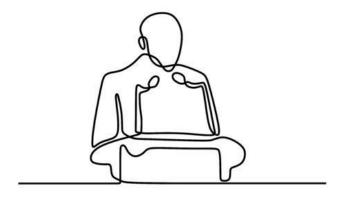


Idiap & UAM participation at GermEval 2020: Classification and Regression of Cognitive and Motivational Style from Text

^{1,2}Esaú Villatoro-Tello, ¹Shantipriya Parida, ³Sajit Kumar, ¹Petr Motlicek, and ¹Qingran Zhan

¹Idiap Research Institute, Martigny, Switzerland
 ²Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico
 ³Indian Institute of Technology, Kharagpur, India



Content

- Introduction
- Dataset
- Methodology
- Experimental results
- Results analysis
- Conclusions

Introduction^(1/2)

- The idea that language use reveals information about users has long circulated in the research community
- This problem is also known as Author Profiling (AP)

- AP aims at modeling authors general sociolinguistic features that apply to a group of them
- The main hypothesis establishes that extracted features might be indicative of how authors use these words given their language, gender, age, personality, etc.

Introduction (2/2)

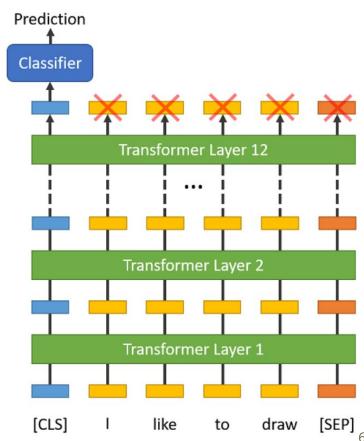
- Giving the nature of the OMT task, we assume the task of detecting motives and its corresponding levels as an additional dimension of the AP problem
- The main goal of our participation was to evaluate the impact of deep learning architectures (Transformers based), and compare its performance against more traditional ML methods
- Our best configuration obtains a F1=69.8%, meaning a 7.4% relative improvement in comparison to the baseline system

Dataset

 Provided by the organizers of the GermEval 2020 shared task on the Classification and Regression of Cognitive and Motivational style from the text:

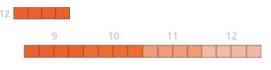
Language: German

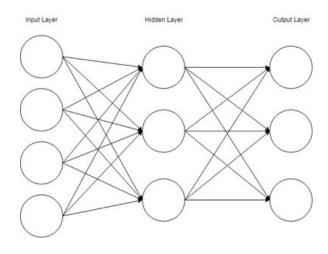
o Training: 167,200*


o Development: 20,900

o Test: 20,900

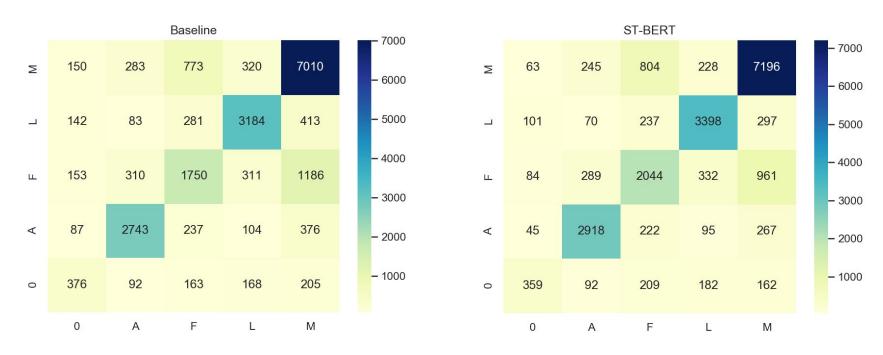
	Training	
	Average (σ)	Total
Tokens	20.27 (±12.08)	3,389,945
Vocabulary	$18.07 (\pm 9.82)$	267,620
LR	$0.92 (\pm 0.08)$	0.08
	Development	
	Average (σ)	Total
Tokens	20.38 (±12.17)	425,880
Vocabulary	$18.17 (\pm 9.94)$	55,606
LR	$0.92 (\pm 0.08)$	0.13
	Test	
	Average (σ)	Total
Tokens	20.24 (±12.01)	423,018
Vocabulary	$18.05 (\pm 9.76)$	55,592
LR	$0.92 (\pm 0.08)$	0.13


Methodology^(1/2)


