1

2− δ

)
⇒ 1− 4p1

2− δ
+

δ2p1
(2− δ)2

= 0⇒ p1 =
(2− δ)2

8− 6δ
.

Substituting this in gives that pro�t is:

(2− δ)2

8− 6δ

(
1− 2− δ

4− 3δ

)
+ δ

(2− δ)2

(8− 6δ)2
=

(2− δ)2

8− 6δ

(
1− 2− δ

4− 3δ
+

δ

8− 6δ

)
=

(2− δ)2

8− 6δ

(
4− 3δ

8− 6δ

)
=

(2− δ)2

4(4− 3δ)
.

Now we compute the pro�t under the information structure speci�ed in �eorem 2. First,
recall that π∗(ṽ) = ṽ

8
. Since E[v | v < ṽ] = ṽ/2, the buyer obtains 3ṽ

8
in the second period.

�erefore, the buyer’s continuation value, given ṽ, solves:

ṽ

2
− p1 = δ

3ṽ

8
⇒ ṽ =

8p1
4− 3δ

.

Suppose that nature, in the �rst period, tells the buyer whether her value is above or below
8p1
4−3δ . Given this information structure (as well as understanding that the seller will follow the
equilibrium strategy), the buyer will delay if told her value is below the threshold and not if it is
above the threshold. Let us assume for the moment that this solution involves purchase in each
period with positive probability, handling the case where this does not occur separately. Since the
probability the buyer’s value is above the �rst period threshold is 1− 4p1

4−3δ (since v ∼ U [0, 2]), the
seller’s pro�t can be wri�en:

p1

(
1− 4p1

4− 3δ

)
+ δ

4p1
4− 3δ

p1
4− 3δ

⇒ 1− 8p1
4− 3δ

+
8p1δ

(4− 3δ)2
= 0⇒ p1 =

(4− 3δ)2

32(1− δ)
.

Pro�t at this price is:
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(4− 3δ)2

32(1− δ)

(
1− 4(4− 3δ)

32(1− δ)

)
+δ

4(4− 3δ)2

(32(1− δ))2
=

(4− 3δ)2(32(1− δ)− 4(4− 3δ) + 4δ)

(32(1− δ))2
=

(4− 3δ)2

64(1− δ)

Unlike with the previous case, however, we need to check that this solution does indeed involve
sale at both periods. Given p1, we have ṽ = 2 if:

1− (4− 3δ)2

32(1− δ)
= δ

3

4
⇒ δ = 4/5.

So, if δ < 4/5, this scheme involves pro�t exactly as above. If δ ≥ 4/5, all buyers delay to the
second period and no sale occurs in the �rst period, meaning the total pro�t is δ/4.

Proof of �eorem 2. Let p1 > p2 > . . . > pt∗ = v be a solution to the baseline model, with
corresponding thresholds y1 > y2 > · · · > yt∗ = v. Let U2 denote the buyer’s expected
continuation surplus in this equilibrium starting at the second period, and let Π2 denote the
seller’s continuation pro�t. Note that:∫ y2

v

wf(w)dw > U2 + Π2,

since by assumption the baseline model does not involve the market clearing by time two. �e
idea is to use the fact that there is ine�ciency to transfer additional surplus to the buyer in order
to induce additional delay.

We do this by considering the following classes of information structures for nature:

• In period 1, nature chooses a threshold ỹ1 as a function of the �rst period price, the seller
charges.

• In the second period, if the seller chooses some �xed p2 = Π̃, then nature reveals no
information to the buyer, and reveals no information to the buyer in the future.

• If the seller uses some other price, nature uses the worst-case descending partitional infor-
mation structure outlined in the proof of �eorem 1.

We will in particular focus on the case where Π̃ is the seller’s continuation pro�t follow some
�rst period threshold of y1, which we denote Π2(y1). Note that in this case, the seller has a
best reply to choose p2 = Π2(y1), since by construction deviating cannot lead to a higher pro�t
(otherwise, there would be some other strategy yielding higher pro�t in the baseline model).
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Now, nature choosing some information structure of this form may induce the seller to choose
a price such that the market would clear at time 1 or time 2. However, the seller also had the
ability to charge one of these prices in the baseline model, and did not, meaning that this will hurt
the seller.

On the other hand, for any other price, we have that the threshold y1 such that the buyer
is willing to not purchase whenever informed that their value is below the threshold satis�es
y1 > F−1(G(p1)), since, by the previous, their continuation surplus increases. It follows that
under this class of information structures, the seller sells less in the �rst period relative to the
case without nature commitment, and obtains the same continuation pro�t, and therefore obtains
lower discounted expected pro�t, as desired.

