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Abstract

Modern information technologies make it possible to store, analyze and trade
unprecedented amounts of detailed information about individuals. This has led to
public discussions on whether individuals�privacy should be better protected by re-
stricting the amount or the precision of information that is collected by commercial
institutions on their participants. We contribute to this discussion by proposing
a Bayesian approach to measure loss of privacy in a mechanism. Speci�cally, we
de�ne the loss of privacy associated with a mechanism as the di¤erence between the
designer�s prior and posterior beliefs about an agent�s type, where this di¤erence
is calculated using Kullback-Leibler divergence, and where the change in beliefs
is triggered by actions taken by the agent in the mechanism. We consider both
ex-post (for every realized type, the maximal di¤erence in beliefs cannot exceed
some threshold �) and ex-ante (the expected di¤erence in beliefs over all type real-
izations cannot exceed some threshold �) measures of privacy loss. Applying these
notions to the monopolistic screening environment of Mussa and Rosen (1978), we
study the properties of optimal privacy-constrained mechanisms and the relation
between welfare/pro�ts and privacy levels.
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1 Introduction

Modern information technologies make it possible to store, analyze and trade unprece-

dented amounts of detailed information about individuals. At the same time, the rapid

growth of online markets has signi�cantly increased the participation of individuals in

decentralized pricing mechanisms that rely on personal information provided by the par-

ticipants. Consequently, the organizers of these markets are able to gather vast amounts

of data on individuals�characteristics such as their tastes and willingness-to-pay for prod-

ucts and services. These data are valuable to a variety of entities including commercial

�rms as well as political institutions. If leaked to these entities, this information may be

used against the users�interests. In light of this, there has been a growing sentiment that

governments should enact laws that regulate the ability of private entities to collect and

use personal information. If the growing concerns for maintaining privacy were to lead

to regulations that impose privacy constraints on pricing mechanisms, how would that

a¤ect the design of these mechanisms, and what is the trade-o¤ between pro�ts, welfare

and privacy? This paper takes a step towards addressing these questions by proposing a

Bayesian approach to the measurement of loss of privacy and applying this approach to

the design of optimal mechanisms that are restricted in the amount/precision of private

information that they can elicit from participants.

The cornerstone of our approach is the idea that loss of privacy is a relative notion:

How much information is e¤ectively extracted from an individual through his actions

should be measured relative to what is already known about that individual. For example,

if it is publicly known that some individual was convicted of some crime, then there

is no loss of private information when that person voluntarily discloses his conviction.

Similarly, how much privacy is lost when a reputed business manager (say, the CEO of a

publicly traded �rm) discloses his wealth should depend on existing public information

(for example, about his annual income). In the context of private information that is

gleaned through trade, a seller who operates in a particular zipcode may already know

the wealth distribution of the residents in that zipcode. Similarly, if an individual who

is already active on some platform (say, an online radio) decides to make a purchase on

that platform, the information revealed from the purchase itself is in addition to the data

that the platform has already collected prior to the purchase, such as that person�s taste

in music.

Taking the idea of relative privacy to mechanism design, we suppose that the designer

already possesses some information about the participants in the form of a prior belief over

their �types.�He updates this belief as a result of the participants�interactions with the

mechanism, which reveal more information about them. For example, if the mechanism
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consists of a menu, then an individual�s choice of a particular menu item enables the

designer to learn additional information about this person�s preferences. Consequently,

the designer�s posterior belief about the participant�s type may be quite di¤erent from her

prior belief. This suggests that the di¤erence between the designer�s prior and posterior

beliefs should serve as the basis for measuring the loss of privacy associated with a

particular mechanism.

Building on this observation, we propose a Bayesian measure of relative privacy loss

for mechanisms and apply it to screening mechanisms, which shut down the strategic

interaction among di¤erent participants. Speci�cally, we consider the classic Mussa-

Rosen set-up in which a monopolist seller faces increasing marginal cost for producing a

higher quality of a product, and wishes to o¤er the optimal menu of quality-price pairs

to consumers with private willingness-to-pay per unit of quality. The standard solution

implies that, under a regularity condition, all consumer types that opt in perfectly reveal

their private types. Hence, the optimal solution entails complete loss of privacy: The

designer has a degenerate posterior belief on the type of each participant.

To study the design of mechanisms that preserve some level of privacy, we follow

the information theory literature and propose to measure a mechanism�s inherent loss of

privacy as the maximal relative entropy (i.e., the maximal Kullback-Leibler divergence)

between the seller�s posterior and prior beliefs. The posterior belief is derived from the

�message� received in the mechanism, and the maximum KL divergence is computed

across all messages (i.e., across all consumer types). We then augment the standard

mechanism design problem by restricting attention to mechanisms with privacy loss at

most �. The parameter �, which takes values between zero (full privacy) and in�nity

(no privacy), captures the strength of the privacy requirement. For any �nite �, our

approach imposes an upper bound on the amount of new information that a designer

may learn about any participant. While in our analysis we use the functional form of

KL-divergence, our results extend to the more general class of f-divergences (see Footnote

14 for details).

Before describing our results, we o¤er some discussion of this modeling framework.

By imposing an exogenous privacy constraint, we take a �paternalistic� approach to

privacy in the sense that we do not explicitly model consumers�preferences over privacy

(i.e., how consumers trade-o¤ privacy, consumption and money), but rather assume that

mechanisms are required to guarantee a certain level of privacy. This is motivated by

research showing that most consumers are not fully aware of the implications of allowing

commercial entities to record information about them. Indeed, many users make public

postings on social media, log in to websites through their social media accounts and do

not delete cookies (see e.g. Acquisti and Grossklags (2005), Barth and de Jong (2017) and
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Kokolakis (2017)).1 Our paternalistic approach is analogous to the one that is frequently

taken in the design of commitment mechanisms, which try to help agents with self-control

problems by limiting their choice sets even when there is no demand for such commitment

devices on part of the agents.2

This perspective that a regulator imposes the exogenous privacy constraint motivates

our choice of an information-theoretic measure of privacy loss. Our measure requires

making no speci�c assumptions about the exact form of future interactions between the

data holder and the agent. This approach re�ects our view that the continuation game

is often unknown (especially to the regulator), making it impossible to predict how data

collected today will be used in the future.3

Thus, a regulator may prefer the relative entropy measure, which is portable and

applicable to any mechanism design setting regardless of the particular type space. As

our analysis demonstrates, relative entropy (or any f -divergence) also makes the problem

especially tractable. In particular, our results suggest that the (ex-post) relative entropy

privacy measure admits an equivalent �reduced-form�implementation, where the regu-

lator simply requires each outcome in the designer�s menu to cater to a su¢ ciently big

proportion of the population. This is discussed in further detail below.

Our main results highlight the following key properties of optimal privacy-preserving

mechanisms. The optimal �-constrained mechanism partitions the type space into �nitely

many intervals (whose number depends on �), such that consumers truthfully announce

to which interval their type belongs. Thus, even though there is a continuum of types,

and the privacy constraint allows for a continuum of noisy messages,4 maximal pro�ts

are attained with only �nitely many messages. When the production cost function and

the type distribution satisfy some additional properties that we provide, any optimal

�-constrained mechanism consists of intervals that are monotonically ordered according

1Even if consumers were to fully endogenize the consequences of disclosing their private information,
it is often the case that individuals neglect the e¤ects of sharing their information on others. For
a discussion of the negative externalities and the �public bad� properties of loss of privacy, see e.g.
Fair�eld and Engel (2015) and Choi et al. (2019).

2Laibson (2018) calls it the commitment paradox and gives the following example: �College instructors
adopt course policies that force students to focus on their coursework: pop quizzes, classroom attendance
requirements, cold calling, graded problem sets, deadlines, classroom wi�blocking, and classroom laptop
bans. In my experience, most students don�t welcome these paternalistic restrictions.�

3Oftentimes data that are collected for one purpose are used for a surprisingly di¤erent one. A notable
example is the 2018 Cambridge Analytica political scandal in which it was revealed that Cambridge
Analytica had harvested the personal data of millions of peoples�Facebook pro�les without their consent
and used it for political advertising purposes.

4E.g., when each type � reports � + "; where " is a continuous random variable.
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to their mass from left to right, so that the gain from di¤erentiating higher types either

diminishes or increases.

We show that an interval partition of the type space satis�es the �-privacy constraint

if and only if the probability mass of each interval is at least e��. From a practical

viewpoint, this latter constraint on interval size may be more easily implemented by a

regulator. Speci�cally, to verify that a �rm did not violate the privacy constraint, the

regulator only needs to get the data on the proportion of consumers who bought each

menu item. He then needs to check that each item is bought by at least e�� fraction of

the consumers. This equivalent implementation does not require the regulator to know

the prior distribution of types, nor the equilibrium strategies. In fact, similar restrictions

are already used in practice in related contexts. For instance, the US government often

requires publicly released statistics (say, for research based on the US Census) to be

based on cells containing a minimum number of people or �rms. Our contribution is to

show that such practices are optimal under a general notion of relative privacy.

We then study the welfare consequences of varying the privacy constraint �. A priori,

it is not clear whether stricter privacy requirements help or harm consumers since such

requirements distort allocative e¢ ciency. We show that when the marginal production

cost is convex, buyer surplus is maximized at � = 0; where every type receives the same

quality, and it is minimized at � =1; where types are fully separated. However, we �nd
that when costs are quadratic and the prior density function is decreasing in the type,

total welfare is minimized at � = 0 (full privacy) and maximized at � =1 (no privacy).

This result suggests that regulators may face a trade-o¤ between consumer protection

and trade e¢ ciency.

To illustrate a complete characterization of the optimal privacy-preserving mecha-

nism, we analyze the uniform-quadratic case where types are drawn from a uniform

distribution and costs are quadratic. In this case, for any � 2 [log(n); log(n + 1)), the
�-optimal mechanism divides the type space into n equal intervals. Hence, when � is

in the interior of this interval, the privacy constraint is slack and pro�t is constant as �

increases within this interval.

