
BDC6307: Introduction to Data Analytics Spring 2021, NUS

Lecture 2: Hoeffding’s Inequality and Its Applications

Lecturer: Long Zhao

2.1 Resources

• Vershynin (2018, Chapter 2&3): most of material.

• Bardenet et al. (2015): concentration for sampling without replacement.

2.2 Simplest Version

Let Xi be i.i.d. Bernoulli random variable with probability p and denote the corresponding sample mean as

p̄n. Namely, Xi ∼ Bern(p) and p̄n =
!n

i=1 Xi/n.

Theorem 2.1 (Hoeffding’s Inequality for i.i.d. Bernoulli)

P (|p̄n − p| ≥ !) ≤ 2 exp(−2!2n)

holds for n and ! > 0.

Unlike the central limit theorem (CLT), which requires n → ∞, Hoeffding’s inequality is non-asymptotic.

This is the first non-trivial non-asymptotic result that I encountered.

2.2.1 Importance of Hoeffding’s Inequality

Because of CLT, we know
√
n(p̄n−p)√
p(1−p)

d−→ N(0, 1). At least for large enough n, it seems that we could use the

tail behavior of N(0, 1) to approximate tail behavior of |p̄n − p|.

Proposition 2.2 Let g ∼ N(0, 1), then for all t > 0, we have

P (g > t) ≤ 1

t

1√
2π

exp(−t
2
/2).

In particular, for t ≥ 1,

P (g > t) ≤ 1√
2π

exp(−t
2
/2).
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Proof:

P (g > t) =

" ∞

t

1√
2π

exp(−x
2
/2)dx ≤ 1√

2π

" ∞

t

(x/t) exp(−x
2
/2)dx

=
1

t

1√
2π

" ∞

t

exp(−x
2
/2)d(x2

/2) =
1

t

1√
2π

exp(−t
2
/2).

Obviously, if t ≥ 1, we have 1/t ≤ 1.

Thus, we have

P (|p̄n − p| ≥ !) = P

#$$$$$

√
n(p̄n − p)%
p(1− p)

$$$$$ ≥
√
n!%

p(1− p)

&
≈ P

#
|g| ≥

√
n!%

p(1− p)

&

≤ 2
1√
2π

exp(− !2n

2p(1− p)
),

which is exponential decay with same order !2n. It seems promising, as long as the approximation error of

CLT is small compared to the exponential decay term. We actually know this approximation error from the

Berry-Esseen Theorem introduced in Lecture 1.

Theorem 2.3 (Berry-Esseen) Assume Yi are i.i.d. with finite third moments, ρ < ∞. Then for all n,

sup
x

|Fn(x)− Φ(x)| ≤ Cρ

σ3
√
n
,

where Fn(x) and Φ(x) are the c.d.f. of
√
nȲn (Ȳn =

!n
i=1 Yi/n) and N(0, 1), respectively.

Based on the Berry-Esseen theorem, we know the approximation error of CLT could be as large as order

1/
√
n. That is to say, the approximation error dominates the exponential decay term of N(0, 1). Hoeffding’s

inequality tells us that p̄n shares similar tail behavior of standard normal distribution.

2.3 Proof of Simplest Version

We will leverage the following Lemma to prove Hoeffding’s inequality.

Lemma 2.4 (Hoeffding’s Lemma) If E(X) = µ, and a ≤ X ≤ b, then

E(exp(λ(X − µ))) ≤ exp(λ2(b− a)2/8).

To prove Hoefdding’s Lemma, one should utilize the convexity of exp(x) and then use numeric inequality to

obtain the bound. For details, please see here.

Now, we begin the proof of Theorem 2.1.
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Proof: It is enough to prove P (p̄n − p ≥ !) ≤ exp(−2!2n). For any λ > 0, we have

P (p̄n − p ≥ !) = P (

n'

i=1

(Xi − p) ≥ n!)

≤ exp(−λn!)E

#
exp(λ(

n'

i=1

(Xi − p))

&

= exp(−λn!) (E(exp(λ(X1 − p)))n (i.i.d.)

≤ exp(−λn!) exp(λ2
n/8) (Hoeffding’s Lemma)

Since we have the freedom of choosing λ, we could choose λ! = 4! to minimize −λ!+λ2
/8 and obtain −2!2.

Remark 2.5 To have a meaningful bound, we should have !2n ≫ 1. That is to say, ! ≫
%
1/n or !n ≫

√
n.

If we want to learn what will happen on a smaller scale, like !n = 1, we need to refer to the anti-concentration

law, see Anti-concentration inequalities for more details. Anti-concentration is essential for Chernozhukov

et al. (2017) which I have no understanding.

Since we only use Xi bounded in the proof, it is easy to have the following generalized form.

Theorem 2.6 (Hoeffding’s Inequality for Independent Bounded Random Variables) If Xis are in-

dependent and Xi ∈ [ai, bi] for ∀i = 1, . . . n, we have

P

#
n'

i=1

(Xi − EXi) ≥ !n

&
≤ exp

(
− 2!2n2

!n
i=1(bi − ai)2

)

hold for n and ! > 0.

Think about why we have n
2 instead of n here?

Remark 2.7 To have the event
!n

i=1(Xi − EXi) ≥ !n useful, we require
!n

i=1 EXi ≫ !n. However, this

might not always be the case. For example, Xi ∼ Bern(pi) and
!n

i=1 pi → λ ≪ !n. In this case, one needs

a new inequality called Chernoff ’s inequality. Please see Vershynin (2018, Chapter 2.3) for more details.

2.4 Analysis of The Proof

2.4.1 Light tail

In the proof, we have E(exp(λ(Xi −EXi)) = exp(Cλ2) for all λ ∈ R. Next, I want to answer two questions.
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1. Do we need λ2 in E(exp(λ(Xi − EXi))?

2. Do we need E(exp(λ(Xi − EXi)) = exp(Cλ2) for all λ ∈ R?

To answer the first question, we need to recall the proof. For a fixed ! > 0, we use Markov inequality to have

P

#
n'

i=1

(Xi − EXi) ≥ !n

&
≤ min

λ∈I
exp(−λn!)E

#
exp(

n'

i=1

λ(Xi − EXi))

&
,

Notice that the first term, exp(−λn!) provides exponential decay when λ > 0. If the first term dominates

the second term for some λ > 0, we have concentration. However, this is not possible if the second term

is exp(Cλn) since one could choose ! small enough such that the first term never dominates the second.

Meanwhile, as long as the second term is exp(Cλq
n) where q > 1, this is possible by smartly choosing λ.

That is to say, higher order is essential but not necessarily quadratic.

The above analysis also answers the second question that we do not need λ ∈ R. As long as I contains some

positive parts, we still have exponential decay. It is just slower than Hoeffding’s inequality because we might

not be able to achieve the minimum of the quadratic function. In fact, this observation naturally leads to

the Bernstein’s inequality which we will cover later.

2.4.2 Independence and Linearity

Leveraging independence and linearity, we have E(exp(
!

i Xi)) =
*

E(exp(Xi)) which is critical for the

proof. However, it is not hopeless to move a little from independence. For simplicity, I will focus on

bounding E(exp(X1 +X2 +X3)).

E(exp(λ(X1 +X2 +X3))) = E
+
E(exp(λ(X1 +X2 +X3))|X1, X2)

,
Law of total expectation

= E
+
exp(λ(X1 +X2))E(exp(λX3)|X1, X2)

,

Say 0 ≤ Xi ≤ 1 (i = 1, 2, 3), then 0 ≤ X3|X1, X2 ≤ 1. Notice that Hoeffding’s Lemma also holds for

conditional probability P (|X1, X2), we have

E(exp(λX3)|X1, X2) ≤ exp(λE(X3|X1, X2)) exp(λ
2
/8)

Thus, we have

E(exp(λ(X1 +X2 +X3))) ≤ E
+
exp(λ(X1 +X2 + E(X3|X1, X2)))

,
exp(λ2

/8)

The simplest case is E(X3|X1, X2) = 0. In this way, we eliminate one term in the summation with the same

bound exp(λ2
/8) as the independent case. If we also have E(X2|X1) = 0, by conditional on X1, we could

obtain the same Hoeffding’s inequality as the independent case. If we denote Sk =
!k

i=1 Xi, then

E(Xk|X1, . . . Xk−1) = 0 ⇒ E(Sk|X1, . . . Xk−1) = Sk−1,
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namely Sk is a martingale if E|Sk| < ∞. Thus, it is natural to have the following concentration inequality

for martingale.

Theorem 2.8 (Azuma-Hoeffding Inequality) Let {Y0, Y1, · · · } be a martingale and |Yk − Yk−1| ≤ ck

almost surely. Then we have

P (|Yn − Y0| ≥ !) ≤ 2 exp

(
− !2

2
!n

i=1 c
2
i

)

Next, we will use Azuma-Hoeffding Inequality to obtain concentration for the uniform sample without

replacement (not independent). Abu-Mostafa et al. (2012) uses this concentration in its proof of the VC

dimension.

Theorem 2.9 Let A = {a1, . . . , a2N} be a set of values with ai ∈ [0, 1], and let µ = 1
2N

!2N
i=1 ai be their

mean. Let D = X1, . . . XN be a sample of size N , sampled from A uniformly without replacement. Then

P

#$$$$$
1

N

N'

i=1

Xi − µ

$$$$$ ≥ !

&
≤ 2 exp(−2!2N).

Proof: Because it requires careful analysis to obtain 2!2N , we only prove a weaker version with a different

constant (< 2). Since sampling without replacement is not independent, our best chance is to construct a

martingale and utilize Azuma-Hoeffding Inequality. Notice that

E

#
k+1'

i=1

(Xi − µ)|X1, . . . , Xk

&
=

k'

i=1

(Xi − µ) +
2Nµ−

!k
i=1 Xi

2N − k
− µ

=

k'

i=1

(Xi − µ)− 1

2N − k

k'

i=1

(Xi − µ)

=
2N − k − 1

2N − k

k'

i=1

(Xi − µ).

Thus, if we denote Sk = 1
2N−k

!k
i=1(Xi − µ), then we have

E (Sk+1|X1, . . . , Xk) = E

#
1

2N − k − 1

k+1'

i=1

(Xi − µ)|X1, . . . , Xk

&
= Sk.

Moreover, we could bound

|Sk − Sk−1| =

$$$$$
Xk − µ

2N − k
+

!k−1
i=1 (Xi − µ)

(2N − k)(2N − k + 1)

$$$$$ ≤
2

N
= ck if k ≤ N.

This inequality holds because |Xi − µ| ≤ 1 and 2N − k ≥ N . Thus, we have
!N

i=1 c
2
i = 4/N . Using
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Azuma-Hoeffding inequality to have

P (|SN − S0| ≥ !) ≤ 2 exp(−!2/2(4/N)) = exp(−!2N/8),

where SN = 1
N

!N
i=1(Xi − µ) and S0 = 0.

Remark 2.10 Because of Doob’s martingale inequality, it is possible to have concentration of P (max1≤i≤k Yi ≥
!) where Yi is a martingale. Bardenet et al. (2015) gives an example.

2.5 Unbounded Independent Random Variables

In the proof of Hoeffding’s inequality, we use Xi ∈ [ai, bi] to generate a bound of E(exp(λ(Xi − µi)) in the

form of exp(Cλ2) via Hoeffding’s lemma. In this sense, as long as we have exp(Cλ2) as the upper bound,

we do not require boundedness of random variables. In fact, if X ∼ N(µ,σ2), we have

E exp(λ(X − µ)) = exp(λ2σ2
/2)

hold for all λ. This naturally leads to our pursue of a larger class of random variables that could be unbounded

but still have

E exp(λ(X − µ)) ≤ exp(C2λ2) ∀λ ∈ R.

We call them sub-Gaussian distribution which will be defined rigorously in the next lecture. Since the

sum of sub-Gaussian distributions will concentrate around its expected value, they play a crucial role in

high-dimensional probability and statistics.

2.6 Finite Hypothesis

In the Lecture 02 of Learning from Data Youtube Videos, they assume there are m hypotheses. Denote

Ai the event that the difference between in-sample and out-of-sample performance of the ith hypothesis is

larger than !. By Hoeffding’s inequality, we know

P (Ai) ≤ 2 exp(−2!2n), ∀i = 1, . . . ,m.

Using union bound, we have

P (∪Ai) ≤
m'

i=1

P (Ai) = m exp(−2!2n).
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In some sense, m is the cost one pays for not knowing exactly which event happens. Thus, it has the fancy

name of entropy cost. As long as m is polynomial in n, it will be dominated by the exponential term when

n is large enough. Here is an example that m is exponential in n. Given n data points (1 or 0), there are

in total 2n possibilities. If the hypothesis set (potentially ∞ models) happens to contain models that could

fit all 2n cases, we could pick one for each case. Then the bound we have will be 2n exp(−2!2n) which is

useless.

However, in most cases, we have infinite hypotheses, and the union bound no longer works. Then the job

becomes how to use finite hypotheses to obtain a cover of infinite ones and then utilize union bound on the

finite events. In the future class, we will first introduce a straight forward case of covering (operator norm

of a random matrix) and then a complicated case (VC dimension).

2.7 Application of Hoeffdings’ Inequality

Example 2.11 (Boosting Randomized Algorithms, Vershynin (2018) Exercise 2.2.8) Suppose we

have an algorithm that makes a decision at random and returns the correct answer with probability 1/2 + δ

with some δ > 0, which is just better than a random guess. To improve performance, we run the algorithm

N times and take the majority vote. Show that, for any ! ∈ (0, 1), the answer is correct with probability at

least 1− !, as long as

N ≥ 1

2δ2
ln(

1

!
)

Use Xi to denote the indicator function that the ith algorithm get the right answer. Then we have EXi =

P (Xi = 1) = 1/2+δ and Xis are independent. Now, the majority vote is wrong is equivalent to X̄n−1/2 ≤ 0,

where X̄n =
!n

i=1 Xi/n. Now, we are in business.

Proof: Using Hoeffding’s inequality, we have

P
+
X̄n − (1/2 + δ) ≤ −δ

,
≤ exp(−2nδ2).

Thus, for any ! > 0, if n ≥ ln(1/!)/2δ2, we have P (X̄n − 1/2 ≤ 0) ≤ !.

Example 2.12 (Robust Estimation of Mean, Vershynin (2018) Exercise 2.2.9) We want to esti-

mate the mean µ of a random variable X from a sample X1, . . . , Xn drawn independently from the dis-

tribution of X. We also know V ar(X) = σ2
< ∞. We want an !−accurate estimate, i.e. one that falls in

the interval (µ− !, µ+ !) with probability 1− δ. How many sample do we need?

It is tempting to use Hoeffding’s inequality. Unfortunately, X might not be a bounded random variable.

Since we have the variance of X, it is tempting to use Chebyshev inequality to have

P (|X̄n − µ| ≥ !) ≤ V ar(X̄n)

!2
=

σ2

n!2
.
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If we choose n = 1
δ
σ2

%2 , we could bound the above probability by δ. However, n could be extremely large

when δ is small.

Another interpretation of not using Hoeffding’s inequality is that X might have heavy tail. If so, then sample

mean might not be a good idea since it is sensitive to outliers. Thus, it is tempting to use median instead

of mean as our estimation. Introduce Yi = 1Xi≥µ+%. Because Xi are i.i.d., we know Yi are i.i.d. Bernoulli

(bounded!) with probability p(!) = P (Xi ≥ µ+ !). Then

Mn ≥ µ+ ! ⇔ 1

n

n'

i=1

1Xi≥µ+% −
1

2
≥ 0 ⇔ Ȳn − 1

2
≥ 0,

where Mn is the median of n samples. Now, we could adopt the techniques used in the previous exercise to

have

P (Mn ≥ µ+ !) ≤ exp
+
−2n(1/2− p(!))2

,
.

We could have exponential decay if p(!) < 1/2! Unfortunately, we do not have guaranteed. Sad. The good

news is that, if we could construct some estimators that have p(!) < 1/2, we could take a median of them

and enjoy the benefit of exponential decay. Because of Chebyshev inequality, we know the sample mean

could achieve this goal. Thus, we will replace Xi with the sample mean X̄n,i and then take a median of X̄n,i.

Proof: Because of Chebyshev inequality, if we choose n ≥ 4σ2
/!2, we have p(!) = P (X̄n,i ≥ µ + !) ≤ 1/4.

Here I abuse the notations a little to highlight the idea of the proof. Using Hoeffding’s inequality, we have

P (MN ≥ µ+ !) ≤ exp
+
−2N(1/2− p(!))2

,
≤ exp(−N/2),

where MN is the median of N pieces of X̄n,i. We could choose N = O(ln(1/δ)) to make the RHS smaller than

1/2δ. In this way, we use nN = O(ln(1/δ)σ2
/!2) samples to obtain an estimator that belongs to (µ−!, µ+!)

with probability 1− δ. It is much smaller than the number of sample used based on Chebyshev inequality.

Example 2.13 (Probability Bound in Bertsimas and Sim (2004), Budget Uncertainty Set) . If

ηij, j ∈ Ji are independent and symmetrically distributed random variable in [−1, 1], then

P (
'

j∈Ji

γijηij ≥ Γi) ≤ exp

(
− Γ2

i

2|Ji|

)
,

where |Ji| is the cardinal number of set Ji and 0 < γij ≤ 1.

In a linear programing problem, the ith constraint
!

j ãijxj ≤ bi contains random coefficients ãij ∈ Ji.

Specifically,

ãij = aij + ηij âij ,

where ηij ∈ [−1, 1] and Eηij = 0. Budget uncertainty set requires the number of changed coefficients is not
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bigger than Γi, where Γi controls the level of robustness. When ηijs are independent, it is possible to choose

Γi ≪ |Ji| such that
!

j ãijxj > bi only happens for a low probability. This violation probability is upper

bounded by P (
!

j∈Ji
γijηij ≥ Γi) which leads to the example above.

Proof: Hoeffding’s inequality is perfect in this case because ηij are independent and γij is bounded. Utilizing

Theorem 2.6, we have

P

-

.
'

j∈Ji

(γijηij − 0) ≥ Γi

/

0 ≤ exp

-

.−2Γ2
i /

'

j∈Ji

|2γij |2
/

0 ≤ exp(−Γ2
i /2|Ji|)

Example 2.14 (High Dimensional Uniform Distribution) Let Xi ∼ U(−1, 1) and Xis are i.i.d. Let’s

consider a high-dimensional vector )X = (X1, . . . , Xp) where p is the dimension. Show that 0 )X0qq concen-

trates.

From Xi ∼ U(−1, 1), we know |Xi| ∼ U(0, 1) which is bounded. Moreover, |Xi|q is also bounded for

∀q ≥ 0 and E|Xi|q = 1/(q + 1). Thus, we could use Hoeffding’s inequality to show that 0 )X0qq =
!p

i=1 |Xi|q

concentrate around the 1/(q + 1).

Proof: By Hoeffding’s inequality, we have

P

#$$$$$

p'

i=1

|Xi|q −
p

q + 1

$$$$$ ≥ !p

&
≤ 2 exp(−2!2p).

That is to say,

(1/(q + 1)− !)p ≤ 0 )X0qq ≤ (1/(q + 1) + !)p

is true with probability at least 1− 2 exp(−2!2p).

Since 0 )X022 = r is a high-dimensional ball which is easier to picture, we will choose q = 2 to understand the

above result. If we take p = 10, 000 and ! = 0.02, then

P (0.31p ≤ 0 )X022 ≤ 0.36p) ≥ 99.9%.

In other words, )X has some predictable behavior because of high dimensionality. Meanwhile, if p = 2, there

is no such pattern exists. In fact, the author of Wainwright (2019) mentioned that the blessing of high

dimensionality is concentration of measure (High-Dimensional Statistics I, Youtube Video).

We could normalize )X to obtain )X/0 )X02, which is on the high dimensional sphere. Is it a uniformly

distributed on the sphere? Why? (Hint: think about 2 dimension case).
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Example 2.15 (High Dimensional N(0, Ip)) Let )X ∼ N(0, Ip), then we know Xis are i.i.d. N(0, 1). We

also have 0 )X02 concentrates around
√
p.

It is tempting to utilize E(exp(λXi)) = exp(λ2) to obtain the concentration. Unfortunately, 0 )X02 is about

X
2
i which have much heavier tail than Normal distribution. Thus, we need to have new concentration

inequality (next class) to prove this result.

Using the technique of changing variables, we could prove that )X/0 )X02 follows a uniform sphere distribution.

(Are different coordinates independent?) Coupled with the concentration of 0 )X02, we know that )Xi shall

behave like Figure 2 (Right). This is the first high dimensional result that blow my mind. Hope you also

find it amazing.

Figure 2.1: 2D N(0, I2) (Left) v.s. High Dimensional N(0, Ip) (Right)
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Lecture 3 & 4: Sub-Gaussian & Sub-Exponential Distributions

Lecturer: Long Zhao, longzhao@nus.edu.sg

3.1 Resources

• Vershynin (2018, Chapter 2&3): most of material.

3.2 Target

Let X ∼ N(0, Ip). We want to prove that "X"2 concentrates around
√
p when p is large. At first sight, it

might seem unsurprising since E"X"22 = E
!p

i=1 X
2
i =

!p
i=1 EX

2
i = p. Then "X"2 is about the level of

√
p. However, based on Jensen’s inequality, we only have (E"X"2)2 ≤ E"X"22 = p. In fact, we know "X"2

follows χ(p) where p is the degree of freedom. Based on the approximation of χ(p), we have

E"X"2 =
"
p− 1×

#
1− 1

4p
+O(

1

p2
)

$
≤ √

p.

Thus, "X"2 is about
√
p because "X"22 concentrates around p which behaves like deterministic values. In

other words, it behaves like law of large numbers:

1

p

p%

i=1

X
2
i → 1 ⇒ 1

√
p

&''(
p%

i=1

X2
i → 1.

To establish the concentration of "X"22, we need to introduce the sub-exponential distribution, which has

heavier tails than the normal distribution. Here is the roadmap.

1. Definition of sub-Gaussian and sub-exponential.

2. Properties of sub-Gaussian (same bound as Hoeffding’s inequality).

3. Properties of sub-exponential.

4. Connections between them.

5. Bernstein’s inequality. (Concentration inequality for sub-Gaussian)

3-1
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6. Concentration of "X"2.

7. Almost orthogonal vectors.

3.3 (Only) The Tail Decay Matters

First of all, we need to define what is the tail of a distribution. Say X is a random variable, P (|X| > t)

for large t is the tail behavior. To see why it is the case, it is beneficial to analyze the moment generating

function (MGF) of X

E exp(λX) =

) ∞

−∞
exp(λx)dF (x) =

) t

−t

exp(λx)dF (x) +

) −t

−∞
exp(λx)dF (x) +

) ∞

t

exp(λx)dF (x),

where F (x) is the c.d.f. of X. For simplicity, we only analyze λ > 0. In this case, the first term is bounded

by exp(λt) and the second term is bounded by exp(−λt). This means that they won’t make the MGF into

+∞, but the third term could. For example, if X is a Pareto distribution whose F (x) is

F (x) =

*
+

,
1− x

−α
x ≥ 1

0 x < 1,

where α > 0, we have

) ∞

t

exp(λx)dF (x) =

) ∞

t

αx−α−1 exp(λx)dx = ∞, ∀λ > 0.

More generally, if

lim
t

exp(λt)P (X > t) = ∞ ∀λ > 0,

we have MGF (λ) = ∞ for all λ > 0. Interestingly, this naturally leads to the definition of heavy-tail

distribution.

Definition 3.1 X is said to have a heavy (right) tail if its MGF (λ) = ∞ for all λ > 0.

Based on our analysis in the last lecture, on the one hand, it is hopeless to have exponential concentration

for the heavy-tail distribution. On the other hand, Hoeffding’s inequality tells us that there is concentration

for the distributions without tails (bounded variable). The purpose of this lecture is to build the bridge

between these two extremes: introducing two families of distributions that have some tails but still have

concentration.

Because of the importance of tail behavior, I will define sub-Gaussian and sub-exponential distributions in

terms of P (|X| > t):

• Sub-Gaussian: P (|X| > t) ≤ 2 exp(−c1t
2) for all t ≥ 0.
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• Sub-Exponential: P (|X| > t) ≤ 2 exp(−c2t) for all t ≥ 0.

Try to prove the following properties

• sub-Gaussian distribution is also sub-exponential.

• If X is sub-Gaussian, then X
2 is sub-exponential.

3.4 Sub-Gaussian Distribution

3.4.1 Behavior of N(0, 1)

Since the name contains Gaussian, we would like to investigate the tail behavior of N(0, 1) first.

Proposition 3.2 Let g ∼ N(0, 1), then for all t > 0, we have

P (|g| > t) ≤ 2 exp(−t
2
/K

2)

Proof: From Proposition 2.2, we know that for t ≥ 1

P (|g| > t) ≤ 2√
2π

exp(−t
2
/2),

which is the form we want. As in our discussion about the tails, we care very little about t ≤ 1. In fact, we

could obtain the following trivial bound for t ≤ 1

P (|g| > t) ≤ 1 < 2 exp(−1/2) ≤ 2 exp(−t
2
/2).

More generally, for bounded t, we could choose K
2 so large that 2 exp(−t

2
/K

2) > 1 which leads to a trivial

bound (probability is smaller than 1). Thus, we know that 2 in 2 exp(−t
2
/K

2) is not essential; as long as it

is larger than 1, this trivial bound pass through.

Based on this trick, could you prove that sub-Gaussians is also sub-exponential distribution?

It is easy to show that for N(0,σ2), we also have tail bounded in the form of 2 exp(−t
2
/K

2). It is less trivial

for N(µ,σ2), but we will not prove it rigorously here. Here is the intuition. If we only focus on t ≫ µ, then

the existence of µ barely makes a difference. Therefore, we must have a similar bound.

Remark 3.3 We pay very little attention to the specific form of constants. This is usually the case when

dealing with concentration and high-dimensional probability/statistics.
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3.4.2 Sub-Gaussian Properties

The following proposition shows different properties of sub-Gaussian distribution. We will try to derive them

from the tail behavior (property 1). Our ultimate target is property 5 because it plays a critical role in the

proof of concentration.

Proposition 3.4 (Sub-Gausssian Properties) Let X be a random variable. The following properties are

equivalent; the parameters Ki > 0 appearing in these properties differ from each other by at most an absolute

constant factor.

1. The tails of X satisfy

P (|X| ≥ t) ≤ 2 exp(−t
2
/K

2
1 ) ∀t ≥ 0

2. The moments of X satisfy

"X"p = (E|X|p)1/p ≤ K2
√
p ∀p ≥ 1

3. The MGF of X
2
satisfies

E exp(λ2
X

2) ≤ exp(K2
3λ

2) ∀|λ| ≤ 1

K3

4. The MGF of X
2
is bounded at some point, namely

E exp(X2
/K

2
4 ) ≤ 2.

Moreover, if EX = 0 then properties 1-4 are also equivalent to the following one.

5. The MGF of X satisfies

E exp(λX) ≤ exp(K2
5λ

2) ∀λ ∈ R.

