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Abstract This paper develops a branch-and-bound method based on a new convex
reformulation to solve the high order MIMO detection problem. First, we transform
the original problem into a {—1, 1} constrained quadratic programming problem with
the smallest size. The size of the reformulated problem is smaller than those problems
derived by some traditional transformation methods. Then, we propose a new convex
reformulation which gets the maximized average objective value as the lower bound
estimator in the branch-and-bound scheme. This estimator balances very well between
effectiveness and computational cost. Thus, the branch-and-bound algorithm achieves
ahigh total efficiency. Several simulations are used to compare the performances of our
method and other benchmark methods. The results show that this proposed algorithm
is very competitive for high accuracy and relatively good efficiency.
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1 Introduction

Compared with the single antenna communication system, the multiple antennae
communication system has many advantages, such as much larger capacity, much
higher utilization rate and more substantial performance. Thus, it develops very fast
in the recent decade and has a lot of applications (Ma et al. 2009; Pan et al. 2014;
Sidiropoulos and Luo 2006; Wiibben et al. 2011. However, accompanied with these
benefits, it also brings much more complexities to the communication system. Thus,
how to efficiently and effectively detect the signal vector of the transmitted symbols
has become an important issue and attracted a lot of attention over the last several
years.

Suppose this multi-input-multi-output (MIMO) communication system contains n
transmit antennas and m receive antennas. Then the received signal vector y is given
as

y=Hx+v, @))

where x € R”" is a transmitted symbol vector whose elements are independently
selected from a finite constellation set, H is a m x n real matrix that characterizes
the input-output relation and v € R™ is an additive white Gaussian noise with unit
variance. Since a signal model with complex values can be easily reformulated into a
real-valued model (Ma et al. 2009), we only study the real-valued model in this paper.

Note that, the objective of the MIMO problem is to detect the transmitted vector
x with the minimum error probability based on the observation y and H. Therefore,
the corresponding optimal solution can be found by solving the following maximum-
likelihood (ML) detection problem (Verdd 1998).

min |y — Hx|? )

s.t.  x; e{£l,..,tu},i=1,..,n, )
where ||-|| denotes the 2-norm, u is an odd integer strictly greater than 1 and each symbol
x; is drawn from a (1 4 1) quadrature amplitude modulation (QAM) constellation set
S = {£1, £3, .., u} (Damen et al. 2003). It is worth pointing out that the MIMO
problem is very fundamental in the communication area and receives considerable
attention. However, this problem is NP-Hard (Fincke and Pohst 1985).

One classical method to approach this problem is the lattice decoding (Gamal
et al. 2004; Singh et al. 2012; Taherzadeh and Khandani 2010). It is famous for
good tradeoff between detection accuracy and complexity . Thus, many researchers
adopt the lattice decoding to solve the MIMO problem. Naive lattice decoding (NLD)
method relaxes the symbol bound constraints and finds the closest lattice point to the
received signal over the whole lattice generated by the channel (Gamal et al. 2004).
For further improvement of the efficiency, some suboptimal lattice decoding methods,
such as sampled decoding (Liu et al. 2011), embedded decoding (Luzzi et al. 2013) and
lattice reduction-aided (LRA) methods (Wiibben et al. 2011), can be combined with
lattice decoding method to accelerate the lattice point search. Moreover, to fix the flaw
of the NLD method which completely ignores the symbol bound (see Gamal et al.
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2004; Taherzadeh and Khandani 2010 for details), some researchers developed the
regularized lattice decoding (RLD) method which can prevent the lattice points going
too far away from the origin point. Then, a quadratic penalization term is added to
the lattice decoding metric (Jaldén and Elia 2010). Note that, though the RLD method
has been empirically found to be efficient for small to moderate problems sizes, it
is prohibitive for large n and higher order QAM due to its complexity (Jaldén and
Ottersten 2005).