A consumer�s action or message can be thought of as a noisy signal that the designer

observes about the consumer�s type. Ex ante, there is a distribution over these signals

induced by the prior type distribution and each type�s optimizing behavior. An alter-

native, more permissive notion of privacy would require that on average, the reduction

in the designer�s uncertainty regarding the consumer should not exceed some thresh-

old. More formally, one could impose that the expected relative entropy between the

designer�s posterior and prior beliefs should be at most �. This ex-ante notion of privacy,

in contrast to the ex-post notion discussed previously, is lenient to events of high loss
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of privacy that occur with small probabilities. Thus, the designer can preserve privacy

in a di¤erential manner across consumer types, so long as on average a given level of

privacy is maintained. This allows the designer to take advantage of the fact that some

consumers�private information may be more valuable than others, e.g., uncovering high

valuation types may be more pro�table than uncovering low valuation types.

We show that many of our �ndings continue to hold under the ex-ante notion of

privacy. However, there are a number of major di¤erences. First, even though it is

again without loss to consider mechanisms that involve interval partitions, existence of

an optimal mechanism is no longer straightforward. The di¢ culty arises since the ex-ante

constraint, unlike our original ex-post version, allows for partitions with countably many

intervals. Without a �nite upper bound on the number of intervals, it is more challenging

to use a compactness argument to prove existence. To show that an optimal mechanism

indeed exists, we show that there can be at most one interval of arbitrarily small mass,

i.e., at most one set of types about which the seller attains very precise information.

This property restores compactness and settles the existence issue; it also implies that

for � small (near full privacy), the optimal ex-ante �-constrained mechanism has exactly

two intervals. Another distinction of the ex-ante constraint is that the resulting optimal

mechanism always exhausts the privacy constraint. Consequently, the optimal mechanism

in the uniform-quadratic case is di¤erent from the one derived for ex-post privacy: For

� 2 (log(n � 1); log(n)], there is exactly one �short�interval and n � 1 �long�intervals
of equal length; the lengths are uniquely determined by the binding privacy constraint,

and the position of the short interval does not matter.

In the absence of a commonly-agreed-upon notion of privacy loss, our main con-

tribution is to propose a Bayesian de�nition that builds upon a familiar concept from

information theory, which has already been adopted by economists as a measure of the

cost of information. This privacy notion can be easily incorporated into the standard

mechanism design framework, and has the advantage of allowing to quantify the e¤ect of

a marginal change in the privacy threshold on pro�ts and welfare. As our results suggest,

the proposed privacy notion also provides a rationale for using simple/coarse mechanisms

with restricted message spaces.

We proceed as follows. In Section 2 we review the related literature. In Section 3

we introduce our ex-post Bayesian privacy notion, and in Section 4 we use this notion

to analyze optimal privacy-constrained mechanisms in a monopolistic screening setting.

Section 5 presents an alternative, ex-ante, Bayesian privacy measure and solves for the

corresponding optimal mechanisms under this constraint. Section 6 considers an exten-

sion where the seller possibly excludes a subset of consumers from trade, and Section 7

concludes.
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2 Related literature

Our work is related to rational inattention (Sims (2003), Caplin and Dean (2015), Matµejka

and McKay (2015), Matµejka (2016), Steiner et al. (2017), Caplin et al. (2019)). In that

literature, an uninformed decision maker chooses the structure of a signal she wants to

observe, subject to the information constraint that the signal can only contain a limited

amount of information about the state (as measured by mutual information). Note that

mutual information is equal to the expected KL divergence between the decision maker�s

posterior and prior beliefs. Thus, the rational inattention approach connects to our

mechanism designer�s problem under the ex-ante privacy constraint. The key di¤erence

is that in our setting, the �signal�observed is the agent�s message, which is bound by

an additional incentive constraint. Thus the seller in our model cannot directly choose

what information to acquire, but rather needs to incentivize another party to disclose

that information to her. Studying the interaction between the information constraint

and the incentive constraint is the main objective of our work.

The privacy constraint in our model entails that, in equilibrium, agents cannot com-

municate all their private information to the designer. Several papers have investigated a

related question of optimal mechanism design with limited communication, by imposing

exogenous restrictions on the cardinality of the action space available to agents. Notable

examples are Green and La¤ont (1987), Melumad et al. (1992), Blumrosen et al. (2007),

Bergemann et al. (2012), Kos (2012) and Blumrosen and Feldman (2013). In a di¤erent

setting, Mookherjee and Tsumagari (2014) study a dynamic mechanism design problem

with costly communication and compare between centralized and decentralized produc-

tion decisions. Van Zandt (2007), Fadel and Segal (2009) and Babaio¤ et al. (2013)

study the interaction between communication capacity and incentive feasibility by quan-

tifying the �cost of sel�shness��the amount of excess information (bits) that needs to

be exchanged to implement a given social choice function, relative to the case in which

agents honestly report their types. More generally, optimization problems over parti-

tions have been considered in Alonso and Matousheck (2008) and Frankel (2014), who

study delegation, as well as in Crémer et al. (2007), who study language design within

an organization.

A number of papers have studied privacy in dynamic models, where the agent�s pref-

erences for privacy is derived from how the designer can use the information against him

in the future. Such models appear in Taylor (2004), Calzolari and Pavan (2006), Conitzer

et al. (2012) among others. In contrast, our approach based on the divergence between

prior and posterior beliefs is reduced-form and especially applicable to the question of

regulation, where it is not a priori clear what the seller would/could do with the collected

7



consumer data. Static models about privacy have been studied in Gradwohl (2018), who

analyzes the problem of full implementation when agents prefer to protect their privacy,

in Gilboa-Freedman and Smorodinsky (2018), who axiomatize preferences over privacy

and in Bird and Neeman (2020), who study how to regulate what information a �rm

can use when interacting with a consumer so as to maximize the consumer�s welfare.5

Finally, in the two-sided market setting, Hidir and Vellodi (2018) and Ichihashi (2019)

have considered letting the consumer directly communicate to the seller via cheap talk

or Bayesian persuasion. In our model, however, the consumer reveals information about

his private type by responding to the seller�s mechanism.

Turning to the computer science literature, our notion of privacy di¤ers from the

popular measure of �di¤erential privacy.�6 Introduced by Dwork et al. (2006), di¤eren-

tial privacy roughly means that changing the data of a single individual (or of a single

attribute of an individual) should have a negligible e¤ect on computations done on the

entire data. In the context of mechanism design, Pai and Roth (2013) show that this

notion can be formalized as follows. Suppose there are n individuals, who each draws a

private type from some set T . De�ne a mechanismM as a mapping from pro�les of types

t 2 T n to distributions over some set of outcomes X. Then M is �-di¤erentially private

if for all pairs of type pro�les (t; t0) that di¤er only in ti, and for any payo¤ function

u : X ! R, it holds that

EM(t)u(x) � exp(�) � EM(t0)u(x):

This de�nition implies that the message of a single player has a negligible e¤ect on the

outcome, such that any action is almost weakly dominant in the sense that it cannot a¤ect

a player�s payo¤by a multiplicative factor of more than 2�, regardless of the other players�

actions. In light of this, several studies in computer science have used the above notion to

design mechanisms where truth-telling is either almost or exactly weakly dominant; see,

e.g., McSherry and Talwar (2007), Kearns et al. (2012), and Nissim et al. (2012). Other

studies attempt to incorporate agents with privacy concerns into mechanism design,

assuming an additive cost for loss of privacy that increases with the level of di¤erential

privacy (i.e., with the � above). Examples are Ghosh and Roth (2011), Ligett and Roth

5Also related is Ollár, Rostek and Yoon (2016), who analyze uniform pricing rules in markets with
multiple traders facing Gaussian information structures. Their focus is on the information that traders
may learn about each other from any feedback provided by the mechanism. They show that in their
environment, privacy �in the sense that no trader learns anything about the other traders�valuations
�is necessary for truthful bidding.

6For more detailed surveys on privacy in computer science and economics, see Pai and Roth (2013),
He¤etz and Ligett (2014) and Acquisti et al. (2016).
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(2012), Fleischer and Lyu (2012).

What distinguishes our approach is that we measure privacy loss relative to a prior,

whereas di¤erential privacy is independent of the prior. Additionally, note that the

di¤erential privacy constraint is stated solely in terms of the (random) outcome distrib-

ution, sidestepping any action taken in the mechanism. This captures privacy loss from

the perspective of an outside observer, but does not correspond to what the mechanism

designer may learn through observing participants�choices. In this paper we focus on

constraining the amount of information learned by the mechanism designer, and study a

benchmark in which the designer cannot commit not to access the data received. Thus,

we measure privacy loss using posterior beliefs that are derived from the messages sent,

rather than the outcomes induced. In particular, the designer in our model does not gain

from randomizing over allocations.

A notion related to di¤erential privacy is that of �informational smallness�(see e.g.

Gul and Postlewaite, 1992 and McLean and Postlewaite, 2002). In an environment with

asymmetric information, an agent is informationally small if, given the prior distribution

over states, the probability that revealing his information would have a non-negligible

e¤ect on the posterior distribution is small (assuming that the other agents reveal their

information truthfully). Like our privacy measure, informational smallness is also prior-

dependent. The main di¤erence is that we measure the designer�s reduction in uncertainty

relative to the prior, whereas informational smallness measures the sensitivity of the

posterior belief to each agent�s report.

Another line of research in computer science deals with distortion and anonymization

of databases and communication channels due to privacy concerns. This literature uses

KL divergence to measure loss of privacy in a setting where a sender wants to send part

of a dataset to a receiver in such a way that the receiver learns as little as possible about

some other sensitive part of the data. The problem is formulated as �nding the message

that minimizes the KL divergence between the common prior on the sensitive data and

the posterior, given the sender�s message, subject to the constraint that the receiver

attains some level of utility. Examples of works in this literature include Agrawal and

Aggarwal (2001), Díaz et al. (2003), Rebollo-Monedero et al. (2010), Sankar et al. (2013)

and Wang et al. (2016). However, these papers do not consider the strategic interaction

between privacy, mechanism and agent behavior, as we do here.
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3 Bayesian privacy

A single agent has a privately known type � 2 � and a type-dependent vNM utility

function u : Z��! R, where Z is the set of outcomes to be determined by a mechanism.
The mechanism designer does not know the agent�s type �, but has a prior belief about

� represented by a probability measure F on �, with strictly positive density f (with

respect to a base Borel measure). The designer�s payo¤ function is � : Z ��! R.
To maximize expected payo¤, the designer devises a mechanismM = hM; gi, whereM

is an arbitrary set of messages, and g :M ! Z is a function that maps each message inM

to an outcome z 2 Z.7 A strategy for the agent is a measurable function � : �! �(M).