It is worth to go through all the calculations if X ∼ N(0, 1).

E|X|p =
2√
2π

) ∞

0

x
p exp(−x

2
/2)dx

=
2(p+1)/2

√
2π

) ∞

0

y
(p−1)/2 exp(−y)dy (y = x

2
/2)

=
2p/2√
π
Γ(

p+ 1

2
)

Using numeric inequality, Γ(x) ≤ 3xx, we could get "X"p ≤ K
√
p.
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E exp(λ2
X

2) =
2√
2π

) ∞

0

exp(λ2
x
2) exp(−x

2
/2)dx

=
2√
2π

) ∞

0

exp(−(1/2− λ2)x2)dx

Clearly, it blows up when λ2 ≥ 1/2. When λ2
< 1/2, introduce y =

√
1− 2λ2x (y2/2 = (1/2− λ2)x2), then

E exp(λ2
X

2) =
2√
2π

) ∞

0

exp(−y
2
/2)dy × (1− 2λ2)−1/2 = (1− 2λ2)−1/2

If we use a numeric inequality, 1/(1− x) ≤ exp(2x), ∀x ∈ [0, 1/2], we have

(1− 2λ2)−1/2 ≤ exp(2λ2) ∀2λ2 ≤ 1/2.

Thus, we have E exp(λ2
X

2) ≤ exp(2λ2) ≤ exp(22λ2) for all |λ| ≤ 1/2.

Proof:

1 ⇒ 2. Without loss of generality, take K1 = 1. Then

E|X|p = E

) ∞

0

1|X|p>xdx =

) ∞

0

P (|X|p > x)dx (Fubini Theorem)

=

) ∞

0

P (|X|p > t
p)dtp (x = t

p)

=

) ∞

0

pt
p−1

P (|X| > t)dt ≤
) ∞

0

2ptp−1 exp(−t
2)dt =

) ∞

0

p(t2)p/2−1 exp(−t
2)dt2

= pΓ(p/2) ≤ 3p(p/2)p/2 (Γ(x) ≤ 3xx
, ∀x ≥ 1/2)

Take power of 1/p to both sides to have

"X"p ≤ (3p)1/p/
√
2
√
p ≤ 3

√
p (3p/

√
2 ≤ 3p, ∀p ≥ 1).

We also show that K2 = 3.
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1 ⇒ 3. Using the same technique above

E exp(λ2
X

2) =

) ∞

0

P (exp(λ2
X

2) > x)dx

=

) ∞

0

P (exp(λ2
X

2) > exp(λ2
t
2))d exp(λ2

t
2) (x = exp(λ2

t
2))

=

) ∞

0

P (|X| > t) exp(λ2
t
2)λ2

dt
2

≤
) ∞

0

2 exp(−y) exp(λ2
y)λ2

dy (y = t
2)

=

) ∞

0

2λ2 exp(−(1− λ2)y)dy =
2λ2

1− λ2
(when λ2

< 1)

≤ exp(2λ2) (when λ2 ≤ 1/2).

The last inequality holds because 1/(1− x) ≤ exp(2x) holds for x ≤ 1/2. We also show that K3 =
√
2.

1 ⇒ 5. I do not know how to do this. Please let me know if you figure it out.

3 ⇒ 5. Without loss of generality, assume K3 = 1. If we use numeric inequality, exp(x) ≤ x + exp(x2),

when λ < 1, we have

E exp(λX) ≤ EλX + E exp(λ2
X

2) ≤ exp(λ2).

When λ ≥ 1, we know λX ≤ λ2
/2 +X

2
/2. Thus,

E exp(λX) ≤ exp(λ2
/2)E exp(X2

/2) ≤ exp(λ2
/2) exp(1/2) ≤ exp(λ2)

Noticing that E exp(λX) = exp(K2
5λ

2) plays a key role in Hoeffding’s inequality. We are expecting an almost

identical concentration form. Before taking that adventure, let me first introduce a norm of sub-Gaussian

distribution, which comes in handy soon.

3.4.3 Sub-Gaussian Norm

Definition 3.5 (Sub-Gaussian Norm) The sub-Gaussian norm of X, denoted as "X"ψ2 , is defined as

"X"ψ2 = inf{t > 0 : E exp(X2
/t

2) ≤ 2}

This definition of norm (why bounded by 2) is very weird to me. To understand why it is defined this way,

we need to leverage the power of Orlicz spaces. A function ψ : [0,∞) → [0,∞) is called Orlicz function if ψ
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is convex, increasing, and satisfies

ψ(0) = 0, ψ(x) → ∞, as x → ∞.

Example 3.6 (Orlicz Functions) • ψ(x) = x
p
, p ≥ 1.

• ψ(x) = exp(x2)− 1.

• ψ(x) = exp(x)− 1.

• ψ(x) = exp(xq) − 1, q ≥ 1. If f and g are convex and g is non-decreasing. Then g(f(x)) is convex.

Take g(x) = exp(x) and f(x) = x
q
.

For a given Orlicz function ψ, the Orlicz norm (show that it is indeed a norm) of a random variable X is

defined as

"X"ψ := inf{t > 0 : Eψ(|X|/t) ≤ 1}.

Example 3.7 (Orlicz Norms) • ψ(x) = x
p
, p ≥ 1. Because "X"ψ = (E|X|p)1/p = "X"p.

• ψ(x) = exp(x2)− 1. "X"ψ2 = inf{t > 0 : E exp(X2
/t

2) ≤ 2}.

• ψ(x) = exp(x)− 1. "X"ψ1 = inf{t > 0 : E exp(|X|/t) ≤ 2}.

Now, we know where does the upper bound of 2 come from. It is because 2 = 1 + 1 (just kidding). The

Orlicz space Lψ consists of all random variables X with a finite Orlicz norm. With ψ = x
p, p ≥ 1, we recover

the L
p space.

Remark 3.8 We could locate Lψ2 in the hierarchy of the classical L
p
spaces:

L
∞ ⊂ Lψ2 ⊂ L

p
.

This means we successfully extended bounded random variables L
∞
.

3.4.4 Sub-Gaussian Properties in terms of !X!ψ2

Proposition 3.9 The properties in Proposition 3.4 could be written as

1. P (|X| ≥ t) ≤ 2 exp(−t
2
/"X"2ψ2

) for all t ≥ 0.

2. "X"Lp ≤ C"X"ψ2

√
p

3. E exp(X2
/"X"2ψ2

) ≤ 2 (Definition)



Lecture 3 & 4: Sub-Gaussian & Sub-Exponential Distributions 3-8

4. If EX = 0 then E exp(λX) ≤ exp(Cλ2"X"2ψ2
) for all λ ∈ R.

Here C are absolute constant that has nothing to do with X.

Proof: Since property 1 does not have constant, we prove it as following:

P (|X| ≥ t) = P

-
exp

-
X

2

"X"2ψ2

.
≥ exp

-
t
2

"X"2ψ2

..

≤ exp

-
− t

2

"X"2ψ2

.
E

-
exp

X
2

"X"2ψ2

.
≤ 2 exp

-
− t

2

"X"2ψ2

.
.

For the others, we could construct Xnew = X/"X"ψ2 which has K1 = 1 and K3 =
√
2. Based on the proof

of Proposition 3.4, we have this proposition proved.

Since the last property matters the most for the concentration, our goal becomes showing "X"ψ2
< ∞. The

following two properties of the sub-Gaussian norm are useful.

Lemma 3.10 (Centering) If X is a sub-Gaussian random variable, then X − EX is also sub-Gaussian

and

"X − EX"ψ2 ≤ C"X"ψ2 ,

where C is an absolute constant.

Proof: Since "X"ψ2
is a norm, we have

"X − EX"ψ2
≤ "X"ψ2

+ "EX"ψ2
.

By definition, for a constant a, "a"ψ2 = 1√
ln 2

|a|. Thus, we have

"EX"ψ2 =
1√
ln 2

|EX| ≤ 1√
ln 2

E|X| (Jensen’s inequality)

≤ C"X"ψ2
(Property 2 of Proposition 3.9).

Is this rigorous proof for the argument that N(µ,σ2) is sub-Gaussian no matter what µ is?

Proposition 3.11 [Sum of independent Sub-Gaussians] Let X1, . . . XN be independent, mean zero, sub-

Gaussian random variables. Then
!N

i=1 Xi is also sub-Gaussian random variable, and

/////

N%

i=1

Xi

/////

2

ψ2

≤ C

N%

i=1

"Xi"2ψ2
,
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where C is an absolute constant.

Proof: Since it is the sum of independent variables, we will approach this problem with MGF. For any λ ∈ R,
we have

E exp(λ

N%

i=1

Xi) =

N0

i=1

E exp(λXi) independence

≤
N0

i=1

exp(Cλ2"Xi"2ψ2
) (property 4 of Proposition 3.9)

= exp(Cλ2
K

2) where K
2 =

!N
i=1 "Xi"2ψ2

.

(3.1)

Based on the 4th property in Proposition 3.9, we know
!N

i=1 Xi is sub-Gaussian (If E exp(λX) ≤ exp(C2λ
2)

for all λ ∈ R, then X is sub-Gaussian). More specifically, from the 4th property, we have

E exp(λ

N%

i=1

Xi) ≤ exp(Cλ2"
N%

i=1

Xi"2ψ2
)

Compare it with Equation 3.1, we have

/////

N%

i=1

Xi

/////

2

ψ2

≤ C1K
2
.

Here we have C1 because
///
!N

i=1 Xi

///
2

ψ2

might not be the smallest number such that the 4th property holds.

Since " · "ψ2
is a norm, we naturally have

/////

N%

i=1

Xi

/////
ψ2

≤
N%

i=1

"Xi"ψ2 .

Taking squares to both sides to have

/////

N%

i=1

Xi

/////

2

ψ2

≤
N%

i=1

N%

j=1

"Xi"ψ2"Xj"ψ2 .

The right-hand side has in total N2 terms. Proposition 3.11 shows that if we have Xi independent, then we

could use N terms to bound instead. This is similar to the behavior of variance,

E

-
N%

i=1

Xi

.2

=

N%

i=1

N%

j=1

E(XiXj) =

N%

i=1

EX
2
i ,

if Xis are independent.
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3.4.5 General Hoeffding’s Inequality

Theorem 3.12 [General Hoeffding’s Inequality 1] Let X1, . . . , XN be independent, mean zero, sub-Gaussian

random variables. Then for every t ≥ 0, we have

P

-11111

N%

i=1

Xi

11111 ≥ t

.
≤ 2 exp

-
− ct

2

!N
i=1 "Xi"2ψ2

.
.

Proof: By the first property of Proposition 3.9, we only need to show

/////

N%

i=1

Xi

/////

2

ψ2

≤ C

N%

i=1

"Xi"2ψ2
.

This is exactly what Proposition 3.11 says.

Theorem 3.13 (General Hoeffding’s Inequality 2) Let X1, . . . , XN be independent, mean zero, sub-

Gaussian random variables and a = (a1, . . . , aN ) ∈ RN
. Then for every t ≥ 0, we have

P

-11111

N%

i=1

aiXi

11111 ≥ t

.
≤ 2 exp

#
− ct

2

K2"a"22

$
,

where K = maxi "Xi"ψ2 .

Proof: From Theorem 3.12, we know

P

-11111

N%

i=1

aiXi

11111 ≥ t

.
≤ 2 exp

-
− ct

2

!N
i=1 "aiXi"2ψ2

.
.

Because " · "ψ2 is a norm, we have "aiXi"2ψ2
= a

2
i "Xi"2ψ2

, thus,

N%

i=1

"aiXi"2ψ2
=

N%

i=1

a
2
i "Xi"2ψ2

≤ K
2

N%

i=1

a
2
i = K

2"a"22.

From the proof above, we could use the properties of " · "ψ2 without going back to the Markov inequality.
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3.5 Sub-Exponential Distribution

Although we have expanded concentration for sub-Gaussian distributions, we still leave out important ones

that has heavier tail than sub-Gaussian but lighter tail than heavy-tail distribution. Specifically, we still can

not get concentration result for " 'X"22, where 'X ∼ N(0, Ip) because

P (X2
i ≥ t) = P (Xi ≥

√
t) ≤ 2 exp(−t/2) (see Section 3.4.1),

which behaves like exponential distribution. Meanwhile, it is not hopeless to have concentration: say X ∼
Exp(1) (EX = 1), we have

E exp(λ(X − 1)) =

) ∞

0

exp(λ(x− 1)) exp(−x)dx =
exp(−λ)

1− λ
(when λ < 1)

Next, we use Taylor expansion to show that it is reasonable1 to believe that it could be bounded by exp(Cλ2)

for |λ| < c.

exp(−λ)

1− λ
= (1− λ+

1

2
λ2 + . . . )(1 + λ+ λ2 + . . . ) = (1 +

1

2
λ2 + ...) ≤ exp(Cλ2) (when λ is small and C is large).

Could we extend this argument in the following way? For any random variable X that EX = 0,

E exp(λX) ≈ E(1 + λX +
1

2
λ2

X
2) = 1 +

1

2
λ2σ2 ≤ exp(1/2λ2σ2),

when λ is small enough. Thus, there always exists a small region around 0 that E exp(λX) ≤ exp(Cλ2).

This is totally wrong, but where is the issue?

Coming back to the exponential distribution, E exp(λ(X − 1)) ≤ exp(Cλ2) is exactly what we need to

establish concentration (Recall the analysis in Lecture 2: higher order of λ within an interval is enough.)

Next, we will show rigorously concentration also exists for them.

Proposition 3.14 (Sub-Exponential Properties) Let X be a random variable. Then the following prop-

erties are equivalent; the parameters Ki > 0 appearing in these properties differ from each other by at most

an absolute constant factor.

1. The tails of X satisfy

P (|X| ≥ t) ≤ 2 exp(−t/K1), ∀t ≥ 0.

2. The moments of X satisfy

"X"p = (E|X|p)1/p ≤ K2p, ∀p ≥ 1.
1
If you know how to prove this elegantly without using Tailor expansion, please let me know. However, do not put too much

effort in it. It is just a numeric inequality.
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3. The MGF of |X| satisfies

E exp(λ|X|) ≤ exp(K3λ), 0 ≤ λ ≤ 1

K3

4. The MGF of |X| is bounded at some point, namely

E exp(|X|/K4) ≤ 2.

Moreover, if EX = 0, then properties 1-4 are also equivalent to the following one.

5. The MGF of X satisfies

E exp(λX) ≤ exp(K2
5λ

2), ∀|λ| ≤ 1

K5

Proof: Since the 5th one is the most important for the proof of concentration, we will only establish the

route from 1 to 5.

1 ⇒ 2 & 1 ⇒ 3. One could obtain them using the same technique as the sub-Gaussian case.

2 ⇒ 5. Without loss of generality, we let K2 = 1. Using Taylor expansion, we have

E exp(λX) = E

-
1 + λX +

∞%

i=2

(λX)i

i!

.
= 1 +

∞%

i=2

λi
EX

i

i!
(EX = 0)

≤ 1 +

∞%

i=2

(λi)i

(i/e)i
(Stirling’s Approximation: i! ≥ (i/e)i)

= 1 +

∞%

i=2

(eλ)i = 1 +
(eλ)2

1− eλ
(eλ < 1)

≤ 1 + 2(eλ)2 (if eλ ≤ 1/2)

≤ exp(2e2λ2) (1 + x ≤ exp(x)).

Now, we could define the norm of sub-exponential random variables.

Definition 3.15 (Sub-Exponential Norm) The sub-exponential norm of X, denoted as "X"ψ1 , is defined

as

"X"ψ1 = inf{t > 0 : E exp(|X|/t) ≤ 2}.

Based on our previous discussion about the Orlicz norm, you shall know where does 2 come from.
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3.5.1 Sub-Exponential Properties in terms of !X!ψ1

Proposition 3.16 The properties in Proposition 3.14 could be written as

1. P (|X| ≥ t) ≤ 2 exp(−t/"X"ψ1) for all t ≥ 0.

2. "X"Lp ≤ C"X"ψ1p

3. E exp(|X|/"X"ψ1
) ≤ 2 (Definition)

4. If EX = 0 then E exp(λX) ≤ exp(Cλ2"X"2ψ1
) for all |λ| ≤ c/"X"ψ1 .

Here c and C are absolute constants that have nothing to do with X.

Proof: Think about what are K1 and K2 for Xnew = X/"X"ψ1
. Following the proof of Proposition 3.14, we

could obtain this proposition.

3.6 Connections between Sub-Gaussian and Sub-Exponential

Lemma 3.17

"X2"ψ1 = "X"2ψ2
.

One could prove this using the definition of " · "ψ1
and " · "ψ2

.

Lemma 3.18 (Product of sub-Gaussian is sub-exponential) Let X and Y be sub-Gaussian random

variables. Then XY is sub-exponential. Moreover,

"XY "ψ1
≤ "X"ψ2

"Y "ψ2

Proof: Without loss of generality, assume "X"ψ2 = "Y "ψ2 = 1. Otherwise, we could introduce Xnew =

X/"X"ψ2
and Ynew = Y/"Y "ψ2

. By definition of " · "ψ2
, we have

E exp(X2) ≤ 2 and E exp(Y 2) ≤ 2.

Meanwhile,

E exp(|XY |) ≤ E[exp(X2
/2)× exp(Y 2

/2)] (|XY | ≤ X
2
/2 + Y

2
/2)

≤ 1

2
(E exp(X2) + E exp(X2)) (exp(X2

/2)× exp(Y 2
/2) ≤ 1

2

2
expX2 + expY 2

3
)

≤ 2.
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Thus, we have "XY "ψ1 ≤ 1 = "X"ψ2"Y "ψ2 .

3.7 Bernstein’s Inequality

This inequality provides the concentration inequality for sums of independent sub-exponential random vari-

ables.

Theorem 3.19 (Bernstein’s Inequality 1) Let X1, . . . , XN be independent, mean zero, sub-exponential

random variables. Then, for every t ≥ 0, we have

P

-11111

N%

i=1

Xi

11111 ≥ t

.
≤ 2 exp

-
−cmin

-
t
2

!N
i=1 "Xi"2ψ1

,
t

maxi "Xi"ψ1

..

Let us first analyze why we get the minimum of two terms. For sub-exponential distribution, we could bound

the P (
!N

i=1 Xi ≥ t) by

exp(−λt+ Cλ2), 0 < λ ≤ b.

For −λt + Cλ2, if λ# = t/2C ≤ b, then it achieves −t
2
/4C. This is basically the bound of Hoeffding’s

inequality. If not, namely b < t/2C, the smallest value will be achieved at λ = b which leads to −tb+Cb
2
<

−tb/2 < 0. Instead of quadratic in t, it is linear. Now we only need to nail down C and b, then we could

prove Bernstein’s inequality.

Proof: From Proposition 3.16, we know that

E exp(λXi) ≤ exp(C1λ
2"Xi"2ψ1

) ∀|λ| ≤ c1/"Xi"ψ1
.

This means that b = c1/maxi "Xi"ψ1 . Meanwhile, the coefficient of λ2 is C = C1

!
i "Xi"2ψ1

. Based on our

analysis,

P (

N%

i=1

Xi ≥ t) ≤ exp

#
−min(

t
2

4C1
,
tb

2
)

$
.

We could use the following naive bound to make the form nicer2,

b =
c1

maxi "Xi"ψ1

≥ 2c

maxi "Xi"ψ1

and C = C1

%

i

"Xi"2ψ1
≤ 1

4c

%

i

"Xi"2ψ1
,

where c = min

#
c1

2
,

1

4C1

$
,

2
You could tell how careless we are about constants. Thus, the probability bounds (in nice forms) are usually very loose.

However, you could tighten them significantly if you do not use these naive bounds.
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which leads to a simpler bound

exp

-
−cmin

-
t
2

!N
i=1 "Xi"2ψ1

,
t

maxi "Xi"ψ1

..
.

Do the same thing for P (
!N

i=1 Xi ≤ −t) to obtain Bernstein’s Inequality.

3.7.1 Analysis of Bernstein’s Inequality

When t is large, the quadratic term will dominate the linear term, leading to a sub-exponential decay. This

is on the same level of a single term Xi, which is also sub-exponential. When t is small enough, the linear

term dominates, then we have sub-Gaussian decay. This is what CLT suggested since normal distribution

has sub-Gaussian decay.

Figure 3.1: Bernstein’s Inequality: sub-Gaussian for small deviation and sub-exponential for large deviation.

3.7.2 Other Forms of Bernstein’s Inequality

The same proof technique of Theorem 3.19 could also handle
!N

i=1 aiXi, which leads to the following version

of Bernstein’s inequality.

Theorem 3.20 (Bernstein’s Inequality 2) Let X1, . . . , XN be independent, mean zero, sub-exponential

random variables, and a = (a1, . . . , aN ) ∈ RN
. Then for every t ≥ 0, we have

P

-11111

N%

i=1

aiXi

11111 ≥ t

.
≤ 2 exp

#
−cmin

#
t
2

K2"a"22
,

t

K"a"∞

$$
,

where K = maxi "Xi"ψ1 .
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Proof: Notice that

N%

i=1

"aiXi"2ψ1
≤

4
max

i
"Xi"ψ1

52 N%

i=1

|ai|2 = K
2"a"22

max
i

"aiXi"ψ1 ≤ max
i

|ai|max
i

"Xi"ψ1 = K"a"∞.

Replace Xi with aiXi in Theorem 3.19 to obtain this theorem.

In the special case ai = 1/N , we obtain Bernstein’s inequality for averages:

Corollary 3.21 (Bernstein’s Inequality for Averages) Let X1, . . . , XN be independent, mean zero, sub-

exponential random variables. Then for every t ≥ 0, we have

P

-11111
1

N

N%

i=1

Xi

11111 ≥ t

.
≤ 2 exp

#
−cmin

#
t
2

K2
,
t

K

$
N

$
,

where K = maxi "Xi"ψ1 .

This is a quantitative form of the law of large numbers.

3.8 Concentration of !X!2

Let X = (X1, . . . Xp) be a random vector in Rp. Assume Xi are independent sub-Gaussian random variables

with EX
2
i = 1. Then we have

E"X"22 = E

p%

i=1

X
2
i =

p%

i=1

EX
2
i = p.

Since Xi is sub-Gaussian, X2
i is sub-exponential. Thus, based on Bernstein’s Inequality, we should have

"X"22 concentrates around p. Then we should also expect "X"2 concentrates around
√
p.

To establish the relationship between |"X"2 −
√
p| and |"X"22 − p|, we first prove a numeric inequality.

Lemma 3.22 For all numbers z ≥ 0 and δ ≥ 0, if |z − 1| ≥ δ, then |z2 − 1| ≥ max(δ, δ2).

Proof: If z ≥ 1 + δ, square both sides to have z
2 ≥ 1 + 2δ + δ2. Thus,

z
2 − 1 ≥ 2δ + δ2 ≥ max(δ, δ2).

If z ≤ 1− δ, because z ≥ 0, we must have δ ≤ 1. Square both sides to have z
2 ≤ 1− 2δ + δ2 which implies

|z2 − 1| = −(z2 − 1) ≥ 2δ − δ2 ≥ δ = max(δ, δ2).
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Here we use δ ≤ 1 repeatedly.

Theorem 3.23 (Concentration of the Norm) Let X = (X1, . . . , Xp) ∈ Rp
be a random vector with

independent, sub-Gaussian coordinates Xi that satisfy EX
2
i = 1. Then

""X"2 −
√
p"ψ2

≤ CK
2
,

where K = maxi "Xi"ψ2 .

Proof: Since Xi is sub-Gaussian, we have X
2
i is sub-exponential. Because of the property of centering, we

also know X
2
i − 1 is sub-exponential. More precisely,

"X2
i − 1"ψ1 ≤ C"X2

i "ψ1 = C"Xi"2ψ2
≤ CK

2
.

Apply Corollary 3.21 (notice that K has different meaning there) to 1/p
!

i(X
2
i − 1) to have

P

-11111
1

p

p%

i=1

(X2
i − 1)

11111 ≥ t

.
≤ 2 exp

#
−cpmin

#
t
2

C2K4
,

t

CK2

$$
.

If we choose C large enough (such that CK
2 ≥ 1), the RHS of the above inequality could be bounded by

2 exp

#
− c̃p

K4
min

2
t
2
, t
3$

.

Now, we will use Lemma 3.22 to transform the concentration in "X"22 to "X"2.

P

#1111
1
√
p
"X"2 − 1

1111 ≥ δ

$
≤ P

#1111
1

p
"X"22 − 1

1111 ≥ max(δ, δ2)

$

= P

-11111
1

p

p%

i=1

(X2
i − 1)

11111 ≥ max(δ, δ2)

.

≤ 2 exp

#
− c̃p

K4
δ2
$
.

The last inequality we use the fact that

min
2
max(δ, δ2)2,max(δ, δ2)

3
=

*
+

,
min(δ2, δ) = δ2 δ < 1

min(δ4, δ2) = δ2 δ ≥ 1.

Thus, we have

P (|"X"2 −
√
p| ≥ t) ≤ 2 exp

#
− c̃

K4
t
2

$
, t =

√
pδ.
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Based on Proposition 3.9, this is equivalent to what we want to prove.

Example 3.24 We could apply the above theorem to X ∼ N(0, Ip) to have "X"2 concentrates around
√
p.

Moreover, X/"X"2 follows Unif(Sp−1) and is independent of "X"2. Thus,

X =
X

"X"2
× "X"2 ≈ Unif(

√
pS

p−1).

3.9 Almost Orthogonal Vectors

Let 'X1 and 'X2 be two independent random variable following N(0, Ip). We want to argue that 'X1/" 'X1"2
and 'X2/" 'X2"2 are almost orthogonal. Namely,

cos(θ12) ≜
6

'X1

" 'X1"2
,

'X2

" 'X2"2

7
=

< 'X1,
'X2 >

" 'X1"2" 'X2"2
≈ 0. (3.2)

Based on Theorem 3.23, we know " 'Xi"2 ≈ √
p, thus the denominator is about p. Meanwhile,

E < 'X1,
'X2 >

2 = E

4
E

4
< 'X1,

'X2 >
2 | 'X2

55
= E

4
'XT
2 E( 'X1

'XT
1 ) 'X2

5

= E 'XT
2 Ip

'X2 = E" 'X2"22 = p.

Thus, we are expecting | < 'X1,
'X2 > | is of the level

√
p. Then cos(θ12) (Equation 3.2) is about 1/

√
p which

is very small when p is large. To make a more rigorous argument, we need to show < 'X1,
'X2 > concentrates.

Based on the Lemma 3.18, we have

"X1iX2i"ψ1 ≤ "X1i"ψ2"X2i"ψ2 =
1

ln 2
.

where X1i and X2i are the ith coordinate of 'X1 and 'X2, respectively. Thus, we could use Bernstein inequality

for

< 'X1,
'X2 >=

p%

i=1

X1iX2i. (Check all the conditions are satisfied!)