Another important approximation method is based on the semidefinite relaxation
(SDR). This method first reformulates the original problem into a linear conic pro-
gramming problem. Then the linear matrix inequality (LMI) representation is used
to get a solvable semidefinite programming (SDP) relaxation (Sidiropoulos and Luo
2006). Therefore, the SDR detector can be polynomial-time solved. Note that, the SDR
detector was first proposed for the binary phase-shift keying (BPSK) constellation (Tan
and Rasmussen 2001) and then extended to QPSK (4-QAM) constellation (Ma et al.
2004). It has been verified that the SDR detector is able to provide a constant factor
approximation to the optimal log-likelihood value in the low signal-to-noise ration
(SNR) region almost surely (Kisialiou and Luo 2005). Moreover, (Wiesel et al. 2005)
developed a polynomial-inspired SDR (PI-SDR) method for 16-QAM and proved that
PI-SDR achieves an optimal Lagrangian dual lower bound of the ML. Sidiropoulos
and Luo (2006) designed a bound-constrained SDR (BC-SDR) method which has a
special structure. Thus, compared to PI-SDR, BC-SDR makes fast implementations
more favorable. Moreover, Mao et al. (2007) proposed a virtually-antipodal SDR (VA-
SDR) method for any 47-QAM (where g > 1). The researchers also compared these
SDR detectors and gave the relationship among them (Ma et al. 2009). However, since
the relaxed SDP problem has a large problem size and the existing SDP solvers are
slow for large size cases, the actual computation time for the SDR method is very high
in practice.

Besides, many researchers have proposed some other methods for solving the
MIMO problem. Sphere decoder method is considered as a classical method (Damen
et al. 2003, Viterbo and Boutros (1999)). However, the complexity of this problem
is exponential with respect to the problem size. Moreover, Goldberger and Leshem
(2011) developed a new detection algorithm based on an optimal tree approximation
in an unconstrained linear system. For the loop-free factor graph situation, this algo-
rithm beats some other benchmark methods. Recently, a Lagrangian dual relaxation
(LDR) for the MIMO problem was developed by Pan et al. (2014). This method finds
the best diagonally regularized lattice decoder to approximate the ML detector. They
proved that the corresponding LDR problem yields a duality gap no worse than that
of the SDR method. Bunse-Gerstner et al. (2010) provided the first order necessary
conditions for s;-optimal model reduction for discrete MIMO systems. These condi-
tions suggest a specific choice of interpolation data and a novel algorithm aiming for
an hj-optimal model reduction for MIMO systems. Moreover, Tian and Dang (2015)
developed a canonical dual approach which finds either an optimal or approximate
solution.

Note that, the branch-and-bound strategy is a typical global optimal method for
solving a binary constrained quadratic programming (BQP) problem (Pardalos and
Rodgers 1990). For this strategy, a tight lower bound estimator plays a key role
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in cutting unnecessary branches and reduce the number of traversed nodes signifi-
cantly. Thus, a well performed lower bound can improve the efficiency of the whole
algorithm significantly. Besides, the computational efficiency of the lower bound
estimator is also important. That is because a well performed but computationally
expensive lower bound estimator will slow down the total efficiency of the algo-
rithm. Therefore, if a lower bound estimator which is a little looser but more efficient,
it can be a better choice for the BQP problem. Based on this idea, we develop a
new branch-and-bound algorithm with a new efficient lower bound estimator in this
paper.

The rest of this paper is arranged as follows. In Sect. 2, we reformulate the orig-
inal problem into a {—1, 1} constrained quadratic programming problem. Section 3
proposes a new lower bound estimator for the problem. Section 4 develops a branch-
and-bound method for solving the binary constrained quadratic programming problem
with a new convex reformulation. In Sect. 5, we show the comparison results for dif-
ferent methods by simulations.

2 Reformulation

Note that, problem (2) can be written in the following form:

min x7Qx — fTx+yTy

s.t. x;pe{xl,£3,...,+u}, i=1,..,n, 3

where Q = HTH is an n x n positive semidefinite matrix and f = 2H Ty is a
n-dimensional real vector. Since y” y is a fixed scalar, we can delete this term in the
objective function in problem (3).

