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Abstract

A principal designs a potentially random decision rule selecting

between k outcomes. An agent has private information about the

state of the world, determining both von Neumann-Morgenstern util-

ity functions. I place no further restrictions on preferences. The design

problem reduces to selecting an optimal convex menu of lotteries from

which the agent chooses his preferred one. I characterize the extreme

points of the set of such menus as maximal and indecomposable sub-

sets of the unit simplex. In particular, for three outcomes there is

always an optimal mechanism with at most a range of three, yet ex-

treme points lie dense in the set of maximal menus for four or more

outcomes. My results are related to previously observed phenomena

in the multi-object monopolistic seller problem. My analysis rests on

the literature on indecomposable convex bodies started by Gale [1954].

Applications include job design, the allocation of public housing, and

hiring.
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1 Introduction

The allocation of decision rights is a fundamental question for organizational

design. An essential consideration is the trade-off between the efficiency gains

from delegating a decision to a well-informed agent and the agency costs

created by conflicts of interest with said agents. I study a simple model of

such delegation in which a principal (she) has to make a potentially random

decision between a finite set of outcomes, affecting both her and an agent

(he). The agent is privately informed about the state of the world, which

determines both players’ preferences. The agent’s preferences are drawn

from the entire domain of von Neumann-Morgenstern (vNM) preferences

over lotteries. The taxation principle implies that the principal is effectively

limited to delegating her decision to the agent while restricting the menu of

feasible random choices.

Examples of this setting include, delegation of hiring decisions between

the central office and a local branch in a company, allocation of housing by

the government and a manager designing a job by specifying permissible time

allocations on tasks.

This model also has a systematic role within mechanism design theory. It

subsumes many well-known one-agent mechanism design problems. To illus-

trate this, consider the case with 2k+1 outcomes. Each outcome can represent

a potential allocation of k goods and a sufficiently large lump sum transfer,

the probability of its allocation taking the role of traditional transfers. My

model then becomes an instance of the multi-good monopolistic seller prob-

lem without requiring the agent’s utility function to satisfy, e.g., additive

separability or free disposal. I will frequently refer to this connection. Ro-

bust observations like that there is no distortion at the top, the optimality of

post-it price mechanisms in the one good case or the complexities implied by

the possibility of bundling are all special cases of more general corresponding

properties in my model.

I characterize the extreme points of the set of direct incentive-compatible

mechanisms in this setting. The role of extreme points rests on two central

results: First, by Bauer’s maximum principle, the set of extreme points is a
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sufficient candidate set whenever one maximizes a linear or convex functional.

In my model, utilities are linear since the principal and agent have vNM and

hence linear preferences. Second, Choquet’s theorem implies that properties

preserved under convex combinations generalize from the extreme points to

the entire set. They are hence also a sufficient test set if one tries to establish

such a property for all mechanisms.

To these fundamental properties, I want to add a simple observation

relating to the more recent discussion around simple mechanisms started by

Hart and Nisan [2019]: Extreme points are menu size efficient, i.e., for a

given limit on the number of different allocations an agent might receive,

Bauer’s maximum principle also generalizes to the problem, including this

side constraint. Even when it is known that extreme points can generally be

arbitrarily complex, a characterization of them can hence aid in trading-off

complexity and efficiency.

Results. I show that the extreme points of the set of incentive-compatible

mechanisms in my model correspond to maximal and indecomposable convex

bodies in the simplex of probability distributions over k outcomes. Before I

explain the content of this characterization, I will point out three immediate

consequences:

First, extreme points are either constant and deterministic or give the

agent a veto. Consequently, any extreme points with range two consist of

lotteries with disjoint supports.

Second, for three outcomes, non-constant extreme points give the agent

a veto and have a range of two or three.

Lastly, for more than three outcomes, the set of extreme points lies dense

in the set of mechanisms granting a veto. However, those mechanisms that

are extreme points with finite but arbitrary ranges are themselves a dense set

of mechanisms granting a veto. I will hence focus attention on these. They

correspond to polytopes in my characterization and are generally much better

understood, which aids in range-restricted optimization problems.

