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Work off campus? Learn about our remote access options Volume 13, Issue 4 The purpose of this review was to survey all fungal pathologists with association with the journal Molecular Plant Pathology and ask them to assign which fungal pathogens they will place in the Top 10 based on scientific/economic value. The survey generated
495 votes from the international community, and resulted in the generation of the Top 10 fungal plants list of pathogens for molecular plant pathology. The top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusaarium Grammar; (5) Fusarium oxysporum; (6) Bloomeria Graminis; (7)
Mikosfarella gramicol; (8) Colletotrichum spp.; (9) Ustilago Maidis; (10) Melampsora lini, with honorable mentions for mushrooms just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a brief summary of each fungus in the top 10 list and its significance, with the aim of initiating
discussion and discussion among the plant archaeology community, as well as laying a bench. In the future, it will be interesting to see how the performances change and which mushrooms will be included in the top 10 of the future. Recently, the journal Molecular Plant Pathology examined which viruses will appear in the Top 10 of plant
viruses based on their perceived importance, scientifically or economically, in terms of opinions of the authors of the journal (Scholthof et al., 2011). This has been conducted as many documents, reviews and grant applications claim that a particular plant virus is of paramount importance, and this is probably correct. As a result of the
interest generated by this exercise to plant viruses, a similar examination was initiated for plant-based fungi and with a similar virus review mechanism. All authors, reviewers, editorial board members and senior editors of Molecular Plant Pathology magazine interested in fungi were contacted and asked to appoint three plant-pathogenic
fungi that they would expect to see in the list of the most scientifically/economically important fungal pathogens. The review, by its very nature, is similar in format and layout to an overview of the top 10 viruses (Scholthof et al., 2011). The poll received 495 votes from the international community, and allowed the generation of the Top 10
fungal plant list of pathogens for the journal Molecular Plant Pathology (see table 1). Table 1. Top 10 fungal plant pathogens. Rank Fungal Pathogens Author Fungal Description 1 Magnaporthe oryzae Ralph Dean 2 Botrytis cinerea Jan A. L. van Kahn 3 Puccinia spp. Sacharias A. Pretorius 4 Fusarium graminearum Kim Hammond-Kosak
5 Fusarium Oxysporum Antonio Di Pietro 6 Blumeria graminis Pietro Spanu 7 Mycosphaerella graminicola Jason J. Rudd 8 Colletotrichum spp. Marty Dickman 9 Ustilago Can 10 Melampsora lini Jeff Ellis Table is a rating list of mushrooms voted for by plant climatologists associated with the journal Molecular Plant Pathology. The fungus
making the strongest appearance in the vote was Magnaporthe oryzae, in first place with almost twice as many votes Botrytis cinerea, in second place. All voters stressed the economic importance of M. Oryzae; since more than half of the world's population relies on rice as its primary source of calories, the pathogen can be devastating;
however, many also highlighted how this pathogen evolved into a model system to study the interactions between plant pathogens. Botrytis cinerea, in second place, clearly has influence in many areas due to the wide host range, causing serious damage both before and after the harvest. This may be one of the few entries in the Top 10
that can claim to be of potential useful use, through its role in some aspects of wine production, with some advantages also claimed for the ninth record, Ustilago maydis, in infected cobs. Puccinia spp., with many voters grouping three rust diseases contaminated with wheat together, grouped together in third place. These fungal
pathogens were already a serious threat of the disease, but have intensified in exposure since the advent of the Ug99 race, now posing a serious challenge to wheat production. On the fourth and fifth places are two types of Fusarium, but with contrasting host ranges, with F. graminearum causing significant damage predominantly to
cereals and several non-metallic species, and F. oxysporum having a wide host range, with serious losses in crops as varied as tomatoes, cotton and banana. However, pathogens of cereals still have a significant presence in the Top 10 with Blumeria graminis in sixth position and Mycosphaerella graminicola in seventh. Colletotrichum
spp., in eighth position, are members of an important genus of plant pathogens for which taxonomium can be described as attacking in a state of flow. The proposed number of species per genus ranges from 29 to more than 700 depending on the taxonomic interpretation. Colletotrichum spp. has long served as a model system for
hemibiotrophic pathogens, with a short biotrophic stage, followed by the transition to tissue effects and necrotrophic development. Interestingly, Ustilago Maidis and Melampsora are in ninth and tenth places respectively, with many voters pointing to strong scientific rather than economic reasons for their inclusion. Both are now developed
as model systems that are easily tracted, and provide a vital understanding of the molecular basis of plant immunity and infectious processes. Although This article of the review was to identify the top 10 most important plant-pathogenic fungi according to participants in molecular plant pathology, we are very well aware that the importance
and priorities are priorities vary locally across continents and disciplines. We also know that not all mushrooms can get into any top 10, due to obvious numerical limits, although such mushrooms can still be considered as extremely important. Therefore, we considered it appropriate to bring honorary mentions for mushrooms just missing
out on the top 10 list, including Phakopsora pachyrhizi (Goellner et al., 2010) and Rhizoctonia solani (Gonzalez et al., 2011; Vilgalys and Cubeta, 1994), both clearly important. In the future, when another Top 10 study is conducted, it will be interesting to see whether fungi such as Phakopsora pachyrhizi, a causal agent of Asian soybean
rust, pretends to be a distinct disease that has only recently appeared in some parts of the world and will potentially increase in importance (Goellner et al. , 2010). This review contains one-page descriptions of the top 10 plant pathogenic fungi to introduce the reader to each of them, with illustrative figures and key references for further
reading. The intention of this review is to provoke discussion and discussion among the plant archaeology community, and to lay down a bench, as it will be interesting to see how perceptions change in the future and which mushrooms enter and exit the list. Magnaporthe oryzae, a filigree fungus of accomicete, is the causal agent of the
disease of the explosion of rice, the most devastating disease of rice worldwide (Ou, 1980). Its importance is underlined by the fact that about half of the world's population relies on rice for its primary calorie intake (Khush, 2005). All tissues of flora are prone to infection; However, a panic infection can lead to a complete loss of grain.