Therefore, we have

P (| < 'X1,
'X2 > | ≥ t) ≤ 2 exp

#
−cmin(

t
2

p
, t)

$

Because | < 'X1,
'X2 > | ≤ *(1− δ)2p (event A), " 'X1"2 ≥ (1− δ)

√
p (event B), and " 'X2"2 ≥ (1− δ)

√
p (event
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C) imply that | cos(θ12)| ≤ *, we have

P (| cos(θ12)| ≤ *) ≥ P (A ∩B ∩ C)

⇒P (| cos(θ12)| > *) ≤ P (Ac ∪B
c ∪ C

c) ≤ P (Ac) + P (Bc) + P (Cc) ≤ 2 exp(−c*2(1− δ)2p) + 2 exp(−Cpδ2)

≤ 4 exp(−C(*, δ)p)

The last inequality comes from 3 different concentrations. This is totally different from the 2-D case: one

could show there Eθ12 = π/4 instead of π/2 in a high dimension setting.

Remark 3.25 (Gaussian Chaos Variables) Let Q ∈ Rp×p
be a symmetric matrix, and let w, w̃ be inde-

pendent zero-mean Gaussian random vectors with covariance matrix Ip. The random variable

Z ≜ w
T
Qw̃

is known as a (decoupled) Gaussian chaos. If Q = Ip, we get back to < w, w̃ > which we have proved to

be sub-exponential. Using the concentration of Lipschitz function of N(0, Ip), one could prove that Z is also

sub-exponential. For more details, please see Wainwright (2019, Example 2.31).

3.9.1 Exponential Many Almost Orthogonal Vectors

Now, let us get K independent random variables following N(0, Ip), denoted as 'X1, . . . ,
'XK . Then we have

K(K − 1)/2 pairs each one has a very low probability of having a large cos(θ). Utilizing union bound, we

have

P

#
max

1≤i<j≤K
| cos(θij)| > *

$
≤ 2K(K − 1) exp(−C(*, δ)p).

If we choose K = 1/2 exp(C(*, δ)p/2), we know the RHS is smaller than 1. This means that

P

#
max

1≤i<j≤K
| cos(θij)| ≤ *

$
> 0.

Thus, we prove that there exist exponential many vectors that are almost orthogonal to each other. I

personally find this way of proving existence fascinating! It is just one sentence in Terrace Tao’s blog, but

it takes me more than two days to figure out rigorously. In other words, almost orthogonality is much lower

value in high dimension than orthogonality because only p vectors are orthogonal to each other.

Btw, the current result is weaker than the previous one regarding 1/
√
p. The reason is that I fail to prove

the | < 'X1,
'X2 > | concentrates around

√
p as suggested in Vershynin (2018, Remark 3.2.5). If you know

how to prove it, please let me know.
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3.9.2 Motivation for My Research

In portfolio optimization, there are usually lots of risky assets (p is large). One attempt is dimension

reduction from p dimensions to k ≪ p. Somehow, it is easy to construct a basis, denoted v̂is ("v̂i"2 = 1),

such that "v̂i − vi"2 ≈ 0 for i ≤ k while "v̂i − vi"2 ≫ 0 for k < i ≤ p. Here vi are the true value that

v̂i is trying to estimate. It is temping to throw away all v̂i, k < i ≤ p since they are terrible estimations.

However, I realize the value of exact orthogonality, and argue that the space spanned by v̂i, k < i ≤ p is

well estimated because the space is orthogonal to v̂i, i ≤ k.

Next, I will prove this rigorously. Introduce P̂⊥k =
!p

i=k+1 v̂iv̂
T
i and P⊥k =

!p
i=k+1 viv

T
i . They are the

projection operators of the space spanned by v̂i, k < i ≤ p and vi, k < i ≤ p, respectively. Because they are

basis with "v̂i"2 = 1 = "vi"2, we have

P̂⊥k = Ip −
k%

i=1

v̂iv̂
T
i P⊥k = Ip −

k%

i=1

viv
T
i

⇒"P̂⊥k − P⊥k"op =

/////

k%

i=1

viv
T
i −

k%

i=1

v̂iv̂
T
i

/////
op

≤ 2

k%

i=1

"v̂i − vi"2.

Thus, P̂⊥k is also a good estimation of P⊥k and one shall not throw it away.

3.9.3 Similar Technique to Prove Existence [Optional]

For a high dimension bounded set, does there exist a linear transformation to a low dimension space such

that two close balls sandwich the convex hull of its image? Milman used a random matrix as the linear

transformation and proved the probability of that property happening is high. Then, there must exist such

linear transformation.

Theorem 3.26 (Dvoretzky-Milman’s Theorem. Theorem 11.3.3 (Vershynin 2018)) Let A be an

m × p Gaussian random matrix with i.i.d. N(0, 1) entries, T ⊂ Rp
be a bounded set, and let * ∈ (0, 1).

Suppose

m ≤ c*2d(T ),

where d(T ) is the stable dimension of T . Then with probability at least 0.99, we have

(1− *)B ⊂ conv(AT ) ⊂ (1 + *)B,

where B is a Euclidean ball with radius W (T ).

Figure 3.9.3 is a visualization of T = [−1, 1]7 onto 2 dimension.

In my research, I consider T where the data cloud belongs. I want to argue that random directions Xi ∼
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Figure 3.2: A Random Projection of a 7-dimension cube onto the plane.

Unif(Sp−1) ("Xi"2 = 1 is essential for me) will only transform data to be close to a ball without any

direction with extremely high variance. With the concentration of norm, we know that Theorem 3.26 with

random directions also holds.

References

Vershynin R (2018) High-dimensional probability: An introduction with applications in data science, volume 47 (Cam-

bridge university press).

Wainwright MJ (2019) High-dimensional statistics: A non-asymptotic viewpoint, volume 48 (Cambridge University

Press).



BDC6307: Introduction to Data Analytics Spring 2021, NUS

Lecture 4: A Note on ! · !ψ2
and ! · !ψ1

Lecturer: Long Zhao, longzhao@nus.edu.sg

4.1 Order of t

Based on the definition of ! · !ψ2 and ! · !ψ1 , we have

P (|X| ≥ t) ≤ 2 exp

!
− t

2

!X!2ψ2

"

P (|X| ≥ t) ≤ 2 exp

#
− t

!X!ψ1

$
.

Thus, I claim that proving concentration is equivalent to show corresponding norm is finite. However, there

is a catch and I will illustrate it using the following example. Say, I want to have concentration of
%n

i=1 Xi

where Xi is sub-Gaussian. Then we have

&&&&&

n'

i=1

Xi

&&&&&

2

ψ2

≤
!

n'

i=1

!Xi!ψ2

"2

=

'

1≤i,j≤n

!Xi!ψ2
!Xj!ψ2

< ∞. (4.1)

This is true without assuming independence of Xi. Meanwhile, this is clearly not concentration. What goes

wrong? In concentration, we have t = n" where " > 0. This means that t
2
is O(n

2
). The probability bound

is meaningless if !
%n

i=1 Xi!
2

ψ2
is also O(n

2
). Unfortunately, based on Equation 4.1, without independence

of Xi, !
%n

i=1 Xi!
2

ψ2
is order n

2
. This shows the importance of following property of ! · !ψ2

when Xis are

independent (and EXi = 0),

&&&&&

n'

i=1

Xi

&&&&&

2

ψ2

≤ C

n'

i=1

!Xi!2ψ2
.

Right now, the right-hand side is O(n) which means that we have concentration when n is large.

In the future, we will use the following properties of ! · !ψ2 and ! · !ψ1 to prove concentration.

1. ! · !ψ2 and ! · !ψ1 are norms. Namely, we have triangle inequality, and !aX!ψ = |a|!X!ψ.

2. !X − EX!ψ ≤ C!X!ψ. That is to say, centering will not change the distribution family.

3. Connection between ! · !ψ2
and ! · !ψ1

: !X2!ψ1
= !X!2ψ2

& !XY !ψ1
≤ !X!ψ2

!Y !ψ2

4. If Xis are independent sub-Gaussian and EXi = 0, !
%n

i=1 Xi!
2

ψ2
≤ C

%n
i=1 !Xi!2ψ2

.

4-1



Lecture 4: A Note on ! · !ψ2 and ! · !ψ1 4-2

5. If Xis are independent sub-exponential and EXi = 0, !
%n

i=1 Xi!ψ1
≈ Cmaxi !Xi!ψ1 for large

deviations. Bernstein’s inequality gives a more precise relationship. However, I think the vague one

is easier to remember and more intuitive. It states that the tail behavior is determined by the one with

thickest tail.

From the properties above, it is easy to derive the following one.

6. If Xis are independent sub-Gaussian and EXi = 0,

&&&&&

n'

i=1

aiXi

&&&&&

2

ψ2

≤ C

n'

i=1

a
2
i !Xi!2ψ2

≤ C

!
n'

i=1

a
2
i

"
max

i
!Xi!2ψ2

= C!a!22 max
i

!Xi!2ψ2
.

This property implies that any linear combination of Xis is still sub-Gaussian. This will be handy in

the future.

Since we will use the concentration of the norm quite frequently in the future, I also list

it here as a property.

7. X = (X1, . . . , Xp) ∈ Rp
be a random vector with independent, sub-Gaussian coordinates Xi that

satisfies EX
2
i = 1. Then

!!X!2 −
√
p!ψ2

≤ C(max
i

!Xi!ψ2)
2
.

From now on, we will use the above properties to simplify our argument, and we will take the Johnson-

Lindenstrauss Lemma as a demo.

4.2 Application: Johnson-Lindenstrauss Lemma

Say we have n observations and each one is p ≫ 1 dimension. Is it possible to find a d-dimension (d might

be much smaller than p) transformation of data such that the pairwise (Euclidean) distance is maintained

with small error. Mathematically speaking, let xi and yi be the ith original and transformed data point. Is

it possible to have

(1− ")!xi − xj!2 ≤ !yi − yj!2 ≤ (1 + ")!xi − xj!2 (4.2)

holds for every pair of i, j?

Let’s first deal with the simplest case with fixed i and j (i ∕= j), and we use a = xi − xj and Z = yi − yj to

simplify the argument. If we only demand

(1− ")!a!2 ≤ !Z!2 ≤ (1 + ")!a!2
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to hold with high probability, it is essentially the concentration of the norm, !Z!2, around !x!2. All we need

is each coordinate of Z, denoted as Zj , is sub-Gaussian and EZ
2
j = !a!22/d. To see the second requirement,

notice that E!Z!22 =
%d

j=1 EZ
2
j = !a!22.

Obtain sub-Gaussian Zj. Since a could be any vector in Rp
, the first requirement is not a trivial task.

Luckily, based on property 6, we know that any linear combination of independent sub-Gaussian is still

sub-Gaussian. Thus, for Zj , we could create p independent sub-Gaussian random variables, Wj1, . . . ,Wjp,

such that

&&&&&

p'

i=1

aiWji

&&&&&

2

ψ2

≤ C!a!22 max
i

!Wji!2ψ2
.

To simplify the notation, we introduce random vector Wj = (Wj1, . . . ,Wjp)
T
and then Zj = W

T
j a.

Obtain EZ
2
j = !a!22/d. Because Zj = Wja, we could rewrite this requirement as following,

a
T
a/d = !a!22/d = EZ

2
j = Ea

T
WjW

T
j a = a

T
E(WjW

T
j )a.

That is to say, all we need is

E(WjW
T
j ) = Ip/d.

Because of the independence among Wj1, . . . ,Wjp, we could write

E(WjW
T
j ) =

(

))))*

EWj1Wj1 EWj1Wj2 · · · EWj1Wjp

EWj2Wj1 EWj2Wj2 · · · EWj2Wjp

.

.

.
.
.
.

. . .
.
.
.

EWjpWj1 EWjpWj2 · · · EWjpWjp

+

,,,,-

=

(

))))*

EW
2
j1 EWj1EWj2 · · · EWj1EWjp

EWj2EWj1 EW
2
j2 · · · EWj2EWjp

.

.

.
.
.
.

. . .
.
.
.

EWjpEWj1 EWjpEWj2 · · · EW
2
jp.

+

,,,,-

Thus, as long as EWji = 0 and EW
2
ji = 1/d, we have E(WjW

T
j ) = Ip/d.

Using i.i.d. Wji. Since there is no other information about a, it is intuitive to use i.i.d. Wji which is

sub-Gaussian with EWji = 0 and EW
2
ji = 1/d. Because we need to choose d, we have to isolate it. Therefore,

we introduce K =
√
d!Wij!ψ2

(Because we choose i.i.d. Wij , we do not need to take maxi,j), then

&&&
√
dZj

&&&
2

ψ2

= d !Zj!2ψ2
≤ d

.
C!Wij!2ψ2

!a!22
/
= CK

2!a!22, ∀j = 1, . . . , d.



Lecture 4: A Note on ! · !ψ2 and ! · !ψ1 4-4

By property 7, we have

P
.
|!Z!2 − !a!2| ≥ "!a!22

/
≤ 2 exp

#
− c"2!a!42
K4!a!42

d

$
= 2 exp

#
− c"2

K4
d

$
.

Thus, if we choose d ≥ C/"2, we could make this probability very small.

Remark 4.1 It is unfortunate that we could not use "!a!2 in place of "!a!22. One could get around this

issue by scaling down xi such that !a!2 ≤ 1 for any pair of i, j. In this way, !a!2 ≥ !a!22 and

P (|!Z!2 − !a!2| ≥ "!a!2) ≤ P
.
|!Z!2 − !a!2| ≥ "!a!22

/
.

From fixed i, j to every pair. We have proved that the probability of violating Equation 4.2 for a given

i, j decays exponentially. Since there are only n(n − 1)/2 pairs, we could use a union bound to get the

following probability bound of violation for any pair,

n(n− 1) exp

#
− c"2

K4
d

$
≤ exp(2 ln(n)− c"2

K4
d).

Thus, if we choose d = C ln(n)/"2, we could have the above probability minimal.

Independent of p. Notice that d has nothing to do with p. Thus, it is possible that d ≪ p which means

an extremely efficient dimension reduction that almost keeps the distance. This has been used in Chiong

and Shum (2019) to reduce the size of a large choice set.

Choice of Wji. Theoretically speaking, N(0, 1/d) is a natural choice. However, it requires lots of compu-

tational power when calculating W
T
j a when p is large. Li et al. (2006) and Chiong and Shum (2019) use the

following distribution (s ≥ 1)

√
dWji =

√
s

0
1112

1113

1 with probability 1/2s

0 with probability 1− 1/s

−1 with probability 1/2s.

It is easy to have EWji = 0 and EW
2
ji = 1/d. Since it is bounded, it is also sub-Gaussian.

Compare its ! · !ψ2
with N(0, 1)’s. Will you choose s super large?
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Lecture 5: High Probability Upper Bound of !A!op
Lecturer: Long Zhao, longzhao@nus.edu.sg

Largest eigenvalue in ecology. May (1972). Counting equilibria in complex systems via random

matrices

5.1 Resources

• Wainwright (2019, Chapter 4.1, Chapter 6). Motivation of infinite events and covariance matrix esti-

mation.

• Vershynin (2018, Chapter 4).

• Terence Tao’s Talk on Random Matrix. Unlike Vershynin (2018), he explains the covering idea excep-

tionally well.

• StatQuest: Principal Component Analysis (PCA). Simple introduction of PCA.

• 3Blue1Brown: Eigenvectors and eigenvalues. Simple introduction of eigenvectors and eigenvalues.

5.2 Objective

Here is the summary of what we have known.

1. Sum of independent sub-Gaussian or sub-exponential random variables concentrates. This is about

the probability of one event.

2. We could use union bound to the probability of finite events. We have done this in our construction

of almost orthogonal vectors and proof of Johnson-Lindenstrauss lemma.

This lecture’s objective is to shed some light on how do we use concentration to bound the probability of

infinite events. Before we proceed to solving the issue of infinite events, let us explore why it is important

in the learning setting.

5.2.1 Why Infinite Events?

Assume that we are given n samples {Xi}ni=1 drawn i.i.d. according to a distribution Pθ! , for some fixed but

unknown θ" ∈ Ω. We could choose a cost function Lθ(X) that measures the ‘fit’ between a parameter θ and

5-1
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the sample X. The principle of empirical risk minimization is based on minimizing

R̂n(θ, θ
") ≜ 1

n

n!

i=1

Lθ(Xi).

This quantity is known as the empirical risk. The connection to θ" is through the samples Xn
1 . Since Xn

1

are random, the empirical risk is also random. One simple example of Lθ(X) is least-squares loss

Lθ(y, x
T ) = (y − xT θ)2,

where X = (y, xT ) and y = xT θ" + ". We naturally care about the expectation of the empirical risk, which

is called the population risk,

R(θ, θ") ≜ Eθ! (Lθ(X)) .

Say the parameter we get by minimizing empirical risk is θ̂ ∈ Ω0 ⊂ Ω, we are curious about how large is the

excess risk, defined as

E(θ̂, θ") ≜ R(θ̂, θ")− inf
θ∈Ω0

R(θ, θ").

For simplicity, assume that there exists a θ0 ∈ Ω0 such that R(θ0, θ
") = infθ∈Ω0 R(θ, θ"). By law of large

numbers, θ0 is the parameter chosen with infinite data points. Then we could decompose the excess

risk as

E(θ̂, θ") =
"
R(θ̂, θ")− R̂n(θ̂, θ

")
#
+
"
R̂n(θ̂, θ

")− R̂n(θ0, θ
")
#
+
"
R̂n(θ0, θ

")−R(θ0, θ
")
#
.

Since θ̂ minimizes empirical risk, we know the second term is non-positive. The third term is relatively easier

than the first since θ0 is fixed while θ̂ is random (why?). One way to handle the first term is to bound it by

sup
θ∈Ω0

$$$R(θ, θ")− R̂n(θ, θ
")
$$$ ,

which is almost always (uncountable) infinite events.

5.2.2 How to Handle Infinite Events?

The idea of solving infinite events is to transform infinite into finite ones somehow. To do this, we need to

use the idea of covering. You might find this idea of converting from infinite to finite familiar. In fact, the

open cover definition of compactness states that any open cover has a finite version. What we want to use

is a quantitative version of it.

Unlike previous lectures, I will not state the explicit assumptions first and then have rigorous

proof. Instead, as the analysis advances, I will try to find the conditions we could leverage.
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This is a more practical setting in research where you try to prove something with your own

conditions. The unfortunate consequence is that we will have different assumptions from

Vershynin (2018) and slightly different conclusions. However, I think the flow is more natural

this way.

With a high probability upper bound of "A"op, we could also understand the behavior of "Σ − Σ̂"op. Here

Σ is the true covariance matrix and Σ̂ is the sample covariance matrix. That is to say, with n observations,

how good is the sample covariance matrix. This analysis plays a major role in minimum-variance portfolio

optimization which tries to solve the following optimization

min
w

wT Σ̂w

subject to wT
1 = 1,

where w is the portfolio weight and wT
1 = 1 means that one has to put all money in the market.

5.3 Preliminary on Matrices

The target is to introduce the operator norm of an n× p matrix, denoted as " · "op. Along the way, we will

discuss about singular value decomposition, which has a close connection with " · "op.

5.3.1 Singular value decomposition

Let A be an n × p matrix. You could think A as a data matrix with n observations and each one has p

dimensions. We could represent A in the following form

A =

min(n,p)!

i=1

siuiv
T
i ,

where ui is the ith eigenvector of AAT ; vi is the ith eigenvector of ATA; si is the ith singular value which

is equal to
√
λi where λi is the ith eigenvalue of ATA or AAT . For simplicity, we rank s1 ≥ s2 ≥ . . . (≥ 0),

and we assume si = 0,min(n, p) < i ≤ max(n, p).

Sometimes, the following matrix form is more convenient:

A = UDV T ,

where U = (u1, . . . un), V = (v1, . . . vp), D is an n × p matrix with Dii = si and others being 0. Moreover,

U and V are orthogonal matrices (UUT = UTU = In and V V T = V TV = Ip) in Rn and Rp, respectively.
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Now, it is easy to see

AAT = UDDTUT = UDiagn×n(s
2
i )U

T

ATA = V DTDV T = V Diagp×p(s
2
i )V

T .

5.3.2 !A!op

If we denote space Rp (Rn) with Euclidean norm " · "2 as lp2 (ln2 ), we could see A as an operator from lp2 to

ln2 . Now, we could definite "A"op

"A"op = max
x∈Rp/0

"Ax"2
"x"2

= max
x∈Sp−1

"Ax"2, (5.1)

where Sp−1 is the unit sphere in Rp (x ∈ Sp−1 ⇔ "x"2 = 1). Intuitively speaking, "A"op measures

the maximum length ratio between the vector after transformation and before. Noticing that "Ax"2 =

maxy∈Sn−1 < Ax, y > (Cauchy-Schwarz inequality), we also have

"A"op = max
x∈Sp−1,y∈Sn−1

< Ax, y > .

If we want to bound "A"op, we need to deal with uncountable many events because Sp−1 has uncountable

many points. This is exactly why we want to handle it. [Here is a technical issue. We need {"A"op ≤ x} to be

a measurable event. In other words, "A"op should be a random variable first, and then we could talk about

probability. It is not a issue here because Sp−1 is compact, there exists a point x" that "A"op = "Ax""2.
Namely, "A"op is fundamentally “one event” about some norm "Ax""2 . Unfortunately, we do not know

where x" is.]

Let we establish a natural connection between "A"op and s1.

"A"op = s1.

To prove it conceptually, we shall decompose A as UDV T . Because U and V are orthogonal matrices, they

will not change the length ratio (they are just rotations). Thus, the largest change is s1, which is the largest

singular value.

5.4 Analysis of Bounding !A!op

5.4.1 One Event: Fixed x

Let us first make sure that we know how to bound a single event from Equation 5.1. Namely, for a fixed

x ∈ Sp−1, could we bound P ("Ax"2 > t)? This naturally links to the concentration of the norm (property

7), which requires each coordinate to be independent, sub-Gaussian, with the same second moment. Let us
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write each coordinate explicitly.

A =

%

&&'

aT1
...

aTn

(

))*x =

%

&&'

aT1 x
...

aTnx

(

))*

• To have independence of coordinates, we must have ai independent. That is to say, we assume

each row of data is independent, which is a natural assumption for the data generating process.

• To have sub-Gaussian of coordinates for all x, all we know now is to have each element of ai

independent sub-Gaussian. This is a very strong assumption. Luckily, we could relax this assumption

to the sub-Gaussian random vectors.

Definition 5.1 (Sub-Gaussian Random Vectors, Vershynin (2018) Definition 3.4.1) A ran-

dom vector X ∈ Rp is called sub-Gaussian if the one-dimensional marginals < X, x > are sub-Gaussian

random variables for all x ∈ Rp. The sub-Gaussian norm of X is defined as

"X"ψ2 = sup
x∈Sp−1

" < X, x > "ψ2 .

Although this definition is motivated by the fact that if X ∼ N(µ,Σ), then < X, x >∼ N(µTx, xTΣx),

it also serves us nicely.

• To have same second moment, we must have

xT
+
Eaia

T
i

,
x = E(aTi x)

2 = E(aTj x)
2 = xT

+
Eaja

T
j

,
x

holds for all x ∈ Sp−1 and i, j pairs. Thus, we must have

Eaia
T
i = Eaja

T
j ∀1 ≤ i, j ≤ p.

That is to say, we could have ai and aj following different distributions, but they need to share

certain moment information. This is slightly weaker than the i.i.d. assumption for the data generating

procedure.

Because x ∈ Sp−1 implies xTx = 1, it is tempting to transform different cases into the one with

Eaia
T
i = Ip. In fact, this is possible. Say Ebib

T
i = Σ, then

E
"
Σ−1/2bi

#"
Σ−1/2bi

#T

= Ip.

In this way, we could establish results for Σ−1/2bi and then convert it back to bi. Noticing the

importance of random vectors with Eaia
T
i = Ip, we have the following definition.

Definition 5.2 (Isotropic random vectors, Vershynin (2018) Definition 3.2.1) A random vec-
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tor X ∈ Rp is called isotropic if

EXXT = Ip.

Now, let’s summarize the conditions we have for A, each row ai is independent sub-Gaussian isotropy

random vector. Now, from the concentration of the norm we have

""Ax"2 −
√
n"ψ2

≤ Cmax
i

"ai"ψ2
≜ CK2, where K = max

i
"ai"ψ2

.

Namely, we could bound P (|"Ax"2 −
√
n| > t) easily now.

5.4.2 Covering: from Infinite to Finite.

We want to answer the question that is it possible to find a finite set N such that

max
x∈Sp−1

"Ax"2 ≤ Cmax
x∈N

"Ax"2.

Because of compactness of Sp−1, we know "A"op = "Ax""2 for some x" ∈ Sp−1. To have the bound above,

all we need is to approach x" as close as possible. Unfortunately, we have no idea where x" is. Then the

brute-force solution is to approach any point of Sp−1 with certain error ". Namely,

∀x ∈ Sp−1, ∃y(x) ∈ N , such that "x− y(x)"2 ≤ ".

We call N that satisfies this property the "-net (of Sp−1) and call the smallest cardinal of "-net the covering

number, denoted as N(Sp−1, ") (Sometimes, we also need to specify the corresponding distant measure d.

Here it is the Euclidean distance.) Now, we have

"Ax"2 ≤ "Ay(x)"2 + "A(x− y(x))"2 ≤ "Ay(x)"2 + ""A"op.

(It is worth noticing that we might not be able to bound the difference term of x− y(x) universally in other

situations. Then we need to adopt a more advanced technique of covering: chaining to get around this issue.

We will talk about this technique in our proof of the feasibility of learning.)

Taking the maximization with respect to x ∈ Sp−1 (think about why we could use maxx∈N "Ax"2 instead

of maxx∈N "Ay(x)"2) to have

"A"op ≤ max
x∈N

"Ax"2 + ""A"op ⇒ "A"op ≤ 1

1− "
max
x∈N

"Ax"2.

We almost achieved our goal of transforming infinite events into finite events. The only thing left is how

large is N(Sp−1, ") which we try to bound next.

Let P be the maximal "-separated subset of Sp−1 that the distance between each pairs is larger than ". Then
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P is an "-net of Sp−1, otherwise, it is no longer the maximal "-separated subset (think!). If we draw a ball

with "/2 at each point of P, we know that those balls are disjoint. Meanwhile, the distance between any

point from those balls and the origin is at most 1+ "/2. That is to say, those balls are contained in a bigger

ball with radius 1 + "/2. Thus, the total volumes of those balls is smaller than the volume of B(1 + "/2),

N(Sp−1, ") ≤ |P| ≤ (1 + "/2)p

("/2)p
= (

2

"
+ 1)p,

which is exponential in p. Try to think about two things.

1. Why it does not matter even the number of events are exponential in p?

2. We could achieve a tighter bound using the fact that all balls are excluded from the ball with radius

1− "/2. Why don’t we use the tighter bound instead? Hint: think about (1.01)p − (0.99)p for a very

large p (the figure below feels familiar?). Following this, could you prove that almost all volume of a

unit ball in high dimension concentrates around on the sphere? Isn’t it amazing!

5.4.3 Take ! = 1/2

By taking " = 1/2, we have

"A"op ≤ 2max
N

"Ax"2, N(Sp−1,
1

2
) ≤ 5p.