A convex set is said to be indecomposable if it has no representation

as a Minkovski sum of two convex sets, both not homothetic1 to the sum.

1Two convex set K,L ⊂ Rd are homothetic if K = αL+ b, with α ∈ R+ and b ∈ Rd
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A Minkovski sum is the set of all pairwise sums of its summands. Both

indecomposable sets and Minkovski sums are widely studied objects in convex

geometry. Grünbaum [2003] is an excellent reference. It is well understood

and easy to check algebraically whether a two-dimensional convex body or

any polytope is indecomposable. Further, I call a set maximal in the simplex

if it is either a vertex of the simplex or touches all facets2.

My characterization follows from separate characterizations. Both are of

independent interest. Note that the revelation and taxation principles apply

in this setting. Hence any implementable decision rule can be implemented

both by a direct mechanism and indirectly by letting the agent decide from

a menu. Since the agent has linear preferences, I can restrict attention to

menus that are convex bodies, i.e., convex, compact, and non-empty subsets

of probability distributions over k outcomes.3 Given a direct mechanism,

one can easily describe the associated menu and vice versa. I strengthen

this equivalence of the two principles by demonstrating the existence of an

isomorphism between direct mechanisms and menus that preserves convex

combinations. In particular, the set of menus has a convex structure, where

convex combinations of menus refer to the Minkovski summation as defined

above. Note that I here and below refer to a convex set of convex sets.

Except in specifically noted circumstances, mentions of extreme points will

refer to the objects within this meta-structure. This directly yields theorem

1: A direct mechanism is an extreme point if and only if its associated menu

is an extreme point.

For the second equivalence, I study the above menus as geometric objects.

These are convex bodies within the unit simplex. A convex body can be

represented as a convex combination of other convex bodies in the simplex

homothetic to the first if and only if it is non-maximal. Hence, maximality

in the simplex is necessary for convex bodies to be an extreme point.

In contrast, if a convex body in the simplex is indecomposable, any rep-

resentation as a convex combination must, in turn, imply that the parts are

2The facets of the simplex represent the subsets of all lotteries for which a given outcome
has probability zero.

3An agent can always select an option from the convex hull by randomizing over reports,
yet will never have the incentive to do so.
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homothetic to the original. Hence maximality and indecomposability com-

bined are sufficient for convex bodies to be an extreme point. The reverse is

also true. This yields Theorem 2: A convex body of probability distributions

over a finite set of outcomes is an extreme point of the set of all such bodies

if and only if it is maximal and indecomposable. Maximality has an simple

economic interpretation: A maximal menu either leaves no choice at all, i.e.,

always implements the same outcome, or it grants a veto, i.e., the agent can

make sure that one outcome never realizes. Jointly with theorem 1, it implies

my main characterization: A direct non-constant mechanism is an extreme

point if it grants a veto and has an indecomposable menu.

The above mentioned direct consequences are then all direct consequences

of the literature on indecomposable sets.

Related Literature. Holmstrom [1984] has initiated a vast field of research

on delegation. Most of this literature has focused on a one-dimensional action

and type space and parameterized, mostly quadratic loss utility functions,

e.g., Dessein [2002], Alonso and Matouschek [2008], Amador and Bagwell

[2013], and Kolotilin and Zapechelnyuk [2019].

I deviate from this main strand in two ways: The set of alternatives

consists of lotteries over k outcomes, and arbitrary vNM preferences are

permissible. Both the space of alternatives and preferences are, therefore,

multi-dimensional and compact, and the utility functions of both players are

linear.

A smaller number of publications also consider multi-dimensional types

or action spaces. These include Bendor and Meirowitz [2004], Koessler and

Martimort [2012], Frankel [2016] and Kleiner [2022].