Losses of 10-30% are typical, although regional epidemics can be devastating. In addition, the fungus is very subst modified to genetic and molecular genetic manipulation (Jeon et al., 2007; Talbot, 2003; Valent and Chumley, 1991). Consequently, as a result of its agronomical importance and uro-creation, M. oryzae has become a
fundamental model in the study of interactions of host-fungal pathogens (Dean et al., 2005). Although host resistance is the most economically viable and environmentally sound practice to manage the disease, the fungus quickly overcomes resistance to explosions, and varieties tend to become ineffective within 2 to 3 years (Ou, 1980;
Seigler et al., 1994). Magnaporthe oryzae is part of a species that can cause disease on various herbs and related species, including crops such as barley, wheat and millet (Couch et al., 2005). New varieties of wheat have emerged in South America, raising concerns that the fungus poses a serious threat to global wheat production
(Urashima et al., 1993). Knowledge of the biology, genetic diversity and adaptability of this pathogen key to developing new and long-term strategies these are the devastating fungal diseases associated with them (Figure 1). The disease is the result of contamination of rice and wheat with Magnaporthe oryzae. (A) The classic symptoms
of panic explosion on rice, although the fungus can cause disease on all lyolar tissues. (B) Head explosion on wheat. Symptoms on wheat are usually limited to the head and can be mistaken for wheat scabs caused by Fusarium graminearum. The discovery of Guy11, a fertile strain of Mat1-2 from French Guiana, more than 20 years ago
stimulated a surge of scientific interest in the pathogen of rice explosion (Leung et al., 1988; Silue and Notegem, 1992). The ability to conduct genetic analyses led to cloning and characterizing several genes for host and variety specificity (Bryan et al., 2000; Jia et al., 2000; Orbach et al., 2000; Valent et al., 1991). Today, much effort is
focused on the cloning and characterization of many of the auriulation and related rice resistance genes that have been genetically identified (Chao and Ellingboe, 1991; Scamnioti and Gurr, 2009). The development of genetic markers, such as MAGGY, MGR583 and MGR586, from repetitive elements has provided the means not only to
create valuable genetic maps for M. oryzae, but also molecular tools to assess the diversity of population and the evolution of lines, valuable knowledge for the breeding and timely release of sustainable varieties (Farman et al., 1996; Hamer et al., 1989; Nitta et al., 1997; Scumnioti and Gurr, 2009). Early stages of infection have been
studied at great depths in M. oryzae. Like many fungal pathogens of plants, M. oryzae develops apressory, a specialized infection (Howard and Valent, 1996). The corresponding development of this cell is necessary for infection; indeed, several effective fungicides, such as tricyclazole, which prevent the melanization of apppressoria,
block the host's penetration (Woloshuk et al., 1983). The ability to call appressoria ex planta and conduct functional gene analysis through targeted gene knockout has provided powerful access to many major molecular processes (Leung et al., 1990; Oh, et al., 2008). Significant knowledge has been gained on the perception of
environmental signals (Lee and Dean, 1994), famine response (Donofrio et al., 2006), cell signaling pathways (Lee and Dean, 1993; Nguyen, etc., 2008; Xi and Hamer, 1996), Turgon pressure generation (deJong et al., 1997), cell content processing (autophagy) (Veneault-Fourrey et al., 2006) and cell cycle checkpoints (Saunders et al.,
2010), which regulate and regulate the development of this specialized cell (2. Infectious cycle of the rice explosion fungus. Conidia, derived from lesions, spills out on new plants, where they are firmly attached and germinate within a few hours. Subsequently, the germ stops the polar growth, the tip swells and, by forms a highly melanized
dome-shaped structure, apressor. Usually within 24 hours, turgor pressure increases in the apppressoria, forcing the penetration of binding into the main tissue. Necrotic eye-shaped lesions appear only a few days after infection, from which conidis bearing condiment bearings of the conidia appear under the appropriate conditions to re-
initiate the infectious cycle. (Scanning the image of an electron microscope in the bottom right corner courtesy of Nicholas Talbot and Michael Kershaw, University of Exeter, UK). The correction was added on July 5, 2012, after publication on the Internet: the lower right image was amended, and the recognition was included in the legend.
Over the past six years, after the publication of the genome sequence of strain 7-15 (derived Guy11) (Dean et al., 2005), genomic resources for M. oryzae and related species have grown dramatically and now include more than 30 genome strains worldwide, as well as various data sets of transcriptoma (ESTs) and small RNA (Gowda et
al . Nunes et al., 2011; Oh et al., 2008) and emerging proteome datasets. Early study of these data revealed significant differences in the content of genes and the organization of repetitive elements. Other studies have revealed a fundamental understanding of the mechanisms of master protection and gene silencing (Ikeda et al., 2002;
Nguyen et al., 2008). With the advent of new sequencing technologies, population biology research and phylogenous M. oryzae analyses are poised to grow significantly in the very near future, providing a deep understanding of the evolution of phytopathogenesis. Botrytis cinerea Persoon: Fris (teleomorph Botryotinia fuckeliana (de bari)
Wetzel; Figure 3, known as grey mold, can infect more than 200 plant species. , 2011). The presence of a sequence of the genome and various molecular tools the ease of transformation for the receipt of knockout mutants (van Kan et al., 1997) or to achieve a gene silencer (Patel et al., 2008, 2010) together with its economic significance
contributed to the fact that B. cinerea is the most widely studied necrophic fungus pathogen. These studies have greatly advanced our understanding of B. cinerea infectious strategies, but very few absolutely necessary determinants of virulence have been identified by candidate gene approaches (Tudzynski and Kokkelink, 2009). Sexual
fetal body (apothecia) teleomorphic botriotinia fuckeliana (de Bari) Whetzel. Botrytis cinerea is devastating mature or senile fabrics of wild-ateyledon hosts. This fungus sometimes stays quiet for a considerable time until tissues rot when the host's physiology changes and the environment is favorable (Williamson et al., 2007). Infection can
occur all the way from seedling stage to product maturation. Serious damage can occur after the harvest of seemingly healthy crops. Collected goods can be spoiled in retail, during storage, transportation to remote markets or during retail display (Figure 4). Botrytis cinerea on raspberry fruit (from Williamson et al., 2007). The cost of
damage to Botrytis is very difficult to estimate because of the wide host range. Costs are diffuse as Botrytis damage occurs at different stages of production and retail chain. There is no reliable data on Botrytis damage while growing crops, but it must be huge. Despite the increasing use of biocontrol in some cultures (Moser et al., 2008),
the use of fungicides remains a common method of combating botrytis. The average cost of chemical control Botrytis (all cultures, all countries) is about 40 euros/ha (Steiger, 2007). Fungicides specifically targeted against Botrytis (botryticides) cost 540 million pounds (2001), representing 10% of the global fungicide market (UIPP, 2002).