Proof of �eorem 3. We �x an arbitrary declining price path p1, . . . , pt∗ with pt∗ = v. We note
that in the gap case, such a t∗ exists for every equilibrium price path whenever δ < 1 under a
known value distribution. �erefore, using the previous result, such a t∗ can be always be found
in any equilibrium of the game without nature commitment. Furthermore, by Proposition 3 in
Libgober and Mu (2021), the worst-case information structure against an arbitrary declining price
path is a threshold process. It follows that nature’s choice of information structure is determined
by thresholds y1 > y2 > · · · > yt∗ = v, with the buyer purchasing at the �rst time t satisfying
v > yt.

We �rst note that the buyer always purchases at or before period t∗. �e theorem will follow
from showing that each threshold yt should be as low as possible, for all t < t∗. For the �rst part
of the proof, we consider any information structure with y1 > y2 > · · · > yt∗ ; we address the case
where equality might hold separately. �at is, we show that a buyer who does not purchase at
some time tmust be indi�erent between purchasing and continuing in any worst case information
structure. �is is immediate for y1; In this case, increasing y1 while holding all other thresholds
�xed simply trades o� between sale at time 1 and time 2; so, if y1 could be raised without changing
the buyer’s incentive conditions, since p1 > δp2, this hurts the seller.

Suppose we have that yt is set so that the buyer is indi�erent between purchasing and contin-
uing when given the recommendation to not purchase. �is gives us the following indi�erence
condition, given our threshold sequence:

∫ yt

v

(v − pt)f(v)dv =
t∗∑

s=t+1

δs−t
(∫ ys−1

ys

(v − ps)f(v)dv

)
. (3)

In addition, we have the following expression for the seller’s pro�t, using the convention that
F (y0) = v:
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t∗∑
s=1

ps(F (ys−1)− F (ys)). (4)

We will prove that, under the assumption of pressed-ratio monotonicity, if yt+1 does not induce
the buyer to be indi�erent between purchasing and continuing at time t + 1 (i.e., if the buyer
strictly prefers to continue), then the thresholds can be adjusted to lower the seller’s pro�t.14 In
particular, we will show that if nature adjusts yt to maintain the buyer’s indi�erence at time t
between purchasing and continuing, then lowering yt will increase pro�t.

Under this particular perturbation, we can di�erentiate (4) with respect to yt+1, using (3) to
implicitly di�erentiate yt(yt+1). �e derivative of the right hand side of (4) with respect to yt+1,
holding �xed ys for s > t+ 1, is:

δ(−(yt+1 − pt+1) + δ(yt+1 − pt+2))f(y2).

Let (1− δ)vt+1 = pt+1 − δpt+1, so that vt+1 is indi�erent between purchasing and continuing
at time t+ 1, and rewrite the derivative of the right hand side as:

δ(1− δ)(vt+1 − yt+1)f(y2).

We note that this derivative is negative as long as yt+1 > vt+1. Hence decreasing yt+1 increases
the value of the right hand side, whenever yt+1 is above the indi�erent value. We now di�erentiate
the indi�erence condition with respect to yt, a�er the term on the right hand side of (3) involving
yt is added to the le� hand side:

(yt − pt)f(yt)− δ(yt − pt+1)f(yt) = (1− δ)(yt − vt)f(yt),

with vt de�ned analogously. �us, our previous work together with chain rule implies:

δ(vt+1 − yt)f(yt+1) = (yt − vt)f(yt)y
′
t(yt+1). (5)

Note that since yt+1 > vt+1 and yt > vt, we have y′t(yt+1) < 0; thus lowering the time t + 1

threshold decreases the probability of sale at time t. �e observation that y′t(yt+1) < 0 will be
useful later in the proof.

We are now ready to di�erentiate (3). Under the particular perturbation listed, since only yt
and yt+1 adjust, we have it su�ces to di�erentiate:

14To emphasize, by itself, decreasing yt+1 will increase the seller’s pro�t, by inducing more sale at time t + 1, as
opposed to late times where the seller obtains less.
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pt(1− F (yt(yt+1))) + δpt+1(F (yt(yt+1))− F (yt+1)) + δ2pt+2F (yt+1),

as all other terms are constant. Di�erentiating yields:

−ptf(yt(yt+1))y
′
t(yt+1) + δpt+1(f(yt(yt+1))y

′
t(yt+1)− f(yt+1)) + δ2pt+2f(yt+1).

Now, multiply through by (yt − vt) (which we recall is positive), and use (5) to eliminate the
right hand side wherever it appears in the derivative of pro�t with respect to yt+1; doing this and
factoring out terms, we have that the derivative of pro�t with respect to yt+1 is proportional to:

δf(yt+1) · (−(pt − δpt+1)(vt+1 − yt+1)− (pt+1 − δpt+2)(yt − vt)).