Lastly, papers that study delegation over a finite set of outcomes include

Che et al. [2013], Nocke and Whinston [2013], and Armstrong and Vickers

[2010]. In these models, the agent selects one of the alternatives for the

principal. Upon selection, the principal receives a signal on its quality and

can accept or reject the agent’s recommendation. The anticipation of this

signal acts as a screening device. My model shows that commitment to

enacting the agent’s recommendation contingent on a random event can be

effective, even if this event is completely independent of the relevant state of
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the world.

The closest paper to the present is, however, on auctions. Manelli and

Vincent [2007] characterize the extreme points of the multi-good monopolistic

seller problem. Given the differences between the models, also the charac-

terizations differ substantially. I will discuss the relationship in the main

below. Kleiner et al. [2021] characterize extreme points of the monotone

functions that fulfill a majorization constraint and apply their characteri-

zation to several one-dimensional economic design problems. Both papers

apply a different set of methods but share the approach to directly studying

the convex structure of the set of mechanisms. In contrast, I apply an in-

direct approach via the convex structure of feasible menus. The approaches

are, of course, deeply related, yet the indirect approach allows me to apply

elegant results from convex geometry, which fits my model exactly.

More generally, my model is deeply connected to models of multi-dimensional

mechanism design and, in particular, the multi-object monopolistic seller

problem, studied in, e.g., Rochet and Choné [1998], Jehiel et al. [2007],

Daskalakis et al. [2015], Hart and Reny [2015] and Haghpanah and Hart-

line [2021].

Recent work in this literature started by Hart and Nisan [2019] has fo-

cused on simple mechanisms in the sense that they have a small range of

outcomes. However, there is a tight connection to the study of extreme

points since extreme points are menu size efficient, i.e., when restricting to

mechanisms with menus lower than a given size, extreme points will retain

their status as a sufficient candidate set. Hart and Nisan [2017] demonstrate

that for two goods and arbitrary correlation structures, finite mechanisms

may not secure any positive fraction of optimal revenue. Since their model

is a special case of mine, this result directly translates to my model if k ≥ 8,

yet I conjecture it to be true for k ≥ 4. Finally, Babaioff et al. [2017] study

how fast optimal revenue can be approximated by finite menu mechanisms

when valuations for different goods are understood to be independent.
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2 Model

2.1 Notation

Conv(.) and Conv(.) denote the convex hull and closed convex hull of a set,

respectively. Ext(.) denotes the set of extreme points. Scalar multiplication

and addition of sets of real vectors refer to the following operations:

λM = {λm|m ∈M}

and

M +M ′ = {m+m′|m ∈M,m′ ∈M ′}.

The ” + ” here is the standard definition of the Minkovski or vector sum.

M ∼M ′ will denote that M and M ′ are homothetic.

2.2 Setting

A principal (she) selects an alternative affecting herself and an agent (he).

The set of alternatives A is the set of probability distributions over some finite

set of outcomes A = ∆{1, . . . , k}. Hence an element a ∈ A is of the form

a = (a1, . . . , ak), where ai ≥ 0 for l = 1, 2, . . . , k and
k∑
i=1

ai = 1. The agent is

privately informed about his type θ = (θ1, . . . , θk) ∈ Θ = {[0, 1]k : max
i
θi =

1 and min
i
θi = 0} which represents his (normalized) Bernoulli utilities over

outcomes. It is drawn from some prior µ on Θ. Hence his utility functions

U reads.

U(a, θ) = a · θ

I also will assume throughout that the principal is a von Neumann-

Morgenstern expected utility maximizer, i.e., given a type θ, her prefer-

ences over lotteries are characterized by her Bernoulli utilities over outcomes

v(θ) = (v1(θ), . . . , vk(θ)). The principal’s ex-ante utility function V is then

given by:
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V (a) = Eµ [a · v(θ)]

2.3 Mechanisms

The principal commits to a mechanism, and I assume the agent plays a best

response.

A mechanism is given by a message space S and a choice functions f :

S → A that specifies an alternative for each message sent by the agent.