The wine and table grape segment accounts for 50% of the value of the entire botriticide market, with solanaceous vegetables, kucurbits, strawberries and decorative elements making up 5%-9% (Steiger, 2007). The costs of broad-spectrum fungicides, also effective against B. cinerea, are unknown. Resistance to fungicides is becoming
an increasingly problematic problem, with a large proportion of the fungal population resistant to fungicides (Leroch et al., 2011). Multidrug resistance has been reported, mainly due to increased gene expression of the ABC transporter (Kretschmer et al., 2009). In wine and table grapes, the cost of controlling The Botrytis pile of rot is the
main reason for the decline in profits in Australia (AUS $52 million per year; Sholfield and Morison, 2010), Chile ($22.4 million per year; Esterio et al., 2009) and South Africa (SA Rand 25 million per year). Estimates for other countries could not be obtained. These costs mainly include chemicals, but do not cover losses incurred as a result
of lack of treatment (organic farming, low-water farming), poor treatment (resistance to fungicides) or loss of quality (fungicide levels exceeding export needs; the quality of grapes is not sufficient for high-quality wines). In 2002, about 15%-20% of pink and herbernium beams traded through Dutch flower auctions contained a detectable
Botrytis infection, which led to a reduction in vases of such beams for 3 days. Revenue losses for rose producers alone were estimated at 1.3 million pounds (Vrind, 2005). These numbers Include flowers that were contaminated before the harvest and did not make it to auction, or flowers that were spoiled during transportation to retailers
and became uns inhabited. Reducing shelf life (fruit) or vases (flowers) is a serious quality problem. Consumers experience economic losses when berries rot before they eat, or when roses do not last for a satisfactory period. From an economic point of view, the losses faced by consumers are often ignored because producers and
retailers generate income. However, disgruntled customers may refrain from buying the product again for several weeks, an effect difficult to include in the estimates of economic losses. Therefore, the official figures for the cost of gray mold in soft fruits and decorative forms should be considered as understated. Botrytis cinerea is an
exceptional pathogen, as it can sometimes be beneficial! In specific climatic conditions, B. cinerea can cause noble rot in grape berries, which are used to produce sweet wines (Souternes, Tokai). Botrytis' most prestigious wines are sold at prices of up to 500 euros per bottle. However, the overall influence of B. cinerea is negative, even in
the wine industry. In total, global costs of controlling Botrytis (cultural measures, botryticides, broad-spectrum fungicides, biocontrol) are easily overcome by 1 billion euros per year. The consequences of product loss despite the fight against disease, and the loss of quality in the retail network, are likely to be much higher. Three rust
diseases occur on wheat, namely the trunk (black) rust (called Puccinia graminis f. sp. tritici) (Pgt) (Figure 5), strip (yellow) rust (P. striiformis f. sp. tritici) (Pst) (Figure 6) and leafy (brown) rust (P. triticina) (P. triticina) (P. Prolific spores, effective distribution, pathogenic variability and widespread wheat cultivation, often in favourable
conditions, all contribute to the destructive potential of these rusts. Historically, stem rust has been the most infamous for damaging wheat crops. The disease was feared in ancient Rome, where rituals ('Robigalia') were performed to save the crop from rust (Sadox, 1985). The stem of the rust of infected wheat is shown by the ureth and
thelial spores stages. The wheat flag sheet is infected with a rust band called Puccinia striiformis f. sp. tritici. Pgt, Pst and Pt are obligatory, biotrophic basidiomyste mushrooms with macrocyclic, heteroesic life cycles (Bolton et al., 2008; Gin et al., 2010; Leonard and Szabo, 2005). Mandatory biotrophs differentiate specialized infectious
structures, effectively suppress host's protective reactions and obtain nutrients by forming specialized forage structures called located inside plant cells (Voegele and Mendgen, 2011). Stem rust is often perpetuated by the repetition of the uredine stages on ordinary and durum wheat, barley and triticale. However, basidiospors can
alternative hosts such as Berberis vulgaris, primary inoculum furnishing for wheat and new combinations of virulence as a result of sexual gene recalculation (Jin, 2011). The Barberry Eradication Programme between 1918 and 1980 in the United States (Roelfs, 1982) and in the United Kingdom, which also began in 1918 and continues to
this day, should be considered as one of the major advances in plant pathology, both in the field and in disease management. Significant and repeated rust-related crop failures occurred in North America between 1904 and 1962 (Hodson, 2011; Rulfs, 1985). Serious epidemics have also occurred in Europe and China (Leonard and Szabo,
2005), with less frequent outbreaks in Eastern Europe, India, Australia, Mexico, Chile, Ethiopia and southern Africa (Hodson, 2011; Pretorius, etc., 2007). In many cases, there have been exotic intrusions of controversy transmitted through the wind that established new racial lines (Park, 2007; Singh et al, 2011). Recently, severe and
widespread rust bands have been attributed to new and more aggressive races adapted to warmer conditions (Hovm'ller et al., 2011). Figuring out the full life cycle of Pst (Jin et al., 2010) and the genome sequence of this pathogen (Cantu et al., 2011) are important steps towards a better understanding of virulence and thus reproduction



for lasting resistance. Early stem rust epidemics initiated studies of pathogenic variability, epidemiology and genetics of host pathogens in Pgt (Loegering Review, 1984 and Roelfs, 1985). Pgt's specialization in different races has had a major impact on wheat farming and production. Numerous varieties protected by genes have become
susceptible to stem rust, often with devastating boom and bust effects (e.g. Jin, 2011; Kolmer et al., 2007; Martens and, 1989; Park, 2007; Pretorius et al., 2007). The emergence of the Ug99 race from Pgt in East Africa with virulence for Sr31 (Pretorius et al., 2000), a widely used resistance gene, has resumed stem rust research (Singh et
al., 2011). Seven variants of the Ug99 line were reported, varying in virulence for Sr21, Sr24, Sr31 and Sr36 (Singh et al., 2011). As a result of its adaptive ability, fitness and virulence attributes (90% of the world's wheat are susceptible), the Ug99 racial group has been recognized as a serious threat to food security (Flood, 2010;