- **Simple transformers**: we add an untrained layer of neurons on the end, and re-train the model with the OMT classification task at the output
- max_length parameter is set to 90, and models are re-trained up to 2 epochs
- Three different configurations:
 - **BERT**
 - XLM
 - **DistilBERT**

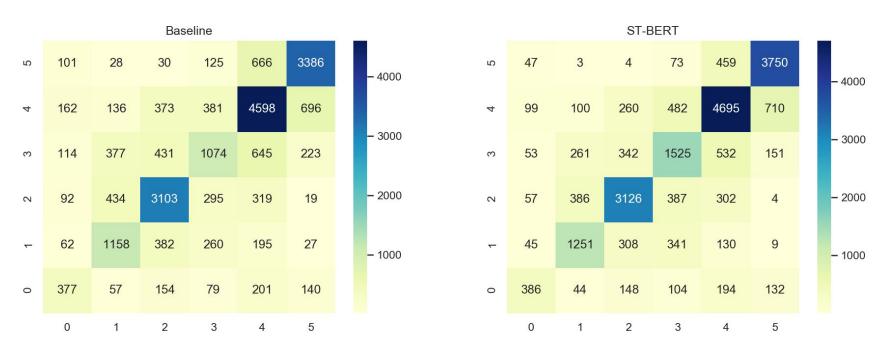
Methodology^(2/2)

- Fully connected neural network (FC):
 the FC is feed with the representation of
 the textual descriptions using:
 - Pre-train BERT
 - Fine-tuned BERT
- We reported results using two distinct ways for building the sentences representation
 - Last Hidden Layer
 - Concat Last Four Hidden


Hyper Parameter	Range	
number of layers	3	
number of hidden layers	1	
nodes in hidden layer	16	
activation function	ReLU	

Official results

Method	Configuration type	Configuration sub-type	F1-macro (dev)	F1-macro (test)
ST	Bert	bert-base-german-cased	0.694	0.698
ST	XLM	xlm-mlm-ende-1024	0.688	0.686
ST	DistilBert	distilbert-base-german-cased	0.692	0.688
FC	Bert (pre-trained)	LHL	0.589	0.589
FC	Bert (pre-trained)	Concat4LHL	0.616	0.579
FC	Bert (fine-tuned)	LHL	0.673	0.671
FC	Bert (fine-tuned)	Concat4LHL	0.675	0.230
Baseline	SVM	tf-idf	0.639	0.644
1st place	_	<u>-</u>	_	0.704


Results analysis (1/3)

Motives prediction

Results analysis^(2/3)

• **Levels** prediction

Results analysis (3/3)

Where is the attention being focused?

M4	Pre-trained BERT
M4	Fine-tuned BERT

sie möchte der anderen Person zeigen, dass sie enttäuscht ist . enttäuscht über die andere Person. weil die andere Person nicht ihren Erwartungen stand gehalten hat.

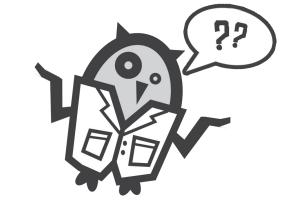
sie möchte der anderen Person zeigen, dass sie enttäuscht ist. enttäuscht über die andere Person. weil die andere Person nicht ihren Erwartungen stand gehalten hat.

A4	Pre-trained BERT
A4	Fine-tuned BERT

sie braucht Verständnis und wendet sich an jemand der ihr zu ##hört und sie versteht. sie fühlt sich geborgen und angenommen und erzählt, was sie belastet. sie ist angenommen so wie sie ist.

sie braucht Verständnis und wendet sich an jemand der ihr zu ##hört und sie versteht. sie fühlt sich geborgen und angenommen und erzählt , was sie belastet. sie ist angenommen so wie sie ist.

Conclusions and future work


- Although the ST exhibith the best empirical results, there is plenty of room for improvement, as the best reported is close to 70%
- Accurately detecting the combination of motives and levels from very short descriptions is a **challenging task** even for recent NLP technologies
- Our initial analysis of the obtained results, indicates that the attention mechanism is mainly focussing on **stylistic features**: punctuation marks, functional words
- Motive 0 and Level 0 seem to be very noisy elements

Q&A

Contact information:

- Esaú Villatoro Tello:
 - Email: <u>evillatoro@correo.cua.uam.mx</u> / <u>esau.villatoro@idiap.ch</u>
 - Twitter: @EsauVT

- Shantipriya Parida:
 - o Email: shantipriya.parida@idiap.ch
 - Twitter: @Shantipriyapar3