Due to the revelation principle, it is without loss to restrict attention

to direct mechanisms, i.e., mechanisms with S = Θ and where agents have

incentives to report their true type. Formally, a mechanism satisfies incentive

compatibility if

U(f(θ), θ) ≥ U(f(θ′), θ) for each θ, θ′ ∈ Θ. (IC)

When the agent is indifferent between the alternative assigned to his type

and another, I assume that the principal can select which best response is

played by the agent.4

Definition 1. A mechanism with choice rule f satisfies principal preferred

tie-breaking if the following conditions are satisfied.

(i) For any θ, θ′ ∈ Θ s.t. U(f(θ), θ) = U(f(θ′), θ) implies V (f(θ), θ) ≥
V (f(θ′), θ).

(ii) For any θ, θ′ ∈ Θ s.t. U(f(θ), θ) = U(f(θ′), θ) and V (f(θ), θ) =

V (f(θ′), θ), implies f(θ) ≥lex f(θ), where ”≥lex” refers to the lexi-

cographical order.

Henceforth, when considering direct mechanisms, I will restrict atten-

tion to those that satisfy incentive compatibility and principal preferred tie-

breaking. I will denote the set of choice rules implemented by such mech-

anisms F . As a shorthand, I will refer to a mechanism f or the set of

4This selection follows Holmstrom [1984]. Kamenica and Gentzkow [2011] use sender-
preferred equilibrium as a related notion in information design.
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mechanisms F to refer to direct mechanisms that implement the respective

choice rules.

Restricting attention to F can not reduce the principal’s utility. I can

hence state her problem as follows:

max
f∈F

Eµ [f(θ) · v(θ)]

2.4 Menus

A menu M is a convex, compact, non-empty subset of A. I will say that

M has size n if |Ext(M)| = n. I will denote the set of all menus with M.

Consider the following indirect mechanism: The agent has a message space

S = M , and the alternative corresponding to his message realizes.5 I will say

that M is the menu of a direct mechanism f ∈ F if the allocation the agent

receives under f is a best-response in this indirect mechanism.

Definition 2. M is the menu of a mechanism f ∈ F if

f(θ) ∈ arg max
a∈M

U(θ, a).

In principle, a mechanism could have multiple menus, which is why at this

point, to speak ”the menu” is an abuse of language. Yet, I will demonstrate

below that a unique menu is associated with every mechanism in our setting.

3 Extreme Points of the Mechanism Set

3.1 The Strong Equivalence between the Revelation

and Taxation Principle

In this section, I characterize the extreme points of F through the convex

structure of M. In particular, the set of menus has a convex structure

5This indirect approach to mechanism design is referred to as the taxation principle
going back to Hammond [1979].
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induced by Minkovski addition on sets. Hence the following is a strengthened

version of equivalence between the revelation and taxation principles:

Theorem 1. Define T : F → M, s.t. T (f) = Conv(f(Θ)) for all f ∈ F .

Then T satisfies the following properties:

i T is a bijection that maps f to the menu of f .

ii |f(Θ)| = n <∞ if and only if T (f) is a polytope with n vertices.

iii T preserves convex combinations, i.e., for all f, f ′, f ′′ ∈ F

f = λf ′ + (1− λ)f ′′ ⇐⇒ T (f) = λT (f ′) + (1− λ)T (f ′′)

In particular, f is an extreme point of F if and only if T (f) is an extreme

point of M.

Proof. See Appendix A

The first two points are the equivalence of revelation and taxation princi-

ple restated in the context of this model. In contrast, the third point shows

that this equivalence preserves relevant convex structure. Therefore, it is

worthwhile to view both convex combinations from the agent’s perspective

and view them as random mixing between different mechanisms. This in-

terpretation on the direct side is straightforward. For the equivalence to

hold, the agent must achieve the same overall selection if he selects from the

Minkovski sum as if he were to select from both menus seperately. However,

by definition, the first choice is from all potential combinations, which is

equivalent.

