

Idiap Submission to Swiss German Language Detection Shared Task

¹Shantipriya Parida, ^{1,2}Esau Villatoro Tello, ¹Qingran Zhan, ¹Petr Motlicek, and ³Sajit Kumar

¹Idiap Research Institute, Martigny, Switzerland
 ²Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico
 ³Indian Institute of Technology, Kharagpur, India

Contents

- Introduction
- Method Description
- Dataset
- Experimental Setup
- Evaluation
- Conclusion

Introduction

- It is considerably challenging to detect languages that have similar origins or dialects (e.g. German dialect identification, Indo-Aryan language identification)
- It may not be possible to distinguish related dialects with very similar phoneme and grapheme inventories for some languages.

Introduction

- The Swiss German language detection shared task organized by the 2020 Germeval evaluation campaign.
- Participants asked to build a system that can automatically identify a snippet of text in Swiss German.
- Organizers supplied 2,000 Swiss German tweets and encouraged to use additional resource for training and 5,374 tweets to be classified.

Method Description

- We used character n-gram for extracting features from the input text.
- Extracted features are input to the deep supervised autoencoder (SAE).
- A SAE is an autoencoder with the addition of a supervised loss on the representation layer.
- Bayesian optimizer used for selecting the optimal hyperparameters.

Proposed model architecture

Dataset

We have created our training dataset by mixing data from the following:

- Swiss German language NOAH, SwissCrawl,
 Swiss German Training Tweets
- Other languages DSL, Ling10

DSL Dataset: Discriminating between Similar Language (DSL) contains 13 different languages based on 6 different language group. We used DSLCCv2.0 in our experiment.

Ling10 Dataset: It contains 190,000 sentences categorized into 10 languages (English, French, Portuguese, Chinese Mandarin, Russian, Hebrew, Polish, Japanese, Italian, Dutch).

Group Name	Language	Id
South Eastern Slavic	Bulgarian	bg
	Macedonian	mk
South Western Slavic	Bosnian	bs
	Croatian	hr
	Serbian	sr
West-Slavic	Czech	cz
	Slovak	sk
Ibero-	Peninsular Spain	es-ES
Romance(Spanish)		
(*)	Argentinian Spanish	es-AR
Ibero-	Brazilian Portuguese	pt-BR
Romance(Portuguese)	353	898
	European Portuguese	pt-PT
Astronesian	Indonesian	id
	Malay	my

DSL Language Group. Similar languages with their language code.

Experimental Setup

 We made three settings (S1, S2, and S3) combing Swiss German and Other language texts.

Setting	Datasets and Language	Distribution	Distribution (Overall)	Training	Dev	Test
S1	NOAH (Swiss-German)	7,327 (8%)	50% Swiss-German	80,000	20,000	5,374
	SwissCrawl (Swiss-German)	40,697 (40%)	50% not Swiss-German			
	SwissTextTrain (Swiss-German)	1,976 (2 %)			100	
	DSL (not Swiss-German)	25,000 (25 %)	4			
	Ling10 (not Swiss-German)	25,000 (25 %)				
S2	NOAH (Swiss-German)	7,327 (5%)	61% Swiss-German	130,000	20,000	5,374
	SwissCrawl (Swiss-German)	81,841 (55 %)	39% not Swiss German		(2	
	SwissTextTrain (Swiss-German)	1,976 (1 %)				
	DSL (not Swiss-German)	25,000 (17 %)				
	Ling10 (not Swiss-German)	33,856 (22 %)	1			
S3	NOAH (Swiss-German)	7,327 (4 %)	46% Swiss-German	180,000	20,000	5,374
	SwissCrawl (Swiss-German)	81,841 (41 %)	54% not Swiss-German	13		
	SwissTextTrain (Swiss-German)	1,976 (1 %)		12	12	
	DSL (not Swiss-German)	50,000 (25 %)	1		18	
	Ling10 (not Swiss-German)	58,856 (29 %)				

Dataset Statistics. The training-development-test set distribution for each of setting (S1, S2 and S3). The distribution is based on the number of sentences selected from the datasets.

Experimental Setup

• The SAE model configuration for training and search space hyperparameter range are shown in the table.

Hyperparameter	Range
number of layer	1-5
learning rate	10 ⁻⁵ - 10 ⁻²
weight decay	10 ⁻⁶ - 10 ⁻³
activation functions	'relu', 'sigma'

Search space hyper parameter range.

Parameter	Value
char n-gram range	1-3
number of target	2
embedding dimension	300
supervision	'clf' (classification)
converge threshold	0.00001
number of epochs	500

SAE model configuration used for training

Evaluation

Setting	Prec (gsw)	Rec (gsw)	F1 (gsw)	Avg. Prec	AUROC
S1	0.649	0.997	0.786	0.871	0.924
S2	0.673	0.997	0.804	0.911	0.946
S3	0.775	0.998	0.872	0.965	0.975

Performance of setting S1, S2, and S3.

Evaluation (all submissions)

System	Precision	Recall	F1
Mohammad reza Banaei (MB)	0.984	0.979	0.982
jj-cl-uzh	0.945	0.993	0.968
IDIAP	0.775	0.998	0.872

Precision, Recall, and F1 scores for the positive class (GSW) of all submissions

Conclusion

- Supervised autoencoder with Bayesian Optimization for the language detection task found effectively for discriminating between very close languages or dialects.
- Future work involves:
 - Verify our model with other language detection datasets.
 - Explore other supervised autoencoder model with variational autoencoder for language detection task.

Q&A

Contact information:

- Shantipriya Parida:
 - Email: <u>shantipriya.parida@idiap.ch</u>
 - Twitter: @Shantipriyapar3
- Esaú Villatoro Tello:
 - Email: evillatoro@correo.cua.uam.mx / esau.villatoro@idiap.ch
 - Twitter: @EsauVT