Then we have the following bound

P
+
"A"op > 2

√
n+ t

,
≤ P

-
max
x∈N

"Ax"2 ≥
√
n+ t/2

.

≤ N(Sp−1,
1

2
)× exp

-
−c

t2

K4

.

≤ 5p exp

-
−c

t2

K4

.
.

By choosing t ≥ C̃maxi "ai"ψ2

√
p with large enough C̃, we could make the probability above very small.



Lecture 5: High Probability Upper Bound of "A"op 5-8

Thus,

"A"op ≤ 2
√
n+ C̃K2√p

with high probability when C̃ is large enough.

Remark 5.3 One could make the probability bound explicit by let t = K2(C
√
p+ u), then

c
t2

K4
≥ c

K4(Cp+ u2)

K4
((a+ b)2 ≥ a2 + b2)

= cCp+ cu2.

Choose C such that exp(cCp) ≥ 5p, then we have

5p exp

-
−c

t2

K4

.
≤ exp(−cu2).

5.5 An Elegant Take

The above bound is messy because the coefficient of
√
n depends our choice of " = 1/2. Next, we will explore

a more elegant way of bounding which focus on "ATA/n− Ip"op instead of "A"op directly. The motivation

is that

"ATA/n− Ip"op ≤ L

n
⇒

√
n−

√
L ≤ si(A) ≤

√
n+

√
L.

That is to say, we will obtain a high-probability interval for all singular values.

5.5.1 One Event: Fixed x

Let B = ATA/n− Ip, then B is a symmetric matrix and we have the following property1 regarding "B"op

"B"op = max
x∈Sp−1

| < Bx, x > |

To see the possibility of bounding one event with fixed x, we shall expend < Bx, x >

< Bx, x >=
1

n
"Ax"22 − 1 =

1

n

n!

i=1

+
(aTi x)

2 − 1
,
.

1
I only know how to prove it using eigenvalue decomposition. If you know an intuitive way, please share with me.
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Notice that E(aTi x)
2 = 1, we now face a similar situation when we try to prove the concentration of the

norm. Since aTi x is sub-Gaussian, (aTi x)
2 is sub-exponential. Thus, we shall bound "(aTi x)2 − 1"ψ1 :

//(aTi x)2 − 1
//
ψ1

≤ C"(aTi x)2"ψ1
(centering)

= C"aTi x"2ψ2
("X2"ψ1 = "X"2ψ2

)

≤ C"ai"2ψ2
(definition of "ai"ψ2)

≤ CK2 (K = maxi "ai"ψ2
).

Thus, we could apply Bernstein’s inequality to bound one event.

5.5.2 Covering: from Infinite to Finite

Say "x− y(x)"2 ≤ " and y(x) ∈ Sp−1, then

< Bx, x > =< B(x− y(x)), x > + < By(x), x >

=< B(x− y(x)), x > + < By(x), x− y(x) > + < By(x), y(x) >

≤ "B"op"+ "B"op"+ < By(x), y(x) >

For both sides, take maximization with respect to x ∈ Sp−1 to have

"B"op ≤ 2""B"op +max
x∈N

< By(x), y(x) >

⇒"B"op ≤ 1

1− 2"
max
x∈N

< By(x), y(x) >

By choosing " < 1/2, it is possible to convert infinite events into finite ones.

5.5.3 ! = 1/4

By choosing " = 1/4, we have

"B"op ≤ 2max
x∈N

< By(x), y(x) >,

and N(Sp−1, 1/4) ≤ 9p. Then we have

P ("B"op ≥ ") ≤ P

--
max
x∈N

< By(x), y(x) >

.
≤ "

2

.

≤ 9pP
"
(< By(x), y(x) >) ≥ "

2

#

≤ 9p exp

-
−c1 min(

"2

K4
,

"

K2
)n

.
.

(5.2)



Lecture 5: High Probability Upper Bound of "A"op 5-10

The following are some ‘weird’ techniques that focuses on relating "B"op and si(A). Do not

panic if you do not understand why it is set up this way.

Since B = ATA/n− Ip, we have

"B"op = max(s1(A
TA/n)− 1, 1− sp(A

TA/n)) (Two cases to achieve maxx∈Sp−1 "Bx"2)

= max
+
(s1(A)/

√
n)2 − 1, 1− (sp(A)/

√
n)2

,
(si(A

TA) = si(A)2)

≥ |(si(A)/
√
n)2 − 1| (sp(A) ≤ si(A) ≤ s1(A))

Denote Z = si(A)/
√
n. Since we have established some high-probability bound for "B"op which implies one

for |Z2 − 1|, we need to somehow transform it into bound of Z. This shall remind you about the following

numeric inequality for z ≥ 0,

|z − 1| ≥ δ ⇒ |z2 − 1| ≥ max(δ, δ2).

Namely, we will set " = K2 max(δ, δ2), then

P (|Z − 1| ≥ K2δ) ≤ P
+
|Z2 − 1|op ≥ K2 max(δ, δ2)

,

≤ P ("B"op ≥ K2 max(δ, δ2))

≤ 9p exp
+
−c1 min(max(δ, δ2),max(δ, δ2)2)n

,

= 9p exp
+
−c1δ

2n
,

(it is true for both δ ≥ 1 and δ < 1).

In order to have the bound small enough, we need to have

δ = C̃

0
p

n
,

for large enough C̃. Thus, we have shown that

√
n− C̃K2√p ≤ si(A) ≤

√
n+ C̃K2√p

with high probability.

Btw, one could also make the probability bound explicit by using the same trick as in Remark 5.3. Try it

out!

5.5.4 IF n ≫ p

We could have the following properties for A/
√
n,

1− C̃K2

0
p

n
≤ si(

1√
n
A) ≤ 1 + C̃K2

0
p

n
.
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When n ≫ p, we have all singular values are close to 1 with high probability. This means that for any

x ∈ Rp,

////
1√
n
Ax

////
2

≈ "x"2.

Do we accidentally find a transformation that keeps pairwise distance almost the same for any number of

points? Is it stronger than the Johnson-Linderstrauss Lemma? Unfortunately, it is not stronger because it

is inflating dimension from p to n (n ≫ p)

5.5.5 From ai = Σ−1/2bi to bi

Because we need isotropic random vectors to have concentration, we need to transform bi into ai = Σ−1/2bi

to have the high-probability bound. Now, let us investigate the original matrix L = (b1, . . . bn)
T = Σ1/2A.

"L"op = "Σ1/2A"op ≤ "Σ1/2"op"A"op = "Σ"1/2op "A"op

This means that we have

"L"op ≤ "Σ"1/2op (
√
n+ C̃K2√p)

with high proability.

5.6 Application in Covariance Estimation

If we treat bi as the ith observation of demeaned data, then

Σ̂ =
1

n

n!

i=1

bib
T
i

is the sample covariance matrix. Because the true covariance matrix is Σ, then

1

n

n!

i=1

bib
T
i − Σ = Σ̂− Σ

is the estimation error of using sample covariance matrix to approximate the true covariance matrix. We

care about how large the estimation error could be, namely "Σ̂− Σ"op. Since

"Σ̂− Σ"op ≤ "Σ"1/2op "Σ−1/2Σ̂Σ−1/2 − Ip"op"Σ"1/2op = "Σ"op"B"op
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Based on Equation 5.2, we have

P
"
"Σ̂− Σ"op ≥ ""Σ"op

#
≤ P ("B"op ≥ ")

≤ 9p exp

-
−c1 min(

"2

K4
,

"

K2
)n

.
.

We usually want to have a small " and we could assume "2/K4 ≤ 1 (namely, we are in the regime of small

deviation), then we have

P
"
"Σ̂− Σ"op ≥ ""Σ"op

#
≤ 9p exp

-
−c1

"2

K4
n

.
.

This means that if we choose n = CK4p/"2 with large enough C, we could have the above probability

very small. This means that for a large p × p matrix Σ, only Θ(p) observations are needed to get a good

estimation.

5.6.1 Minimum-Variance Portfolio

The famous mean-variance portfolio optimization Markowitz (1952) proposes that the investor should make

a tradeoff between benefit (expected return) and risk (variance). Mathematically speaking, one should solve

the following optimization

min
w

wTΣw

subject to wTµ ≥ ρtarget

wT
1 = 1,

where Σ is the covariance matrix, and µ is the expected return. Intuitively, among the portfolios that have

a larger expected return than ρtarget, one should prefer the one with minimum variance (lowest risk). The

biggest issue is that we do not know Σ and µ, which could only be estimated using data. µ is extremely hard

to estimate. To get a sense of this, try to predict the price of GameStop on the next Monday. As stated in

Jagannathan and Ma (2003),

“The estimation error in the sample mean is so large that nothing much is lost in ignoring the mean altogether

when no further information about the population mean is available. ”

Although I do not fully agree with this statement, but it is a good starting point to believe that most

estimations of µ must contain a huge estimation error. If so, then the constraint of expected return is

misleading and one choice is to ignore this constraint entirely to have

min
w

wTΣw

subject to wT
1 = 1.

(5.3)
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This is the minimum-variance optimization, which becomes quite popular nowadays. Another route to obtain

minimum-variance optimization is to assume all stocks have the same expected return, namely µ ∝ 1 which

renders the expected return constraint redundant.

Now, our analysis regarding Σ̂−Σ comes handy because we could bound wTΣw, the true variance of portfolio

w, in the following way,

wTΣw = wT (Σ− Σ̂)w + wT Σ̂w ≤ "w"22"Σ− Σ̂"op + wT Σ̂w. (5.4)

We will proceed the analysis in three different scenarios.

1. "Σ− Σ̂"op is negligible.

2. "Σ− Σ̂"op is relatively small compared to "Σ"op.

Case 1. In this case, we might want to minimize wT Σ̂w as a proxy for minimizing wTΣw. Denote the

corresponding portfolio ŵ" and the true minimum-variance portfolio, w". On average, we will be still

disappointed because the expected in-sample variance will be smaller than the true variance as proved below

(ŵ")T Σ̂ŵ" ≤ (w")T Σ̂w" (Definition of ŵ")

E
"
(ŵ")T Σ̂ŵ"

#
≤ E

"
(w")T Σ̂w"

#
(Both sides take expectation)

= (w")TΣw" (EΣ̂ = Σ)

≤ (ŵ")TΣŵ" (Definition of w")

But Equation 5.4 guarantees that such disappointment will not be very large. Unfortunately, this case is

quite rare in portfolio optimization with large number of stocks (p is large).

Case 2. A common case is n = 252 (one-year daily return) and p = 100 (100 stocks). In this case, based on

our analysis above, we will have "Σ− Σ̂"op relatively small compared to "Σ"op. If we only minimize wT Σ̂w,

its optimal value might be comparable by the first term, "w"22"Σ − Σ̂"op, rendering the resulting portfolio

untrustworthy. Thus, it is tempting to try

min
w

wT Σ̂w + λ"w"22

subject to wT
1 = 1,

with λ to be chosen2. In this way, wT Σ̂w + λ"w"22 serves as a proxy for the true upper bound. It also has

some similarity with ridge regression. Thus, one might naturally want to replace "w"22 with "w"1 to obtain

a LASSO-like portfolio.

2
One could choose λ by cross-validation
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If we stick with n = 252 but increase p to 500, then Σ̂ is not full rank. This means that (ŵ")T Σ̂ŵ" = 0. This

makes ŵ" not a meaningful choice at all. One could proceed with large λ to compensate. If we take λ → ∞,

min
w

"w"22

subject to wT
1 = 1.

By Cauchy inequality we know 1 = wT
1 ≤ "w"2"1"2. Thus, the above optimization has optimal solution

w = 1/p. This is the equally-weighted (EW) portfolio which obtains lots of attention since DeMiguel et al.

(2009) show that none of 13 sophisticated portfolios could beat it consistently. EW should be your choice if

you could not estimate Σ using data at all.

5.6.2 An Optimization Perspective

The estimation perspective of minimum-variance optimization ignores a key feature of the optimization: if

one uses Σ̂ = 1000Σ, although the variance estimation will be terribly off, one could recover the optimal

solution w". That is to say, not all estimation errors are equally costly. However, " · "op ignores this feature

entirely.

Luckily, we could use the analytical solution to Equation 5.3 to see what directions are important.

w" =
Σ−1

1

1TΣ−11
∝ Σ−1

1 =

1
p!

i=1

1

λi
viv

T
i

2
1 =

p!

i=1

vTi 1

λi
vi,

where (vi,λi) is the ith eigenpair of Σ. If we ignore the difference in vTi 1, the eigenvector with small3 λi

has a large effect on the solution. Then the question becomes, could we estimate these eigenvectors well?

The following variant of Davis-Kahan theorem (Yu et al. 2015) shows that it depends on the eigengapi =

min(λi−1 − λi,λi − λi+1).

Theorem 5.4 Let (v̂i, λ̂i) be the ith eigenpair of Σ̂. Then

"v̂i − vi"2 ≤ 23/2"Σ̂− Σ"op
eigengapi

.

Some intuition from the Figure 5.1 might be helpful.

Thus, all we need for vi with small λi is a large eigengapi. Unfortunately, historical data (Figure 5.2)

confirm that the opposite (tiny eigengapi for small eigenvalues) will happen. This means that eigenvectors

with (only several) large eigenvalues must be well estimated while (lots) eigenvectors with small eigenvalues

could be terrible estimation. For simplicity, I will call the former the top eigenvectors and the latter the

bottom. In the future lectures, under stronger assumptions, I will show that bottom eigenvectors’ estimations

behave similarly to random directions (uniformly from Sp−1), which contains no information about the true

3
More precisely, λi/λ1 is small because λ1 will cancel out. Namely, big or small is in relative term. This observation fixes

the issue of 1000Σ shares the same solution with Σ
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(a) Large height gap: easy to spot. (b) Small height gap: hard to find.

Figure 5.1: Intuitions for Theorem 5.4

eigenvectors.

My research idea is quite simple. For the top ones, since they are reasonable estimations, then one will treat

it as case 1. For the bottom ones, since they could be terrible, then one should be extremely conservative

and adopt the EW approach. Then, one uses cross-validation to combine them to obtain the final portfolio.

Amazingly, such a simple idea works exceptionally well empirically: it is comparable with the covariance

estimated by a fancy high-dimensional statistical model.

Let us come back to "Σ− Σ̂"op. Intuitively speaking, for "Σ− Σ̂"op, a small error in top eigenvector might

dominate a huge error in a bottom eigenvector. Thus, even though we have good high-probability bound for

"Σ− Σ̂"op, focusing only on it misses an important feature of the problem. Similar argument could be made

for robust optimization. If one is concerned about conservativeness in robust optimization, one choice is to

disentangle benign and vicious error. In the minimum-variance case, because benign error is much larger

in size than vicious error, this disentanglement significantly reduces the size of the uncertainty/ambiguity

set without causing any trouble. However, because it is not easy to prove theoretically, it is hard to sell in

academia.

Remark 5.5 The bound provided in Theorem 5.4 might be loose since the left-hand side is naturally bounded

by 2. However, this does not render the argument meaningless because one could get a much tighter bound

using a more complex expression instead of "Σ̂−Σ"op. Since "Σ̂−Σ"op is simpler to remember, it gets very

popular. This is the benefit of digging into proofs of theorems.

Remark 5.6 With certain strong structure assumption, one might be able to get asymptotically accurate

estimation of Σ when n/p → c but n → ∞. In this case, replacing the estimation in place of Σ is a natural

choice. Namely, the optimization perspective matters only when the error does not go to 0.
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5.7 Sharpe Bounds on Gaussian Matrices [Optional]

From the high probability bound in Section 5.5, we could show that

E"A"op ≤
√
n+ C

√
p,

where C is a constant. If all entries of A is independent N(0, 1), then we could show that C = 1.
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Figure 5.2: Distribution of λi

Theorem 5.7 (Norms of Gaussian Random Matrices) Let A be an n × p matrix with independent

N(0, 1) entries. Then

E"A"op ≤
√
n+

√
p.
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The proof no longer uses the "-net argument. Instead, it uses Slepian’s inequality or more precisely

Sudakov-Fernique’s inequality (Vershynin 2018, Chapter 7) which is about comparing two Gaussian pro-

cesses. Roughly speaking, it assures that

E

-
sup
t∈T

Xt

.
≤ E

-
sup
t∈T

Yt

.
,

if the two Gaussian processes (Xt)t∈T and (Yt)t∈T satisfy

EXt = 0 & EYt = 0 ∀t ∈ T

E(Xt −Xs)
2 ≤ E(Yt − Ys)

2, ∀t, s ∈ T.

Unfortunately, we might not be able to cover these theorems in the class. However, let us still try to see why

"A"op is connected with a Gaussian process.

Since A has Gaussian entries, we know < Au, v > could be written as X(u,v) which is a Gaussian process.

Based on the following relationship,

"A"op = sup
u∈Sp−1,v∈Sn−1

< Au, v >,

we know that "A"op = supu∈Sp−1,v∈Sn−1 X(u,v). This is how they connects.

In fact, we could also have a high-probability bound as following

Corollary 5.8 (Norms of Gaussian Random Matrices: Tails) Let A be an n × p matrix with inde-

pendent N(0, 1) entries. Then for every t ≥ 0, we have

P
+
"A"op ≥

√
n+

√
p+ t

,
≤ 2 exp(−ct2).

The proof is based on the concentration of Lipschitz functions of N(0, Ip) which I will cover in the future

lecture borrowing an amazing proof by Maurey and Pisier.

5.8 Bounds for Structured Covariance Matrix [Optional]

To have faster rates for the estimation of covariance matrix, one might impose certain structure on it. Triv-

ially, if we know the covariance matrix is identity matrix, there is no need to estimate it (fastest convergence).

If we know the covariance matrix is diagonal, one could prove that the error is of order
3
(log p)/n (Wain-

wright 2019, Exercise 6.15) with new estimator diag(Σ̂) where Σ̂ is the sample covariance matrix. Diagonal

matrix is a special case of sparse matrix with known non-sparse positions. More generally, if we do not know
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where the sparsity is, we could use the following estimator

Tλ(Σ̂)ij =

4
5

6
Σ̂ij Σ̂ij > λ

0 Σ̂ij ≤ λ.

Basically, we apply the hard-thresholding operator Tλ to the sample covariance matrix to enforcing sparsity.

It could be proved that the rate becomes

C"A"op

0
log p

n
,

where "A"op is a measure for sparsity of Σ. For more details, please see Wainwright (2019, Section 6.5).
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Lecture 6: A Note On Union Bound

Lecturer: Long Zhao, longzhao@nus.edu.sg

6.1 Resources

• van Handel (2014, Chapter 5). These lecture notes offer lots of deep insights about some techniques.

Some chapters of Vershynin (2018) are also based on them.

6.2 Roadmap

Now, the focus of this course is providing information regarding supt∈T Xt, where T is potentially an un-

countable set. An example is

!A!op = sup

t∈Sp−1

!At!2,

where we could denote Xt ≜ At. Let P be a maximal !-separated set and π(t) ∈ P satisfies d(π(t), t) < !.

Then we have

sup
t∈T

Xt = sup
t∈T

!
Xt −Xπ(t) +Xπ(t)

"

≤ sup
t∈T

!
Xt −Xπ(t)

"
+ sup

t∈P
Xπ(t) (sup(X + Y ) ≤ supX + supY ).

(6.1)

In the case of !A!op, we use the above inequality to obtain the optimal upper bound up to a constant. We

want to explore why such an easy idea could give an almost sharp bound. More specifically, we want to

answer the following questions.

1. Since P is a finite set, we could use union bound to control the second term. Why the union bound

works well for !A!op?

2. In order to give a good bound, supt∈T

!
Xt −Xπ(t)

"
should not dominate supt∈T Xt. For !A!op, we

could show that they are of the same level, which leads to a decent bound.

6-1
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6.3 When Union Bound Works Well

For the simplest case, let us only consider two events, A1 and A2. The union bound tells us that

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) ≤ P (A1) + P (A2).

Clearly, the bound is tight when A1 ∩ A2 = ∅ (disjoint) and very loose when A1 = A2 (an extreme case of

overlapping). Another interesting case is that A1 and A2 are independent (Is disjoint independent?).

P (A1 ∪A2) = P (A1) + P (A2)− P (A1)P (A2) (6.2)

Intuitively speaking, when P (Ai) is small, P (A1)P (A2) is a higher order term than P (A1) + P (A2). Thus,

the union bound should be descent. The following exercise provide a more precise lower bound when there

are n independent events.

Exercise 6.1 If A1, . . . , An are independent events, then

P (∪n
i=1Ai) ≥ (1− e−1

)

#
1 ∧

n$

i=1

P (Ai)

%

Proof: Since Ais are independent events,

P (∪n
i=1Ai) = 1− P (∩n

i=1A
c
i ) = 1−

n&

i=1

P (Ac
i ) = 1−

n&

i=1

(1− P (Ai)).

We could bound
'n

i=1(1− P (Ai)) as following

n&

i=1

(1− P (Ai)) ≤
n&

i=1

exp(−P (Ai)) (1− x ≤ exp(x))

= exp

#
−

n$

i=1

P (Ai)

%

= exp

#
−
(

n$

i=1

P (Ai) ∧ 1

)%
.

Next, we would like to use the following numeric inequality to finish the proof.

h(x) ≜ 1− exp(−x)− (1− exp(−1))x ≥ 0 ∀x ∈ [0, 1].

It is easy to check h(0) = h(1) = 0. Because h(x) is concave, we have the above inequality holds for all [0, 1].
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Therefore,

1− exp

#
−
(

n$

i=1

P (Ai) ∧ 1

)%
≥ (1− exp(−1))

#
n$

i=1

P (Ai) ∧ 1

%
.

To summarize,

• Lots of overlap: union bound is loose.

• Not so much overlap (disjoint or independent): union bound is descent.

Now we apply this insight to supt∈T Xt. If Xt is continuous in some sense
1
, for t1, t2 ∈ T that d(t1, t2) is

small, we know two events that Xt1 ≤ x and Xt2 ≤ x have lots of overlaps. Thus, union bound is very loose.

If d(t1, t2) is large, Xt1 ≤ x and Xt2 ≤ x are not closely related (kinda independence). This means that there

might be little overlap between those two events. Then a union bound should work well. This is precisely

the motivation for utilizing supt∈P Xt where any two points in P are at least ! separated.

Remark 6.2 We use independence intuitively instead of rigorously. We never prove that Xt1 ≤ x and

Xt2 ≤ x are independent when d(t1, t2) ≥ δ.

6.4 supt∈T
!
Xt −Xπ(t)

"

In the case of !A!op,

Xt −Xπ(t) = !At!2 − !Aπ(t)!2 ≤ !A(t− π(t))!2 (Triangle Inequality of ! · !2)

≤ !A!op!t− π(t)!2 (Definition of !A!op).
(6.3)

Thus, we have

sup
t∈T

!
Xt −Xπ(t)

"
= !!A!op = ! sup

t∈T
Xt.

We got lucky for !A!op because no matter what ! < 1 we choose, supt∈T

!
Xt −Xπ(t)

"
will not dominate

supt∈T Xt. That is to say, the decomposition of Eq. 6.1 is great: first term could be absorbed; union bound

works well for the second term. Thus, we could expecting a sharp bound for !A!op.

However, lots of the times, we will not have this good luck. In Eq. 6.3, we leverage the !A!op-Lipschitz
property of !Ax!2. The Lipschitz constant is the worst case for all possible pairs which is usually very

large. van Handel (2014, Example 5.15) provides such an example where E supt∈T Xt ∼ n−1/2
while

supt∈T

!
Xt −Xπ(t)

"
∼ n−1/3

. This motivates us to avoid such worst case consideration.

1Two possible examples. 1. L-Lipschitz, |Xt −Xs| ≤ Ld(t, s). 2. Lipschitz with high probability. #Xt −Xs#ψ2
≤ Cd(t, s)



Lecture 6: A Note On Union Bound 6-4

References

van Handel R (2014) Probability in high dimension. Technical report, PRINCETON UNIV NJ, URL https://web.

math.princeton.edu/~rvan/APC550.pdf.

Vershynin R (2018) High-dimensional probability: An introduction with applications in data science, volume 47 (Cam-

bridge university press).



BDC6307: Introduction to Data Analytics Spring 2021, NUS

Lecture 7: Symmetrization 1 and Chaining

Lecturer: Long Zhao, longzhao@nus.edu.sg

7.1 Resources

• van Handel (2014, Chapter 5 and 7). Easiest to read among three, especially Chapter 5.

• Vershynin (2018, Chapter 8). Highlight key issues.

• Wainwright (2019, Chapter 4 and 5). Read it after you get the the other two.

7.2 Target

To honor the course name ‘Introduction to Data Analytics,’ I have to prove an essential theorem1 in statistical

learning theory:

Theorem 7.1 [Excess Risk via VC Dimension] Assume that the target T is a Boolean function, and the

hypothesis space F is a class of Boolean functions with finite VC dimension vc(F). Then the excess risk is

bounded as follows,

E(f̂ , T ) ≤ C

!
vc(F)

n
.

Here, we recall the notations from Lecture 5. We are given n samples {(Xi, T (Xi))}ni=1 where Xn
1 ≜ {Xi}ni=1

are drawn i.i.d. from some distribution P . Our target is to learn the boolean function T based on the

samples. One way to do it is to minimize the empirical risk which is defined as

R̂n(f, T ) =
1

n

n"

i=1

L(f(Xi), T (Xi)),

where L is some loss function. A popular choice is the squared loss defined as

L(x, y) = (x− y)2.

Since we are dealing with Boolean functions f and T , we have f(X)− T (X) ∈ {−1, 0, 1}. For these values,

1We have seen it without proof in Learning from Data course.

7-1
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|x| = x
2. Thus, we have

L(f(X), T (X)) = (f(X)− T (X))2 = |f(X)− T (X)|.

I will stick to L(·, ·) without specifying its form unless it is required. We denote the boolean function

that minimizes R̂n(f, T ) as f̂ . The expectation of the empirical risk is the population risk, mathematically

speaking,

R(f, T ) = E(L(f(X), T (X))).

The excess risk is defined as

E(f̂ , T ) = R(f̂ , T )− inf
f∈F

R(f, T ).

For simplicity, we assume that there exists f0 ∈ F such that R(f0, T ) = inff∈F R(f, T ). In this case, we

have already proved that

E(f̂ , T ) ≤ 2E

#
sup
f∈F

$$$R̂n(f, T )−R(f, T )
$$$

%
.

Then we have Theorem 7.1 proved if

2E

#
sup
f∈F

$$$R̂n(f, T )−R(f, T )
$$$

%
≤ C

!
vc(F)

n
.

7.3 Analysis of supf∈F

Usually |F| is infinite, there is no way that we could use the union bound directly. Naturally, we want to

use !-net covering to transform infinite to finite. To determine which distance to use, we want to recall the

case of $A$op. There we use Euclidean norm $ · $2 because of the following Lipschitz property:

$Ax$2 − $Ay$2 ≤ $Ax−Ay$2 ≤ $A$op$x− y$2.