This result is the central connection between direct mechanisms and con-

vex sets of probability distributions I employ in this paper.

3.2 Extreme Points of Menus

Extreme points of our menu setM are such menus that are not the Minkovski

sums of appropriately scaled feasible menus. Whether a given convex body
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has a representation as the Minkovski sum of other convex bodies is a well-

studied problem. Schneider [2014] is an excellent reference. The difference

between both problems is the feasibility constraints for the sum and the

summands present in the current setting.

To connect both problems and introduce the relevant notions, let me

recall that two convex bodies K,K ′ ∈ R are homothetic if K = αK ′ + v, for

some α ∈ R and v ∈ Rd. Any convex body K can be written as the sum

K = (λK − v) + ((1− λ)K + v) for λ ∈ (0, 1) and v ∈ Rd. I will hence call

such decompositions trivial.

Definition 3. A convex body K ⊂ Rd is decomposable if it has a non-trivial

decomposition, i.e., if there exist convex bodies B,C ⊂ Rd, B and C not

homothetic to K s.t. K = B +C. A convex body that is not decomposable is

indecomposable.

To compare the notion of M ∈ M being an extreme point of M or

being indecomposable, suppose there exist convex bodies B,C both different

from M s.t. M = B + C. B and C are a counterexample to M being

indecomposable if they are both not homothetic to M . In contrast B and

C are a counterexample to M being an extreme point ofM if there exists a

λ ∈ (0, 1), s.t. 1
λ
B and 1

1−λC are both feasable menus, i.e. subsets of A, since

then M = λ 1
λ
B + (1− λ) 1

1−λC. In particular, no notion implies the other.

To connect the two concepts, I next discuss a notion of menus for which

the constraint to be inside a given simplex is binding.

Definition 4. A menu M is maximal if it consists of a single vertex of A or

has a non-empty intersection with all facets of A.

The next lemma establishes maximality as a necessary condition for a

menu to be an extreme point.

Lemma 1. A menu M ∈ M has a trivial decomposition into non-identical

menus if and only if M is non-maximal.

In particular, for such a menu there exists menus Mh,Md ∈ M and

λ ∈ (0, 1), where Mh ∼ M and M and Md consists of a single vertex of A

s.t., M = λMh + (1− λ)Md.
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Proof. See Appendix A.

If M ∈ M is not maximal, it is fully enclosed in a smaller sub-simplex

within A. It can be rewritten as a convex combination of a scaled-up original

version and a vertex.

Note that the mechanism associated with a maximal menu either gives

no choice to the agent and always implements the same outcome or grants a

veto, i.e., the agent can ensure that a single outcome occurs with probability

zero with a respective report. In particular, every mechanism with a range

of size two maps to lotteries with disjoint supports.

There is a close connection between this result and the frequent observa-

tion that ”there is no distortion at the top” in several models of mechanism

design, such as the multi-object monopolistic seller problem. The usual argu-

ment for this observation is that the highest type does not grant information

rents to any other type. However, a distortion at the top implies a trivial

decomposition of the mechanism into a scaled-up version of the same mech-

anism and a mechanism that never allocates a given good, contradicting

optimality.

M ∈ M being maximal is a necessary condition to be an extreme point.

If, in addition, it is indecomposable, it has to be an extreme point since it

neither has a trivial nor non-trivial decomposition into non-identical menus.

In particular, it is not the sum of appropriately scaled feasible menus. It is

not obvious that these conditions are also jointly necessary. For example,

a menu might be decomposable, yet the scaled parts might not be feasible

for any decomposition. This is the case when feasibility depends on being

a subset of, e.g., a square. However, in this setting, being maximal and

indecomposable characterizes extreme points.

Theorem 2. A menu M ∈ M is an extreme point of M if and only if M

is maximal and indecomposable.

Proof. See Appendix A
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3.3 Extreme Points of the set of Direct Mechanisms

Theorem 1 and 2 jointly characterize the extreme points of F . I summarize

this below.