Mackintosh and Pretorius, 2011; Singh et al., 2011; Murro et al., 2010). Along with advances in detection, genetic mapping and management of genes and quantitative loci of traits (UG99) (Durable Rust Resistance in Wheat Project, ), significant progress has been made in understanding the molecular basis of pathogenicity in Pgt et al.,
2011). Continued surveillance and racial analysis studies, combined with pathogenic genomics, will enable characteristics and the use of sustainable management strategies for resistance. The production and adoption of widely adapted sustainable varieties are essential for the future and effective control of rust worldwide (Lowe et al.,
2011; Mackintosh and Pretorius, 2011). Fusarium graminearum (teleomorph Gibberella zeae), which is found in the order of Hypocreales, is a very destructive pathogen of all types of grains ( ). Locally, F. graminearum co'exists and co'infects with other types of Fusarium. The greatest economic losses occur when floral fabrics become
infected (Figure 7). This disease basically reduces the quality of grain rather than reduces grain yield, and leads to mycotoxin contaminated grain. Worldwide, all major cereal growing regions have reported a recurrence of the Fuzarium epidemics (Leonard and Bushnell, 2003). In the post-harvest period, if the contaminated grain is stored
or transported with too high moisture content, the fungus increases after harvest and increases in mycotoxin levels (Magan et al., 2010). The floral tissues of hexaploid wheat are strongly contaminated with the Fusarium graminearum. This disease is often referred to as Fusarium Headache (FHB), Fusarium Ear Decline (FEB) or Head
Scabies. Mycotoxin-contaminated grain is often unsafe for human consumption, animal feed or malt. In Europe, the United States and other regions, strict upper limits were introduced on specific levels of mycotoxin in grain and food (EC) 1881/2006; ». Fusarium graminearum produces several trichotetsin mycotoxins, the most important of
which are deoxynivalinol (DON), acetylated derivatives of DON, nivalenol and phytoestrogen zeralene. DON binds to the protein peptiyl transferase in ribosome and inhibits the transfer of protein. Different natural isolates (term chemotypes) produce different types of mycotoxins (Alexander et al., 2011). Controlling flower fusarium
infections remains problematic. In most cereals, the sources of resistance identified are only partially effective and are core based on THERs (Buerstmayr et al., 2009). Some azole fungicides are moderately effective, but spray coating and timing remain difficult. Minimizing sequential crops and plowing under any infected residues remain
the best way to reduce disease pressure at the local level. Graminearum infection of non-viral species in crop rotation, such as soybeans and sugar beets, is increasingly reported. Excellent genetic, biochemical, molecular-genetic, genomic, transcriptomic and isolate collection resources currently exist for F. graminearum ( , , ). The
genome has no repetitive sequences and contains low levels genes, but there is a high level of polymorphism polymorphism Strains. When aligned with the genetic map, the two-speed gene is recognized with discrete areas of high recombination and high single-nucleotide polymorphisms (SNP) located near telomere and in the middle of
four large chromosomes. Comparisons with the sequenced genomes of F. verticillioides and F. oxysporum f. sp. lycopersici indicate that the high diversity of sites in the F. graminearum genome was the result of events synthesis of ancestral chromosomes (Cuomo et al., 2007; Ma et al., 2010). Direct gene replacement of interest, chosen
by marker using homologous recombination, is currently relatively simple. The production of mycotoxin DON contributes to the formation of diseases on wheat flower tissue (Proctor et al., 1995). In the absence of the DON, strong responses of the host defense are activated in rachis and hyphal colonization is limited to flower flowers
(Jansen et al., 2005). DON synthesis is tightly regulated by at least three transcription factors: TRI6, TRI10 and TRI15. It is now recognized that another 160 pathogenic/virulence factors contribute to crop infection, most of which are post-infiltration ( ; Urban and Hammond-Cosak, 2012). A recent re-examination of the biology of the
process of flower wheat infection showed that there is a significant phase of guileless infection, in which the gif extracellularly pass between the living host cells. High expression of TRI genes is detected on the coming front and decreases after that (Brown et al., 2010, 2011). Host cells only die in intracellular gyphool intrusion, and
extensive degradation of plant cell walls is a relatively late process. These data show that F. graminearum uses a hidden approach to alleviate successful flower infections (Figure 8). Simplified three-article model of the infectious process Fusarium graminearum (Fg) through wheat rhea tissues. On the coming Hiphal front, mycotoxinol
(DON) inhibits the transfer of protein, which significantly suppresses the surge of reactions of plant protection (pictured in blue). Once the gif enters the plant cells, the presence of released proteins and sugars and the high density of fungal gifs lead to a strong activation of plant protection responses. Later, at the center of the lesion (10
days), the cellular contents of fungal cells living deep in the dead cortical tissue are moved into the gif just below the epidermis of the rickish and asexual spores then occurring. Fusarium oxysporum Schlecht. is an ubiquitous pathogen transmitted through the soil that causes vascular withering on a wide range of plants. Characteristic
symptoms of the disease include vascular browning, leaf epynasion, stunting, progressive withering, defoliation and plant death (Agrios, 2005). Complex F. oxysporum consists of different types of formae (f. sp.), which together total more than 100 different hosts, provoking serious losses in crops such as melon, tomatoes, cotton and
banana, among others (Michielse and Rep, 2009). Fusarium oxysporum is also a new human pathogen that can cause invasive infections in immunocompromised patients (Nucci and Anaissie, 2007; O'Donnell et al, 2004). Unlike the surprisingly wide range of housewives at the species level, individual F. oxysporum isolates cause
disease on only one or more plant species (Armstrong and Armstrong, 1981; Gordon and Martin, 1997). This dichotomy fascinated and puzzled generations of plant pathologists. Adding to the intrigue, phylogenetic studies show that various isolates of this form, infecting the same host plant, arose independently during evolution (O'Donnell
et al., 1998). Since F. oxysporum has no known sexual cycle, the mechanism by which these new pathogenic lines appeared otherwise different genetic backgrounds has long remained elusive. Recently an analysis of the complete sequence of the tomato pathogenic genome F. oxysporum f. sp. lycopersici (Fol) has identified the