It is tempting to explore the possibility of Lipschitz property of two Boolean functions f and g. To simplify

the notations, I introduce Lf (Xi) as following,

Lf (Xi) ≜ L(f(Xi), T (Xi))− E(L(f(Xi), T (Xi))).

Then, R̂n(f, T )−R(f, T ) becomes

R̂n(f, T )−R(f, T ) =
1

n

n"

i=1

Lf (Xi).
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Now, we have

|R̂n(f, T )−R(f, T )|− |R̂n(g, T )−R(g, T )| =

$$$$$
1

n

n"

i=1

Lf (Xi)

$$$$$−

$$$$$
1

n

n"

i=1

Lg(Xi)

$$$$$

≤ 1

n

$$$$$

n"

i=1

Lf (Xi)− Lg(Xi)

$$$$$ (|x|− |y| ≤ |x− y|)

≤ 1

n

n"

i=1

|Lf (Xi)− Lg(Xi)| .

If we use L(x, y) = |x− y|, we have

L(f(Xi), T (Xi))− L(g(Xi), T (Xi)) = |f(Xi)− T (Xi)|− |g(Xi)− T (Xi)|

≤ |f(Xi)− g(Xi)| (|x|− |y| ≤ |x− y|)

≤ $f − g$∞.

Taking expectation to both sides to have

EL(f(Xi), T (Xi))− EL(g(Xi), T (Xi)) ≤ $f − g$∞.

Use the definition of Lf (Xi) to have

Lf (Xi)− Lg(Xi) ≤ 2$f − g$∞,

which implies

|R̂n(f, T )−R(f, T )|− |R̂n(g, T )−R(g, T )| ≤ 2$f − g$∞.

Thus, we have 2-Lipschitz regarding norm $ · $∞. Unfortunately, for any two different Boolean functions, we

have

$f − g$∞ = 1.

This means that any !-net (! < 1) under $ · $∞ norm contains infinite functions. One way to get around this

issue is to use L2-norm

$f − g$L2 =
&
E(f(X)− g(X))2

' 1
2 ≤ $f − g$∞.

It might be possible that !-net under this smaller norm could be finite. However, we do not know why L2

norm is the right choice (why not L1?). Technically, it might not be easy to estimate |N (!)| since we have

no idea about the distribution of X.

If we step back and think the problem through the n data points, then there are no longer infinite functions:
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the predicted label of each observation, namely f(Xi), could be 0 or 1, which means that in total, there

are at most 2n possibilities. In other words, we could not distinguish two functions that generate the same

labels on the n data points. This leads to infinite many boolean functions collapsing into finite ones. What

is the difference between these two perspectives? The former faces the randomness of Xn
1 while the latter is

conditional on X
n
1 .

How to generate conditional expectation in E supf∈F ()? The only randomness is X
n
1 , if we conditional on

them, sup becomes deterministic, and we come back to unconditional expectation. We need to introduce

some new randomness that makes conditioning on X
n
1 possible. Now, we introduce the powerful tool of

symmetrization.

7.4 Symmetrization

To motivate the idea of symmetrization (a new origin of randomness), let us think about CLT. Under mild

conditions of i.i.d. random variables {Zj}ni=1, we have

n"

i=1

(Zj − E(Zj)) ≈ O(
√
n).

Why is the summation of n terms only about
√
n? Well, because the positive ones cancel out most of the

negative ones (because of independence). Thus, the random sign of values (positive v.s. negative) is helping

the CLT. It is tempting to believe that if we introduce independent random signs for each term, CLT still

holds2. In other words, this kind of new randomness does not break the canceling phenomenon.

We also want to facilitate CLT in the attempt to control R̂n(f, T )− R(f, T ). To see this, we could rewrite

it as

R̂n(f, T )−R(f, T ) =
1

n

n"

i=1

Lf (Xi).

Let {!i}ni=1 be i.i.d. symmetric Bernoulli distribution (or Rademacher distribution) that are also independent

to {Xi}ni=1. In this way, !i could represent the random sign of the term Lf (Xi). We want to somehow build

the following connection,

EX sup
f∈F

$$$$$

n"

i=1

Lf (Xi)

$$$$$ ? ≤? CEXE!

(
sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$

)
.

It is worth to notice that, the RHS is an inequality w.r.t two different randomnesses. In this way, we

successfully create the conditional expectation regarding X
n
1 which is about finite events! The following

Proposition shows that there is indeed such kind of relationship.

2!iZjs are i.i.d. and still satisfy mild conditions. Thus, CLT still works. Here, !is are random signs.
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Proposition 7.2

EX sup
f∈F

$$$$$

n"

i=1

Lf (Xi)

$$$$$ ≤ 2EXE!

#
sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$

%

(7.1)

Proof: We will start with the following bound,

sup
f∈F

$$$$$

n"

i=1

Lf (Xi)

$$$$$ = sup
f∈F

$$$$$

n"

i=1

(Lf (Xi)− ELf (Xi))

$$$$$ (ELf (Xi) = 0)

= sup
f∈F

$$$$$

n"

i=1

(Lf (Xi)− EY Lf (Yi))

$$$$$ (Yi ∼ Xi but independent)

≤ sup
f∈F

EY

$$$$$

n"

i=1

(Lf (Xi)− Lf (Yi))

$$$$$ (| · | is convex)

≤ EY sup
f∈F

$$$$$

n"

i=1

(Lf (Xi)− Lf (Yi))

$$$$$ (E sup ≤ supE).

(7.2)

Notice that for any two independent copy of the same random variable, Z and Z̃, Z − Z̃ is a symmetric

distribution meaning that it has the same distribution as Z̃−Z. Let ! be an independent symmetric Bernoulli

distribution. Then

Z − Z̃ ∼ !(Z − Z̃).

This property implies that Lf (Xi) − Lf (Yi) shares the same distribution as !i(Lf (Xi) − Lf (Yi)). Taking

expectation w.r.t. EX to both sides of Eq. 7.2 to have

EX sup
f∈F

$$$$$

n"

i=1

Lf (Xi)

$$$$$ ≤ EX,Y sup
f∈F

$$$$$

n"

i=1

(Lf (Xi)− Lf (Yi))

$$$$$

= EX,Y,! sup
f∈F

$$$$$

n"

i=1

!i(Lf (Xi)− Lf (Yi))

$$$$$ (!i(Lf (Xi)− Lf (Yi)) ∼ Lf (Xi)− Lf (Yi))

≤ EX,Y,! sup
f∈F

#$$$$$

n"

i=1

!iLf (Xi)

$$$$$+

$$$$$

n"

i=1

!iLf (Yi)

$$$$$

%
(|x− y| ≤ |x|+ |y|)

≤ EX,! sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$+ EY,! sup
f∈F

$$$$$

n"

i=1

!iLf (Yi)

$$$$$ (sup(A+B) ≤ supA+ supB)

= 2EXE! sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$ (Y ∼ X).

Remark 7.3 Notice that in the proof, Lf (X) could be any function of X. Namely, we do not require that

it is a loss function. All we need is the independence among Xis. Think about where do we use such
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independence.

Remark 7.4 Given x
n
1 ≜ (x1, . . . , xn) and a function class (not necessary Boolean) F . The Empirical

Rademacher complexity is defined by

E! sup
f∈F

$$$$$
1

n

n"

i=1

!if(xi)

$$$$$ .

Since E!i = 0, one could interpret
1
n

*n
i=1 !if(xi) as the sample covariance between ! and f(x). Since !is

are i.i.d. Symmetric Bernoulli distribution, there is no true pattern in any realizations. Intuitively speaking,

the higher covariance F could obtain with such pure random realizations of !is, the larger F is. Thus,

Rademacher complexity is a way to measure how large F is. Similarly, one could replace !i with gi ∼ N(0, 1)

to introduce the Gaussian complexity.

You might wonder that is it possible to lower bound EX supf∈F |
*n

i=1 Lf (Xi)| by its symmetrization coun-

terpart. The following proposition shows that it is doable.

Proposition 7.5

1

2
EXE!

#
sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$

%
≤ EX sup

f∈F

$$$$$

n"

i=1

Lf (Xi)

$$$$$

Proof: The core idea is similar to Proposition 7.2, we start with the following inequality.

sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$ = sup
f∈F

$$$$$

n"

i=1

!i(Lf (Xi)− EY Lf (Yi))

$$$$$ (Y ∼ X & ELf (Yi) = 0)

≤ sup
f∈F

EY

$$$$$

n"

i=1

!i(Lf (Xi)− Lf (Yi))

$$$$$ (| · | is convex)

≤ EY sup
f∈F

$$$$$

n"

i=1

!i(Lf (Xi)− Lf (Yi))

$$$$$ (supE ≤ E sup).

(7.3)

Notice that Lf (Xi) − Lf (Yi) is symmetric distribution. Thus, !i(Lf (Xi) − Lf (Yi)) follows the same distri-

bution as Lf (Xi)−Lf (Yi). Because of this, we could take expectation with respect to ! and X to both sides
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and then take away !.

EX,! sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$ ≤ EX,Y,! sup
f∈F

$$$$$

n"

i=1

!i(Lf (Xi)− Lf (Yi))

$$$$$

= EX,Y sup
f∈F

$$$$$

n"

i=1

(Lf (Xi)− Lf (Yi))

$$$$$ (!i(Lf (Xi)− Lf (Yi)) ∼ Lf (Xi)− Lf (Yi))

≤ EX,Y sup
f∈F

#$$$$$

n"

i=1

Lf (Xi)

$$$$$+

$$$$$

n"

i=1

Lf (Yi)

$$$$$

%
(|x− y| ≤ |x|+ |y|)

≤ EX sup
f∈F

$$$$$

n"

i=1

Lf (Xi)

$$$$$+ EY sup
f∈F

$$$$$

n"

i=1

Lf (Yi)

$$$$$ (sup(A+B) ≤ supA+ supB)

= 2EX sup
f∈F

$$$$$

n"

i=1

Lf (Xi)

$$$$$ (Y ∼ X)

It seems that our intuition that the cost of introducing random signs is tolerable is correct: based on previous

two propositions, almost no cost is paid since the ratio is bounded by 1/2 and 2. Even more, given X
n
1 ,

n"

i=1

Lf (Xi)√
n

· !i (You will see why
√
n in a moment)

is a linear combination of !is which are independent (mean-zero) bounded variables (sub-Gaussian). Based

on the property of sub-Gaussian, we know

+++++

n"

i=1

Lf (Xi)√
n

· !i

+++++

2

ψ2

≤ C

#
n"

i=1

,
Lf (Xi)√

n

-2
%

max
i=1,...,n

$!i$2ψ2
(Property 6 (A Note on $ · $ψ2))

=
C

log 2

#
n"

i=1

,
Lf (Xi)√

n

-2
%

($!i$2ψ2
=

1

log 2
)

≤ C

log 2
(Lf (Xi)

2 ≤ 1).

(7.4)

Thus, given X
n
1 ,

sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$

is the maximum of finite sub-Gaussian mean-zero random variables (Are they independent? Why?). Next,

we will address how to bound the expectation of such maximum.



Lecture 7: Symmetrization 1 and Chaining 7-8

7.5 Tail Behavior of maxj=1,...N |Zj|, Zj Sub-Gaussian

Here Zj =
*n

i=1 !iLfj (Xi) where fj is a boolean function. The randomness of Zj belongs to !n1 only because

it is conditioned on X
n
1 . N represents the number of possible predictions from function family F when

conditional on X
n
1 . Namely, N = |F|Xn

1
|.

Let Zjs be sub-Gaussian random variables with $Zj$ψ2 ≤ K. We are curious about the tail behavior of

maxj=1,...,N |Zj |.

P ( max
j=1,...N

|Zj | ≥ t) = P (∪N
j=1(|Zj | ≥ t))

≤
N"

j=1

P (|Zj | ≥ t) (Union bound)

≤
N"

j=1

2 exp(−t
2
/K

2) (Definition of $ · $ψ2)

= 2N exp(−t
2
/K

2).

If we choose t = K(
.
log(N) + u), then we have

t
2 ≥ K

2(log(N) + u
2)

⇒ P ( max
j=1,...N

|Zj | ≥ t) ≤ 2N exp(−t
2
/K

2) ≤ 2N exp(− log(n)− u
2) = 2 exp(−u

2).

Thus, for n sub-Gaussian variables, the cost one pays for maxj=1,...n Zj is about K
.
log(n).

7.6 Emaxj=1,...N |Zj|, Zj Sub-Gaussian

One could use the tail bound to bound the expectation directly. However, there exists another way that

is less numerical and involves a new trick. Thus, I will provide this detour approach which starts with a

different perspective of the union bound. Emaxj=1,...,N Zj .

7.6.1 Different Perspective of Union Bound

The union bound is

P (∪N
j=1Aj) ≤

N"

j=1

P (Aj).
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If we use the P (Aj) = E1Aj , we have

E sup
j=1,...N

1Aj ≤
N"

j=1

E1Aj .

We could obtain the union bound by using the following numeric inequality:

Zj ≥ 0 ⇒ max
j=1,...N

Zj ≤
N"

j=1

Zj .

If we use this inequality for any non-negative random variables Zj , we have

E max
j=1,...N

Zj ≤
N"

i=1

EZj . (7.5)

If Zj follows the same distribution (might not be independent), then we have

E max
j=1,...N

Zj ≤ NEZj .

Most of the time, it is a loose bound (could you find a case that it is tight?). One way to think about it is

that maxj=1,...N Zj should be closely related to the tail behavior, however, we are not exploiting it here at

all. Our usual way of introducing tail behavior is to use the MGF. Because MGF is always positive, it is

possible to bound maxj=1,...N Zj in the following way.

Emax
j

Zj =
1

λ
E log exp(λmax

j
Zj) (log expx = x)

≤ 1

λ
logE(exp(λmax

j
Zj)) (log x is concave.)

=
1

λ
logE(max

j
exp(λZj)) (exp(x) is monotone increasing)

≤ 1

λ
log

/

0
N"

j=1

E exp(λZj)

1

2 (Eq. 7.5)

7.6.2 Emaxj=1,...N Zj, Zj Sub-Gaussian

If EZj = 0 and maxj $Zj$ψ2
= K, we have

E exp(λZj) ≤ exp(CK
2λ2),

which implies

Emax
j

Zj ≤
1

λ

&
log(N) + CK

2λ2
'
.
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Find λ# ≥ 0 that minimizes the RHS to obtain

Emax
i

Zj ≤ 2
.
CK2 logN. (7.6)

Thus, the expectation of the maximum of n mean-zero sub-Gaussian random variables (do we require inde-

pendence here?) are bounded by 2
√
C logN ×K where K indicates the thickness of the tail. This form is

very similar to the one about its tail behavior.

7.6.3 From Zj to |Zj|

The above argument fails for |Zj | since E|Zj | ∕= 0. Luckily, based on Vershynin (2018, Eq. 2.15), we know

$Zj$Lp ≤ C1$Zj$ψ2

√
p ∀p ≥ 1.

If we take p = 1, we have E|Zj | ≤ C1$Zj$ψ2 ≤ C1K. By the definition of $ · $ψ2 , |Zj | shares the same

$ · $ψ2 as Zj . Thus, |Zj |−E|Zj | is mean-zero sub-Gaussian with $ · $ψ2 upper bounded by K. Based on the

previous derivation, we have

E sup
j=1,...,N

|Zj |− C1K ≤ E sup
j=1,...,N

3
|Zj |− E|Zj |

4
≤ 2K

.
C logN.

Thus, we have

E sup
j=1,...,N

|Zj | ≤ C1K + 2K
.
C logN ≤ C2K

.
logN.

To summarize, the expectation of Emax |Zj | and EmaxZj are both of the size
√
logN which also agrees

with the tail behavior.

7.6.4 When the Bound is Good?

The following inequality plays a key role in the above derivation,

max
i=1,...,N

Zj ≤
1

λ
log

N"

i=1

exp(λZj)

,
≤ max

i=1,...N
Zj +

logN

λ

-
.

It is tempting to have logN/λ → 0, to have two bounds matched. However, our final choice of λ is of order

logN . This happens because log x is concave rendering E[log(·)] ≤ logE[·]. In other words, the upper bound

is not an upper bound for logE[·].

When the maximum exp(λZ) does not dominate others, the bound will be loose. If all Zjs follow the same

distribution, this is likely to happen when there are strong positive correlation. Thus, we are expecting this
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bound works fairly well when Zjs are i.i.d. Indeed, one could show that

c

.
logN ≤ E[ max

i=1,...,N
Zj ] ≤ C

.
log n,

when Zjs are i.i.d. N(0, 1).

7.7 A Simple Bound of E! supf∈F |
!

n

i=1 !iLf(Xi)|

Recall that |
*n

i=1 !iLf (Xi)| is sub-Gaussian, and supf∈F is in fact a maximum of at most 2n random

variables, we know that

E! sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$ ≤ C
√
n

.
log 2n (

+++++

n"

i=1

!iLf (Xi)

+++++
ψ2

≲
√
n, Eq. 7.4)

= C̃n.

This is a trivial result since |!iLf (Xi)| ≤ 1. However, if we could replace the trivial cardinality bound of 2n

to a tighter bound, then we are in business. This is where the VC dimension comes into play.

Lemma 7.6 (Sauer-Shelah Lemma. Vershynin (2018), Theorem 8.3.16.) Let F be a class of Boolean

functions on an n-points set Ω. Then

|F| ≤
5
en

d

6d

,

where d = vc(F).

With this tighter bound, we could have the following

E! sup
f∈F

$$$$$

n"

i=1

!iLf (Xi)

$$$$$ ≤ C
√
n

!
log

5
en

d

6d

(

+++++

n"

i=1

!iLf (Xi)

+++++
ψ2

≲
√
n)

= C̃

.
vc(F)n log n.

Divide both sides by n and recall the definitions of R̂, R and Lf , we have

E

#
sup
f∈F

$$$R̂n(f, T )−R(f, T )
$$$

%
≤ C

!
vc(F) log n

n
. (7.7)

Unfortunately, we are still off the bound with a log n factor. Let us think about how to close the gap.

Fundamentally speaking, it is our way of using union bound (or Zj ≥ 0 ⇒ maxi Zj ≤
*

i Zj) that leads

to the problem. It must be the case that for some f ∕= g,
*n

i=1 !iLf (Xi) and
*n

i=1 !iLg(Xi) are highly
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positively correlated rendering a loose bound. In fact, we could take a difference of them as

n"

i=1

!iLf (Xi)−
n"

i=1

!iLg(Xi) =

n"

i=1

!i(Lf (Xi)− Lg(Xi)).

Clearly, if f and g agrees on most of Xis, then they will have a high correlation. It is worth to notice that

this difference is also a sub-Gaussian variable. However, to get a deeper understanding, we need to handle

the EL(f(Xi), T (Xi)) and EL(g(Xi), T (Xi)) (recall the definition of Lf (Xi) and Lg(Xi)). It is not easy to

do so, because conditioning on X
n
1 does not help. Luckily, if we refine the form of symmetrization, we could

get rid of them too.

7.8 Better Form of Symmetrization

The change of symmetrization form is driven mainly by technical reasons. If you find it confusing,

you could jump to the conclusion and ignore it.

Proposition 7.7

EX sup
f∈F

$$$$$

n"

i=1

Wi(f)− EWi(f)

$$$$$ ≤ 2EXE!

#
sup
f∈F

$$$$$

n"

i=1

!iWi(f)

$$$$$

%
, (7.8)

where Wi(f) = L(f(Xi), T (Xi)).

Proof: We first replace EWi(f) with EW̃i(f) where W̃i(f) is an independent copy of Wi(f). Then proceed

use the identical techniques as in Proposition 7.2.

Now, we get rid of term EL(f(Xi), T (Xi)) and we could focus on

n"

i=1

!iWi(f)−
n"

i=1

!Wi(g) =

n"

i=1

! (Wi(f)−Wi(g)) .

Moreover, if we leverage L(f(Xi), T (Xi)) = |f(Xi)− T (Xi)|, we have

Wi(f)−Wi(g) = L(f(Xi), T (Xi))− L(g(Xi), T (Xi)) = |f(Xi)− T (Xi)|− |g(Xi)− T (Xi)|

≤ |f(Xi)− g(Xi)| (||x|− |y|| ≤ |x− y|)

= |(f − g)(Xi)|.

Thus, we could bound the ψ2 norm of
*n

i=1 !i(Wi(f)−Wi(g)),

+++++

n"

i=1

!i(Wi(f)−Wi(g))

+++++

2

ψ2

≤ C

n"

i=1

(Wi(f)−Wi(g))
2 ≤ C

n"

i=1

((f − g)(Xi))
2
.
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If we define d(f, g) =
.*n

i=1((f − g)(Xi))2, we have

+++++

n"

i=1

!i(Wi(f)−Wi(g))

+++++
ψ2

≤ Cd(f, g).

This is an amazing result because we connect the tail behavior of the distance to the distance between their

indexes. In some sense, this indicates some continuity with respect to the indexes. We have exploited such

continuity using covering in the last two lectures.

Let me make it more abstract to highlight the idea. Previously, we are dealing with

max
j=1,...N

Zj ,

where Zjs are sub-Gaussian. Now, we also know Zj − Zj is also sub-Gaussian (structure!), and the smaller

|i − j| is, the thinner the tail becomes. This means that Zj and Zj+1 are highly correlated. It is tempting

to use covering (at most choose one) to avoid utilizing a loose union bound.

7.9 Chaining

Given the analysis above, it is time to bound supt∈T Zt with structure

$Zt − Zs$ψ2 ≤ Kd(t, s) & EZs = 0. (7.9)

I will first provide some simple examples to indicate that this structure is not rare. Then we will move to

the analysis, which eventually will lead to the idea of chaining.

7.9.1 Simple Examples

Although
*n

i=1 !iWi(f) does not qualify because of EWi(f) ∕= 0, it motivates the following simple example.

Zt = 〈a, t〉, where a ∈ Rn is sub-Gaussian with Ea = 0.

⇒$Zt − Zs$ψ2
= $〈a, t− s〉$ψ2

≤ $a$ψ2
$t− s$2.

Since bounded variable is sub-Gaussian, we know that Zt also follows this structure when Zt is Lipschitz

w.r.t. t. Mathematically speaking,

|Zt − Zs| ≤ Ld(t, s) ⇒ $Zt − Zs$ψ2 ≤ Cd(t, s).

This observation leads to another example of Zt = $At$2 − E$At$2 which is 2$A$op-Lipschitz.
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7.9.2 Analysis of Finite |T |

One could think about Eq. 7.9 as some continuity property. To tighten the union bound, we are eager to use

!-separated set, P (!), to make sure that the union bound will not apply to the events with large overlaps.

In other words, we are tempting to use following inequality

sup
t∈T

Zt ≤ sup
t∈T

&
Zt − Zπ(t)

'
+ sup

t∈P (!)

Zπ(t). (7.10)

There are three problems.

1. How to choose !? This turns out to be irrelevant because chaining is about choosing lots of different

!s.

2. How to handle the first term? This is critical because it could involves |T | = ∞.

3. How to handle the second term? The requirement that EZt = 0 is use to handle this. The idea is to

choose ! so large that P (!) = t0, namely one point. In this way, supt∈P (!) is a fake sup.

If we have Lipschitz property, we could pay the Lipschitz constant for the first term. However, the Lipschitz

constant describes the worst possible case for any pair in T , which could be larger than supt∈T Zt. In other

words, we might not be able to afford to use the Lipschitz constant to handle the first term. The situation

seems worse when there is no Lipschitz property (Eq. 7.9 does not imply Lipschitz) because Lipschitz

property might be the only tool for us to bound infinite T .

If so, let us think about how to handle the first term regarding finite T . It might be easy to expand the

finite case to countable infinite. Based on Section 7.6.2, we know that

E sup
t∈T

&
Zt − Zπ(t)

'
≤ 2CK

.
log |T |! ($Zt − Zπ(t)$ψ2 ≤ Kd(t,π(t)) ≤ K!).

This is a good direct bound for finite |T |. Unfortunately, it explodes when |T | → ∞. One way to delay the

problem is to introduce a !/2-separated set P (!/2) and then utilize Eq. 7.10 again as following,

sup
t∈T

&
Zt − Zπ(t)

'
≤ sup

t∈T

&
Zt − Zπ′(t)

'
+ sup

t∈T

&
Zπ′(t) − Zπ(t)

'

The first term could be bounded as

E sup
t∈T

&
Zt − Zπ′(t)

'
≤ 2CK

.
log |T | !

2
.

Since this bound still involves |T |, we still need to think how to handle it. Bounding the second term

takes some work. First of all, we need to count the number of sub-Gaussian variables. There are at most

|P (!/2)|× |P (!)| ≤ |P (!/2)|2 pairs of (π′(t),π(t)). Thus, we know there are at most |P (!/2)|2 sub-Gaussian
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variables. Since

d(π′(t),π(t)) ≤ d(π′(t), t) + d(t,π(t)) (Triangle inequality of d(·, ·))

≤ !/2 + ! (Definition of π′(t) and π(t)),

we know the sub-Gaussian norm is bounded by

$Zπ′(t) − Zπ(t)$ψ2
≤ 3/2K!.

Now we could utilize Section 7.6.2 to bound the second term

E sup
t∈T

&
Zπ′(t) − Zπ(t)

'
≤ 3CK

.
2 log |P (!/2)|!.

It is possible that

.
log |P (!/2)| ≪

.
log |T |, (7.11)

this means that by introducing a new separate set, we reduce the bound significantly. To get some intuition

regarding Eq. 7.11, one could think under the assumption that |T | → ∞. In this case, the RHS goes to

infinity. Meanwhile, the LHS might stay finite (think about Sp−1).

Since we gain some hope by introducing another !/2-separated set, we shall continue doing this to eliminate

the existence of |T | in the upper bound. When |T | is finite, P (!/2k) will eventually become |T | once k ≥ K0

(or large enough). Thus, in the end, we could avoid bounding the first term because supt∈T Zt−ZπK0 (t) = 0.

Before we proceed to the countable infinite case, we shall take a look at the bound. It is in the following

form,

C2K

K0"

i=1

.
log |P (!/2i)| !

2i
= 2C2K

K0"

i=1

.
log |P (!/2i)|

5 !

2i
− !

2i+1

6

Now, it looks like a Riemann summation. Notice that |P (!)| is monotone decreasing, we could bound this

summation by some integral in the following form

E sup
t∈T

Zt ≤ C3K

7 ∞

0

.
log |N(T, d, !)|d!.

This is the Dudley’s integral inequality. It is worth to notice that I replace !-separated set with !-net. The

reason is that !-separated set is easy to motive but !-net also works.

Remark 7.8 The upper bound of the integral is not ∞. It is diam(T ) = supx,y d(x, y). This happens because

for any ! > diam(T ), N(T, d, !) = 1.

Remark 7.9 Dudley’s inequality is not correct for E supt∈T |Zt| because E|Zt0 | ∕= 0. However, everything

still goes through for E supt∈T |Zt −Zt0 | (why?). If we could find Zt0 = 0, we could bound E supt∈T |Zt|. To
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highlight the main idea, I will not solve this issue but provide alert when it occurs.