Theorem 3. A non-constant mechanism f ∈ F is an extreme point of F if

it grants a veto and T (f) is indecomposable.

Proof. Immediate by Theorems 1 and 2.

At this point, everything known about indecomposable convex bodies is

a statement on extreme points in our model and vice versa. A full charac-

terization of extreme points of direct mechanisms in terms other than these

would substantially extend the existing geometry literature. However, no

such attempt is made here.

Indcomposability is well understood in two dimensions and for polytopes

in any dimension, which correspond to finite mechanisms. In particular,

simple algebraic procedures exist to check whether a polytope is indecom-

posable by calculating the rank of an associated matrix. SeeSmilansky [1987]

for details.

In the remainder of this section, I will focus on the consequences of two

results on indecomposable sets.

As with the connection of granting a veto and no distortion at the top,

both results have a substantially different yet closely related corresponding

phenomenon in the multi-good monopolistic seller problem.

Delegation with one or two outcomes is each trivial. In the latter, the

principal has to decide between taking the decision herself or full delegation.

In contrast, the case with three alternatives allows intermediate extreme

points, which still all have a simple structure.

Theorem 4. Suppose k ≤ 3. Then a non-constant mechanism f is an

extreme point of F if it grants a veto and f(Θ) ≤ k.

Proof. See Appendix A
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Points, line segments, and triangles are the only indecomposable convex

bodies in two dimensions.6

The case k = 3 corresponds to the one good case in the monopolistic seller

problem. There are three possible ”trades” of probabilities for two outcomes

against a third. Any bundle of two trades is on net itself a single trade, even

though potentially for a different ”price” or rate of substitution.

The situation with four or more outcomes is in sharp contrast to this clas-

sification. It is similar to how bundling opportunities and possible discounts

lead to a rich set of extreme points. In both cases, an additional lever to

screen can be combined in a continuum of ways.

Theorem 5. Suppose k ≥ 4. Then the non-constant extreme points of F
with finite range are a dense subset of mechanisms granting a veto.

Proof. See Appendix A

There are two important consequences to this characterization. First,

although extreme points can have menus of infinite sizes, any such extreme

point is arbitrarily close to a mechanism with a finite menu size. Therefore

it is approximately without loss to focus attention on this better-understood

class. The second consequence, however, is that even this class is so rich that

it is not an easily comprehensible and sufficient candidate class for optimiza-

tion, as seen for k = 3.

4 Conclusion

I have characterized extreme points in a model of finite delegation, which

subsumes several important models in mechanism design. The characteriza-

tion builds the convex structure of the set of menus. My results are more

general cases of previously observed phenomena in the multi-object monop-

olistic seller problem.

My characterization can be seen as a first step in analyzing multi-agent

decentralization problems. For example, Börgers and Postl [2009], and Kim

6The result was first mentioned in Gale [1954], yet no proof was published. It was later
independently demonstrated by Meyer [1972] and Silverman [1973].
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[2017] study a setting with two agents, three alternatives, and a benevolent

principal maximizing total welfare. Similar problems have been analyzed via

the reduced form approach. Yet this depends on a characterization of feasibil-

ity similar to the one achieved by Border [1991] for auctions. Gopalan et al.

[2018] study such characterizations and find that a simple characterization

for asymmetric agent models would contradict widely held beliefs in com-

plexity theory. Nevertheless, due to fairness concerns in several applications,

it seems reasonable that the symmetric case is of special relevance.

This paper may also contributes to understanding the relationship be-

tween delegation and Bayesian persuasion. Kolotilin and Zapechelnyuk [2019]

and Kleiner et al. [2021] both find an equivalence between the two problems in

one-dimensional cases. The present work might aid in understanding whether

this equivalence breaks down in higher dimensions.
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A Appendix: Proofs

Proof of Theorem 1. i) Fix an arbitrary θ ∈ Θ, then

f(θ) ∈ arg max
a∈f(Θ)

U(θ, a) ⊂ arg max
a∈Conv(f(Θ))

U(θ, a)

Hence T (f) is a menu of f .