A strategy �� is said to be an equilibrium in the mechanism M if each type � 2 � best
responds to M.
At the outset, the designer already has some information about the agent in the form

of his prior belief F . Given a mechanismM and an equilibrium ��, when the agent sends

message m 2M , the designer updates her information to the posterior belief F (�jm;��).
This change of beliefs entails loss of privacy for the agent. For convenience, we de�ne

F (�jm;��) = F for any message m sent with zero probability by every type in ��.

We measure the loss of privacy entailed by a message m 2 M in an equilibrium

�� by the relative entropy between the posterior belief triggered by m and the prior

belief: If the posterior measure F (�jm;��) has density f (�jm;��), the relative entropy
(or Kullback-Leibler Divergence) from F (�jm;��) to F is de�ned by:8

DKL (F (�jm;��) jjF ) =
Z
�

f (�jm;��) � log f (�jm;�
�)

f (�)
d�: (1)

If instead F (�jm;��) does not admit a density, we de�ne DKL (F (�jm;��) jjF ) = +1
(when F (�jm;��) has an atom this de�nition preserves continuity). Throughout the

paper, �log�represents the natural logarithm.

We de�ne the ex-post loss of privacy associated with an equilibrium �� in a mechanism

M to be the maximum divergence between the possible posteriors and the prior:

De�nition 1 The ex-post loss of privacy in an equilibrium �� of a mechanismM is given

by:

I (M; ��) = sup
m
[DKL (F (�jm;��) jj F )]

7We restrict the message set to be a Polish space, and endow it with its Borel ��algebra. We let
�M denote the set of all Borel probability measures over M endowed with the weak* topology.

8The relative entropy exhibits a number of key properties: DKL (GjjF ) � 0 for all G and F with
equality if and only if G = F , and DKL (GjjF ) is convex in both G and F . It is however not a metric
due to the failure of symmetry and of the triangle inequality.

10



Thus, in equilibrium, the change in the designer�s beliefs is no more than I (M; ��)
regardless of the agent�s type. In the next section we study the problem of a designer

who is restricted to use only mechanisms for which the above measure does not exceed

some threshold.

Note that privacy loss, according to De�nition 1, is not a property only of the mech-

anism M � it also depends on which equilibrium is played. Thus, in case of multiple

equilibria, to apply our notion of Bayesian privacy one needs to specify the relevant equi-

librium. As we explain in the next section, this will not be an issue in the application

that we analyze in this paper.

Note also that using relative entropy to quantify changes in beliefs does not bind our

privacy measure to a particular metric over the set of types. To be speci�c, one could

alternatively measure belief changes in a way that takes into account not only the relative

probabilities between prior and posterior beliefs, but also where these probabilities lie

according to a certain distance function between types (such as the Euclidean metric).

However, sticking to any particular metric might be misleading because how the collected

data will be used in future interactions is often unknown at present. Furthermore, a

metric-based measure is highly sensitive to the context. In some contexts, there is greater

loss of privacy in knowing that the agent is either of two �far-away� types (according

to the adopted metric) than knowing that he is one of two �close-by�types, while the

opposite is true in other contexts. For example, in the context of body weight where

distance between types is measured in pounds, there is greater loss of privacy in knowing

that an individual is either extremely obese or extremely underweight (i.e., far-away

types) than knowing that his weight is either 150 lbs or 160 lbs (close-by types). In

contrast, in the context of geographic location where distance between types is measured

in miles, there is greater loss of privacy in knowing that the agent�s residential address

is one of two adjacent streets in Provo, Utah, than in knowing that his address is either

a street in Los-Angeles or some street in New-York.9

The above examples suggest that when information reveals the agent type to belong

to a subset of types, privacy loss should be inversely related to the prior probability

of this subset: �ner information leads to greater privacy loss. Moreover, a metric-less

measure of privacy loss should only depend on this prior probability. Our relative entropy

measure exactly captures these properties, see Equation (2) below.

Next, we apply our de�nition of privacy loss to the well-known problem of monopo-

listic screening.

9Another related issue is that it is often not the collected data per se that matters for privacy
considerations, but rather other variables that are correlated with the data. It is thus impossible to a
priori choose one �right�metric that �ts all possible relevant variables in all future scenarios.
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4 Optimal privacy-constrained screening mechanisms

We consider the classic Mussa-Rosen (1978) set-up of monopolistic screening. A seller

(she) wishes to sell a product of quality q 2 R+ to a buyer (he), in exchange for payment
p 2 R. Thus, the set of outcomes Z is the set of price and quality pairs. The seller�s

pro�t is given by:

� (p; q; �) = p� c(q)

where c (�) is a twice-continuously di¤erentiable cost function that satis�es c(0) = c0(0) =
0 and c00(q) > 0 for all q � 0.10 The buyer�s type � 2 [�; �] represents his willingness to
pay per unit of quality, which is unknown to the seller. If the buyer consumes q and pays

p, his utility is

u (p; q; �) = q � � � p

We assume that the buyer�s virtual valuation, v (�) � �� (1�F (�))=f (�) ; is increasing
in � and satis�es v (�) � 0. To facilitate some technical arguments, we make the slightly
stronger assumption that v is continuously di¤erentiable and v0 > 0.

Positive virtual valuation allows us to focus on the case in which the seller wants to

include all buyer types, and the only question is what quality and price should be o¤ered

to each buyer type. Nonetheless, our results extend to the case where v(�) is negative �

see Section 6 for details.

To sell the good the monopolist uses a mechanism M = hM; p; qi, where p :M ! R+

and q : M ! R+ are functions that map each message in M to an outcome: Given a

message m 2M; the seller provides the quality q (m) and charges the price p (m).11

The seller�s expected pro�t in an equilibrium �� of a mechanism M is given by:

�(M; ��) = Em [p (m)� c (q (m))]

where Em is evaluated according to the probability that each message m 2 M is sent

under the strategy ��.

Note that a priori we allow the buyer to randomize over messages that he �nds

indi¤erent. However, it will follow from our analysis (Lemma 1 below) that almost all

buyer types do not randomize at the optimum.

In the absence of privacy constraints, an optimal (expected-pro�t maximizing) mech-

anism in this set-up is a direct revelation mechanism in which: (i) The buyer truthfully

reports his type �, (ii) The produced quality q (�) is determined such that c0 (q (�)) = v (�),

10In this application the designer�s payo¤ function (i.e., pro�t) is independent of the agent�s type �.

11The functions p (�) and q (�) correspond to the outcome function g(�) in the previous section.
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and (iii) The requested price is p (�) = q (�) � �
R �
�
q (x) dx.

Recall that, in general, the privacy loss associated with a mechanism M depends on

the equilibrium �� that is played. However, in our monopolistic screening setting multiple

equilibria only arise when a positive measure of buyer types are indi¤erent between two

messages, which must then lead to the same quality-price pair. As we discuss below, such

messages are �wasteful�and without loss excluded from the optimal mechanism. Hence,

to simplify the exposition, from now on we omit the reference to the equilibrium �� from

the notation of privacy-loss. Thus, I (M) is the privacy loss entailed by the (essentially
unique) equilibrium of M.

4.1 The design problem

A regulator requires the seller to design a mechanism that does not exceed some privacy

capacity � > 0. The seller�s problem can then be described as follows: Find a mechanism

M = hM; p; qi and a strategy � for the buyer that maximize the expected pro�t �(M) =
Em [p (m)� c (q (m))] subject to three constraints:

1. Incentive-compatibility - given M, the strategy � is optimal for the buyer:

u (p (m) ; q (m) ; �) � u (p (m0) ; q (m0) ; �) (IC)

for all � 2 �, all m 2 supp (� (�)) and all m0 2M ,

2. Individual-rationality - given M, a buyer who follows � is not worse o¤ than if he
did not participate in M:

u (p (m) ; q (m) ; �) � 0 (IR)

for all � 2 � and all m 2 supp (� (�)),

3. Privacy constraint -

I (M) � �: (P)

We refer to any mechanism that satis�es the above constraints as a �-feasible mech-

anism.12 Any mechanism that is pro�t-maximizing among all �-feasible mechanisms

is called a �-optimal mechanism. Our objective is to derive key properties of this

constrained-optimal mechanism. In particular, we are interested in addressing the fol-

lowing questions: What information does each buyer type disclose to the mechanism

(Proposition 1)? Do some buyer types disclose more information than others (Proposi-

tion 2)? Is the privacy constraint even binding (Proposition 3 and ensuing discussion)?

12How relevant the value of � is for feasibility depends on the prior, as does the KL divergence measure.
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4.2 Interval mechanisms

In standard mechanism design the monopolist maximizes her expected pro�t subject

only to the incentive-compatibility and individual-rationality constraints. Under our

assumptions on the virtual valuation, the optimal mechanism in this case perfectly screens

every buyer type, and each of the posterior beliefs is a degenerate distribution with a

single atom on the buyer�s exact type. The loss of privacy entailed by such a mechanism

is in�nite according to our de�nition, and is therefore infeasible for any �nite �. This

means that in a �-optimal mechanism the monopolist obtains only a noisy signal about

the buyer�s type. Our �rst result establishes that this noise has a particular structure,

which can be interpreted as a coarse revelation principle: There is no loss of generality

in focusing on mechanisms that partition the type space into intervals and each type

reports the interval he belongs to.

Lemma 1 For any �-feasible mechanism, there exists another �-feasible mechanismM =

hM; p; qi with the same pro�t level, such that M consists of intervals that partition [�; �],

and each type � 2 � reports the message m 2M for which � 2 m.

For future reference, we call such mechanisms as described in the lemma �interval

mechanisms.�

The intuition for this result is as follows (see the appendix for the formal proof). First,

messages that lead to the same quality-price pair can be combined without a¤ecting the

outcome of the mechanism. Due to convexity of the relative entropy function, this also

relaxes the privacy constraint. We can thus without loss assume that di¤erent messages

in the mechanism are strictly ranked by the quality levels they are mapped into. Next,

we argue that the set of types selecting the same message in equilibrium must form an

interval; this is because buyer preference is single crossing in the type and quality served.