7.9.3 Finite to Infinite.

Let us first deal with the countable infinite case. Let Tk be the first k elements of T . We could apply the

above inequality to every Tk to obtain a bound. Notice that |N(T, d, !)| is monotone increasing3 in T (larger

set, higher points needed to cover). Thus for every Tk we have

E sup
t∈Tk

Zt ≤ C3K

7 ∞

0

.
log |N(T, d, !)|d!.

Since LHS is increasing w.r.t. k, we could take limk→∞ to both sides to obtain

E sup
t∈T

Zt ≤ C3K

7 ∞

0

.
log |N(T, d, !)|d!.

That is to say, we have handled the countable infinite case. For the uncountable infinite case, we need the

following assumption to make it work.

Definition 7.10 (Separable Process) A random process {Zt}t∈T is called separable if there is a countable

set T0 ⊂ T such that

Zt ∈ lim
s→t,s∈T0

Xs ∀t ∈ T.

If we are dealing with a separable process Zt, we have

sup
t∈T

Zt = sup
t∈T0

Zt.

Thus, we know how to handle sup of separable processes.

7.10 Application of Dudley’s Inequality

We first apply Dudley’s inequality to the excess risk which will remove the log n factor. Then we use it for

L-Lipschitz functions to show that it is the covering number that matters.

7.10.1 Excess Risk

We would like to use Dudley’s inequality to remove the log n factor in Eq. 7.12. We will leverage the

following result about |N(!)|.
3This is not always true. Think about Vershynin (2018, Exercise 4.2.10). The exercise also shows that this technical issue

is minor since there is an approximate version.
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Theorem 7.11 (Covering Number via VC Dimension, Theorem 8.3.18 Vershynin (2018)) Let F
be a class of Boolean functions on a probability space (Ω,Σ, µ). Then for every ! ∈ (0, 1), we have

|N(F , L
2(µ), !)| ≤

,
2

!

-Cd

,

where d = vc(F).

All you need to understand about the above theorem4 is that it provides some bound for |N(!)| which we

could use in Dudley’s inequality as following.

E! sup
f∈F

$$$$$

n"

i=1

!iWi(f)

$$$$$ ≤ C
√
n

7 ∞

0

.
log |N(!)|d! (

+++++

n"

i=1

!iWi(f − g)

+++++
ψ2

≲
√
n)

≤ C1

√
n

7 ∞

0

.
vc(F) log(2/!)d!

= C2

.
vc(F)n. (

7 ∞

0

.
log(2/!)d! ≲ 1)

Divide both sides by n and recall the definitions of R̂, R and Lf , we have

E

#
sup
f∈F

$$$R̂n(f, T )−R(f, T )
$$$

%
≤ C

!
vc(F)

n
. (7.12)

Remark 7.12 Is it possible to use Dudley’s inequality without symmetrization? Why?

7.10.2 Uniform Law of Large Numbers

The above example heavily relies on the fact that the function class is Boolean with finite VC dimension.

In the following example, we focus on Lipschitz function on [0, 1] as the !-net of Lipschitz function is well

behaved.

Theorem 7.13 Let X,X1, . . . , Xn be i.i.d. random variables taking values in [0,1]. F is the class of

Lipschitz functions

F ≜ {f : [0, 1] → R, $f$Lip ≤ L}.

4It is not rigorous here because Dudley’s inequality is for supt∈T Zt but I use it for supt∈T |Zt|. This technical issue could
be solved (Vershynin 2018, Exercise 8.3.25).
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Then

E sup
f∈F

$$$$$
1

n

n"

i=1

f(Xi)− Ef(X)

$$$$$ ≤
CL√
n
.

First of all, I want to introduce the following notation to simplify the analysis,

Xf ≜ 1

n

n"

i=1

f(Xi)− Ef(X).

Now the problem becomes E supf∈F |Xf |. Since we no longer have finite events when conditional on the Xn
1 ,

symmetrization is no longer necessary. The following Lemma shows that some bound of |N(F , $ · $∞, !)| is
obtainable.

Lemma 7.14 (Example 5.10 Wainwright (2019))

log (|N(F , $ · $∞, !)|) ≲ L

!
.

Equipped with this bound, we could leverage the Dudley’s inequality if we can show the $ · $ψ2 of the

increments is close related to $ · $∞.

Proof: 1. Increments. For any f, g ∈ F , we have

Xf −Xg =
1

n

n"

i=1

Zj where Zj ≜ (f − g)(Xi)− E(f − g)(X).

Because Zjs are independent,

$Xf −Xg$2ψ2
=

1

n2

+++++

n"

i=1

Zj

+++++

2

ψ2

($ · $ψ2
is a norm)

≤ C

n2

n"

i=1

$Zj$2ψ2
(Property of $ · $ψ2).

In fact, Zj is bounded, as shown below

|Zj | = |(f − g)(Xi)− E(f − g)(X)| ≤ |(f − g)(Xi)|+ |E(f − g)(X)|

≤ $f − g$∞ + E$f − g$∞ (Definition of $ · $∞)

= 2$f − g$∞.

Thus, we know

$Zj$ψ2
≤ C$f − g$∞.
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This implies

$Xf −Xg$2ψ2
≤ 1

n2
× nC

2$f − g$2∞

⇒ $Xf −Xg$ψ2
≤ C√

n
$f − g$∞.

Moreover, we clearly have EXf = 0. Now, we could use Dudley’s inequality5.

E sup
f∈F

|Xf | ≤
C4√
n

7 diam(F)

0

.
log (|N(F , $ · $∞, !)|)d!

≤ C4√
n

7 2L

0

!
L

!
d!

≤ C5L√
n
.

In the proof, we use the following bound

diam(F) = sup
f,g∈F

$f − g$∞ ≤ sup
f∈F

$f$∞ + sup
g∈F

$g$∞

= 2 sup
f∈F

$f$∞ ≤ 2L.

The last inequality is non-trivial. It uses the fact that we could force f(0) = 0 without changing Xf :

Xf =
1

n

n"

i=1

f(Xi)− Ef(X) =
1

n

n"

i=1

(f(Xi)− f(0))− E(f(X)− f(0)).

Therefore,

$f$∞ = sup
x∈[0,1]

|f(x)| = sup
x∈[0,1]

|f(x)− f(0)| (f(0) = 0)

≤ sup
x∈[0,1]

L|x| (f(x) is L-Lipschitz)

≤ L.
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8.1 Resources

• Vershynin (2018, Chapter 6).

• Concentration of Measure [Terence Tao’s Blog]

8.2 Objective

In our proof of excess risk via VC dimension, we saw that symmetrization drastically simplifies the problem.

In fact, symmetrization is a standard tool. For example, Gao (2020) uses it to prove the finite-sample guar-

antees for Wasserstein distributionally robust optimization. This note’s objective is to provide a systematic

view of symmetrization and another fantastic example that symmetrization is critical.

8.3 Symmetric Distribution

A random variable is symmetric if X and −X have the same distribution. Symmetric Bernoulli and N(0,σ2)

are symmetric. Next, let me introduce some ways to construct symmetric distributions.

Proposition 8.1 (Constructing Symmetric Distributions) Let X be a random variable and ξ be an

independent symmetric Bernoulli random variable.

1. ξX and ξ|X| are symmetric random variables, and they follow the same distribution.

2. If X is symmetric, ξX and ξ|X| have the same distribution as X.

3. Let X ′ be an independent copy of X. Then X −X
′ is symmetric.

Proof: 1. By definition, we only need to prove ξX and −ξX follow the same distribution to show ξX is

8-1
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symmetric. Let me proceed with standard way first.

P (ξX ≤ x) = P (ξX ≤ x, ξ = −1) + P (ξX ≤ x, ξ = 1)

=
1

2
P (X ≥ −x) +

1

2
P (X ≤ x)

=
1

2
P (−X ≤ x) +

1

2
P (−X ≥ −x)

= P (−X ≤ x, ξ = 1) + P (−X ≥ −x, ξ = −1)

= P (ξ(−X) ≤ x, ξ = 1) + P (ξ(−X) ≤ x, ξ = −1)

= P (ξ(−X) ≤ x).

In fact, we could prove it using independence more elegantly. Because ξ and X are independent, we know

their joint distribution (ξ, X). Since ξ is symmetric, (ξ, X) has the same distribution as (−ξ, X). Therefore,

ξX and −ξX follow the same distribution. It is worth to notice that we only use ξ is symmetric

here. Similarly, we have ξ|X| is symmetric.

Next, we use standard way to prove ξX and ξ|X| follow the same distribution. Without loss of generality,

we only focus on x ≥ 0,

P (ξ|X| ≤ x) = P (ξ|X| ≤ x, ξ = −1) + P (ξ|X| ≤ x, ξ = 1)

=
1

2
P (|X| ≥ −x) +

1

2
P (|X| ≤ x)

=
1

2
+

1

2
P (−x ≤ X ≤ x)

=
1

2
(P (X < −x) + P (X ≥ −x)) +

1

2
P (−x ≤ X ≤ x)

=
1

2
(P (X < −x) + P (−x ≤ X ≤ x)) +

1

2
P (X ≥ −x)

=
1

2
P (X ≤ x) +

1

2
P (X ≥ −x)

= P (ξX ≤ x).

2. If X is symmetric, we have P (X ≤ x) = P (X ≥ −x). Thus,

P (ξX ≤ x) =
1

2
P (X ≤ x) +

1

2
P (X ≥ −x) = P (X ≤ x).

3. By independence, we know the joint distribution of (X,X
′) and (X ′

, X) are the same. Thus, X −X
′ has

the same distribution as X ′ −X.
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8.4 Properties of Symmetrization

Next Lemma is essential for symmetrization because it build some connections between Xi and #iXi.

Lemma 8.2 (Symmetrization) Let X1, . . . XN be independent, mean zero, random vectors in a normed

space. Then

1

2
E

!!!!!

N"

i=1

#iXi

!!!!! ≤ E

!!!!!

N"

i=1

Xi

!!!!! ≤ 2E

!!!!!

N"

i=1

#iXi

!!!!! .

Proof: Upper bound. Because every norm is convex (why?), we have

!!!!!

N"

i=1

Xi

!!!!! =

!!!!!

N"

i=1

Xi − 0

!!!!! =

!!!!!

N"

i=1

Xi − EX′

N"

i=1

X
′
i

!!!!!

≤ EX′

!!!!!

N"

i=1

Xi −
N"

i=1

X
′
i

!!!!! (Jensen’s inequality)

= EX′

!!!!!

N"

i=1

(Xi −X
′
i)

!!!!! .

Take expectation with respect to EX to have

E

!!!!!

N"

i=1

Xi

!!!!! ≤ E

!!!!!

N"

i=1

(Xi −X
′
i)

!!!!!

= E

!!!!!

N"

i=1

#i(Xi −X
′
i)

!!!!! (Xi −X
′
i and #i(Xi −X

′
i) share the same distribution)

≤ E

!!!!!

N"

i=1

#iXi

!!!!!+ E

!!!!!

N"

i=1

#iX
′
i

!!!!! ($a+ b$ ≤ $a$+ $b$)

= 2E

!!!!!

N"

i=1

#iXi

!!!!! (#iXi and #X ′
i share the same distribution).

Lower Bound. All we need to prove is

E

!!!!!

N"

i=1

#iXi

!!!!! ≤ 2E

!!!!!

N"

i=1

Xi

!!!!! .

Based on the prove above, 2 might come from

E

!!!!!

N"

i=1

Xi −
N"

i=1

X
′
i

!!!!! ≤ E

!!!!!

N"

i=1

Xi

!!!!!+ E

!!!!!

N"

i=1

X
′
i

!!!!! = 2E

!!!!!

N"

i=1

Xi

!!!!! .
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Meanwhile

E

!!!!!

N"

i=1

Xi −
N"

i=1

X
′
i

!!!!! = E

!!!!!

N"

i=1

#i(Xi −X
′
i)

!!!!! (Xi −X
′
i and #i(Xi −X

′
i) share the same distribution)

= EX,!EX′

!!!!!

N"

i=1

#iXi −
N"

i=1

#iX
′
i

!!!!! (independence)

≥ EX,!

!!!!!

N"

i=1

#iXi − EX′

N"

i=1

#iX
′
i

!!!!! (Jensen’s inequality)

= EX,!

!!!!!

N"

i=1

#iXi

!!!!! .

Remark 8.3 Where do we use independence in the proof?

It is worth noticing that we only use the convexity of the norm in the proof. Thus, if Xi is a random matrix

and $ · $ is the operator norm, the result still holds. Moreover, it is easy to get the following Corollaries

using similar tricks under convexity.

Corollary 8.4 Let F : R+ → R be an increasing, convex function.

EF

#
1

2

!!!!!

N"

i=1

#iXi

!!!!!

$
≤ EF

#!!!!!

N"

i=1

Xi

!!!!!

$
≤ EF

#
2

!!!!!

N"

i=1

#iXi

!!!!!

$
.

Proof: Using the composition property of convex function, we know F ($ · $) is still convex. Following the

proof above, we could obtain the proof.

Corollary 8.5 Let X1, . . . XN be independent, mean zero random variables. Show that
%

i Xi is sub-

Gaussian if and only if
%

i #iXi is sub-Gaussian. Moreover,

c

!!!!!

N"

i=1

#iXi

!!!!!
ψ2

≤

!!!!!

N"

i=1

Xi

!!!!!
ψ2

≤ C

!!!!!

N"

i=1

#iXi

!!!!!
ψ2

.

Proof: Because f(x) = exp(λx), λ > 0 is an increasing convex function, we have

expλ

#
N"

i=1

Xi

$
= expλ

#
N"

i=1

Xi − 0

$
= expλ

#
N"

i=1

Xi − EX′

N"

i=1

X
′
i

$

≤ EX′ expλ

#
N"

i=1

Xi −
N"

i=1

X
′
i

$
(Jensen’s inequality)

= EX′ exp(λ

#
N"

i=1

(Xi −X
′
i)

$
.
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Take expectation with respect to EX to have

E expλ

#
N"

i=1

Xi

$
≤ E expλ

#
N"

i=1

(Xi −X
′
i)

$

= E expλ

#
N"

i=1

#i(Xi −X
′
i)

$
(Xi −X

′
i and #i(Xi −X

′
i) share the same distribution)

= E

&
E

#
expλ

#
N"

i=1

#iXi

$''''#
$

× E

#
expλ

#
N"

i=1

−#iX
′
i

$''''#
$(

(#iXi and #iX
′
i are independent conditional on #i)

=

&
E expλ

#
N"

i=1

#iXi

$(2

(−#iX
′
i and #iXi share same distribution)

≤ E2λ

#
N"

i=1

#iXi

$
(x2 is convex).

Using similar tricks as above, one could prove a lower bound. Combined together to have

E exp

#
1

2
λ

N"

i=1

#iXi

$
≤ E exp

#
λ

N"

i=1

Xi

$
≤ E exp

#
2λ

N"

i=1

#iXi

$
.

By the equivalence of sub-Gaussian properties, the inequality above is all we need.

Remark 8.6 The symmetrization result gives some bounds on the expectation. If we also have the concen-

tration around the expectation, we could obtain high probability (lower and upper) bounds.

8.5 Application: E!A!op without Sub-Gaussian Assumption

The target is to prove the following theorem.

Theorem 8.7 [Operator Norm of Random Matrix with non-i.i.d. Entries] Let A be an n × n symmetric

random matrix whose entries on and above the diagonal are independent, mean zero random variables. Then

E$A$op ≤ C

)
log n× Emax

i
$ai$2,

where ai denote the rows of A.

Let us first think about how good is the bound. Since

$A$op = max
x∈Sn−1

$Ax$2 = max
x∈Sn−1

*"

i

(aTi x)
2 ≥ max

x∈Sn−1
|aTi x| = $ai$2 ∀i,
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we know that

E$A$op ≥ Emax
i

$ai$2.

Thus, the bound is sharp up to the logarithmic factor.

8.5.1 Analysis

Lemma 8.2 tells us that we could approach this theorem using symmetrization. To accomplish this goal, we

need to figure out two parts.

1. Is it possible to bound E$
%

i #Ai$op, where Ai are deterministic matrices?

2. How to decompose A into
%

i Ai to leverage the bound from part 1?

8.5.2 Bound for E!
!

i !Ai!op

This bound comes from the following two theorems that are for symmetric Bernoulli random variables. (You

are not required to know how to prove them at all. They are not trivial, and the proofs involve the trace

inequalities.)

Theorem 8.8 (Matrix Hoeffding’s Inequality) Let #1, . . . , #N be independent symmetric Bernoulli ran-

dom variables and let A1, . . . AN be symmetric n× n matrices (deterministic). For any t ≥ 0, we have

P

+

,
!!!!!

N"

i=1

#iAi

!!!!!
op

≥ t

-

. ≤ 2n exp(−t
2
/2σ2),

where σ2 = $
%N

i=1 A
2
i $op

Theorem 8.9 (Matrix Khintchine’s inequality) Let #1, . . . , #N be independent symmetric Bernoulli ran-

dom variables and let A1, . . . AN be symmetric n× n (n ≥ 2) matrices (deterministic). Then we have

E

!!!!!

N"

i=1

#iAi

!!!!!
op

≤ C

)
log n

!!!!!

N"

i=1

A
2
i

!!!!!

1/2

op

Denote X =
!!!
%N

i=1 #iAi

!!!
op

and σ2 = $
%N

i=1 A
2
i $op. Then the inequality becomes

EX ≤ C(
)
log n)σ.

Coupled with the tail bound from Theorem 8.8, this becomes a standard problem: using tail bound to bound

expectation. Since this I never show it rigorously before, I present a detailed proof here.
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Proof: From Theorem 8.8, we know

P (X ≥ tσ) ≤ 2n exp(−t
2
/2).

To get rid of n in the probability bound, we utilize the following numeric inequality

x ≤ a+ (x− a)+.

Plug in x = X, a =
)
2(log n)σ and then take expectation to have

EX ≤
)
2(log n)σ + E(X −

)
2(log n)σ)+

=
)
2(log n)σ +

√
2σE(X/

√
2σ −

)
log n)+.

Meanwhile, the second term could be calculated as following

/ ∞

0

P

00
X/

√
2σ −

)
log n

1
≥ t

1
dt =

/ ∞

0

P

0
X ≥

√
2σ(t+

)
log n)

1
dt

≤
/ ∞

0

2n exp
0
−(t+

)
log n)2

1
dt

=

/ ∞

0

2n exp
0
−(t2 + 2(

)
log n)t+ log n)

1
dt

=

/ ∞

0

2 exp
0
−(t2 + 2(

)
log n)t)

1
dt

≤ C. (Do the calculation!)

Then we have

EX ≤
)
2(log n)σ + C

√
2σ ≤ C

′(
)
log n)σ

8.5.3 Decompose A into
!

i Ai

Since we want to arrive at ai somehow, it is tempting to decompose A into the summation of n separately

rows. For example,

A1 =

#
a
T
1

0

$

Unfortunately, this matrix is not symmetric, which means that we could not utilize Theorem 8.9. Additional

to Ai being symmetric, we also hope that $
%

i A
2
i $op is easy to calculate. In this case, we might want to

have
%

i A
2
i diagonal, which implies its operator norm is the largest absolute value on the diagonal. To be

more restrictive, we might want to have each term, namely A
2
i diagonal.
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Let us explore the possibility to have a symmetric matrix B such that B2 is diagonal.

Bij =
"

k

bikbkj = 0 (When i ∕= j).

The simplest case is that each term bikbkj = 0 which implies that at least one of them is 0. Thus, if B

only has element (i0, j0) and (j0, i0) nonzero and identical (to ensure B is symmetric matrix), we have B
2

diagonal. Let me give you an 3× 3 matrix as an example.

B =

+

2,
0 0 1

0 0 0

1 0 0

-

3. ⇒ B
2 =

+

2,
1 0 0

0 0 0

0 0 1.

-

3.

Thus, we could decompose A into
%

i≤j Aij , where

Aij = aij(eie
T
j + eje

T
i ).

With some careful calculation, one could obtain

"

i≤j

A
2
ij =

n"

i=1

$ai$22eieTi .

This implies that

!!!!!!

"

i≤j

A
2
ij

!!!!!!
op

= max
i

$ai$22.

Now, we have Theorem 8.7 proved.

8.6 Concentration for Lipschitz Function of X ∼ N(0, Ip)

The proof of this concentration does not utilize symmetrization but tries to create an independent copy of

X, denoted as Y . Then it utilizes a smooth transition from F (X) to F (Y ) to obtain the result. Since the

proof is so elegant, the transition idea is handy, and the result is significant, I present it here. Vershynin

(2018, Chapter 5) also discuss the concentration of Lipschitz function of U(Sp−1) random vectors. They use

isoperimetric inequalities, which are quite hard to understand for me, making me quite frustrated. I hope

the proof below could ease your mind a little.

Theorem 8.10 Let X ∼ N(0, Ip) and F : Rp → R be 1-Lipschitz function (i.e. |F (x) − F (y)| ≤ $x − y$2
for all x, y ∈ Rp ). Then for any λ ≥ 0, one has

P (|F (X)− EF (X)| ≥ λ) ≤ 2 exp(−Cλ2)
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for some absolute constants C.

Before we move to the proofs, let us simplify the problem a little without losing generality. First of all, we

could assume EF (X) = 0 because otherwise we could introduce F̃ (X) = F (X)−EF (X). Secondly, we could

only require F to be differentiable. Otherwise, we could use a sequence of such functions to approximate F .

For more details, you could refer to here. Then we know $∇F (x)$2 ≤ 1 because F (x) is 1-Lipschitz.

Proof: Based on our previous experience of proving concentration, we only need to prove

E exp(λF (X)) ≤ exp(Cλ2), ∀λ ∈ R.

In fact, we only need to prove λ ≥ 0 and λ < 0 follows an identical procedure.

Let Y be an independent copy of X. By Jensen inequality, we have

E exp(λ(−F (Y ))) ≥ exp(λE(−F (Y ))) = exp(0) = 1.

Thus, we have

E exp(λ(F (X)) ≤ E exp(λ(F (X)))E exp(λ(−F (Y )))

= E exp(λ(F (X)− F (Y ))) (X and Y are independent).

If we could write F (X)− F (Y ) as
4
f(Xt)dt, then we could use Jensen’s inequality again as following,

E exp(λ(F (X)− F (Y ))) = E exp(λ

/
f(Xt)dt) ≤

/
E exp(λf(Xt))dt,

which could give us an potential useful upper bound. To use Jensen’s inequality, we need to make
4
dt into a probability, namely

4
dt = 1.It is tempting to introduce Xt = (1 − t)X + tY , then X0 = Y

and X1 = X,

F (X)− F (Y ) =

/ 1

0

dF (Xt)

dt
dt =

/ 1

0

〈∇F (Xt), Y −X〉dt.

Unfortunately, it is not easy to calculate

E exp(λ〈∇F (Xt), Y −X〉),

because Xt is closely related to Y −X. Noticing that Y −X = dXt/dt, we are trying to find a representation

such that Xt and dXt/dt are independent. Luckily, this is possible in the following way:

Xθ = sin(θ)X + cos(θ)Y

⇒ X0 = Y & Xπ/2 = X

⇒ dXθ

dθ
= cos(θ)X − sin(θ)Y. (For simplicity, I denote it as X ′

θ)
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Because 〈(sin(θ), cos(θ)), (cos(θ),− sin(θ))〉 = 0, we have Xθ and X
′
θ are independent. (Here we utilize the

fact that X and Y are independent N(0, Ip)). Moreover, since sin2(θ) + cos2(θ) = 1, we have both Xθ and

X
′
θ follow N(0, Ip). Now, we know how to bound

E exp(λ〈∇F (Xθ), X
′
θ〉),

because conditional on Xθ, 〈∇F (Xθ), X
′
θ〉 follows N(0, $∇F (Xθ)$22). Since we know $∇F (x)$2 ≤ 1,

E exp(λ〈∇F (Xθ), X
′
θ〉) = E exp(λ2$∇F (Xθ)$22/2) ≤ exp(λ2

/2).

Combining things together, we have

E exp(λ(F (X)− F (Y ))) = E exp(λ

/ π/2

0

〈∇F (Xθ), X
′
θ〉dt)

= E exp(λ
2

π

/ π/2

0

π

2
〈∇F (Xθ), X

′
θ〉dt) (Make sure that

4
dt = 1 for Jensen’s inequality)

≤ 2

π

/ π/2

0

E exp(λ
2

π
〈∇F (Xθ), X

′
θ〉dt) (Jensen’s Inequality)

≤ 2

π

/ π/2

0

exp(λ2π2
/8)dt (Above inequality with λπ/2)

= exp(λ2π2
/8)

Remark 8.11 The above proof does not generate the best constant. To obtain it, one shall use log-Sobolev

inequalities (entropy techniques). I will cover a tiny bit in the following section and please see van Handel

(2014, Chapter 3) or Wainwright (2019, Chapter 3) for more details.

8.7 Entropy Method (log-Soblev) [Optional]

For any convex function φ : R → R, we could define the following quantity of a random variance X ∼ P

Hφ(X) ≜ Eφ(X)− φ(EX).

Based on Jensen’s inequality, we have Hφ(X) ≥ 0. If we choose φ(u) = u
2, then we have

Hφ(X) = EX
2 − (EX)2 = V ar(X).
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Another choice is φ(u) = − log u, then

Hφ(exp(λX)) = −λEX + logE exp(λX) = log

5
E exp(λ(X − EX))

6
.

An equivalent property of sub-Gaussian is about the quantity within the log function:

E exp(λ(X − EX)) ≤ exp(Cλ2).

Moreover, Hoeffding’s lemma is also about this quantity.

The Entropy method uses φ(u) = u log u, this leads to

Hφ(exp(λX)) = E(λX exp(λX))− E exp(λX) logE exp(λX). (8.1)

My intuition is that one should not gain much using u log u instead of − log u since the first term of Eq. 8.1

is still very hard to handle. However, a simple trick on the second term makes a huge difference.1 I will

illustrate this point using the following Lemma

Lemma 8.12 (Entropy Bound for Univariate Functions) Let X,Y ∼ P be a pair of i.i.d. variates.

Then for any function g : R → R, we have

H(exp(λg(X))) ≤ λ2
E

5
(g(X)− g(Y ))2 exp(λg(X))1g(X)≥g(Y )

6
∀λ > 0.

If one uses this Lemma coupled with the Lemma about Tensorization of Entropy (roughly speaking, the

entropy of exp(λf(X1, . . . , Xn)) is bounded by a summation of n univariate entropies.), he/she could obtain

some concentration result of L-Lipschitz functions of (X1, . . . , Xn).

The following proof is straightforward because we know that creating an independent copy of X is necessary.

In some sense, this shows the power of introducing such an independent copy.