Next, I show that an inverse function exists. For this, define fM s.t.

fM(θ) ∈ arg max
a∈M

U(θ, a)

and fM satisfies principle-preferred tie-breaking. Now T−1 : M → F
with T−1(M) = fM is the required inverse function by construction.

ii) If |f(Θ)| is finite, all extreme points of T (f) are exposed. Hence

f(Θ) = Ext(T (f)).

iii) I will prove sufficiency first. For this I assume fix f, f ′, f ′′ ∈ F s.t.

f = λf ′ + (1− λ)f ′′ for some λ ∈ (0, 1). I can deduce the following:

T (f) = T (λf ′ + (1− λ)f ′′)

= Conv(λf ′(Θ) + (1− λ)f ′′(Θ))

= Conv(λf ′(Θ)) + Conv((1− λ)f ′′(Θ))

= λConv(f ′(Θ)) + (1− λ)Conv(f ′′(Θ))

= λT (f ′) + (1− λ)T (f ′′)

Now for the reverse direction fix f, f ′, f ′′ ∈ F s.t. Conv(f(Θ)) = λConv(f ′(Θ))+

(1− λ)Conv(f ′′(Θ)) for some λ ∈ (0, 1). Then I can deduce:
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f = T−1(T (f))

= T−1(Conv(f(Θ)))

= T−1(λConv(f ′(Θ)) + (1− λ)Conv(f ′′(Θ)))

= λT−1Conv(f ′(Θ)) + (1− λ)T−1Conv(f ′′(Θ))

= (λT−1T (f ′) + (1− λ)T−1T (f ′′))

= λf ′ + (1− λ)f ′′

Proof of Lemma 1. Suppose M ∈ M has an empty intersection with one

facet. Without loss of generality, assume that for all a = (a1, . . . , ak) ∈ M ,

a1 6= 0. Since M is closed, there exists an ε > 0, s.t. a1 ≥ ε for all a ∈ M .

Define

Mε = {aε = (
1

1− ε
a1 − ε,

1

1− ε
a2, . . . ,

1

1− ε
ak)|a ∈M}.

Mε is a feasible menu since all probabilities in all alternatives are positive

and add to 1. It is then easy to check that

M = ε(1, 0, . . . , 0) + (1− ε)Mε.

For the reverse, suppose M ∈M is maximal and suppose

M = λM ′ + (1− λ)M ′′

for some M ′,M ′′ ∈ M, s.t. M ∼ M ′ ∼ M ′′. If one of the parts does not

intersect a facet, so does M , but since M is maximal, so are M ′,M ′′. Yet

this implies M = M ′ = M ′′.
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Proof of Theorem 2. Suppose M ∈M is indecomposable and maximal, and

suppose there exists M ′,M ′′ ∈M, s.t.

M = λM ′ + (1− λ)M ′′

since M is indecomposable M ∼ M ′ ∼ M ′′, yet since M is maximal by

Lemma 1: M = M ′ = M ′′.

Suppose M is an extreme point. Then M is maximal by Lemma 1.

Suppose there exist convex bodies K ′, K ′′ ∈ Rd, s.t. M = K ′ +K ′′.

There are unique maximal sets M ′,M ′′ ∈ M, s.t. M ′ ∼ K ′ and M ′′ ∼
K ′′. Therefore

M = λM ′ + (1− λ)M ′′

Proof of Theorem 4.

Theorem (Meyer [1972] and Silverman [1973]). In R2, an indecomposable

compact convex set must be either a point, a line segment, or a triangle.

Proof of Theorem 5.

Theorem (Shephard [1963]). If all the 2-faces of a polytope P are triangles,

then P is indecomposable.

This set is dense in the set of convex bodies for the Hausdorff metric.

See, e.g., Schneider [2014].
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