presence of genomic regions of the line and LP, including four whole chromosomes that are absent in other types of Fusarium, such as grain pathogens F. graminearum and F. verticillioides (Ma et al., 2010). The transfer of two LS chromosomes from Fol to non-pathogenic isolate allowed it to cause disease in tomato plants. This suggests
that horizontal transmission of small chromosomes may be a factor in the emergence of new pathogenic lines (Ma et al., 2010). Genome sequences from additional F. oxysporum isolates will provide invaluable tools for further study of this hypothesis. Dominant plant resistance genes (R) to different races of F. oxysporum have been
identified in several cultures (Simons et al., 1998). The interaction between tomatoes and foul has been used to study the molecular basis of disease resistance and susceptibility (Houterman et al., 2008, 2009; Rep et al., 2004). These studies have led to the identification of a classical gene system with at least three genes of fungal
auriulation, some of which can function as both projectors and R-based plant immunity suppressors (considered in Takken and Rep, 2010). The unusual ability of a single foal to isolate the disease in both tomato plants and immunosuppressive mice provides a unique model for studying the trans-kingdom pathogenicity in fungi (Ortoneda
et al., 2004). Genetic analysis using targeted mutants has shown that the signaling components needed to infect tomato plants, such as mitogeneactive protein kinase (MAPK) or small Gyu protein, may be indispensable for virulence in mice (Di Pietro et al., 2001; Martinez-Rocha, et al., Ortoneda et al., 2004). Others, such as pH pH
transcription factor PacC, necessary for virulence in the mouse model, but not in plants (Caracuel et al., 2003; Ortoneda et al., 2004). These results show that F. oxysporum uses fundamentally different infection strategies in plants and mammals. Further research relates to the common virulence mechanisms that are necessary for both
types of host. Recent advances in understanding the genetic basis of pathogenicity in F. oxysporum include screens inserting into the width of the mutagenez genome (Lopez-Berges et al., 2009; Michelse et al., 2009a), leading, among other things, to the discovery of the main regulator of pathogenic development (Michielse et al., 2009b),
the identification of the preserved pathway of nitrogen reaction, regulating invasive growth functions (Lopez Berges et al., 2010) and the characteristic of a new transembraneic sensor type of mucins (Perez-Zelion and DiPitro) , 2011). Future research in the F. oxysporum system will continue to provide new knowledge about the molecular
mechanisms of fungal pathogenicity (Figure 9). (A) Fusarium oxysporum microcolidia (C) sprouting on the surface of the tomato root. Penetration occurs due to the directional growth of the infectious gif (IH) to the natural discovery between epidermal root cells (the place of penetration indicated by the arrow). (B) Fusarium oxysporum
hypha grows in tomato root xylem vessel (from Di Pietro et al., 2001). Blumeria graminis is an erisifale (Takamatsu, 2004). This causes powdered mold herbs (Figure 10), including wheat and barley, which are among the leading crops worldwide (FaoStat, 2011). Grain mold infections reduce grain yields and need to be controlled to ensure
an economically viable product. Control of Blumeria is achieved through the deployment of fungicides and disease-resistant plant varieties. These controls need to be constantly reviewed, updated and developed in response to fungicide resistance, changing regulatory limitations and the evolution of mold strains that can overcome host
resistance. Barley leaves infected blumeria graminis f. sp hordei. Typical powdered pustules produced by mold colonies that grow on the outer surface of the host plant consist of hundreds of thousands of highly infectious asexual conids blown up by air currents to spread the disease. Epiphytic colonies feed on intracellular haustoria,
which develop inside epidermal cells (see Figure 11). Erisifals have a wide range of host specificity, ranging from the broad polyphagia observed in many wild tendons (Ing, 1990) to the extremely narrow B. graminis ranges, where 'formae speciales' and hordei can only infect wheat or barley, respectively (Wyand and Brown, 2003). Other
erythpoliss cause affect many other high-quality fruits and vegetables, including tomatoes, cucumbers, grapes and strawberries. Their biology, etiology and pathology are generally similar to biology, mold (Glawe, 2008). All powdered molds strictly oblige biotrophic pathogens: they are absolutely dependent on a living host plant. Epidemics
are caused by a fast series of asexual cycles, which begin with the landing of air-drop conidia on the surface of the host. After a few minutes, the coneia sprouts. Blumenia, unlike other molds, produces the first short primary germ tube, designed for surface sensing (Wright et al., 2000; Yamaoka, et al., 2006). After a few hours from the
conidium comes a secondary germ tube, a septum and differentiates an elongated, hooked uppressory, from which the peg penetrates through the cuticle of the host and the epidermatical cell wall. The peg develops a complex multi-hygitate haustoria, surrounded by a perigaustoric matrix and a specialized host membrane (Figure 11)
(Hukelhoven and Panstruga, 2011). Like other mandatory biotrophic pathogens, the guztoria is dedicated to feeding and controlling host immunity and metabolism (Panstruga and Dodds, 2009). Plant-derived nutrients are transported to a gif growing on the surface of the plant. Within 3 days after vaccination condiidides develop from
specialized cells of the foot and produce a mass of condiy: the same powder of these molds. At the end of the host growth season compatible strains mate and produce chasmothecia (Braun et al., 2002), which also act as recreational structures to survive adverse conditions. Bloomeria graminis f. sp. hordei haustorium. This haustorium
was isolated by manually dissecting the epidermis of an infected sheet of barley and assimilation from the host cell wall with a protoplasting cocktail; it was spotted with a lectin (wheat agglutinin) associated with Alexa-288. The multi-digit structure is surrounded by the perigaustoric membrane of the host origin. Like other molds, this
specialized membrane is continuous with the host plasma membrane, but has very different biochemical properties (Micali et al., 2011). In mold, the perihousetorial membrane is considered a gateway for nutrients and effectors. Bar, 10 microns. The genomes of barley and other powdered moulds are much larger than those of the related
Ascomycota (Spanu et al., 2010). This is due to the extraordinary spread of retrotransposons. The expansion of the genome is accompanied, on the one hand, by the partial loss of genes involved in secondary metabolism, carbohydrate degradation and nitrate absorption, and on the other hand, by the mass distribution of genes that are