Finally, any two of these intervals do not intersect each other except at the boundary,

since the indi¤erence condition holds for at most one type. The lemma then follows.13

We highlight that our model does allow the buyer to mix over di¤erent messages, in

case he is indi¤erent. But Lemma 1 shows that buyer randomization does not happen in

the optimal mechanism. This result stands in contrast to the rational inattention liter-

ature, where entropy-based constraints often lead to stochastic, non-partitional signals.

The distinction arises because in our setting, stochastic �signals� (i.e., messages) are

constrained by the buyer�s indi¤erence condition and turn out to be costly for the seller.

13The same argument and result hold even if the designer�s objective is to maximize a weighted sum
of pro�t and consumer surplus.
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It is also worth noting that the above argument only uses the convexity of KL diver-

gence, so that combining �redundant�messages decreases the maximum relative entropy

between prior and posterior beliefs. Because of this, Lemma 1 would continue to hold

if the privacy measure were an arbitrary convex function of the distribution of posterior

beliefs (as often assumed in the literature on costly information acquisition).

Specializing to the case of KL divergence, we next derive the privacy loss of any

interval mechanism. Note that when the seller sees a message m = [�0; �00] in equilibrium,

her posterior density updates to f(� j m) = f(�)=(F (�00) � F (�0)) for � 2 [�0; �00], and
f(� j m) = 0 otherwise. The relative entropy between this posterior belief and the prior
is computed as Z �00

�0
f(� j m) log f(� j m)

f(�)
d� = � log [F (�00)� F (�0)] : (2)

Since the ex-post privacy constraint requires this to be at most �, we derive the following

result:

Lemma 2 An interval mechanism is �-feasible if and only if each of the intervals has

mass at least e�� according to the prior distribution F .14

Taken together, Lemmas 1 and 2 imply that the seller�s problem reduces to select-

ing a �nite menu of quality-price pairs such that the mass of consumers who take any

option from the menu must exceed e��. This allows for a natural re-formulation of the

problem by specifying the privacy constraint in terms of � � e��, the lowest admissible
probability mass of an interval of pooled types. The advantage of using this alternative

parametrization is that, in contrast to the parameter �, the parameter � is expressed in

probability units which are easily interpretable.

Assuming now that the intervals in M are m1 = [�0; �1];m2 = [�1; �2]; : : : ;mn =

[�n�1; �n], with � = �0 < �1 < � � � < �n = �. Given the number n and cuto¤s �1; : : : ; �n�1,
we can derive the optimal quality and price that a �-optimal mechanism assigns to each

message. Speci�cally, note that the expected pro�t for the seller from employing this

14Essentially the same result holds if KL divergence is replaced by a more general class of f-divergences
which take the form of

R
�
�[f(� j m)=f(�)] dF (�) for some convex function �, with KL being the special

case of �(x) = x log x (Ali and Silvey, 1966). Indeed, Lemma 2 would state that in any �-feasible interval
mechanism, each interval has mass at least l, where l is de�ned such that l � �( 1l ) = �. Since this lower
bound on interval mass is the only feasibility constraint (for the ex-post privacy model), our subsequent
results also generalize to this class of divergences so long as � is suitably scaled according to �.

15



interval mechanism is given by:15

�(M) =
nX
i=1

�
q (mi)

Z �i

�i�1

v (�) f (�) d� � c (q (mi)) � [F (�i)� F (�i�1)]
�
; (3)

where v(�) is the virtual valuation of type �. Therefore, the quality that maximizes the

expected pro�t while maintaining IC and IR is uniquely determined by:16

c0 (q (mi)) = EF [v (�) j � 2 [�i�1; �i]] for any mi = [�i�1; �i] 2M: (4)

The standard envelope condition (derived from local IC) for buyer surplus also pins down

the requested price:

p (mi) = q (mi) � �i�1 �
i�1X
j=0

(�j � �j�1) � q (mj) for any mi = [�i�1; �i] 2M: (5)

It follows that the assignment of types to quality-price pairs in any �-optimal mechanism

is completely determined by the interval partition. To save notation, we will write qi and

pi in place of q(mi) and p(mi) whenever the partition is �xed by the context.

Summarizing the above discussion, we have reduced the problem to �nding the pro�t-

maximizing interval partition subject to each interval having mass at least � = e��, where

pro�t follows from Equations (3) and (4).

4.3 Characterization

With the above preliminary analysis, we can show that a �-optimal (interval) mechanism

exists. Indeed, by Lemma 1, it is su¢ cient to show there exists a pro�t-maximizing

interval partition. For this we apply a compactness argument. Consider the following

metric on the space of �nite partitions: If M consists of cuto¤s f�1; : : : ; �n�1g and M 0

consists of cuto¤s f�01; : : : ; �0m�1g, then de�ne d(M;M 0) to be the smallest � � 0 such that
for each �i there exists �0j within � distance from it, and vice versa. It is straightforward

15To see this, recall that in every mechanism that satis�es (local) IC and binds IR at the lowest

type, the seller�s pro�t is given by �(M) =
R �
�

h
~q (�) � �

R �
�
~q (x) dx� c (~q (�))

i
f (�) d�, where ~q (�) is

the quality provided to type �. The �rst term in the integrand is the social surplus generated by selling
quality ~q (�) to type �, the second term is the minimal information rent that is left with type � in every
IC mechanism, and the third term is the cost of producing ~q (�). The seller is the residual claimant of
welfare. Equation (3) is obtained from this formula using integration by parts.

16Since c is strictly convex and c0(0) = 0, the �rst order condition (4) uniquely determines the value of
the optimal q (mi). The fact that virtual valuation is increasing ensures that higher types receive higher
quality in equilibrium, and thus local IC implies global IC.
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to check this is indeed a metric, and that the resulting qualities qi and pro�t �(M) are
continuous with respect to this metric.

When the number of cuto¤s is bounded above by e� (as ensured by Lemma 2), the

space of partitions is compact in the topology induced by this metric. Thus, if we consider

any sequence of feasible partitions that approximates the supremum pro�t, there exists

a convergent subsequence. The limit partition is also feasible under the ex-post privacy

constraint, and by continuity it must achieve the supremum pro�t. Hence we have found

an optimal interval mechanism.

Proposition 1 There exists a �-optimal mechanismM = hM; p; qi, such thatM consists

of intervals (each with mass at least � = e��) that partition [�; �], and each type � 2 �
reports the interval to which it belongs. The number of intervals in the optimal partition

is bounded above by 1=� and bounded below by 1=2�.

The bounds on the optimal number of intervals provide a direct sense of how the

privacy requirement constrains the screening ability. The upper bound of 1=� follows

from the fact that each feasible interval has mass at least �. The lower bound of 1=(2�)

holds because each interval in the optimal partition has mass at most 2�; otherwise it

could be split into two sub-intervals both with mass exceeding �. By Lemma 2, the

resulting partition would be feasible, and Lemma 4 in the appendix shows that this split

would increase the seller�s pro�t.

An immediate corollary of Proposition 1 is the following:

Corollary 1 For 0 < � < log(2), any �-optimal interval mechanism involves perfect

pooling. For log(2) � � < log(3), any �-optimal interval mechanism consists of exactly

two intervals.

The �rst part is immediate when the privacy constraint is expressed in terms of �.

Indeed, when � < log(2) then � > 0:5, implying that at least 50% of the consumers

must choose each menu item. Thus, an optimal mechanism can o¤er no more than one

quality-price pair. As for the second part, � 2 [log(2); log(3)) means that � 2 (1=3; 1=2),
implying that the optimal mechanism can o¤er at most two quality-price pairs. Moreover,

by Lemma 4 in the appendix, the seller always bene�ts from having more information in

the form of dividing an interval into two sub-intervals (so long as the resulting partition is

still feasible). In particular, any feasible two-item menu leads to higher pro�t compared

to a singleton menu, leading to the above result.

In general, it is di¢ cult to fully characterize the optimal number n of intervals and

their cuto¤s for an arbitrary distribution F and cost function c, without imposing addi-
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tional structure on these primitives. Our next result provides a step toward that charac-

terization by showing that under certain conditions on F and c, the optimal mechanism

has the property that the precision of information that the designer collects is monotonic

in the agent�s type: i.e., she either knows more about lower types or knows more about

higher types.

To present this result we introduce the function G(x) = F�1(x) � (x � 1) for all
x 2 [0; 1]. Observe that G(F (�)) = �(F (�) � 1), whose derivative with respect to � is
v(�)f(�). Hence, by the chain rule, G0(F (�)) = v(�). We say that v(�) is strictly more

concave (convex) than F (�) if G0(x) is strictly concave (convex) in x.

Proposition 2 Suppose that the cost function c(�) has non-negative third derivative, and
that the virtual valuation v(�) is strictly more concave than F (�). Then any �-optimal

mechanism consists of intervals that are ordered in increasing mass from left to right;

that is, F (�i+1)� F (�i) � F (�i)� F (�i�1) for all i 2 f1; : : : ; n� 1g. Symmetrically, the
intervals in the optimal mechanism would be ordered in decreasing mass if c000 � 0 and

v(�) is strictly more convex than F (�).

We mention that a su¢ cient condition for v(�) to be more concave than F (�) is

that the prior density function f(�) is increasing and log-concave; in fact, F (�) would

be convex and v(�) concave.17 For example, this is satis�ed when F (�) = �r � s with
� = s(1=r) and � = (s+1)(1=r), where r and s are parameters satisfying r > 1 and s > 1=r

(the latter ensuring that virtual valuations are positive).

The intuition for Proposition 2 is as follows. From c0 (qi) = EF [v (x) j x 2 [�i�1; �i]],
we see that the second derivative c00 measures the extra production cost incurred when

the seller divides an interval into two sub-intervals and adjusts quality/price accordingly.

So c000 > 0 means that the seller faces greater production cost in trying to screen the

higher types. On the other hand, observe that the derivative of the virtual valuation

captures the revenue gain when dividing an interval into two. Thus v(�) being more

concave than F implies that the seller bene�ts less from di¤erentiating high types. Both

e¤ects combine to yield intervals that are optimally ordered in increasing mass.