Let y; = # fori = 1,...,n, it is easy to verify that y; € {0, 1, ...,u}. Let e
denote the n-dimensional vector with all elements being 1. Then, problem (3) can be
equivalently reformulated to the following problem:

min  4y7 Qy — dueT Q +2fT)y +ue’ Qe+ ufTe
: i “)
st. yie{0,1,..,u},i=1,..n.

Note that, once we get an optimal solution of problem (4), we can use x = 2y —ue
to get the corresponding optimal solution of problem (3). Since u’e” Qe + ufTe is
also a fixed scalar, we can ignore it in the objective function. Moreover, let U = 40,
d =4uQTe +2f, we can write problem (4) as follows.

min y' Uy —dTy )
s.t.yi €{0,1,..,u},i=1,..,n.

Let Y = {y € N*| 0 < y; < u} denote the feasible domain of problem (5), where
IN denotes the set of integers. Set t = [log(u + 1)], where |-]| denotes the biggest
integer value which is smaller than or equal to that number. Thent > 2 and u+1 > 2.
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Now, we can define a new set Z as follows.
Z={z e Nz e{—1,1}0FDm (6)

Note that, each element in set Z is a (¢ + 1)n dimensional vector with all elements
being -1 or 1. Then, we have the following theorem to show the relationship between
Y and Z.

Theorem 1 The transformation y; (z) = thzl ZJ_ZZ(j,l),Hi + % w+1-2zm4i +5
is a linear and full mapping from Z to Y.

Proof First, it is easy to see that y;(z) is a linear mapping from Z to Y.

Then we show that for any z € Z, the corresponding y belongs to Y. Note that, y; (z)
can also be written as y; (z) = Z'jzz 29722 tynti — 2 2o + %Zi + %Zmﬂ‘ +
5. The first part thzz 2j_2z(j_1),1+,- — 2!= 17,4 is always an integer, the possible
fraction can only occur in the second part %z,- + ”T“z,n+i + % However, it is easy
to verify that this part is always an integer as z;, Zr4i € {—1, 1} foru > 3,¢t > 2.
Moreover, fori = 1, ..., n, max{y;} = ZZ‘:] 202 4 %_ZI + % = u and min{y;} =

— Zt/:l 2/72 — %_2; + 5 = 0. Therefore, y; is an integer between 0 and u, y

belongs to Y.
Now we show that for an arbitrary integer 0 < y; < u, thereexistz(j 1,4 € —1, 1
for j = 1,...,t + 1 such that the transformation holds. If 0 < y; < 2’ — 1, then

y; can be written as y; = 2/ la,_1 + 2'%a;_5 + ... + 2a; + lag for particular
ai €0,1,j =0,...,t — 1. Then, let zj,4; = 2a; — 1 for j = 0,...,f — 1 and
Ymnti = —L. Thus, z(j_1)p4i € {—1,1} for j = 1,...,¢ + 1. It is easy to verify that

122 + L2 i + B = Z;;{) 2aj = y. 12" =1 <y <u,
since 2 < u+ 1 < 2!, we have —2! < 2 — (u + 1) < 0. Therefore, 0 <
vi +2' —(u+1) < 2" — 1. Then follow the similar way, we can write y; +2 — (u +1)
as y; +2' — (u+1) =2 la;_1 +272a;,_5 + ... 4+ 2a; + lag for particular ¢; €
0,1, j = 0,...,t — 1. This time, let zj,4; = 2a; — 1 for j = 0,...,t — 1 and
Zini = L. Thus, z(j—1ypqi € {=1,1} for j = 1,...,1 + 1. Consequently, we have

_nt

i1 22— i W2 it = Z;_:B 2/aj+(u+1)—2" = x;. Therefore,
the transformation is also a full mapping from Z to Y. O

Observation The size of the reformulated problem is smaller than those problems
derived by some traditional transformation methods (Verdi 1998) due to taking advan-
tage of the special structure of the original problem.