projected to encode protein effectors. Currently, two classes of effector are recognized: ECA paralogical effectors for the Avrk1 and Avra10 genes, связанных с ретротранспонами (Ridout et al., al., Sakriston et al., 2009); and more conventional small protein secrets, which are further characterized as highly pedigree specific (Spanu et
al., 2010). The importance of B. graminis, therefore, is the result of its constant and central role as a causal agent of disease of well-known cereals (Murray and Brennan, 2010), and because it is a model for the study of other mold and other mandatory biotrophic pathogens. Ascomycete Mycosphaerella graminicola (anamorph septoria
tritici) is in the order of Dothideales and causes Septoria tritici blotch (STB) wheat disease (Figure 12). This is one of the major economic constraints on wheat productivity, especially in temperate growth regions (Orton et al., 2011). Mycospherella graminicular wheat infection begins with a hypnonic enlargement on the surface of the leaf
and penetration through the stomat without differentiation of the apppressoria (Figure 13). A long period of non-cellless colonization (7 days) then follows, leading to the formation of necrotic leaf lesions within which mine. graminicola sporulates asexually (Kema et al., 1996; Keon et al., 2007). This last phase involves the transition to
necrotrophic nutrition (Figure 13). Septoria tritici blotch (STB) is a wheat disease caused by the gramicolon Mikosfaerella. Model for wheat leaf infection Mycosphaerella graminicola. Early symptomatic colonization (7 days after the leaf vaccination, DPI) involves the release of protective and suppressive apoplastic effectors of plants (red
and blue triangles) from slowly growing intercellular hyphais. After 7 days there is a death of the cells of the leaves and loss of permeability of the membrane, which allows the release of nutrients in the apoplast. Protective effects are off, although other potentially toxic effects (blue diamonds) can be produced. Extensive hypchal growth
and asexual spores (pycnidia and pycnidiospore formation) are now supported in leafy lesions. Mikospheerella gramicol is an established model of the body for studying the dynamics and evolution of pathogen populations. Long-term data sets (from 1843 to 2003) have shown that STBs are affected by climate change, including those
associated with the industrial revolution (Bearchell et al., 2005). It has also been reported that up to 90% of global genetic variations of this fungus may be present within a single contaminated wheat field (zhan et al., 2003). This level of genetic diversity arises from the heterothalyal reproductive system and the formation of ascosporas,
which initiate epidemics every year (Chen and McDonald, 1996; Linde et al., 2002; Waalwijk et al., 2002). Most of the economic expenses incurred by My. graminicola arises indirectly from its rapid evolution in response to electoral pressures, including to wheat diseases and the sustainable use of fungicides. Examples of this the speed at
which my. Graminicol populations evolved and spread a genetic mutation that was resistant to the strobilurine fungicide class (Fraaije et al., 2005), as well as the rapid evolution of the target cyp51 protein in response to the widespread use of specific fungical azoles (Cools et al., 2011). Mikosfeerella graminicola was also the subject of
intensive genetics and genomics analyses. Genome sequences of isolate models, together with relatives collected from wild herbs, were published recently (Goodwin et al., 2011; Stukenbrock et al., 2011). These studies have identified the existence of 21 chromosomes, eight of which are all indispensable for plant infection and vary in
number and structure between isolates (Goodwin et al., 2011; Stukenbrock et al., 2011; Wittenberg et al., 2009). This represents the largest number of dosed chromosomes so far reported in mushrooms (Wittenberg et al., 2009). Functional genomic analysis of plant infection has identified a number of genes important for signaling the
transition to hygal growth and stomatal penetration (Orton et al., 2011). Subsequent post-penetration of stealth pathogenesis is supported by a reduced set of genes for cellular sten grading enzymes (Goodwin et al., 2011) and expression of high-level secret proteins, which inhibit the activation of plant defenses (Marshall et al., 2011). This
initial evasion of plant protection reflects a mechanism more typical of mandatory biotrophs. However, what follows is the acute activation of plant protection involving the death of the host cell as the fungus moves to necrotrophic colonization (Keon et al., 2007; Rudd et al., 2008). This is an intriguing mechanism for future analysis (Figure
13), involving an initial ploy, followed by the subsequent hijacking of plant protection alarms (Deller et al., 2011), which can be separated by other members of the genus Mycosphaerella, which includes the largest number of plant-pathogenic fungi. Colletotrichum is one of the most common and important genera of plant-based pathogenic
fungi. Virtually every crop grown around the world is subject to one or more types of colletotrichum. These fungi cause anthraconous spots and malformations of parts of air plants and rot after harvest. Members of this genus cause great losses to economically important crops, especially fruits, vegetables and ornamental crops. The
damage caused by Colletotrichum spp., extends to important staple food crops, including bananas, cassava and sorghum, grown by natural farmers in developing countries in the tropics and subtropics. It is particularly successful as a post-harvest pathogen because the hidden infections that started before harvest do not become active
until the fruit is preserved or Shelf. Up to 100% of stored fruit can be lost as a result of Colletotrichum disease (Prusky, 1996). Colletotrichum is an asexual genus classified in imperfect mushrooms. It belongs to the Coelomycetes, producing its conidia in acervuli. Despite significant changes, Collettotrichum's taxonom remains in a state of
constant change. There are many uncertainties regarding the systematic fungal pathogens of this genus, and, depending on the criteria, the number of species can range from 29 to more than 700 (von Arx, 1957; Sutton, 1992). One of the most confusing species is C. gloeosporioides. For example, 594 types of colletorium have been
reclassified by von Arks as synonyms of C. gloeosporioides (table 2). Table 2. The main view of Colletotrichum. Colletotrichum species host Lifestyle C. gloeosporioides and papaya/citrus/many other hosts of hemibiotrophy C. acutatum Strawberry/other Necrotrophy C. coccodes tomato gemibiotrophy C. graminicola Corn hemibiotrophy C.