To �nd the change in pro�t from lowering yt+1 (as opposed to raising it), we must multiply this
by −1. Doing this, and substituting in for vt and vt+1, we have the change in pro�t from lowering
the yt+1 threshold (and hence departing from the “known but pressed” outcome) is proportional
to:

vt(vt+1 − yt+1) + vt+1(yt − vt) = −vtyt+1 + vt+1yt. (6)

Note that, by the pressed-ratio monotonicty assumption, this expression is positive when yt+1

satis�es E[v | v ≤ yt+1] = vt+1 (i.e., the value corresponding to the pressed threshold), which is
exactly when yt+1 is as large as possible. It follows that, when yt is chosen so that this equation
holds with equality, pro�t is locally increasing if yt is lowered.

On the other hand, suppose yt+1 is lower than the threshold inducing the pressed distribution.
Note that nowhere in the above derivation, except when we signed the derivative, did we use that
yt+1 was set to be the threshold corresponding to the pressed distribution. Now, notice that if we
multiply the right hand side of (6) by −1 and di�erentiate, we have:

vt − vt+1y
′
t(yt+1) > 0.

�is implies that the right hand side of (6) is actually smallest when yt+1 is as large as possible.
Since it is positive at this value, this means that it is positive everywhere. While this does not
imply pro�t is convex in yt (since pro�t depends on δf(yt+1), which we have dropped), it does
imply that (6) is positive for all choices of yt+1 in the relevant range. In other words, this shows
that nature can always decrease pro�t by increasing yt+1 according to this perturbation.

We have therefore shown that any partitional information structure with thresholds y1 >
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y2 > · · · > yt∗ can be made worse for the seller if there is some period where the buyer strictly
prefers to delay purchase, given the anticipated price path. It remains to consider the case where
some thresholds may hold with equality. Suppose ys = ys+1 = · · · = ys+k. �ere are two cases to
consider:

• Lowering all thresholds simultaneously does not lead to a violation of the obedience con-
straint. In this case, the argument is identical, simply by collapsing all periods where trade
does not occur into a single period.

• Lowering all thresholds simultaneously leads to the obedience constraint being violated
for period s. In that case, the same argument implies keeping the thresholds at time
s+ 1, . . . , s+ k holding with equality while rising the threshold at time s would lower the
seller’s pro�t.

�at these are the only two cases to consider follows from the fact that the thresholds are declining
over time. �is proves the theorem.

Proof of Proposition 3. We consider the derivative of v
F−1(G(v))

:

d

dv

v

F−1(G(v))
∝ F−1(G(v))− v d

dv
F−1(G(v)).

Also recall that F−1(G(v)) = L−1(v), where L(y) = E[v | v ≤ y]. By the inverse function
theorem, we di�erentiate L−1 as follows:

d

dv
F−1(G(v))

∣∣∣∣
v=ṽ

=
1

L′(y)
,

where y is the threshold that leads to E[v | v ≤ y] = ṽ. As will become important later, we note
that limṽ→v L

−1(ṽ) = v.
Since L(y) =

∫ y
v wf(w)dw

F (y)
, we can di�erentiate the function L(y) as follows:

L′(y) =
f(y)

(
yF (y)−

(∫ y
v
wf(w)dw

))
F (y)2

.

We note that this function shares the same di�erentiability properties as F whenever y > v.
In order to prove the theorem, we study the limit of this expression as y → v. Notice that in the
limit as y → v, both the numerator and the denominator approach 0. By L’Hopital’s rule, however,
to evaluate this limit, we can di�erentiate the numerator and the denominator twice to obtain:

lim
y→v

L−1(y) = lim
y→v

(f(y))2 + 2F (y)f ′(y) + (yF (y)−
∫ y
v
wf(w)dw)f ′′(y)

2(f(y)2 + F (y)f ′(y))
.
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However, since F (v) = 0, we have that this limit reduces very simply to 1
2
.

Returning to the original limit, and recalling that limṽ→v F
−1(G(v)) = ṽ, we therefore put

this together to obtain the following:

lim
ṽ→v

d

dv

v

F−1(G(v))

∣∣∣∣
v=ṽ

= v − v 1

1/2
= −v < 0.

Using the di�erentiability properties of the distribution, we therefore have that pressed-ratio
monotonicity condition is satis�ed in some neighborhood of v, as desired.

Proof of Proposition 4. We �rst describe the set of equilibria delivering the Ausubel and Deneckere
(1989) folk theorem under the pressed distribution G. In fact, for reasons that will become clear in
the course of the proof, we will do this assuming the buyer obtains an arbitrary initial signal I0.
Note that in this case, we can de�ne a distribution G̃I0 via the following:

First, let s denote an arbitrary signal realization under I0, and let Fs denote the distribution
of the buyer’s value conditional on observing s, and let Gs denote the pressed version of the
distribution Fs. We de�ne

G̃I0(x) = Es∼I0 [Gs(x)].