4.4 Uniform-quadratic case

To give a complete characterization of an optimal �-constrained mechanism, in this sub-

section we consider a speci�c distribution of types and cost function. We will provide

17We have v00(�) = (f 0(�)=f(�))
0 � (1� F (�)) =f(�) � (f 0(�)=f(�)) �

�
1 + f 0(�)(1� F (�))=f(�)2

�
< 0:
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detailed results for this particular example to illustrate properties of the optimal mech-

anisms that we derived in the previous subsection. One speci�cation that admits an

elegant analytical characterization is the �uniform-quadratic�case, where F is uniform

and c is quadratic. Since in this case c000 = 0 and v(�) is as convex as F (�) (in fact both

are linear in �), the results in Proposition 2 suggest that the ordering of intervals does

not matter for pro�t. As we show below, this property enables us to focus on the lengths

of the intervals and obtain a full characterization of the optimal partition.

Proposition 3 Suppose F � U [�; �] with � � 2� (so that v(�) � 0), and c(q) = q2=2.

Then, given any positive integer N and any � 2 [log(N); log(N + 1)), the �-optimal

mechanism divides the type space into N equal intervals.

In terms of the lower bound � on the mass of each interval, the condition � 2
[log(N); log(N + 1)) translates to � 2 (1=(N + 1); 1=N ]. Phrased in this way, the re-

sult says that in the uniform-quadratic case it is optimal to divide the type space into as

many equal intervals as feasible.

We highlight that the optimal mechanism in this case is locally the same as � increases.

Thus, for � in the interior of the interval (log(N); log(N + 1)), the optimal mechanism

entails a privacy loss of log(N) which is strictly less than �. It follows that the ex-

post privacy constraint is often slack. This is one of the challenges in obtaining a full

characterization of the optimal mechanism more generally.

4.5 Welfare analysis

Varying the privacy capacity of a mechanism a¤ects the seller�s pro�t, the buyer sur-

plus and the total welfare. In this section we analyze how � changes these quantities.

Throughout this section we assume F has monotone hazard rate, that is f (�) =(1�F (�))
increases in �. This property implies that the virtual valuation v(�) is increasing.

Because higher � relaxes the privacy constraint (P) in the seller�s problem, it is

immediate to notice that the expected pro�t � is weakly increasing in �.

Corollary 2 Pro�t from a �-optimal mechanism is increasing in �.

As the uniform-quadratic case shows, this monotonicity is not necessarily strict every-

where. However, we do know that pro�t is uniquely maximized at � =1 (when there is

no privacy concern), and uniquely minimized at � = 0 (with full privacy).18

18This is because pro�t strictly increases when an interval is divided into two sub-intervals (and
qualities/prices are adjusted accordingly). See Lemma 4 in the appendix.
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On the other hand, one may expect that buyer surplus is higher when the privacy

constraint is tighter. However, this is not obvious because privacy may hurt allocative

e¢ ciency so much that it actually damages the buyer�s payo¤. As far as we are aware,

there is no general �nding in the literature regarding how buyer surplus varies with the

interval partition.

We are able to answer a simpler question of which privacy level maximizes/minimizes

buyer surplus. Speci�cally:

Proposition 4 Suppose the cost function c satis�es c000 � 0. Then buyer surplus from a

�-optimal mechanism is maximized at � = 0, where every type receives the same alloca-

tion, and it is minimized at � =1, where types are fully separated.

For an intuition of this result, we write buyer surplus as E[q(�) �(1�F (�))=f(�)], since
any additional quality provided to type � bene�ts all higher types by the same amount.

Note that the quality q(�) increases in � while the inverse hazard rate (1 � F (�))=f(�)
decreases in �. Thus for any given expected quality E[q(�)], the expected buyer surplus
E[q(�) � (1� F (�))=f(�)] is maximized when q(�) is constant in �.19

Next, recall that for any interval mechanism, when � 2 [�i�1; �i] the optimal quality
q(�) is given by c0(q(�)) = E[v(�̂) j �̂ 2 [�i�1; �i]] which equates the marginal cost to
the expected virtual valuation on the interval. Thus we have E[c0(q(�))] = E[v(�)],
meaning that the expected marginal cost does not depend on the partition. Since c0 is

by assumption a convex function, we conclude that the expected quality E[q(�)] is also
maximized when q(�) is constant.

Combining both e¤ects described above, we see that the coarsest partition that pools

all types maximizes expected buyer surplus (in fact, across all interval partitions). A

similar argument shows that the �nest partition (i.e., � =1) minimizes buyer surplus.

Finally, a regulator might be interested in �nding the level of � that maximizes total

welfare. The answer turns out to be more subtle, as the following partial characterization

suggests:

Proposition 5 Assume quadratic costs c(q) = q2=2. If the density f (�) increases in �,
then total welfare is maximized at � = 0 and minimized at � = 1. Conversely, if f (�)
decreases in �, then total welfare is minimized at � = 0 and maximized at � =1.

19This is because if the quality q(�) is not constant across types, then decreasing it for higher types
and increasing it for lower types, in a way that preserves the expected quality E[q(�)], increases the
expected buyer surplus E[q(�) � (1� F (�)) =f(�)].
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Our proof shows that with increasing density and quadratic cost, total welfare nec-

essarily increases when the seller obtains less information in the form of combining two

intervals into one. Thus, in this case the coarsest partition maximizes welfare while the

�nest partition minimizes welfare. One di¢ culty in obtaining a more general result lies

in the fact that total welfare takes into account both buyer and seller surplus, which de-

pend on the value distribution, the cost function, as well as their interaction.20 Separate

assumptions about each of these primitives typically do not lead to clear predictions.

5 Ex-ante Bayesian privacy

So far we have analyzed an ex-post notion of privacy loss. Under this criterion, the

monopolist cannot learn too much about any buyer type. In this section we explore an

alternative, less stringent, notion of privacy, requiring the designer not to learn too much

about the buyer type on average. Formally, we weaken the ex-post privacy constraint

I(M) � � to its ex-ante version:

De�nition 2 The ex-ante loss of privacy entailed by mechanism M = hM; p; qi is given
by

Iea (M) = Em [DKL (F (�jm) jj F )]

where Em is evaluated according to the probability that each message m 2M is sent in

an equilibrium of M.21

That is, we impose an upper bound on the average change in the seller�s beliefs, as

measured by relative entropy. Given � > 0, we say a mechanism is ex-ante �-feasible if

Iea (M) � �. It is ex-ante �-optimal if it is pro�t-maximizing among all mechanisms M
that satisfy IC, IR and the ex-ante privacy constraint.

20Speci�cally, the marginal cost function determines optimal qualities, and the cost function itself maps
these qualities into expected production cost (averaged across types using the prior distribution). This
is a more complicated situation than our previous result about buyer surplus, which is fully determined
by optimal qualities and the prior distribution. In other words, the e¤ect of c(�) on buyer surplus can
be analyzed separately from F (�), but such separation is lost in the study of total welfare.

21In calculating Iea (M) we adopt the convention that 0�1 = 0, and therefore Iea (M) can still be �nite
if there is a measure-zero set of messages (sent in equilibrium) that induce posterior distributions F (�jm)
whose divergence from the prior F is in�nite. But if the set of such messages has positive measure, then
Iea (M) = +1 according to our de�nition.
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5.1 Existence

To begin the analysis, we can use essentially the same argument to show that Lemma

1 also holds under the ex-ante criterion. Thus it is without loss to consider interval

mechanisms. Using Equation (2), we can compute the ex-ante loss of privacy entailed by

a (�nite) interval mechanism to be:

Iea(M) =
nX
i=1

� [F (�i)� F (�i�1)] � log [F (�i)� F (�i�1)] = H(gM); (6)

where gM(mi) = F (�i)�F (�i�1) is a discrete distribution over the elements ofM induced

by the prior, and H(�) is the Shannon entropy function. At this moment we cannot rule
out the possibility that there are countably many intervals. In that case, the discrete

distribution gM is de�ned in the same way, and we again have Iea(M) = H(gM).
This discussion suggests that under the ex-ante privacy constraint, the pro�t maxi-

mization problem reduces to �nding an interval partition M subject to H(gM) � � that
maximizes the pro�t in Equation (3) with qualities given by (4). Note that the privacy

constraint H(gM) � � can be interpreted as requiring that the weighted geometric mean
of the masses of the intervals must exceed e�� (where the weight applied to each interval�s

mass is just this mass itself).

However, existence of an optimal mechanism is not straightforward in this case. The

reason is that the feasibility constraint H(gM) � � allows for countably many intervals,
which lose compactness (unlike with the ex-post constraint). We settle the existence

issue in the following result:

Proposition 6 There exists an ex-ante �-optimal mechanism M = hM; p; qi, such that
M consists of �nitely many intervals that partition [�; �], and each type � 2 � reports the
interval to which it belongs.22

We provide a sketch of the proof here, leaving further details to the appendix. Con-

sider a sequence of ex-ante �-feasible interval mechanisms Mj = hMj; pj; qji such that
�(Mj) converges to the supremum pro�t �� across feasible mechanisms. We will re-

place each mechanism Mj by another feasible interval mechanism ~Mj =
D
~Mj; ~pj; ~qj

E
,

22It is instructive to compare this result to an analogous result in the rational inattention literature.
Mat¼ejka (2016) shows that a rationally inattentive seller would charge only �nitely many prices even
though there is a continuum of states. The argument used to prove that result relies on properties of
Hermite polynomials. In contrast, the proof in our environment is simpler and only makes use of the
tradeo¤ between privacy and pro�t when merging/dividing intervals.
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such that the new message set ~Mj consists of at most N intervals, where N is a con-

stant that depends only on F and �. This upper bound N restores compactness and

allows us to �nd a subsequence of the partitions f ~Mjg that converges to some limit par-
tition ~M1, under the metric de�ned in Section 4.3. By continuity, ~M1 is also a feasible

mechanism, and it achieves the limit pro�t along the convergent subsequence. There-

fore, if we could carry out the replacement in such a way that �( ~Mj) � �(Mj), then

�( ~M1) � lim supj �( ~Mj) = �
� and ~M1 would be ex-ante �-optimal.