1This is also a surprise to me. I used to think the second term does not matter much.
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Proof:

H(exp(λg(X))) = E

5
λg(X) exp(λg(X))

6
− E exp(λg(X)) logE exp(λg(X)) (Definiton of H(·))

= EX

5
λg(X) exp(λg(X))

6
− EX exp(λg(X)) logEY exp(λg(Y )) (Y ∼ X)

≤ EX

5
λg(X) exp(λg(X))

6
− EX exp(λg(X))EY λg(Y ) (− log(x) is convex )

= EX

5
λg(X) exp(λg(X))

6
− EX,Y

5
λg(Y ) exp(λg(X))

6
(X,Y are independent)

= EX,Y

5
λ(g(X)− g(Y )) exp(λg(X))

6

=
1

2
EX,Y

5
λ(g(X)− g(Y ))[exp(λg(X))− exp(λg(Y ))]

6
(Switch X and Y )

= EX,Y

5
λ(g(X)− g(Y ))

7
exp(λg(X))− exp(λg(Y ))

8
1g(X)≥g(Y )

6
(Symmetry, think!)

Noticing that exp(x) is convex, we have

exp(s)− exp(t)

s− t
≤ exp(s) s ≥ t.

(Convexity tells us that the slope of a left-hand-side secant is smaller than the tangent.) Multiply both sides

by (s− t)2 to obtain

(s− t)(exp(s)− exp(t)) ≤ exp(s)(s− t)2.

Apply this inequality to g(X) and g(Y ) to obtain the result.

8.8 Related Form: Gaussian Multiplier [Optional]

The Gaussian multiplier is to multiply Xi by gi where gi ∼ N(0, 1). Gaussian multiplier coupled with

bootstrapping has become a popular hypothesis test tool, especially since Chernozhukov et al. (2017). I will

use the mean-shifting hypothesis test to demonstrate the idea.

Here is a mean-shifting vector (∈ Rp
) model with a shift of size δn happening at period m,

Xi = µ+ δn1i>m + ξi, i = 1, . . . n.

Here, ξi is i.i.d. mean-zero noise random vectors with unknown covariance structure Σ. If data follow this

model, we are curious about whether there is a change (is δn not equal to 0). If there is one, where does it

happen (what is m?). Statistically speaking, we want to first have a way to test

H0 : δn = 0 v.s. Ha : δn ∕= 0 and there exists an m < n.
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If we reject H0, we want to have a good estimation of m. This hypothesis test tries to answer the stationarity

question with a simple mean-shifting model. Since stationarity is assumed2 in lots of applications, answering

this question is of great value.

For simplicity, let’s assume p = 1 to get some insights. If ξi = 0, it will be trivial because we see a jump in

data. Since ξi is i.i.d. mean-zero, we might hope LLN or concentration kicks in when we are thinking about

1

s

s"

i=1

Xi and
1

n− s

n"

i=s+1

Xi.

If there is a big difference between the two averages, we are confident that there is a shift and the shift is likely

to happen at the largest difference point. The latter intuition needs some technical adjustment because the

variance of the mean difference at different s could be drastically different. The following quantity handles

this issue,

Zn(s) =

9
s(n− s)

n

#
1

s

s"

i=1

Xi −
1

n− s

n"

i=s+1

Xi

$
.

When p fixed and n → ∞, CLT will kick in for H0 and one could do hypothesis test (which uses Σ−1). Zn(s)

is called CUSUM (cumulative sum) statistics.

When p ≫ n, things become much more interesting. Even if we assume ξi is multivariate normal with an

unknown covariance matrix, Σ, there is no way we could estimate Σ−1 (without strong structure assumptions

like sparse or low rank) well enough to establish a good hypothesis test. One possibility is to bootstrap

data from H0 and build a confidence interval to get around the issue of estimating Σ. However, how

could we bootstrap data from H0? Here the Gaussian multiplier comes into play. giXi has constant mean

E(giXi|Xi) = E(gi)Xi = 0. That is to say, given Xi, by multiplying different gi ∼ N(0, 1), we approximately

bootstrap data from H0 and could build a confidence interval under H0. The approximation comes from the

fact that giXi given Xi does not share the covariance structure as Xi in H0. Luckily, Yu and Chen (2020)

show that this approximation error is mild.

I am incredibly passionate about Yu and Chen (2020), and the first author is a close friend of mine. If you

are interested in research utilizing this method, please let me know.
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Lecture 9: Lower Bound of E supt∈T Xt

Lecturer: Long Zhao, longzhao@nus.edu.sg

Because I treat statistical learning as an application of general techniques, you might find it unsatisfactory.

You might want to take a look at Raklin (2020) which provides a systematic view of statistical learning. Here

are some wonderful talks by him (Robustness, Stochastics, Uncertainty). Here is the MIT course Statistical

Learning Theory and Application.

9.1 Resources

• van Handel (2014, Chapter 6.1). Easiest to read among three. The idea is super clear.

• Vershynin (2018, Chapter 7). Detailed approach with some examples.

• Wainwright (2019, Chapter 5.4). Too brief for a beginner. Try to read it at last.

9.2 Roadmap

In the last lecture, we focus on providing an upper bound for E supt∈T Xt using chaining when Xt has

sub-Gaussian increments. In this lecture, we try to get a lower bound. It is important because together with

the upper bound, we get a complete understanding of the quantity. More specifically,

1. Some might argue that the upper bound is loose. Therefore, the theoretical analysis is not insightful.

A large lower bound renders this argument infeasible.

2. Sometimes (mainly in CS and statistics), it is important to show how good is the upper bound. If we

have a lower bound comparable to the upper bound (up to a constant or log), we could establish that

the upper bound is extremely good, indicating an excellent understanding of the underlying quantity.

Let P (T, d, !) be a maximal !-separated set of T with distance d. For simplicity, I will use P (!) instead

because T and d will be fixed. Naturally, we have the following lower bound

sup
t∈T

Xt ≥ sup
t∈P (!)

Xt.

There are two great things about the RHS.

1. It is a maximal of finite random variables.

9-1
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2. Those random variables might not be highly correlated, since

#Xt −Xs#ψ2
≤ Kd(t, s), (sub-Gaussian increments) (9.1)

and for any t, s ∈ P (!), we have d(t, s) ≥ !. It is worth noticing that this might not hold for !-net.

There are also two bad news.

1. Even there is only finite events, we have no tools to establish a lower bound. The union bound could

only provide an upper bound.

2. Eq. 9.1 is an inequality which means that there is no guarantee thatXt andXs are not highly correlated

given d(t, s) ≥ !.

Thus, it should be extremely difficult to establish a lower bound for processes with sub-Gaussian increments.

However, it might be possible for Gaussian process (I will formally define it later) since we have

Xt −Xs ∼ N(0, E(Xt −Xs)
2),

which resolves1 the second concern if we use d(t, s) =
!
E(Xt −Xs)2. To handle the first issue, we need

to recall that long long time ago, when we talk about how tight the union bound is, we actually develop a

lower bound for independent events.

P (∪n
i=1Ai) ≥ (1− e−1)

"
1 ∧

n#

i=1

P (Ai)

$
, (See A Note on Union Bound).

Thus, if we could lower bound supt∈P (!) Xt by the supreme of finite independent random variables, then

it is possible to achieve a lower bound for supt∈T Xt. It turns out that this is possible for Gaussian processes

and the tools are called Gaussian comparison inequalities. Roughly speaking, these inequalities guarantees

that

E sup
t∈P (!)

Xt ≥ E sup
i=1...|P (!)|

Zi, (9.2)

where Zi are i.i.d. and follow N(0, !2/2). The following Lemma, establish an explicit lower bound of the

RHS.

Lemma 9.1 (Maxima of i.i.d. N(0,σ2)) Let X1, . . . , Xn be i.i.d. N(0,σ2) random variables, then

E

%
max

i=1...,n
Xi

&
≥ cσ

!
log n.

The proof will leverage the pdf of Normal distribution, one could refer to van Handel (2014, Lemma 6.4)

1This is a subtle point. We use ! · !ψ2
to describe the tail behavior if we do not know the distribution. If we know it is

normal distribution, there is no need to use ! · !ψ2
.
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for a simple proof with bad constant c or van Handel (2014, Problem 5.1) for a careful proof with a good

constant c.

If we apply Lemma 9.1 to Eq. 9.2, we could have

E sup
i=1...|P (!)|

Zi ≥ c!
!
log |P (!)| ≥ c!

!
log |N(!)|.

Since the above inequality holds for any !, we have

E sup
t∈T

Xt ≥ cmax
!>0

!
!
log |N(!)|.

This lower bound is called Sudakov’s inequality. Combining the result from chaining, we know that

cmax
!>0

!
!
log |N(!)| ≤ E sup

t∈T
Xt ≤ C

#

k

'
log

(((N
) !

2k

*(((
!

2k
.

We could view the lower bound as the largest single term in the upper bound summation. If the summation

behaves like a geometric series2, then the upper and lower bound are of the same scale. The following

visualization might be helpful.

9.3 Gaussian Process

Definition 9.2 (Gaussian Process) The random process {Xt}t∈T is called a (centered) Gaussian process

if the random variables {Xt1 , · · · , Xtn} are centered and jointly Gaussian for all n ≥ 1, t1, · · · , tn ∈ T .

Based on the above definition, we have (Xt, Xs) follows a joint normal distribution implying that Xt −Xs

is also a normal distribution. Thus, we have

Xt −Xs ∼ N(0, E(Xt −Xs)
2),

which leads to a natural distance measure on T .

Definition 9.3 (Natural Distance) A Gaussian process {Xt}t∈T is sub-Gaussian on (T, d) for the natural

distance d(t, s) =
!
E(Xt −Xs)2.

This means that we could apply Dudley’s inequality to the Gaussian process Xt regarding the natural

distance.

2For example,
!

k≥1 2
−k = 1 while largest term is 2−1.
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Figure 9.1: Sudakov’s inequality v.s. Dudley’s inequality.

9.4 Comparison Inequalities

The goal of comparison inequalities is to compare the sup of two Gaussian processes.

9.4.1 Simple Examples

One trivial comparison is that

Xt = γYt (γ ≥ 1) ⇒ E sup
t∈T

Xt ≥ E sup
t∈T

Yt.

The above inequality still holds for an independent copy of {Yt}t∈T denoted as Ỹt. The intuition is that if a

Gaussian process is more volatile (higher variance), then the larger its sup will be.

The following example is less trivial. Let all Xis are independent and all Yis are independent. Moreover,

Xi ∼ N(0,σ2
Xi

) and Yi ∼ N(0,σ2
Yi
) where σ2

Xi
≥ σ2

Yi
. That is to say, Xi has a higher variance than Yi. Then
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it is reasonable to believe that

E max
i=1,...,n

Xi ≥ E max
i=1,...,n

Yi.

It is possible to prove by

P ( max
i=1,...,n

Xi ≤ τ) ≥ P ( max
i=1,...,n

Yi ≤ τ) ∀τ > 0.

The intuition is still that Xis are more likely to grab larger values than Yis since they are more volatile.

9.4.2 General Case

The following theorem quantifies what means more volatile for Gaussian processes and confirms our intu-

ition is indeed correct.

Theorem 9.4 (Slepian-Fernique) Let X ∼ N(0,ΣX) and Y ∼ N(0,ΣY ) be n-dimensional Gaussian

vectors. Suppose that we have

E(Xi −Xj)
2 ≥ E(Yi − Yj)

2 ∀i, j = 1, . . . , n.

Then

E max
i=1,...,n

Xi ≥ E max
i=1,...,n

Yi.

The requirement is that any pair difference has a higher variance (more volatile). Before we prove the

theorem, we would like to show two interesting applications of it.

9.5 Sudakov’s Inequality

Although I have covered Sudakov’s inequality in Section 9.2, it is beneficial to restate it formally as follows.

Theorem 9.5 (Sudakov) For a Gausssian process {Xt}t∈T , we have

E sup
t∈T

Xt ≥ c sup
!>0

!
!
log |N(!)|

Proof: As analyzed in Section 9.2, we only need to show that

E sup
t∈P (!)

Xt ≥ E sup
i=1,...,N

Yi, (N ≜ |P (!)|) (9.3)
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where Yis are i.i.d. normal distribution. To see the above inequality is a form of comparison inequality, we

label the points in P (!) as t1, . . . , tN , then

sup
t∈P (!)

Xt = sup
i=1,...,N

Xti .

To use Theorem 9.4, we need to calculate the pairwise variance

E(Xti −Xtj )
2 ≥ !2 (Definition of P (!))

= !2/2 + !2/2 = EY 2
i + EY 2

j (Yis are i.i.d.)

= E(Yi − Yj)
2.

Thus, if Yi ∼ N(0, !2/2), we have Eq. 9.3 proved. Then we only need to use Lemma 9.1 to obtain the

Sudakov’s inequality.

9.6 Sharp Bounds on Gaussian Matrices [Optional]

In lecture 5, we proved a high-probability bound for n × p random matrices with independent, isotropic,

sub-Gaussian rows. The bound we obtain there is

√
n+ C

√
p.

Next, we want to use Theorem 9.4 to show that C = 1 for Gaussian random matrices.

Theorem 9.6 (Operator Norms of Gaussian Random Matrices) Let A be an n × p matrix with in-

dependent N(0, 1) entries. Then

E#A#op ≤
√
n+

√
p.

Remark 9.7 Since #A#op ≤ #A#F =
+n

i=1

+p
j=1 a

2
ij (largest singular value ≤ summation of all singular

values), we know # · #op (as a function of aij) is 1-Lipschitz. Since we already proved the concentration of

Lipschitz functions of Gaussian random variables, we could establish tail bound for #A#op as following

P (#A#op ≥
√
m+

√
n+ t) ≤ 2 exp(−ct2).

I will only highlight the core steps of the proof here. For a complete treatment, please see Vershynin (2018,

Theorem 7.3.1.).

1. First of all, we need to connect #A#op to the supreme of a Gaussian process. This is promising from the

following matrix equality.

#A#op = max
u∈Sp−1,v∈Sn−1

〈Au, v〉.
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It is worth to notice that, since aij are independent N(0, 1), we have

〈Au, v〉 ∼ N(0, 1) (#u#2 = #v#2 = 1).

Thus, if we define Xuv ≜ 〈Au, v〉, we have

#A#op = sup
uv∈T

Xuv,

where T = Sp−1 × Sn−1, and Xuv is a Gaussian process (linear combinations of N(0, Inp) is still joint

Gaussian).

2. It is tempting to use Theorem 9.4 to upper bound sup(u,v)∈T Xuv. However, the sup here is about

uncountable many random variables while Theorem 9.4 is about finite ones. How to handle this issue?

Recall that in chaining, we also face this problem. The idea is to use limit to move from finite to countable

many and then use separable space to move to uncountable many. Luckily, these procedures still go through.

Unluckily (for you), I will not present rigorous proof here. Please figure it yourself.

3. To use Theorem 9.4, we need to bound increments of Xuv. With careful analysis and bounding, we could

prove

E(Xuv −Xwz)
2 ≤ #u− w#22 + #v − z#22 (Non-trivial).



Lecture 9: Lower Bound of E supt∈T Xt 9-8

Proof: By definition, we have

Xuv = 〈Au, v〉 =
#

ij

Aijujvi.

Thus,

E(Xuv −Xwz)
2 = E(

#

ij

Aijujvi − wjzi)
2

=
#

ij

(ujvi − wjzi)
2 (Aij independent and EAij = 0, EA2

ij = 1)

=
#

ij

u2
jv

2
i − 2

#

ij

ujviwjzi +
#

ij

w2
j z

2
i

=

,

-
#

j

u2
j

.

/
"
#

i

v2i

$
− 2

,

-
#

j

ujwj

.

/
"
#

i

vizi

$
+

,

-
#

j

w2
j

.

/
"
#

i

z2i

$

= 2− 2

,

-
#

j

ujwj

.

/
"
#

i

vizi

$
(#u#2 = #v#2 = #w#2 = #z#2 = 1).

Denote

a ≜
#

j

ujwj b ≜
#

i

vizi ⇒ E(Xuv −Xwz)
2 = 2− 2ab

Then by Cauchy-Schwartz inequality we have

|a| ≤ #u#2#w#2 = 1 |b| ≤ #v#2#z#2 = 1.

This implies that

(1− a)(1− b) ≥ 0 ⇒ 1− a− b+ ab ≥ 0

⇒ 4− 2a− 2b ≥ 2− 2ab (Multiply 2 to both sides and then rearrange)

⇒ #u#22 − 2uTw + #w#2 + #v#22 − 2vT z + #z#22 ≥ E(Xuv −Xwz)
2

(#u#2 = #v#2 = #w#2 = #z#2 = 1)

⇒ #u− v#22 + #v − z#22 ≥ E(Xuv −Xwz)
2.
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4. Construct Gaussian process Yuv such that

E(Yuv − Ywz)
2 = #u− w#22 + #v − z#22.

This is possible by setting Yuv as following

Yuv ≜ 〈g, u〉+ 〈h, v〉,

where g ∼ N(0, Ip) and h ∼ N(0, In).

5. Use Theorem 9.4 to obtain the upper bound.

E#A#op = E sup
(u,v)∈T

Xuv ≤ E sup
(u,v)∈T

Yuv

= E sup
u∈Sp−1

〈g, u〉+ E sup
v∈Sn−1

〈h, v〉

= E#g#2 + E#h#2

≤
0
E#g#22 +

0
E#h#22 (Jensen’s inequality)

=
√
p+

√
n.

9.7 Proof of Slepian-Fernique Theorem

The core idea is similar to our proof of concentration of Lipschitz function of Gaussian variables: interpolate

from X to Y by introducing

Z(t) =
√
tX +

√
1− tY.

Then Z(0) = X and Z(1) = Y . In this way, we translate a ‘global’ inequality (Theorem 9.4) into a local

behavior

dEmaxi=1,...,n Zi(t)

dt
≥ 0,

which is potentially easier to prove leveraging the properties of normal distribution and calculus.

Intuitively speaking, if we want to show that position A is higher than position B, one way to do it is to

prove something stronger: there exists a path from B to A such that the path is always going up. In this

way, a global behavior (A is higher than B) becomes a local behavior (path is always up).

Remark 9.8 You might wonder why we use
√
tX instead of tX or t1/3X. The reason is that

dZ(t)

dt

((((
Coefficient of X

× dZ(t)

dX
=

1

2
√
t
×
√
t =

1

2
.
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The RHS has nothing to do with t, which simplifies our proof. Recall our choice of cos(θ)X +sin(θ)Y in the

proof of concentration of Lipschitz function of Gaussian variables. Basically, we want to choose a specific

interpolation that is easy to use.

We start with the simplest univariate normal distribution.

Lemma 9.9 [Univariate Gaussian Integration by Parts]. Let X ∼ N(0, 1). Then for any differentiable

function f : R → R we have

Ef ′(X) = EXf(X).

Proof: Since we could extend the result from f with bounded support to arbitrary f using standard approx-

imation argument3, we only need to deal with f with bounded support.

Denote the density of N(0, 1) as

p(x) =
1√
2π

exp

1
−x2

2

2
.

Then we could express Ef ′(X) as

Ef ′(X) =

3

R
f ′(x)p(x)dx = −

3

R
f(x)p′(x)dx (Integral by parts + f bounded support)

=

3

R
xf(x)p(x)dx (p′(x) = −xp(x))

= EXf(X).

Lemma 9.10 (Multivariate Gaussian Integration by Parts) Let X ∼ N(0,Σ). Then for any differ-

entiable function f : Rn → R we have

EXf(X) = ΣE∇f(X). (9.4)

Proof: Noticing the equality above is a vector equality: it holds for each coordinate. That is to say, we want

to prove

EXif(X) = (ΣE∇f(X))i. (9.5)

Noticing that other coordinates (Xj , j ∕= i) are not independent from Xi, the LHS is still a multivariate

integral. To leverage the result of univariate normal distribution, we have to introduce independence. This

3Terry Tao’s blog 254A, Notes 2: The central limit theorem (1.Reductions) is an example of this argument.
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leads to utilizing Z ∼ N(0, In) which implies Σ1/2Z ∼ X ∼ N(0,Σ). Moreover, define g(Z) ≜ f(Σ1/2Z),

then we only need to prove

EZig(Z) = (Σ1/2E∇f(Σ1/2Z))i (Multiplying Σ−1/2 to Eq. 9.4).

For the LHS, we could conditional on Zj , j ∕= i and utilize Lemma 9.9 to obtain

EZig(Z) = E
∂g(Z)

∂Zi
= E

∂f(Σ1/2Z)

∂Zi
(Definition of g)

= (Σ1/2E∇f(Σ1/2Z))i (Chain Rule)

Lemma 9.11 (Gaussian Interpolation) Consider two independent Gaussian random vectors X ∼ N(0,ΣX)

and Y ∼ N(0,ΣY ). Define the interpolation Gaussian vector

Z(t) =
√
tX +

√
1− tY, t ∈ [0, 1].

Then for any twice-differentiable function f : Rn → R, we have

dEf(Z(t))

dt
=

1

2

n#

i,j=1

(ΣX
ij − ΣY

ij)E

%
∂2f

∂xi∂xj
(Z(t))

&
.

Proof: Using the chain rule, we have

dEf(Z(t))

dt
=

n#

i=1

E
∂f

∂xi
(Z(t))

dZi

dt

=
1

2

n#

i=1

E
∂f

∂xi
(Z(t))

1
Xi√
t
− Yi√

1− t

2
.

To utilize Lemma 9.10, we introduce

gi(X) =
∂f

∂xi
(
√
tX +

√
1− tY ),

which is a function of X conditional on Y . Since X and Y are independent, X ∼ N(0,ΣX) conditional on
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Y . Now, we have

E
∂f

∂xi
(Z(t))Xi = EXigi(X) = (ΣXE∇gi(X))i (Eq. 9.5)

=

n#

j=1

ΣX
ijE

∂gi(X)

∂xj
(Definition of matrix multiplication)

=

n#

j=1

ΣX
ijE

∂2f(Z(t))

∂xi∂xj

∂Z(t)

∂xj
(Chain rule)

=

n#

j=1

ΣX
ijE

∂2f(Z(t))

∂xi∂xj

√
t

This implies that

n#

i=1

E
∂f

∂xi
(Z(t))

Xi√
t
=

n#

i=1,j=1

ΣX
ijE

∂2f(Z(t))

∂xi∂xj
.

Do similar things to the term involving Y to have this Lemma proved.

All we need to do is to approximate maxi=1,...,n Xi using twice differentiable functions. The following soft-

max function is enticing

max
i=1,...,n

Xi ≤ fλ(X) ≜ 1

λ
log

n#

i=1

exp(λXi) ≤ max
i=1,...n

Xi +
log n

λ
.

Indeed, using Lemma 9.11, we could show that

dEfλ(Z(t))

dt
=

λ

4

#

i ∕=j

4
E(Xi −Xj)

2 − E(Yi − Yj)
2
5
Epi(Z(t))pj(Z(t)),

where

pi(x) =
∂fλ(x)

∂xi
> 0.

Since the conditions of Theorem 9.4 are

E(Xi −Xj)
2 ≥ E(Yi − Yj)

2 ∀i, j,

we know that dEfλ(Z(t))
dt ≥ 0. This implies

Efλ(X) ≥ Efλ(Y ).

Taking λ → ∞ and using dominated convergence theorem to change the order of limit and expectation to
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have

E max
i=1,...n

Xi ≥ E max
i=1,...n

Yi.
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Lecture 10: Compressed Sensing

Lecturer: Long Zhao

I skipped lots of proofs in this lecture note. They are not required for the test. I just want to

show how all the things we have learned could be enhanced and then applied to a super complex problem.

10.1 Resources

• Vershynin (2018, Chapter 8-10). You are recommended to read it after this lecture. I will try my best

to ‘chain’ the materials together: there are just too many things in these three chapters.

• Wainwright (2019, Chapter 7). It handles the noisy case very well. Here is his talk on this topic which

might be more accessible.

• Compressed Sensing lecture from MIT 6.854 provides an alternative proof without heavy machinery

like generic chaining.

10.2 Motivation

Compressed sensing could speed MRI1 scan drastically (10 times faster). In this talk as well as this article,

Prof. Donoho used compressed sensing to persuade the U.S. senate why mathematics is essential.

“The cost-benefit ratio of mathematical research has been off-scale. The federal government spends about

$250 million per year on mathematics research. Yet in the U.S., there are 40 million MRI scans per year,

incurring tens of billions in Medicaid, Medicare, and other federal costs. The financial benefits of the roughly

10-to-1 productivity improvements now being seen in MRI could soon far exceed the annual NSF budget for

mathematics research.”

10.3 Problem

We want to recover x! ∈ Rp from some measurements that are linear combinations of x!, namely aTi x
!. If

there is no structure, then we need to have n = p linearly independent ais to obtain x!. Meanwhile, if we

know x! is sparse2, namely "x!"0 = s ≪ p, is it possible to recover x! using much fewer measurements?

1
Here is an excellent video about how MRI works. Here is the reasoning why images should be sparse after some transfor-

mation.
2
This talk nicely introduces the wavelet transformation and shows that images after wavelet transformation tend to be quite

sparse.

10-1
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For simplicity, we write all constraints aTi x = yi, i = 1, . . . , n in a matrix form,

Ax = y.

If n < p, there are infinite solutions. Intuitively, we want to choose one with the lowest "x"0. However, this

is not computational feasible (NP- hard). One might consider a convex relaxation of " · "0 leading to the

following convex optimization

min
x

"x"1

subject to Ax = y.
(10.1)

Denote the solution to the above optimization problem as x̂. the following Lemma shows that certain

geometric property could lead to x̂ = x!.

Lemma 10.1 (Restricted Null-space Property) Denote the null-space (or kernel) of A as ker(A) and

define

C(S) = {z
!! "zSc"1 ≤ "zS"1},

where S is a s-element subset of {1, . . . , p} representing the support of x!
. Moreover, zS is a vector consisting

of the coordinates belong to set S. If ker(A) ∩ C(S) = {0}, we have x̂ = x!
.

Remark 10.2 C(S) is a cone. To see this, take p = 2 and S = {2}. Then

C(S) = {z
!! |z1| ≤ |z2|}.

Moreover, if z ∈ ker(A) ∩ C(S) and z ∕= 0, we have z/"z"2 ∈ ker(A) ∩ C(S). Thus, ker(A) ∩ C(S) = {0} is

equivalent to ker(A) ∩ C(S) ∩ Sp−1 = ∅.

Remark 10.3 In fact, we also have x̂ = x! ⇒ ker(A) ∩ C(S) = {0}. This could be proved by construction.

Please see Wainwright (2019, Page 202) for details.

Proof: Let h = x̂− x!. We only need to prove h = 0. Clearly h ∈ ker(A). Moreover,

"hSc"1 = "x̂Sc"1 (S is the support of x!)

= "x̂"1 − "x̂S"1 (Definition of " · "1)

≤ "x!"1 − "x̂S"1 (x̂ is optimal solution to Eq. 10.1 while x! is feasible)

= "x!
S"1 − "x̂S"1 (S is the support of x!)

≤ "x!
S − x̂S"1 (Triangle inequality)

= "hS"1 (Definiton of h).
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Thus, we have h ∈ C(S). Since ker(A) ∩ C(S) = {0}, h = 0.