Then, by using the transformation in problem (5), we can get the following problem:

min ' Mz—-bTz+4c¢

sit. zie{-1,1},i=1,...,(+ Dn, D
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where
iU U 273U Tw+1-2HU
iU U - 212y Tw+1-2HU
M = : ; - ; ; :
213y 2172y 224y 23w 4+1-2HU
Tw+1-29U Ju+1-20U - 23w+ 1-200 tu+1-2)%U
%[251 —uUe]
7[2d —uUe] |
b= : , = —u2eTUe — EdTe.
: 8 2
2173[2d — uUe]

Tw+1-292d —uUe]
Moreover, we have the next result.
Theorem 2 Solving problem (7) is equivalent to solving problem (5).

Proof Assume y™* is an optimal solution of problem (5), then Theorem 1 indicates
that there is feasible solution z* of problem (7) such that both problems have the same
objective value now. Thus, the optimal value of problem (7) is no more than that of
problem (5). On the other hand, assume z* is an optimal solution of problem (7),
then by using the transformation in Theorem 1, we cant get a feasible solution y* of
problem (5) such that both problems have the same objective value now. Therefore,
the optimal value of problem (5) is no more than that of problem (7). Hence, both
problems have the same optimal value. And an optimal solution z* of problem (7) can
lead to an optimal solution y* of problem (5). O

Let r = (¢ + 1)n and ignore the fixed scalar c, the corresponding problem can be
finally written as follows.

min  F(z) =z Mz bz

s.t. zie{-1,1},i=1,..r ®)

3 New lower bound estimator

In this section, we will propose a new quadratic convex reformulation which can be
used as a new lower bound estimator. Note that, if z € {—1, 1}, we can represent
these binary variables by the constraints ziz —1=0,i =1, ..., r. Then the Lagrangian
function for problem (P6) is

L(z.) = F(2) + > xi(x} — 1) =2 [M + Diag(W)lz = b"z —e"2, (9

i=1

@ Springer



J Comb Optim (2017) 33:1395-1410 1401

where A € R",e € R” denotes the vector with all elements being 1 and Diag(A) denotes
ar x r diagonal matrix with A; being the iy, diagonal element. Let M, = M +Diag(1),
we can choose a proper A to make L(z, ) convex for z. Then problem (P6) can be
relaxed as the following problem:

P(A) = min L(z, )
st.ze[-1,11, (LP)

Note that, the optimal value of problem (LP) is a lower bound of problem (P6).
Moreover, if M), is positive semidefinite, then problem (LP) is a convex programming
problem which can be solved very efficiently. Therefore, this convex reformulation
can be used as a lower bound estimator for each step in the branch-and-bound scheme.
However, different A lead to different qualities of the lower bounds. Hence, the next
important issue is to determine a proper vector A for the Lagrangian function L(z, A).

Billionnet and Elloumi (2007) solved the following problem to get the convex
reformulation with the tightest lower bound.

max min L(z, 1), 10
M; =0 ze[—1,1] (z,2) (10)

where M, > 0 denotes that matrix M, is positive semidefinite.

Problem (10) can be reformulated as a semidefinite programming problem. And
the numerical tests demonstrate its effectiveness in improving the lower bound in
the branch-and-bound algorithm for the first several steps. However, as the algorithm
continues, some variables of z have been fixed to -1 or 1, then this reformulation may
not be the best one. Lu and Guo (2015) pointed out that the reformulation with the
tightest continuous relaxation can not guarantee the further performance for a branch-
and-bound method . Let I C {1, ..., r} denote the index subset. Suppose z; is fixed to
-1 or 1 for i € K in the current branch node. Let £¢ = {1, ..., r} — K.