It remains to �nd the appropriate replacements ~Mj. As discussed, starting from any

mechanismMj, merging two adjacent intervals inMj into a single interval (and adjusting

the qualities/prices accordingly) strictly decreases the pro�t. However, by doing so the

seller is able to save on the ex-ante privacy measure, which enables him to divide any other

interval inMj into two sub-intervals, increasing the pro�t. The key argument, then, is to

compare the pro�t gain in the latter step to the pro�t loss in the former. We show that

whenever two adjacent intervals are both of mass smaller than some constant �, they can

be combined to create enough slackness in the privacy constraint; and if the slackness

is used to break another (big) interval into two, the seller achieves a net pro�t gain.

Intuitively, this pro�t comparison holds because the entropy function severely punishes

against precise knowledge about any small set of types. So when the seller combines two

�small�intervals into a single one, the saved privacy measure is signi�cant relative to the

reduction in pro�t.

By repeatedly combining adjacent �small�intervals, we are able to transformMj into

a mechanism ~Mj with weakly higher pro�t, and with no adjacent intervals both having

mass < �. The upshot is that ~Mj has at most N := 2=� + 1 intervals, completing the

proof.23

5.2 Properties of optimal ex-ante constrained mechanisms

In contrast to the ex-post problem, the ex-ante privacy constraint always binds at the

optimal mechanism. Moreover, unlike Lemma 2, the number of intervals now admits a

lower bound of 1=� (where � � e��).

23To be fully rigorous, in the proof we �rst �nd a replacement with �nitely many intervals. This can
be done because for any limit point Mj (more precisely, the bounds of intervals in Mj) may have, the
seller incurs little pro�t loss if she combines all the small intervals near this limit point. Such loss is
covered by the net pro�t gain in merging two small intervals and dividing a long one. Once we have a
�nite Mj to begin with, we still need to guarantee that the process of �combining small intervals�will
come to an end. We do this by combining two pairs of adjacent small intervals at once and breaking a
big interval into two. There is still net pro�t gain, and in addition the total number of intervals strictly
decreases. The �nal ~Mj involves at most one pair of adjacent small intervals, so its size is again bounded
uniformly across j.
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Proposition 7 The privacy constraint is exhausted in any ex-ante �-optimal mechanism
M; that is, Iea (M) = �. Moreover, any optimal mechanism involves at least 1

�
intervals.

The �rst part holds because the seller always bene�ts from dividing an interval into

two. By choosing one of the sub-intervals to be �small,�the average privacy constraint is

still satis�ed. The second part is a result of the �rst part, Equation (6) and the following

well-known estimate of the Shannon entropy (applied to gM):

(Cover and Thomas, Theorem 2.6.4) If a discrete random variable X takes n values,

then its Shannon entropy satis�es H(X) � log(n), with equality if and only if X has a

uniform distribution.

On the other hand, we show that when the ex-ante privacy constraint is stringent,

two messages are su¢ cient to implement the optimal mechanism. This complements the

previous Corollary 1.

Proposition 8 There exists � > 0 such that any ex-ante �-optimal interval mechanism
with � 2 (0; �) consists of exactly two intervals.

We prove the result via a lemma stating that there can be at most one interval with

arbitrarily small mass. Thus, even though the average privacy constraint allows the seller

to learn almost perfectly about sets of small types, the optimal solution involves at most

one such set. In the above proof sketch for Proposition 6, we have already discussed why

having two adjacent �small�intervals is suboptimal. The next lemma additionally rules

out the presence of two �small�intervals that are non-adjacent.

Lemma 3 For every k > 0, there exists � > 0 such that any ex-ante �-optimal interval
mechanism with � � k has at most one interval with mass < �.

Finally, Proposition 2, which gives su¢ cient conditions for the optimality of intervals

that are increasing/decreasing in mass, continues to hold under the ex-ante privacy mea-

sure. This is because the proof of Proposition 2 is based on evaluating whether pro�t

increases or decreases when two adjacent intervals are �switched.�Since switching does

not a¤ect the amount of privacy loss under both the ex-post and ex-ante measures, this

argument extends without change.

The welfare results Proposition 4 and Proposition 5 also generalize to the current

setting, since their proofs only involve welfare comparison when combining two adjacent

intervals. Whether we adopt the ex-post or ex-ante privacy measure, the coarsest interval

partition corresponds to � = 0, and the �nest partition to � =1. These levels of privacy
requirement thus maximize/minimize buyer surplus and/or total welfare.
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5.3 Uniform-quadratic case revisited

Recall that in the uniform-quadratic case, the solution under the ex-post constraint di-

vides the type space evenly. Since this solution does not always exhaust the (ex-ante or

ex-post) privacy constraint, we know from Proposition 7 that pro�t is not maximized

under the ex-ante constraint. Indeed, the optimal mechanism under the ex-ante privacy

constraint di¤ers from the optimal mechanism under the ex-post constraint. Moreover,

it has novel implications regarding the trade-o¤ between privacy and pro�t, which does

not arise under the ex-post constraint. In light of this, we revisit the uniform-quadratic

example to further illustrate the di¤erence between the two privacy notions.

Proposition 9 Suppose F � U [�; �] with � � 2�, and c(q) = q2=2. Then, given any

positive integer N > 1 and any � 2 (log(N�1); log(N)], the ex-ante �-optimal mechanism
divides the type space into N intervals.

Speci�cally, N � 1 of these intervals have the same lengths `b, while the last interval
has weakly smaller length `s. These two lengths are uniquely determined by the total

length � � � and the binding privacy constraint:

� � � = `s + (N � 1) `b

� = � `s�
� � �

� log `s�
� � �

� � (N � 1) � `b�
� � �

� log `b�
� � �

�
The optimal interval partition is unique up to reordering of the intervals.

The proof consists of three steps. First, we show that the expected pro�t (and privacy

measure) only depends on the lengths of the intervals in the partition, and not on the

ordering of these intervals. Next, we argue that the �rst- and second-order conditions

for the constrained maximization problem can only be satis�ed if the intervals have at

most two lengths, with exactly one interval having shorter length. Lastly, we determine

the optimal number of intervals from the binding privacy constraint.

The structure of this optimal mechanism has an interesting implication for the trade-

o¤between privacy and pro�t. For � = 1 and � = 2 in the uniform-quadratic case, Figure

1 depicts the expected pro�t of the monopolist in the ex-ante �-optimal mechanism as a

function of �.
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Figure 1: The privacy-pro�t frontier in the uniform-quadratic case

The kinks in Figure 1 represent values of � where the number of intervals in the �-

optimal mechanism increases. Between kink points the number of intervals remains �xed

but the intervals change. Notice that while there are diminishing returns to loss of privacy

when the number of intervals increases, there are increasing returns to loss of privacy

when � increases but the number of intervals remains �xed (that is, the curve between

kink points is convex). This means that when we introduce a new (small) interval, the

initial change in expected pro�t is small relative to the loss of privacy; intuitively, the

ex-ante privacy measure punishes against precise information about a small set of types.

But as we continue to lower privacy, expected pro�t rises at an increasing rate until a

new interval is added.

We mention that the qualitative features of the privacy-pro�t frontier are robust to

small changes in the prior distribution (away from uniform). This is because the set of

ex-ante �-optimal mechanisms, when viewed as a correspondence from the distribution

F to the space of interval partitions, is upper-hemicontinuous.24

6 Negative Virtual Values

So far we have focused on the case where all types have non-negative virtual values. While

our results are more easily stated under this simplifying assumption, they generalize to

the case where v(�) is negative. In this section, we discuss this extension and describe

24This follows from the Maximum Theorem, since the seller solves a constrained optimization problem
in which pro�t is continuous in the interval partition (with respect to the metric de�ned in Section 4.3),
and the constraint H(gM ) � � is both upper- and lower-hemicontinuous.
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how some of the results need to be slightly modi�ed. Throughout this section we work

with the ex-post privacy constraint.

First of all, the optimality of interval mechanisms reported in Lemma 1 holds without

change. This is because our proof of this result primarily uses the convexity of KL-

divergences and the single-crossing property of buyer preferences, which continue to hold

even with negative virtual values.

It is also still true that every interval in the partition has mass at least � = e��,

although the lowest interval may now have a negative average virtual value and lead to

an optimal quality of zero. Note that if there are more than one interval with negative

average virtual value, then these intervals can be combined without a¤ecting the privacy

constraint or pro�t. So below we assume there is at most one such interval. A corollary

is that apart from the lowest two intervals, all higher intervals consist of types with

positive virtual values.25 Because of this, Proposition 2 (regarding the intervals ordered

in increasing/decreasing mass) holds except possibly for the lowest two intervals.

The next result generalizes Proposition 3 and completely characterizes the optimal

interval partition in the uniform-quadratic case.

Proposition 10 Suppose F � U [�; �] with � > 2� (so that v(�) < 0), and c(q) = q2=2.
Then, given any positive integer N and any � = e�� 2 (1= (N + 1) ; 1=N ], the �-optimal
mechanism takes one of three possible forms described below:

1. if � � ((N � 1) = (2N � 1)) � �, then dividing the type space into N equal intervals

is optimal;

2. if � < ((N � 1) = (2N � 1)) � � and �= (2N � 1) > �(� � �), then it is optimal to
have N intervals with cuto¤s �j = ((j +N � 1) = (2N � 1)) � � for 1 � j � N � 1;

3. otherwise there exists a unique positive integer m � N such that

�

2m� 3 > �(� � �) �
�

2m� 1 ;

in which case it is optimal to have m intervals. Except for the lowest interval, the

remaining m� 1 intervals all have mass exactly �.

To interpret this solution, note that � � 1=N means it is feasible to divide the

type space into N equal intervals, but � > 1= (N + 1) means there cannot be more

25Formally, the claim is that it is without loss to consider optimal partitions � = �0 < �1 < � � � < �n = �
with v(�2) > 0. The uniform-quadratic case studied below shows that v(�1) need not be positive.
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than N intervals. As we showed in Proposition 3, N equal intervals is optimal in an

environment where virtual values are all positive. More generally, the condition � �
((N � 1) = (2N � 1)) �� corresponds to the lowest interval having positive average virtual
value under the equal partition.26 Thus, the �rst part of the above proposition says that

if the ��rst best� solution of N equal intervals does not require the seller to withhold

sale from the lowest interval, then it is in fact the optimal partition.