boninense Wide range host Hemibiotrophy C. trifolii Alfalfa Hemibiotrophy C. capsici Pepper/other hosts Necrotrophy C. destructivum Legumes/tobacco Hemibiotrophy C. crassipes Dryandra Hebiotrophy C. kahawae Coffee Gemibiotrophy C. orbiculare melon / cucumber Gemibiotrophy C. sublineolum Sortom Gemibiotrophy C. truncatum
Legumes Hemibiotrophy C. musae Banana Hemiciotrophy C. fragariae Strawberry /other hosts C. Spinaceae Spinach Hemibiotrophy C. lindemuthianum Common As a result of its importance as a pathogen, its unique intracellular hemibiotrophic lifestyle and ease with which it can be culturally and manipulated, Colletotrichum has a long
and outstanding history as an exemplary pathogen for the fundamental biochemical, physiological and genetic research. For example, the phenomenon of pathogenic variations (race/variety specificity) was first recognized in C. lindemuthianum (Barrus, 1911). The colletotrychum on beans was a model for many early studies on
phytoalexins (review by Kuc, 1972). In the 1970s and 1990s, much of the work that established and characterized the phenomenon of systemic acquired/induced resistance (SAR) was done using the Colletotrichum-cucumber pathosystem (Durrant and Dong, 2004). Key genes of cyclic adenosinephate (CAMP), MAPK and RAS/small G-
protein and calcium were cloned. The function of these genes, especially during conydia germination and the development of apppressoria, was characterized in several types of colletorium (Chen and Diekman review, 2004; Chen et al., 2006; Dickman and Yarden, 1999; Dickman et al., 1995; Takano et al., 2000). Most types of
colletotrichums establish infection through a brief biotrophic phase associated with a large intracellular primary gif, although some species are described as subcutaneous, such as C. capsici. The fungus later switches to a destructive, necrotrophic phase associated with narrower secondary hyfams that ram throughout the host tissue
(Figure 14). Molecular details that regulate the hemibiotrophic lifestyle (also known to occur in other fungal species, such as Magnaporthe) have long been of interest to phytopathologists. In particular, factors regulating the transition from biotrophy to necrotrophy are waiting to be identified. The recently completed sequence of C.
graminicola (Vaillancourt et al., Department of Plant Pathology, University of Kentucky, Lexington, Kentucky), along with several other types of colletorichum in the pipeline, promises to increase our understanding of this important fungal phytopathogen. Transmission of an electronic micrograph showing hemiotrophic growth of
colletothrichum destructivum during caupea infection. Notice the thick biotrophic vesicles (IV) infections after the penetration of apressoria. The host cell is still alive, and its plasma membrane can be seen around the gif. Subsequently, thinner necrophemic penetrating gif (PH) degrades tissue while growing inside the cell. A, apressory; C,
conidium. Photo courtesy of Dr. Richard O'Connell (Department of Plant Microbe Interaction, Max Planck Plant Research Institute, Cologne. Corn smut is not an economically important or destructive disease. Thus, Ustilago Maydis did not get into the top 10 for this reason. Although its symptoms on corn can be quite dramatic (Figure 15,
center), in most cases infections remain local, do not spread and therefore are not associated with serious losses in maize yield. On the contrary, farmers in Mexico infect corn artificially to collect infected cobs for cooking Huitlacoche, a traditional dish popular in pre-Hispanic times. The stages of development of Ustilago maydis, tools and
symptoms of the disease. (A) Haploid cells show promising growth. (B) Compatible haploid strains U. maydis, express cytoplasmic red fluorescent protein (RFP) (red) and green fluorescent protein (GFP) (green) (green) under the composite mat protector and produce filament dicarion (yellow). (C) The solo-pathogenic strain, which
expresses the cytoplasmic RFP from the composite promoter and the appressorial marker gene fused into triple GFP, effectively forms an apressory on the hydrophobic surface, after stimulation with hydroxy fatty acids. (D) Macroscopic symptoms of U. Maydis disease on a corn leaf 12 days after infection (left) and fungal gifs in tumor
tissues 10 days after infection (right) are visualized with confocal fungal gifs painted WGA-AF488 (green); the walls of plant cells are colored with iodide propidium (red). (E) I'm not an example, an example, Gene chips allow research into the expression of the genome and width. (F) Visualization of feacin through LifeAct-YFP in beginner
cells. (G) Highly effective homologous recombination is used to replace genes using hygromycin resistance (HygR), resistance to nourseottricin (NatR), carboxin resistance (CbxR) or phleomycin resistance (PhleoR) as the dominant markers chosen. (H) The Phylogenetic tree of W. Maidis and his next of kin. The figures were kindly
provided by Patrick Berndt and Rolf Russer (U. Maydis Symptoms of disease in the infected corn cob, center) as at the Max Planck Institute for Ground Microbiology. Please note that their permission to use these numbers has been obtained. What are the attractions of this fungus and why it became a model for biotrophic, plant-
pathogenic basidiomycetes? Ustilago maydis can be grown in culture in certain media, haploid fungus and growing budding (Figure 15A) and forms compact colonies on plates that can be replica coated. These were actually some of the reasons for choosing this fungus for seeded early studies on homologous recombination (Holliday,
2004). For host colonization and the development of symptoms, corn seedlings can be infected. Symptoms can develop on all above-ground parts of corn plants within 5-6 days (Figure 15D) and the infection cycle ends after about 2 weeks. Typical of a smut fungus is that pathogenic development equals sexual development, and mating
and formation of a dikaryotic filament is absolutely necessary. These steps can be replicated in the laboratory (Figure 15B) depending on the formation of apressor on the corresponding hydrophobic surfaces (Figure 15C). The proteins that control these events are known: pheromones and pheromone receptors, as well as the
hetonodimerical transcription factor formed after cell merging, which causes a regulatory cascade (Brefort et al., 2009; Heimel et al., 2010, b). This knowledge has allowed the development of haploid solopathogenic strains that cause diseases without the need for partner mating (B'lker et al., 1995; Kuemper, et al., 2006). Such strains