Pic(A) = min L(z, A)
st.zi=—lorl,i e K,
zi€[-1,1],i e K°. (RP)

Then in order to get the tightest continuous relaxation bound for the current branch
node, we need to solve the following problem:

max Pic(z, M)
S.t. M’C(?ICC + Dlag()\,Kz) > O,
i =0,i ek, (SRP)

where Mjccxcc denotes the sub-matrix of M with sub-rows and sub-columns in K¢, Ak
and Ajce denote the sub-vectors of A with elements in K and K¢, respectively. Though
problem (SRP) can provide the tightest lower bound for the continuous relaxation at the
current branch, it is not wise to do it for each branch. That is because the computation
cost on solving an SDR problem is about O (n3) (Vandenberghe and Boyd 1996).
This is relatively high for a lower bound estimator. Therefore, if problem (SRP) is
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recomputed at each iteration, the total computation cost is not affordable. Hence, we
aim to get a lower bound estimator which has a continuous relaxation bound with high
efficiency and preserving relatively good quality. In this way, we can achieve a higher
total efficiency for solving the problem.

Instead of finding the best reformulation of L(z, A) , we consider the average value
of L(z, ) over [—1, 1]".

AQ) = / LGz hyd:
ze[—1,17"

= / 7" Diag(r)z — e’ 2 +/ F(z)dz
ze[-1,11" ze[— 11T

1 T
=—-e A+ F(z)dz.
3 ze[—1,1]1"

Then, we aim to find the vector A* which has the largest average value of L(z, A) over
z € [—1,1]". Since fze[—l 1y F(z)dz is a fixed constant, we can solve the following
convex problem to get the corresponding optimal A*.

max —%eT)»
s.t. M + Diag(A) > 0, (AP)

Since problem (AP) focuses on the overall tightness of the convex reformulation, the
corresponding lower bound estimator performs better in the deep branch nodes. Thus
it should be more effective in a branch-and-bound method with continuous relaxation
bounds and improve the total efficiency of the algorithm.

Moreover, the channel matrix in the MIMO problem is unchangeable, thus problem
(P6) has a fixed quadratic term z” M z. Note that, the solution of (AP) only depends on
the matrix M. Hence we may precompute the optimal solution of problem (AP) only
once and store it in advance for further applications. It is worth pointing out that this
property can accelerate the computing process of this branch-and-bound algorithm.

4 Algorithm

In this section, we design a branch-and-bound algorithm with our new lower bound
estimator to solve the MIMO problem.

Branch-and-Bound Algorithm

Preparing Step: Use the linear transformation to reformulate the MIMO problem
into a {—1, 1} constrained quadratic programming problem.

Step 1 (Initialization Step): Solve problem (AP) to get the optimal A*. Construct
a branch tree with an initial node and set k = 1. Solve the continuous relaxation
minge[—1,13 L(z, A*) to get the optimal solution z* and lower bound /. Round the
solution z* to get the nearest feasible solution z in {—1, 1} and the corresponding
objective value vg. Set ] = Iy, u = vg and zpes; = Z as the current best lower
bound, objective value and feasible solution, respectively.
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Step 2: If u — 1 < € or k > kyqx, stop. Return zp.5; and u as the optimal solu-
tion and objective value, go to Step 5. Otherwise, find the leaf node with the
smallest continuous relaxation bound among all leaf nodes. Choose the index
with constraints z; = —1 and z; = 1. Set k = k 4 1 and go to the next step.

Step 3: Solve the two continuous relaxation problems to get the optimal solutions
(z%)* and objective values Ii. If one of the (z%)* is feasible for problem (P6), stop.
Return the corresponding (z¥)* and I¥ as the optimal solution and objective value
of problem (P6). Otherwise, let [ be the smallest lower bound at current iteration.
Round the corresponding solution (z%)* to get the nearest feasible solution z* in
{—1, 1} and the corresponding objective value vg. If vy < u, let u = v and
Zbest = Z¥. Then go back to Step 2.

Step 4: Use the linear mapping y; (z) = Z;:l 2j_2z(j,1)n+,- + % w+1-2zmei+
5 to get the corresponding y values.