However, when this candidate solution involves no sale to the lowest interval, the

optimal solution changes. Intuitively, in this case the seller would like to increase the

length of the lowest interval to charge higher prices and extract more pro�ts from the

other intervals. The second part of Proposition 10 provides a �second best� solution,

which involves a lowest interval with negative average virtual value, and N � 1 other
intervals with equal length. Note that as long as the mass lower bound of � is not

binding (re�ected in the condition �= (2N � 1) > �(� � �)), the optimal length for the
N � 1 intervals is �= (2N � 1) and does not depend on � in this case. This length turns
out to maximize the seller�s pro�t from N�1 equal intervals when the privacy constraint
is ignored.

Lastly, the parameters may be such that the second best no longer satis�es the privacy

constraint. When this happens, the optimal partition involves a lowest interval with

negative average virtual value, and m � 1 other intervals with mass exactly �. The
number m as determined by the condition �= (2m� 3) > �(� � �) � �= (2m� 1) is the
biggest number such that �tting in m � 1 intervals with mass � still makes the lowest
one of them have positive average virtual value. This, as we discussed, is a key necessary

property for the optimal partition.

7 Concluding remarks

This paper proposed a Bayesian approach to incorporating privacy constraints into mech-

anism design. The underlying idea is that the designer already has some prior informa-

tion about the participants, and the loss of privacy induced by a mechanism should be

measured as the di¤erence between this prior information and the updated informa-

tion that can be inferred from the agents�interaction with the mechanism. This entails

an additional constraint - on top of the standard incentive-compatibility and individual-

rationality constraints - that needs to be satis�ed by a mechanism: The di¤erence between

the prior and posterior information must be below some threshold.

26Since v(�) = 2� � �, the average virtual value on [�; �1] is positive if and only if �1 � � � �. This
holds under the equal partition if and only if � + (1=N) (� � �) � � � �.
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We illustrate this approach by using relative entropy to compute the di¤erence be-

tween the prior and posterior beliefs and applying this measure to a canonical monopo-

listic screening problem. We show the implications of imposing the privacy constraint at

the ex-post stage (i.e., for every realized consumer type, the loss of privacy must be below

some bound), and at the ex-ante stage (i.e., the loss of privacy is bounded when averaging

over possible type realizations). We also demonstrate how our framework can be helpful

in understanding the e¤ect of privacy constraints on consumer and seller welfare.

Our approach opens the door to many interesting questions about mechanism design

and privacy. In particular, how does our analysis extend to an environment with multiple

agents? In Appendix C below we derive the optimal symmetric mechanism under ex-

post privacy for uniformly distributed types. This leaves open the question of designing

optimal privacy-preserving auctions when asymmetric treatment of bidders is allowed.

We hope that future research will provide answers to these and related questions.
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A Proofs for the main model

A.1 Preliminaries

We de�ne two auxiliary functions. First, we de�ne � (x) as the inverse of c0, i.e.,

c0 (� (x)) = x for all x � 0. Convexity of the cost function and c0(0) = 0 ensures

that � is uniquely de�ned and increasing. In fact, by the chain rule we have

�0(x) =
1

c00(�(x))
:

Since c00(q) is positive and continuous for q � 0, we deduce that c00(�(x)) is bounded

above and away from zero for x 2 [v(�); v(�)].
Next, we de�ne the function h (x) as follows:

h (x) = � (x) � x� c (� (x))

The �rst derivative of h (x) is given by:

h0 (x) = �0 (x) � x+ � (x)� c0 (� (x)) � �0 (x) = �0 (x) � x+ � (x)� x � �0 (x) = � (x)

Thus the second derivative h00 is bounded above and away from zero for x 2 [v(�); v(�)].

The following lemma provides an estimate of the seller�s pro�t gain when an interval

is divided into two sub-intervals. It will be used in subsequent proofs.

Lemma 4 There exists a positive constant � depending on F and c(�), such that for any
triple of cuto¤s a < b < c, the pro�t gain � incurred when dividing a single interval [a; c]

into two sub-intervals [a; b] and [b; c] (and adjusting qualities/prices accordingly) satis�es

� � �

(F (b)� F (a))(F (c)� F (b))(F (c)� F (a)) �
1

�
:

Note from Equations (3) and (4) that � only depends on a; b; c and is independent

of the remaining cuto¤s.

Proof: Let Ev (mi) denote EF [v (�) j � 2 [�i�1; �i]]. Then the pro�t of mechanism
M = hM; p; qi as given by Equations (3) and (4) can be rewritten as

�(M) =
X
i

h (Ev (mi)) � [F (�i)� F (�i�1)]
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When an interval [a; c] is divided into [a; b] and [b; c], the pro�t gain is therefore

� = h(E[v(�) j a � � � b]) � [F (b)� F (a)] + h(E[v(�) j b � � � c]) � [F (c)� F (b)]
� h(E[v(�) j a � � � c]) � [F (c)� F (a)]:

(7)

For notational convenience, let v1 = E[v(�) j a � � � b], v2 = E[v(�) j b � � � c] and

v = E[v(�) j a � � � c]. Observe that v1 < v < v2 and

v1 � [F (b)�F (a)]+v2 � [F (c)�F (b)] =
Z b

a

v(�)f(�)d�+

Z c

b

v(�)f(�)d� = v � [F (c)�F (a)]:
(8)

Thus from Equation (7) and the strict convexity of h, it is clear that � > 0.

To obtain a sharper estimate as required by the lemma, we apply second-order Taylor

expansion to write

h(v1) = h(v) + (v1 � v)h0(v) +
(v1 � v)2

2
h00(�)

h(v2) = h(v) + (v2 � v)h0(v) +
(v2 � v)2

2
h00(�)

for some � 2 (v1; v) and � 2 (v; v2). Plugging these into Equation (7) and using (8), we
have

� = h(v1) � [F (b)� F (a)] + h(v2) � [F (c)� F (b)]� h(v) � [F (c)� F (a)]

=
(v1 � v)2

2
h00(�) � [F (b)� F (a)] + (v2 � v)

2

2
h00(�) � [F (c)� F (b)]:

Recall that h00 is bounded above and away from zero, and F (b) � F (a) is on the same
order as b � a (since the density f is bounded above and away from zero). Thus the

lemma would follow once we show that v� v1 is on the same order as c� b (and similarly
v2 � v is on the same order as b� a).
Indeed, we can rewrite Equation (8) as (v2�v1)�[F (c)�F (b)] = (v�v1)�[F (c)�F (a)].

Thus it remains to show v2 � v1 is on the same order as c� a. Note that

v2 � v(b) =
R c
b
[v(�)� v(b)]f(�)d�
F (c)� F (b) =

R c
b

R �
b
v0(y)f(�) dyd�

F (c)� F (b) :

As v0(y)f(�) is bounded above and away from zero, the numerator above is on the same

order as
R c
b

R �
b
1 dyd� = 1

2
(c � b)2. So v2 � v(b) is on the same order as c � b. Similarly

v(b)� v1 is on the same order as b� a. This proves that v2 � v1 is on the same order as
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c� a, and hence the lemma.

A.2 Proof of Lemma 1

We will show that any mechanism M = hM; p; qi that satis�es I (M) � �, for some �nite
� > 0, can be transformed into an interval mechanism in a way that does not change the

expected pro�t of the monopolist, and weakly decreases the loss of privacy.

Given M = hM; p; qi and a best-response strategy � (�) for the agent under M, we
�rst drop duplicate messages: We say that message m0 is a duplicate of message m if

p (m) = p (m0) and q (m) = q (m0). Clearly, if m0 is a duplicate of m, then removing

m0 from M and adjusting � such that all types who sent m0 would now send m, does

not change the seller�s expected pro�t. Moreover, the posterior belief given the message

m in the new mechanism is an average of the posterior beliefs given the messages m

and m0 in the original mechanism. Due to the convexity of the divergence function

DKL (F (�jm) jj F ) in its �rst argument, the entailed loss of privacy I (M) is decreased.
This is true under both the ex-post and ex-ante measures of privacy.27

Next, denote by � (m) the set of all types who report the message m 2 M with

positive probability under �:

� (m) = f� 2 � j m 2 supp (� (�))g

Since the agent�s preference satis�es increasing di¤erences in (�; q), the set � (m) is either

an interval or a singleton.28 However, since � is �nite, there can be only a zero-measure

27Given � and F , denote by Pr (m j �; F ) and Pr (m0 j �; F ) the probabilities that messages m and m0

are reported under �, respectively. Then the convexity of DKL (F (�jm) jjF ) in its �rst argument implies
that:

Pr (m j �; F ) �DKL (F (�jm) jjF ) + Pr (m0 j �; F ) �DKL (F (�jm0) jjF )

� [Pr (m j �; F ) + Pr (m0 j �; F )] �
�
DKL

�
Pr (m j �; F ) � F (�jm) + Pr (m0 j �; F ) � F (�jm0)

Pr (m j �; F ) + Pr (m0 j �; F ) jj F
��

where (Pr (m j �; F ) � F (�jm) + Pr (m0 j �; F ) � F (�jm0)) = (Pr (m j �; F ) + Pr (m0 j �; F )) is the poste-
rior belief that is induced when all the types who sent m0 in equilibrium would now send m.
This inequality precisely says that ex-ante privacy loss is decreased. It further implies that the relative

entropy induced by the new message m is no greater than the maximum of the relative entropies induced
by the two old messages m and m0. Hence ex-post privacy loss is also decreased.