allow forward genetic screens and significantly reduce the work in reverse approaches of genetics. Homologated recombination is surprisingly effective (Kuemper, 2004) and uses four dominant select markers (Figure 15G; Bass and Steinberg, 2004). Tools include adjustable promoters to study basic genes and various coloring
techniques, to visualize fungus during biotrophic growth (Figure 15D), and fluorescent proteins for live cell imaging of gene expression and visualization of subcellular structures (Figure 15F) are available (Bemer et al., 2009; Mendoza-Mendoza et al., 2009; Steinberg and Perez Martin, Since 2006, a sequence of the genome with manual
annotation and curatorial is available (K'mmper et al., 2006; 2006; The genome is skinny and contains little repetitive DNA. Transcription profiles (Figure 15E) were created for the most important stages of fungal and plant reactions (available through GeneExpressionOmnibus: . This spurred back-to-back approaches to genetics and
allowed us to identify cluster genes encoding the secret effects that play a crucial role during host colonization, and determine which tissues might be infected (Doehlemann et al., 2009, 2011; Koemper, et al., 2006; Skibbe et al., 2010). It also became apparent from genome analysis that U. maydis is more closely related to humans than
novice yeast, and numerous proteins are shared only by U. maydis and Homo sapiens. These include proteins involved in the basic principles of long-distance transport, mitosis, motor organization of microtubules and homologous recombination. Thus, Ustilago Maidis is the ideal place to study such processes (Banuett et al., 2008;
Holloman, 2011; Steinberg and Perez Martin, 2008). Where is this system going? This will create a hierarchy of effector actions during plant colonization, give an idea of fungal nutrition during plant colonization (Eichhorn et al., 2006; Wahl et al., 2010) and serve as a plan of comparative approaches (Schirawski et al., 2010), which are
likely to reveal an understanding of the evolution of the genome and the specialization of the host. Unlike most other pathogens on this Top 10 list, flax rust is better known than the infamous. Although it was originally studied as a pathogen affecting the linen and flax industry, its main influence on food and fiber production was (and
comes) from its role as an exemplary system, providing insight into the molecular basis of plant immunity. Благодаря новаторским генетическим исследованиям (рис. 16) патогенности различных физиологических рас патогена и устойчивости и восприимчивости к ржавчине в лене, H.H. Flor заметил, что существует
определенная связь между каждым геном, определяющим патогенность в ржавчине (Avr) генов и соответствующими генами (R) в принимающей определяющей резистентности (Flor, 1956; Лоуренс, 1988; Лоуренс и др., 2007). This became known as the gene link, which provided pathologists and plant breeders with a logical
basis for harmonizing the breeding process of other crop species for resistance to pathogens. The observations also provided insights into the breeders' experience that individual resistance genes deployed in large areas are often broken by mutations of one relevant auriulation gene or genetic re-range during sexual reproduction of
previously hidden recessive sexually active alleles for the production of homoygo offspring In practical terms, this classical genetic knowledge also underpins the approach to stronger resistance by pyramiding several resistance genes in a single genotype of crop species. The gene gene hypothesis has also given rise to the assumption
that resistance genes encode receptor proteins that detect the presence of specific auriulation proteins in the pathogen, and the resulting recognition event, which generates host resistance, the basis for the development of modern knowledge of the basis of plant immunity. The cycle of life out of flax rust, Melampsora lini. Genetic analysis
of flax rust depends on the ability to replicate all stages of the life cycle under controlled conditions for the production of independent and oververted offspring from flax rust isolates, and is complicated by rust, which is a mandatory biotrophic requiring all manipulations to be undertaken on a live plant-host. The flax rust system was among
the first three systems to provide cloned resistance genes and the identification of a new class of immune receptors, cytoplasmic nucleotide binding leukine-rich proteins (NB-LRR), whose specific members ensured plant resistance to fungi, oomycetes, bacteria, viruses, nematodes, sucking insects and parasitic plants(Ellis). The same
protein group was subsequently identified in animals as part of the congenital immune system. The study of alleles from L and chimeric genes between alleles expressed in transgenic flax gave the first indication that the specificity of the interactions of genes and genes was determined by the sequence of change in the LRR domain of
receptor proteins, and that the likely origin of new specific features of resistance in nature is the result of point mutations, re-assortment of mutations, as well as duplication and removal of LRR receptors. , 2007). The intracellular nature of flax resistance proteins implied that Avr (effector) proteins were detected by R proteins in host cells.
This was subsequently confirmed by the cloning of several Avr genes from flax rust, which encode various proteins, is released from rust and were taken into the plant's cell through the mediation of absorption signals located near the N'terminus protein Avr (Rafiqi et al., 2010). It has been shown that the molecular basis for gene
recognition relies on the specific and direct interaction of flax R proteins and the corresponding Avr proteins. Only those R and Avr proteins that interacted in yeast are two-hybrid analyses of the induced reaction of plant resistance when jointly expressed in plants (Wang et al., 2007). The study of the flax rust fungus and its interaction with
the host is now set for further progress after Agrobacterium conversion systems for this mandatory biotrophy (Lawrence et al, et al., (Figure 16). The authors would like to thank Dr. Diana Hurd for disseminating information on the vote and comparing the results of the vote. JALVK recognizes Marcela Estegio (University of Chile, Santiago,
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