If we choose a fixed A matrix, then ker(A) will be fixed. Intuitively speaking, since ker(A) is large3 when

n ≪ p, then one could adversarially choose S such that the restricted null-space property does not hold

rendering x̂ ∕= x!. Thus, our best bet might be a random A which might lead to x̂ = x! with high

probability even when n ≪ p.

We want to choose just enough n such that the restricted null-space property holds with a high probability.

In other words, we need to connect Ax with n somehow when x ∈ Sp−1.

10.4 Link Ax and n when x ∈ Sp−1

Notice that Ax is a length n random vector. Our goal now is to connect a random vector with its length.

We actually have done something similar before. Do you recall anything?

Theorem 10.4 (Concentration of the Norm) Let X = (X1, . . . , Xn) ∈ Rn
be a random vector with

independent, sub-Gaussian coordinates Xi that satisfy EX2
i = 1. Then

"""X"2 −
√
n
""
ψ2

≤ CK2,

where K = maxi "Xi"ψ2 .

To leverage the above theorem, we need to choose A such that each row, aTi is independent, sub-Gaussian,

and isotropic. In this way,

E(aTi x)
2 = xTE(aia

T
i )x = xTx = "x"22 = 1.

Thus, we have

"""Ax"2 −
√
n
""
ψ2

≤ CK2,

where K = maxi "ai"ψ2 . By the definition of " · "ψ2 , we have

P (
!!"Ax"2 −

√
n
!! ≤ CK2u) ≥ 1− 2 exp(−u2) (10.2)

is true for any fixed or deterministic x ∈ Sp−1. The following argument is problematic, but I still

present here to motive why we need to introduce supx∈T . Meanwhile, I hope you could be cautious and

figure out why yourself.

3
dim(ker(A)) ≥ p− n
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10.4.1 Wrong Argument

Denote event ker(A) ∩ Sp−1 ∕= ∅ as B, and then decompose the LHS into two cases,

P (
!!"Ax"2 −

√
n
!! ≤ CK2u) = P (

!!"Ax"2 −
√
n
!! ≤ CK2u and B)+

P (
!!"Ax"2 −

√
n
!! ≤ CK2u and Bc)

If ker(A) ∩ Sp−1 ∕= ∅, we could choose x̃ ∈ ker(A) ∩ Sp−1 which has "Ax̃"2 = 0 and "x̃"2 = 1. Replacing x

with x̃ in the above inequality and then the first term becomes

P (
!!"Ax̃"2 −

√
n
!! ≤ CK2u and B) ≤ P (

√
n ≤ CK2u and B).

It is worth to notice that the
√
n ≤ CK2u has no randomness. That is to say, if we choose n > C2K4u2,

then P (
√
n ≤ CK2u and B) = 0 resulting in P (|"Ax̃"2 −

√
n| ≤ CK2u and B) = 0. Then we know

P (Bc) ≥ P (
!!"Ax̃"2 −

√
n
!! ≤ CK2u and Bc) (Any event A and B, P (A) ≥ P (A ∩B))

= P (
!!"Ax̃"2 −

√
n
!! ≤ CK2u) (P (

!!"Ax̃"2 −
√
n
!! ≤ CK2u and B) = 0)

≥ 1− 2 exp(−u2) (Eq. 10.2)

Using the definition of event B, above inequality means that when n > C2K4u2, we have ker(A)∩Sp−1 = ∅
with at least 1− 2 exp(−u2) probability.

We ‘proved’ something unbelievable: ker(A), a non-degenerate linear space, does not intersect with Sp−1

with high probability! This is just impossible. Where is the problem?

10.4.2 The Issue and Its Solution

The concentration (Eq. 10.2) is only valid for deterministic x ∈ Sp−1. Is x̃ deterministic? Or is ker(A)

deterministic for a random matrix A? Clearly not! Thus, we could not replace x by x̃ and proceed.

We have encountered similar issues before, could you recall? In the case of excess risk, the optimal parameter

that minimizes the empirical risk is random (because data are random). Then we utilize a uniform bound

supx∈T to control this randomness. We will do the same thing here. Let T ≜ C(S) ∩ Sp−1, then ∀x̃ ∈
ker(A) ∩ T ), we have

√
n = |"Ax̃"2 −

√
n| ≤ sup

x∈T
|"Ax"2 −

√
n| = sup

x∈T
|Xx|,

where Xx ≜ "Ax"2 −
√
n. If we could get a high-probability bound of supx∈T |Xx|, then we could proceed

like Section 10.4.1 and get a large enough n such that T ∩ ker(A) = ∅ with high probability. Here is the

road-map forward.

1. Xx has sub-Gaussian increments. We only know how to control supx∈T Xx when this property is true.
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Thus, the first step is to show that Xx indeed has this property.

2. Generic chaining. Now, it is tempting to use Dudley’s inequality. Unfortunately, It is not easy to

calculate N(!). Instead, we will sketch the idea of generic chaining, which improves Dudley’s inequality.

Although generic chaining involves another hard-to-compute quantity of T , the next step shows that

it is possible to get around it.

3. A powerful comparison theorem. Amazingly, the generic chaining provides sharp upper and lower

bounds for the Gaussian processes. This leads to a power comparison theorem that links Xx (hard to

control) to another Gaussian process Yx.

4. Finally, we need to resolve the unknown support of x, namely S, in T = C(S) ∩ Sp−1. We will get a

larger set TU containing all possible T s. In this way, we could upper bound supx∈T |Yx| by supx∈TU
|Yx|.

Both the tail and expectation bound utilize similar core ideas. However, the tail bound involves more careful

treatment. To highlight the main ideas, we will focus on expectation bound.

10.5 Xx Has Sub-Gaussian Increments

Theorem 10.5 (Sub-Gaussian Increments) Let A be an n× p matrix whose rows aTi are independent,

isotropic and sub-Gaussian random vectors in Rp
. Then the random process Xx has sub-Gaussian increments,

namely

"Xx −Xy"ψ2 ≤ CK2"x− y"2 ∀x, y ∈ Rp.

Here K = maxi "ai"ψ2
.

Remark 10.6 This theorem is stronger than we need: it holds for any x, y ∈ Rp
while we only need x, y ∈

Sp−1
.

This result is non-trivial. Even the sub-case, x, y ∈ Sp−1, takes three pages to prove. However, because the

proof does not involve new tools, I will not present it here, and the proof is not required for the test. If you

are interested, you could refer to Vershynin (2018, Chapter 9).

10.6 Generic Chaining

We could write the Dudley’s inequality as

E sup
t∈T

Xt ≲
∞#

k=κ+1

!k−1

$
log |Tk|, (10.3)
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where !k = 2−k and |Tk| = N(t, d, !k). It is fixing !k and operating with the !-net. In generic chaining, we

fix the cardinality of Tk and operate with the smallest possible !k. More specifically, we fix subsets Tk ⊂ T

such that

|T0| = 1, |Tk| ≤ 22
k

, k = 1, 2, . . . . (10.4)

Such sequence of sets (Tk)
∞
k=0 is called an admissible sequence. You might wonder why we choose 22

k

, it is

to make
$
log |Tk| into a geometric sequence which makes it possible to obtain a lower bound of E supt∈T Xt

of the same order. Let

!k = sup
t∈T

d(t, Tk),

where d(t, Tk) is the distance from t to the set Tk. Then each Tk is an !k-net of T . Thus, we could write Eq.

(10.3) as

E sup
t∈T

Xt ≲
∞#

k=κ+1

2k/2 sup
t∈T

d(t, Tk). (10.5)

The sharper bound is to pull the supt∈T out of the summation which leads to the following quantity.

Definition 10.7 (Talagrand’s γ2 Functional) Let (T, d) be a metric space. Let (Tk)
∞
k=0 be an admissible

sequence (Eq. 10.4). The γ2 functional of T is defined as

γ2(T, d) = inf
(Tk)

sup
t∈T

∞#

k=0

2k/2d(t, Tk).

Since γ2 functional has supt∈T outside of summation, it is smaller than the Dudley’s summation from the

RHS of Eq. (10.3).

Theorem 10.8 (Generic Chaining Bound) Let (Xt)t∈T be a mean zero random process on a metric

space (T, d) with sub-Gaussian increments. Then

E sup
t∈T

Xt ≤ CKγ2(T, d).

Remark 10.9 Intuitively speaking, I do not know why generic chaining works better than chaining. Tech-

nically speaking, the generic chaining provides a more accurate bound for

!!Xπk(t) −Xπk−1(t)

!! .

Please feel free to share with me your intuition about this part. For the technical proof, please see Vershynin

(2018, Chapter 8.5.2.).

Well, we put lots of effort into obtaining a tighter bound. However, calculating γ2(T, d) is not simpler than



Lecture 10: Compressed Sensing 10-7

N(T, d, !) at all. How is generic chaining better suited for our purpose? The next section will demonstrate

that we could use γ2(T, d) as an intermediate quantity to something that is much easier to calculate.

10.7 Talagrand’s Comparison Inequality

Last lecture, we use Slepian-Fernique theorem to lower bound supt∈T Yt for Gaussian process Yt. The

following theorem shows that the lower bound could be sharpened by γ2(T, d).

Theorem 10.10 (Talagrand’s Majorizing Measure Theorem) Let (Yt)t∈T be a mean zero Gaussian

process on a set T . Consider the canonical metric defined on T , i.e. dY (t, s) =
$
E(Yt − Ys)2. Then

cγ2(T, dY ) ≤ E sup
t∈T

Yt ≤ Cγ2(T, dY ).

The upper bound is given by Theorem 10.8. The lower bound is much harder to obtain (I do not know how

to do it). As mentioned in Vershynin (2018), it is proved using ‘a far-reaching, multi-scale strengthening of

Sudakov’s inequality’.

Notice that Theorem 10.8 holds for any process Xt that has sub-Gaussian increments w.r.t. some distance

metric d(·, ·). If it happens to be dY (·, ·), we could link it to E supt∈T Yt using Theorem 10.10 this leads to

the following Corollary.

Corollary 10.11 (Talagrand’s Comparison Inequality) Let (Xt)t∈T be a mean zero random process

on a set T and let (Yt)t∈T be a mean zero Gaussian process. Assume that for all t, s ∈ T , we have

"Xt −Xs"ψ2 ≤ KdY (t, s).

Then

E sup
t∈T

Xt ≤ CKE sup
t∈T

Yt.

We have made a great process towards an upper bound that is easy to calculate (Gaussian process now).

We could make the upper bound even easier if we force

Yt = 〈g, t〉,

where g ∼ N(0, Ip) and t ∈ T ⊂ Rp. Then we have

dY (t, s) =
$
E(Yt − Ys)2 =

$
E〈g, t− s〉2 = "t− s"2

E sup
t∈T

Yt = E sup
t∈T

〈g, t〉 ≜ w(T ).
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w(T ) is the Gaussian-width of set T . This quantity is much easier to calculate. For example, we could take

T = Bp
1(r) defined as

Bp
1(1) ≜ {t ∈ Rp

!! "t"1 ≤ r},

namely, the L1-ball with radius r. We have

E sup
t∈T

Yt = E sup
t∈T

〈g, t〉 ≤ E"g"∞"t"1 (Hölder’s Inequality)

≤ rE max
i=1,...,p

|gi| (Definition of T and "g"∞)

≤ Cr
$
log(p) (Maximum of finite sub-Gaussian)

(10.6)

10.8 Handling Unknown S in C(S)

Recall the definition of T in Section 10.4.2, we have

T = C(S) ∩ Sp−1

where S is the support of x! and Sp−1 is the unit sphere in Rp. Unfortunately, we do not know S which

means that we do not know T let alone taking a sup w.r.t. it. What we could do is to find TU such that all

possible T is a subset of it. The following lemma gives a candidate of such TU .

Lemma 10.12

"x"1 ≤ 2
√
s ∀x ∈ C(S) ∩ Sp−1

Proof: For any x ∈ C(S) ∩ Sp−1, we have

"x"1 = "xS"1 + "xSc"1 (Definition of " · "1)

≤ 2"xS"1 (Definition of C(S))

≤ 2
√
s"xS"2 ("y"1 ≤

√
s"y"2 for length s vector)

≤ 2
√
s ("xS"2 ≤ "x"2 = 1).

Thus, we could use TU = Bp
1(2

√
s) which leads to

w(TU ) = E sup
t∈TU

Yt ≤ C
$
s log(p) (Eq. 10.6).

If you believe me that there exists a tail version of Corollary 10.11 of similar form, then we have

the following theorem.
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Theorem 10.13 (Exact Sparse Recovery) Suppose the rows aTi of A are independent, isotropic, and

sub-Gaussian random vectors, and let K ≜ maxi "ai"ψ2 . If n ≥ CK4s log p, we have

P (x̂ = x!) ≥ 1− 2 exp(−cm/K4).

Since s ≪ p, the number we needed is also much smaller than p. This shows the power of compressed sensing.
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Lecture 11: Semicircle Law

Lecturer: Long Zhao

11.1 Resources

• van Handel (2014, Chapter 9.1). The technical part of this lecture closes follows this chapter.

• Benaych-Georges and Knowles (2016) addresses more advanced local law. Very mathematical reading.

• Random Matrices: Theory and Practice - Lecture 1 to 9 provides a thorough analysis of random matrix.

Livan et al. (2018) is his book with coauthors on this topic.

11.2 Motivation

Eugene Wigner introduces random matrices to model the nuclei of heavy atoms. Because the number of

atoms is enormous, and it is virtually impossible to calculate the levels of energy precisely and label them

accordingly. Instead, Wigner takes a different perspective: he models these atoms’ Hamiltonian using a

random matrix whose entries are i.i.d. N(0, 1). Amazingly, this leads to a beautiful description of the

corresponding eigenvalues (energy levels), namely, the semicircle law.

Since a random matrix could serve as the model for the data generating process, it has been used to

understand behaviors in the high-dimensional setting. For example, Bloemendal et al. (2016), Bun et al.

(2017), Johnstone and Paul (2018) utilize spike matrix, which relaxes the entry-wise independence assumption

to investigate the principal components in the high-dimensional setting. Moreover, Wainwright (2019) uses

Marchenko-Pastur law (a close cousin of semicircle law) as an inspiring example to highlight the importance of

statistics in the high-dimensional setting. It has also been used in portfolio optimization to disentangle signals

from pure noise Laloux et al. (1999, 2000), Plerou et al. (2002). I also use the delocalization phenomenon to

justify a new dimension reduction tool for portfolio optimization.

It has also been used to model interactions within a complex system (May 1972); investigate properties of

certain random graphs (Erdős et al. 2013).

11.3 Problem

Definition 11.1 We call X a Wigner matrix if it satisfies the following property. X be an n×n symmetric

matrix whose entries Xij are independent random variables with EXij = 0, EX
2
ij
= 1, and E|Xij |3 ≤ C.

11-1
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We are interested in the eigenvalue distribution of X when n is large. First of all, just like CLT, we want to

scale X correctly such that its eigenvalues will not explode as n goes to infinity. Notice that

E

n!

i=1

λ2
i
= ETr(XT

X) = E

!

ij

X
2
ij
= n

2
.

Thus, we are expecting λ2
i
is about n (dividing both sides by n) which means that X/

√
n should be the

correct scaling. Next, we define the spectral distribution of X/
√
n as

µn ≜ E

"
1

n

n!

i=1

δλi(X/
√
n)

#
.

It is worth noticing that the random variable inside the expectation is (almost surely) 1 at n points while

0 otherwise. Thus, taking expectation will smooth such a spiky random variable. Surprisingly, the limit

distribution as n → ∞ follows an unusual law.

Theorem 11.2 (Wigner’s Semicircle Law) µn converges in distribution to the Wigner’s semicircle dis-

tribution

µsc ≜
1

2π

$
4− x21|x|≤2dx.

Figure 11.1 shows the semicircle distribution. It is just amazing, isn’t it? How is it possible? In this lecture,

we will prove this law.

Figure 11.1: Semicircle Distribution

Theorem 11.2 is an asymptotic result and it could be strengthened into a non-asymptotic high probability

description of both eigenvalues and eigenvectors1.

1See Benaych-Georges and Knowles (2016) for more details. The proof is quite complicated, and I am still trying to figure
out the magic.
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Theorem 11.3 (Eigenvalue Rigidity) With high probability,

|λi − γi| ≲ n
−2/3(i ∧ (n+ 1− i))−1/3

,

where γi is the corresponding quantile from the semicircle distribution.

Theorem 11.4 (Complete Eigenvector Delocalization) With high probability, the ith eigenvector ui

behaves like a random direction.

To see why delocalization makes sense, let us think about random matrix Y with i.i.d. N(0, 1) entries. Based

on the rotation invariant of multi-normal distribution, we know that Y is also distribution invariant under

rotation (namely orthogonal matrix). Thus, the distribution of an eigenvector is also rotation invariant

implying that it should come from the uniform distribution of a sphere. In other words, one eigenvector is

a random direction.

In this lecture, we try to prove Theorem 11.2. There are four steps.

0. Briefly review complex numbers which facilitate the understanding of next step.

1. Translate convergence in distribution to some other convergence.

2. Prove the case for Yij ∼ N(0, 1).

3. Use Lindeberg device to expand it to general case.

11.4 Review of Complex Numbers

When I was learning complex analysis, I got extremely frustrated because I rarely see complex numbers in

real life except for Fourier transformation. To avoid causing you to feel the same way about the following

lecture, I want to quote from Freeman Dyson, a Nobel Price Laureate of Physics, about complex numbers.

“ It turns out that the Schrödinger equation describes correctly everything we know about the behavior of

atoms. It is the basis of all of chemistry and most of physics. And that square root of minus one means

that nature works with complex numbers and not with real numbers.2 ”

To show that fascinating things could happen in the complex world, let me prove the magic equality exp(πi) =

−1. Euler used this equality to prove that God exists (because it is so beautiful it must be created by God).

The proof comes from exp(iπ) via dynamics, in 3.14 minutes.

2This quote is from his famous birds and frogs article talking about two different types of researchers.
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11.5 Green Function and Stieltjes Transform

In the proof of CLT, we translate convergence in distribution into point-wise convergence of the characteristic

function. We also need something similar here. First of all, let us try the characteristic function. Will it

work? Unfortunately, there is no linear relationship of the independent random variables that characteristic

function could utilize. This leads to the Green function,

G(z,H) ≜ (H − zI)−1
,

where H is the matrix of interest and I is the identity matrix. Moreover, z ∈ C/{λ1(H), . . . ,λn(H)}. Notice

that Green function is not a real-value function. Instead, it is a n× n matrix function! There are two great

things regarding G(z,H).

1. It is closely related to eigenvalues and eigenvectors. We could eigen decompose H − zI as

H − zI =

n!

i=1

(λi − z)uiu
T

i
.

This leads to

(H − zI)−1 =

n!

i=1

uiu
T

i

λi − z
.

Let us think about the case Re(z) = λi and Im(z) ≈ 0. The ith term of the RHS will be much larger

than other terms. This enable us to know the local behavior of λi and ui. This is the foundation of

the local laws from Benaych-Georges and Knowles (2016).

2. ∂G(z,H)
∂Hij

is easy to calculate. Since I = G(z,H)(H − zI), we could take derivative w.r.t. Hij to both

sides to have

0n×n =
∂G(z,H)

∂Hij

(H − zI) +G(z,H)Eij ,

where 0n×n is a n-by-n matrix with all 0s and Eij is a n-by-n with two 1 at position (i, j) and (j, i)

while all other entries are 0s. Reorganize the equality to have

∂G(z,H)

∂Hij

= −G(z,H)EijG(z,H).

From here, it is easy to calculate ∂k
G(z,H)

∂Hk
ij

. You might wonder why do we need these derivatives3?

There are roughly two parts. 1. If X ∼ N(0, 1), we have EXf(X) = Ef
′(X) which involves f ′. That

is to say, we need this relationship when Xij ∼ N(0, 1); 2. In the Lindeberg device, we use Taylor

expansion which uses derivatives to control the local difference.

3Here is a small catch. In the proof, we will handle H = X/
√
n and the derivatives are w.r.t. Xij instead of Hij . However,

chain rule tells us this is a trivial calculation once we know derivatives regarding Hij .
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It turns out that Green function G(z,H) is overkill for Theorem 11.2: we could only use the expectation of

G(z,H)’s trace. This leads to the following transform.

Definition 11.5 (Stieltjes Transform) The Stieltjes transform Sµ of a probability measure µ on R is the

function Sµ : C/R → C defined as

Sµ(z) ≜
%

1

u− z
µ(du).

For the spectral distribution µn, its Stieltjes transformation is

%
1

u− z
µn(du) =

%
1

u− z
E

"
1

n

n!

i=1

δλi(X/
√
n)(du)

#
(Definition of µn)

=
1

n
E

%
1

u− z

n!

i=1

δλi(X/
√
n)(du)

=
1

n
E

n!

i=1

1

λi(X/
√
n)− z

=
1

n
E Tr((X/

√
n− zI)−1)

=
1

n
E Tr(G(z,H)) (H = X/

√
n− zI).

(11.1)

The following Lemma shows how to recover µ from Sµ(z).

Lemma 11.6 (Inversion Formula for Stieltjes Transformation) For any bounded continuous function

f

%
f(x)µ(dx) = lim

#↓0

%
1

π
f(x)Im(Sµ(x+ i&))dx.

Proof: We could write the imaginary part of (u− x− i&)−1 as

1

π
Im

&
1

u− x− i&

'
=

1

π

&

(u− x)2 + &2
= ρ#(x− u),

where ρ#(x) is the probability density function of the Cauchy distribution with mean 0 and scale parameter

&. Thus, we have

%
1

π
f(x)Im(Sµ(x+ i&))dx =

%
f(x)ρ#(x− u)dxµ(du) (Definition of Sµ(z))

= Ef(X + Z#),

where X ∼ µ and Z# ∼ Cauchy(0, &) are independent. Since Z# → 0 in probability and f is bounded, we
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know we could exchange the order of limit and expectation4.

Using the above Lemma, one could prove that point-wise convergence in Stieltjes transform is equivalent to

convergence in distribution. Now we only need to prove that Sµn(z) → Sµsc(z) for all z ∈ C/R.

11.6 Yij ∼ N(0, 1)

We frequently use the following property of N(0, 1):

EZf(Z) = Ef
′(Z). (11.2)

This property comes handy for G(z,H) since its partial derivatives w.r.t. Hij are easy to calculate. To

utilize this property, we need to create multiplication somehow. Luckily, there is a simple multiplication

equality,

(H − zI)G(z,H) = (H − zI)(H − zI)−1 = I.

We could rearrange the equality as

HG(z,H) = zG(z,H) + I.

Taking trace and then expectation, we have

ETr(HG(z,H)) = zETr(G(z,H)) + n (Tr(I) = n)

= znSµN
n
(z) + n (Eq. 11.1),

where we use µ
N

n
to emphasize the N(0, 1) assumption. The above equality has two good things: 1. The

LHS has multiplication of HG(z,H) where we could apply property 11.2; 2. The RHS involves SµN
n
(z) which

should converges to something denoted as S(z). If LHS also converge to a function of Sµ, then we could

solve the equation to obtain it. It turns out that the LHS converge to −S(z)2 (see van Handel (2014) for

more details) and we have

−S(z)2 = 1 + S(z).

Solve it to obtain

S(z) = −z

2
± 1

2

$
z2 − 4.

4One might use the last property of the list here.
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Then we have

Im(S(x+ i&)) = − &

2
± Im

$
x2 − &2 + 2i&− 4

⇒ lim
#↓0

Im(S(x+ i&)) = ±1

2
Im

$
x2 − 4 = ±1

2

$
4− x21|x|≤2.

Because S(z) is the limit of SµN
n
(z) which is Stieltjes transformation of a probability, we must have S(z)

take the + branch in the quadratic solution. This means that µN

n
indeed converge to µsc.

11.7 Lindeberg Device

We have proved the semicircle law for matrix Y with i.i.d. N(0, 1) entries. We want to show that the

difference between SµN
n
(z) and Sµn(z) goes to 0 as n → ∞. Mathematically speaking, we care about

SµN
n
− Sµn

(z) =
1

n
ETr

&
G(z, Y/

√
n)−G(z,X/

√
n)

'
.

It is tempting to use Lindeberg device to switch Yij to Xij one by one. In this way, there are in total

n(n + 1)/2 terms (because of both are symmetric matrix). Thus, we need to make each term of order

1/n3/2. By utilizing and bounding ∂k
G(z,H)

∂Hk
ij

, we could show that it is achieved with two moments matching

(mean and variance) and a finite third moments. Now, we could use Lindeberg device to prove that µn also

converges to semicircle law. Again, for more details, please see van Handel (2014).

11.8 Marchenko-Pastur Law

Let the n × p matrix X be the data with i.i.d. entries5 with mean 0 and variance σ2
< ∞. Denote the

sample covariance matrix as Σn = 1
n
X

T
X. Then we have

EΣn =
1

n

n!

i=1

Exix
T

i
(Definition of Σn, where xi is ith row)

= Ex1x
T

1 (xi share the same second moment)

= σ2
Ip (Entry-wise independence and mean 0)

Marchenko-Pastur law states that when p/n → α > 0, the spectral distribution of Σn could be drastically

different from σ2.

Theorem 11.7 (Marchenko-Pastur Law) Assume p/n → α, then the eigenvalue distribution of µm con-

5The identical distribution assumption could be relaxed. Same first and second moment and bounded higher moments should
be enough.
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verges in distribution to the following distribution

µ(dx) =
1

2πσ2

$
[(x− γ−)(γ+ − x)]+

αx
dx+ (1− α−1)+δ0(dx),

where γ± = σ2(1±
√
α)2.

Figure 11.2 are borrowed from Wainwright (2019). When α = 0, we are in the classical setting that p fixed

and n → ∞. By LLN, we have Σn → σ2
Ip which implies the spectral distribution converges to point mass

σ2. Plugging α = 0 to the Marchenko-Pastur law, one could also obtainγ± = σ2 and µ(dx) = δσ2(dx).

Figure 11.2: Marchenko-Pastur Law with α = 0.2 and α = 0.5.

The generating procedure of X contains almost no information since Xij are entry-wise i.i.d. It is tempting

to view the Marchenko-Pastur law as the spectral distribution of no information. Then any eigenvalues

that significantly deviate from Marchenko-Pastur law could be seen as informative. This argument has been

applied to the correlation matrix with some success (Laloux et al. 1999, 2000, Plerou et al. 2002).

In my opinion, X could serve as a model for non-stationarity: new data are generated from historical data

plus X. This might lead to some interesting results.

11.9 Relaxing Entry-wise Independence

It is very hard to argue real world data has entry-wise independence. Thus, it is temping to relax it somehow.

One possible way is to introduce several factors that link different entries. For example, the ith row xi is

generated as

xi = zi +

s+!

i=1

yifi,
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where zi has entry-wise independence; fi are deterministic vectors that link different entries and s+ is the

number of factors; yi are random loadings of fi that are also independent from zi. This data generating

process indicate the covariance matrix is a spike-matrix whose eigenvalues are all the same except s+ ones.

With this structure, one could still describe the behavior of eigenvalues and eigenvectors. For more details,

please see Bloemendal et al. (2016).
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