Note that, this branch-and-bound algorithm picks the leaf node with the smallest
continuous relaxation bound in each iteration for further branching. And for unsatisfied
solution, we choose the index i* € {1, ..., r} in which z;+ is the furthest one from the
feasible domain {—1, 1}.

In real numerical tests, we can solve problem (AP) for some child nodes in the first
several iterations. Then we can store and use the corresponding optimal A}- in each
branch for further branching. In this way, we can get some good lower bounds at the
beginning and accelerate the whole computation process.

In the next section, we will compare this branch-and-bound algorithm with some
other benchmark algorithms for the MIMO problem.

5 Comparisons by simulation

Some benchmark approximating methods are compared in the numerical tests, such
as inexact ML sphere decoding (ML-SD) (Damen et al. 2003), semidefinite relaxation
(SDR) (Sidiropoulos and Luo 2006), MMSE lattice decoding (MMSE-LD) (Wiibben
et al. 2011) and canonical dual approach (CDP) (Tian and Dang 2015). Moreover,
based on the same reformulated problem (problem 8), we compared two branch-
and-bound algorithms with the tightest lower bound estimator (10) and our proposed
average value estimator (3), which are denoted as (BABT) and (BAB,), respectively.

5.1 An intuitive example
Before the numerical tests, we first provide an intuitive example to show the advantage

of (BAB,4) in comparison with (BABT). The example is a 10-dimensional problem as
follows:

min z7 Qz — b7z

sit. zyef{—1,1},i =1,..,10, (in
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where

8 17 0 0 -7-18-24 7 0 O
17-58-21 0-36 18 0 0 -2 0
0-21-5%6 0 3 15-2129 10
0 0 0-35 21-45 28 0 —125
| -7-36 3 2181 O 3-6 223
0= —18 18 15-45 0 50-33-4 0 9}
-24 0-21 28 3-33 50 0 150
7 0 29 0 -6 —4 0 9 4137

0 -2 1 -1 2 0 1541-320

0 0 0 25 23 9 037 066

b = (—138, 100, 152, —294, 240, 272, —144, —326, 88, —564)T .

For algorithm (BABT), by using the corresponding reformulated objective function
L(z, A}), we obtained a lower bound -2362.8 at the beginning. Then we branched x¢
at the first step and obtained a lower bound -2362.4 in the right child (x¢ = 1). Then,
we branched x7 at the second step and obtained a lower bound -2354.1 in the left child
(x7 = —1). Following the similar procedure until the 8th iteration, then we found
the optimal solution z* = (—1,1,1,—-1,1,1, -1, —1, 1, —nT of problem (11) with
the optimal value -2337. Above all, we used eight iterations to complete algorithm
(BABT).

In comparison, for algorithm (BAB,), by using the corresponding reformulated
objective function L(z,A}), we obtained a lower bound -2429.2 at the beginning.
Then we branched xg at the first step and obtained a lower bound -2340.6 in the right
child (x¢ = 1). Then we branched x7 at the second step and obtained a lower bound
-2337 in the left child (x; = —1). Note that, the approximated feasible integer solution
of this node has an objective value which equals the current best lower bound, hence it
is already the optimal solution of problem (11). Above all, we only used three iterations
to complete algorithm (BAB,).

From this intuitive example, we can easily see that although the lower bound of
BAB is looser than that of BABTt at the beginning, it quickly catches up and completes
in less iterations. Since the new lower bound estimator considers the overall tightness of
the relaxation, it may obtain better lower bounds than the traditional branch-and-bound
algorithm when some of the variables have been branched in the branch-and-bound
scheme.