Note that, if the buyer were to observe I0, then conditional on the signal observed, the worst-case
information structure conditional on s would be a partitional threshold at F−1s (Gs(p)). �erefore,
G̃I0(p) de�nes a distribution such that the probability of sale in the worst-case information
structure following a price of p is 1− G̃I0(p), if the buyer were to have I0 before purchase. Note
further that, since nature could always provide the signal I0, by construction we have that the
optimal pro�t following I0 is weakly higher than the optimal pro�t following no information, for
any candidate equilibrium path.

In fact, given an arbitrary price path for the seller, p1, . . . , pn, . . ., the value which is indi�erent
between purchasing and not assuming no further information does not directly depend on the
signal observed, since this indi�erence condition only depends on the price path, the expected
value of the buyer, and δ. �erefore, the seller’s pro�t from such a price path coincides with the
known-values pro�t under distribution G̃I0(x). In the dynamic threshold information structure,
where the buyer’s expected value conditional on not purchasing is exactly this indi�erent value,
as long as the buyer follows the recommendations of nature, we again have the seller’s pro�t is
the known values pro�t.

We now show that the conditions for the folk theorem of Ausubel and Deneckere (1989) hold,
meaning that, via the above argument, their speci�cation for the equilibrium price path delivers
the same pro�t under that price path in the known values benchmark where the buyer’s value
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is distributed according to G̃I0(p). �eir condition stated for the known value case is that there
exists L,M such that, for all q:

Mqα ≤ F−1(q) ≤ Lqα

Our claim will follow from the assumption that this condition holds for the pressed distribution
and:

G−1(q) ≤ G̃−1I0 (q) ≤ F−1(q).

In that case, we can ensure that, uniformly over the set of information structures I0, if M is
taken from G−1(q) and L is taken from F−1(q), then Mqα ≤ G̃−1I0 (q) ≤ Lqα. �is claim, in
turn, immediately follows from the de�nition of G and G̃I0 as the solution to the worst-case
information structure construction from the static case. Indeed, consider the seller choosing
quantiles instead of prices, so that the seller’s pro�t in the one period problem, facing distribution
F̃ , is given by F̃−1(q) · (1− q). Decreasing the quantile given the price decreases the pro�t; and
since nature always has the option of giving I0 in addition to the threshold, we therefore have
G−1(q) ≤ G̃−1I0 (q). Since nature has the option of giving full information instead of the worst-case
thresholds following I0, we have G̃−1I0 (q) ≤ F−1(q).

For the subsequent part of this proof, we let πδ denote the lowest payo� from the above
construction (assuming no initial information to the buyer), and we let πδ(I0) denote the highest
possible payo� given an information structure I0 from the above construction. We note that
πδ → 0 and πδ(I0) converges to the monopoly pro�t under the “modi�ed” pressed distribution
described above, which is weakly large than the monopoly pro�t under the pressed distribution.

We now turn to the speci�cation of the equilibrium from proposition 2. Speci�cally we assume
that in every period:

• �e seller chooses price p∗ = E[v];

• Nature provides no information;

• �e buyer randomizes between purchasing and not with probability ρ.

As in the construction of Proposition 2, we note that there is no possible deviation for the buyer
since all purchase times occur with positive probability (and at all of them, the payo� obtained is
0).

We consider deviations of the seller and nature, intuitively moving to the best possible equilib-
rium for the seller in the case where nature deviates and the worst possible equilibrium for the
seller if the seller deviates, under the Ausubel and Deneckere (1989) equilibria from above.
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�at there is no pro�table deviation for the seller is immediate; in this case, the equilibrium
immediately shi�s to one where the monopolist’s payo� is no more than πδ , which by construction
is lower than what the seller obtains on-path.

For nature, note that the best case for the seller is that the buyer purchases at price E[v], since
this is an upper bound on the surplus the seller could obtain in any equilibrium. �erefore, a
lower bound on the seller’s pro�t is achieved by assuming no buyers purchase in that period. In
that case, the seller obtains δπδ(I0), which for su�ciently large δ is large than the on-path payo�
(since on path, the seller obtains strictly less than the single-period monopoly pro�t under G,
whereas as δ → 1, δπδ(I0) converges to this amount). �erefore, nature does not want to deviate
from the prescribed equilibrium, either, completing the proof.

39


	Introduction
	Relevant Literature

	Model
	Information Structures
	Strategies, Payoffs and Equilibrium
	Discussion

	Solution to the Baseline Model 
	Richer Nature Commitment
	The No-Gap Case
	Conclusion
	Proofs for Section ??
	Proofs for Section 4