5.2 Numerical tests

Following the numerical tests in other papers, we also use several simulations to
compare the performances of different methods. The testing data sets are generated
as follows. The channel matrix H comprises independent and identically distributed
(i.i.d.) elements drawn from a zero-mean normal distribution of unit variance. The
symbol vector x is elementwise independent and identically uniformly distributed.
Besides, v is a white Gaussian noise with zero mean and variance avz. Note that, the
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2 2
signal-to-noise ratio (SNR) is defined as EAHxD) _ Z—Xz where 0)? is the variance of

E(|[v]?

the elements of x. To measure the performarﬂ‘:eus ())f different methods, three metrics are
used in this paper: symbol error rate (SER), average computational time and worst-case
computational time.

For the branch-and-bound algorithms, the accuracy criterion € and maximum iter-
ation number k4, are set to be 107> and 50% of the size of the problem, respectively.
Moreover, we compute A; for each brand in the first py, iterations. Here, p is 5% of
the size of the problem. It’s easy to see that, for the same problem, the bigger the value
of ky,qx and p are, the more computational time the algorithms should cost while the
more accurate result the algorithms may get. Therefore, we need to choose a good
balance point with which the algorithms can get a relatively accurate result while keep
a relatively high efficiency. After many numerical tests, we choose 50% and 5% as
the parameters pin this paper.

Like other papers, we use two QAM order sizes as 16-QAM and 64-QAM in the
test. Moreover, four different problem sizes are tested as (m, n1) = (8, 8), (m2, n2) =
(16, 16),(m3, n3) = (64, 64) and (my4, n4) = (128, 128). To get reasonable statistical
results, 100 samples are tested for each SNR value in every case. All the simulations
are implemented using MATLAB 7.9.0 on a computer with Intel Core i5 CPU 3.3 Ghz
and 4G memory. Moreover, the solver “cvx” (Grant and Boyd 2010) is incorporated
in solving the SDP problems. Note that, since the existing semi-definite programming
(SDP) solvers are unable to solve high-dimensional problems, we don’t compute the
result for the SDR method in the following three cases: 64 64-QAM, 128 16-QAM, 128
64-QAM. Moreover, for each case, the lower bound of our computational accuracy
is 1074, Therefore, we don’t test the case where its optimal solution achieves this
accuracy.

Figures 1, 2, 3, and 4 plot the average SER performances versus SNR with prob-
lem sizes (m,n) = (8§, 8), (16, 16), (32, 32) and (128, 128), respectively. Tables 1
and 2 provide the average computational times in seconds (here each result is the
average value of all samples and SER values). Note that, the notation ’8 16-QAM”

(b)
10 =z 3 -
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\si\\\‘ ~ ®
10" \Q AN .
X ~
\\\ “a
[ s \5& \\
N L N
. ) 10 \\ .
o ML-SD AR
& MMSE-LD| AN
104/ + SDR +
CDP
» BAB,
o BAB,
30 5 10 15 20 25 30 35

SNR(dB) SNR(dB)

Fig. 1 Comparison of symbol error rate (SER) versus signal-to-noise ratio (SNR) for the new algorithm
BAB, and other methods, (m, n) = (8, 8)
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Table 1 Average computational times for the new algorithm BABA and other methods with different
problem sizes in 16-QAM

Methods Cases
8 16-QAM 16 16-QAM 64 16-QAM 128 16-QAM

ML-SD 4.13 14.88 51.05 136.46

SDR 3.37 14.04 175.29 -
MMSE-LD 5.47 19.56 57.37 150.21

CDP 3.92 14.38 46.78 127.48
BABT 7.49 20.03 82.95 185.33
BABj 6.34 16.79 55.72 145.23

Table 2 Average computational times for the new algorithm BABA and other methods with different
problem sizes in 64-QAM

Methods Cases
8 64-QAM 16 64-QAM 64 64-QAM 128 64-QAM

ML-SD 7.30 18.57 78.32 146.57

SDR 5.91 19.36 - -
MMSE-LD 10.29 27.01 81.48 153.72

CDP 7.56 20.43 69.58 130.40
BABT 14.88 31.02 100.75 237.24
BABj 11.45 24.72 79.37 183.86

Table 3 Average computational times for the new algorithm BAB A and other methods with various signal-
to noise ratio (SNR) on 8-64 QAM

Methods SNR(dB)
5 10 15 20 25 30 35

ML-SD 8.32 8.02 7.44 7.21 6.85 6.71 6.58
SDR 5.92 5.98 5.86 5.92 591 5.88 -
MMSE-LD 11.43 11.05 10.68 10.01 9.43 9.11 -
CDP 7.59 7.89 7.91 7.16 7.23 - -
BABT 15.84 15.04 14.17 14.46 - - -
BABA 12.32 11.85 11.37 10.26 - - -

denotes the 16-QAM problem whose size is (m, n) = (8, 8). Moreover, for two sce-
narios (8-16 QAM and 16-64 QAM), we provide the information about the average
computational times for each SER value (here each result is the average value of all
samples but with a fixed SER value) in Tables 3 and 4, respectively. Besides, we
also provide the computational times for the worst-case we met in the test for each
case in Tables 5 and 6. Note that, in all tables, “—" denotes there is no result for this
case.
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Table4 Average computational times for the new algorithm BAB A and other methods with various signal-
to noise ratio (SNR) on 64-16 QAM

Methods SNR(dB)

15 20 25 30 35 40 45
ML-SD 54.01 52.65 51.90 51.14 50.75 49.37 47.51
SDR 180.63 174.28 171.37 177.45 177.68 175.33 170.27
MMSE-LD 61.47 62.05 57.35 54.81 56.39 56.26 53.29
CDP 50.01 45.26 48.30 46.11 45.73 45.27 -
BABT 85.04 82.35 83.81 80.60 - - -
BABA 57.32 57.20 54.01 54.36 - - -

Table 5 Computational times for the new algorithm BABA and other methods in the worst-cases on
16-QAM

Methods Cases
8 16-QAM 16 16-QAM 64 16-QAM 128 16-QAM

ML-SD 6.28 22.75 78.11 183.79

SDR 4.01 16.85 197.48 -
MMSE-LD 6.33 27.61 75.67 194.65

CDP 8.89 31.83 82.46 217.32
BABT 10.42 27.46 97.38 213.28
BABj 8.85 26.49 89.53 197.46

Table 6 Computational times for the new algorithm BABA and other methods in the worst-cases on
64-QAM

Methods Cases
8 64-QAM 16 64-QAM 64 64-QAM 128 64-QAM

ML-SD 11.35 26.27 100.74 225.20

SDR 7.64 27.31 - -
MMSE-LD 16.08 38.18 119.37 242.36

CDP 15.21 39.84 128.39 240.55
BABT 20.44 45.08 165.23 302.41
BABA 17.26 38.61 147.46 287.34

From these figures and tables, we can see that the branch-and-bound algorithms
have much better performances than other state-of-the-art methods in all situations.
Though the computational times of the branch-and-bound algorithms are relatively
a bit longer than other methods, considering the good quality of the performances,
the branch-and-bound algorithms are very competitive for the MIMO problems, espe-
cially for the situations with high accuracy requirement. Moreover, under the same
branch-and-bound scheme, (BABA ) beats (BABT) in terms of accuracy and efficiency.
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Therefore, (BABA) can be a very effective and efficient tool in solving the MIMO
problems.

6 Conclusion

In this paper, we designed a very effective algorithm while preserving a relatively
high efficiency to solve the high-order MIMO problem. First, we reformulated the
MIMO problem into a {—1, 1} constrained quadratic programming problem. Then,
we managed to get a good lower bound estimator by the quadratic convex reformula-
tion. Considering the balance between tightness and computation cost, we chose the
convex reformulation with the maximized average objective value over the relaxed
convex domain. Based on that, we designed a branch-and-bound algorithm. To see
the effectiveness and efficiency of the algorithm, we compare it with some benchmark
methods. The simulation results demonstrate that our branch-and-bound algorithm
achieves a very good accuracy while preserving a relatively high efficiency. There-
fore, this algorithm has a big potential to be applied in some real applications.
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