28Formally, if �0 2 � (m) and �00 2 � (m) for some m 2 M , then � 2 � (m) for all � 2 [�0; �00]. To see
this, observe that �0 2 � (m) implies q(m)�0 � p(m) � q(m0)�0 � p(m0) for every message m0. Similarly
q(m)�00 � p(m) � q(m0)�00 � p(m0). Since any � 2 (�0; �00) is a convex combination of �0 and �00, the
above two inequalities lead to q(m)� � p(m) � q(m0)� � p(m0). Thus m is a best-response of type �.
It is in fact a strict best-response because the last inequality is strict whenever m0 6= m; otherwise
q(m)�0 � p(m) = q(m0)�0 � p(m0) and q(m)�00 � p(m) = q(m0)�00 � p(m0) hold simultaneously, showing
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subset of messages m 2 M for which � (m) is a singleton.29 We can therefore drop

these messages from M , and pick a new best response for each type whose message

was dropped. Since the behavior of only a zero-measure set of types was a¤ected, the

expected pro�t �(M) and the entailed loss of privacy I (M) are both unchanged.
Henceforth we may assume that �(m) is an interval for each m. Since there are no

duplicates, for every pair of messages m and m0 the intersection � (m) \ � (m0) is either

empty or a singleton (in other words, almost all types do not randomize between messages

as part of their best-response).

To complete the transformation of M into an interval mechanism we now use a stan-

dard revelation argument: replace every message m 2M with the corresponding interval

� (m), and adjust the function p (resp. q) such that whenever the agent reports the

interval � (m) in the �transformed�mechanism he would get the price (resp. quality)

that he would have got if he reported the message m in the �original�mechanism. The

elements in the transformed message set are pairwise disjoint intervals whose union is

�, and therefore they constitute a partition of �. IC, IR, privacy loss and pro�t are

maintained under this transformation, which proves the lemma. �

A.3 Proof of Proposition 1

Given Lemma 1 and Lemma 2, it only remains to prove the bounds on the optimal number

of intervals. This follows from the argument given in the main text, after Proposition 1.

A.4 Proof of Proposition 2

We focus on the case where c000 � 0 and v(�) is strictly less convex than F (�). The

proof strategy is to show that whenever an interval has more mass than its adjacent

interval on the right, these two intervals can be �switched�to increase pro�t. That is,

we considering changing the two intervals [�t�1; �t] and [�t; �t+1] into two new intervals

[�t�1; ~�t] and [~�t; �t+1], where ~�t is de�ned by F (~�t)� F (�t�1) = F (�t+1)� F (�t). By the
assumption that the (original) left interval has greater mass, we have ~�t < �t.

Let u;w; ~u; ~w denote the expected virtual valuation on the four intervals [�t�1; �t],

[�t; �t+1], [�t�1; ~�t], [~�t; �t+1] respectively. Then, as in the proof of Lemma 4, the pro�t

that m0 is a redundant copy of m. Hence for any � strictly in between �0 and �00, �(�) puts probability
1 on sending the message m.

29When � (m) is a singleton, the message m is sent by exactly one type, and therefore m reveals this
type in equilibrium.
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increase due to switching the two intervals is given by

� = (h( ~w)� h(u)) � [F (�t)� F (�t�1)]� (h(w)� h(~u)) � [F (�t+1)� F (�t)] :

Observe that ( ~w� u) � [F (�t)� F (�t�1)] = (w� ~u) � [F (�t+1)� F (�t)].30 So to show � is

positive we just need to show

h( ~w)� h(u)
~w � u >

h(w)� h(~u)
w � ~u :

We claim that the above inequality follows from ~w + u > w + ~u, which we will prove

later. Indeed, as h is strictly convex, the RHS of this inequality increases in w. So it

su¢ ces to prove the weak version of the inequality assuming ~w+u = w+ ~u. For that we

rewrite it as (w � ~u) �
R ~w
u
h0(y)dy � ( ~w � u) �

R w
~u
h0(y)dy, which is in turn equivalent to

(w � ~w + u� ~u) �
Z ~w

u

h0(y)dy � ( ~w � u) �
�Z u

~u

h0(y)dy +

Z w

~w

h0(y)dy

�
:

Since we assume u � ~u = w � ~w (and ~w > u), this last inequality holds whenever h0

is a concave function. Recall that h0(y) = �(y) and �0(y) = 1=c00(�(y)). So we have

h00(y) = 1=c00(�(y)), which is indeed decreasing in y because c000 > 0.

To complete the proof, it remains to verify that ~w + u > w + ~u. Recall that G(x) =

F�1(x) � (x � 1) for all x 2 [0; 1], such that G(F (�)) = �(F (�) � 1), whose derivative is
v(�)f(�). Thus the expected virtual valuation ~w = E[v(�) j ~�t � � � �t+1] can be written
as

~w =

R �t+1
~�t

v(�)f(�)d�

F (�t+1)� F (~�t)
=
G(F (�t+1))�G(F (~�t))

F (�t+1)� F (~�t)
:

For notational convenience, we let a = F (�t�1); b = F (�t); c = F (�t+1) with a < b < c and

b > 1
2
(a+ c). Then F (~�t) = a+c�b < b and we have ~w = (G(c)�G(a+ c� b)) = (b� a).

With similar computations for u;w; ~u, we only need to prove

G(c)�G(a+ c� b) +G(b)�G(a)
b� a >

G(c)�G(b) +G(a+ c� b)�G(a)
c� b :

This is equivalent to

2(c� b) �
Z b

a+c�b
G0(x)dx > (2b� a� c) �

�Z a+c�b

a

G0(x)dx+

Z c

b

G0(x)dx

�
;

30Both are equal to
R �t+1
�t

v(�)f(�)d� �
R ~�t
�t�1

v(�)f(�)d�.
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which holds so long as G0 is a strictly concave function. This is indeed the case because

G0(F (�)) = v(�), which is less convex than F (�). The proposition follows. �

A.5 Proof of Proposition 3

The following lemma gives a simple formula for the pro�t in the uniform-quadratic case.

Lemma 5 In the uniform-quadratic case, the pro�t from any interval partition with

cuto¤s � = �0 < �1; : : : ; �n�1 < �n = � is

� =

 
1

6

�
� � �

�2
+
1

2
�2 � 1

6
�
� � �

� nX
i=1

(�i � �i�1)3
!
;

which depends only on the lengths f�i � �i�1gni=1.

Proof: When the agent�s type is uniformly distributed over [�; �], the virtual value of

type � is given by v(�) = 2� � �, and the optimal quality for any interval [�i�1; �i], as
determined by Equation (4), is �i = �i + �i�1 � �.
The pro�t as given by Equation (3) is:

�(!) =
nX
i=1

�
�i + �i�1 � �

�
�
Z �i

�i�1

�
2x� �

� 1

� � �
dx�

�
�i + �i�1 � �

�2
2

�i � �i�1
� � �

=
1

2
�
� � �

�  nX
i=1

(�i � �i�1) (�i + �i�1)2 � 2
nX
i=1

�
�2i � �2i�1

�
� � +

nX
i=1

(�i � �i�1) � �
2

!
.

The three terms in the parentheses above can be simpli�ed as follows:
Pn

i=1 (�i � �i�1) =�
� � �

�
,
Pn

i=1

�
�2i � �2i�1

�
=
�
�
2 � �2

�
, and

Pn
i=1 (�i � �i�1) (�i + �i�1)

2 = 4
3

�
�
3 � �3

�
�

1
3

Pn
i=1 (�i � �i�1)

3.31 Plugging the three expressions back, we obtain the lemma. �

Back to the proposition, when � 2 [log(N); log(N + 1)), we have e� < N + 1. So

by Lemma 2, any feasible interval mechanism has at most N intervals. Now by Lemma

5, among interval partitions with at most N intervals, maximizing pro�t is equivalent

to minimizing
PN

i=1 x
3
i , where xi = �i � �i�1 is the length of the interval mi (which

can be zero if less than N intervals are used). Subject to xi � 0 and the total lengthPN
i=1 xi = � � �, the cubic sum

PN
i=1 x

3
i is clearly minimized when the intervals have

equal lengths. Hence, the equal partition maximizes pro�t among all partitions with at

most N intervals, even ignoring the feasibility constraint. Since it is �-feasible, it must

then be the ex-post �-optimal mechanism. �

31To simplify the third term we used the identity (x� y) (x+ y)2 = 4
3

�
x3 � y3

�
� 1

3 (x� y)
3.
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A.6 Proof of Proposition 4

By the envelope theorem, the interim expected utility of a buyer with type �̂ is given byR
���̂ q(�)d�. Thus ex-ante buyer surplus can be computed asZ Z

���̂
q(�)d� dF (�̂) =

Z
q(�)(1� F (�))d�: (9)

In what follows, we consider the e¤ect of combining two adjacent intervals in a mech-

anism into a single interval. Speci�cally, let �j�1; �j; �j+1 be three adjacent cuto¤s in

a constrained-optimal mechanism (for any �). Write vj = E[v(�) j � 2 [�j�1; �j]],

vj+1 = E[v(�) j � 2 [�j; �j+1]], and v = E[v(�) j � 2 [�j�1; �j+1]]. Then the corresponding
optimal qualities for these intervals are qj = �(vj), qj+1 = �(vj+1) and q = �(v). Thus,

the change in buyer surplus when �eliminating�the cuto¤ �j is

� :=q �
Z �j+1

�j�1

(1� F (�))d� � qj �
Z �j

�j�1

(1� F (�))d� � qj+1 �
Z �j+1

�j

(1� F (�))d�

=(q � qj) �
Z �j

�j�1

(1� F (�))d� � (qj+1 � q) �
Z �j+1

�j

(1� F (�))d�:

We will show � � 0. Indeed, observe that

v(F (�j+1)� F (�j�1)) =
Z �j+1

�j�1

v(�)d� = vj(F (�j)� F (�j�1)) + vj+1(F (�j+1)� F (�j)):

So (v � vj)(F (�j)� F (�j�1)) = (vj+1 � v)(F (�j+1)� F (�j)). Hence,

q � qj
qj+1 � q

=
�(v)� �(vj)
�(vj+1)� �(v)

� v � vj
vj+1 � v

=
F (�j+1)� F (�j)
F (�j)� F (�j�1)

�
R �j+1
�j

(1� F (�))d�R �j
�j�1
(1� F (�))d�

; (10)

which precisely means that � � 0. In the above, the �rst inequality holds because � is
concave (as its inverse function c0 is assumed to be convex). The last inequality holds

because it can be rewritten asR �j
�j�1
(1� F (�))d�

F (�j)� F (�j�1)
�
R �j+1
�j

(1� F (�))d�
F (�j+1)� F (�j)

;

where the LHS is
�R �j

�j�1
(1� F (�))d�

�
=
�R �j

�j�1
f(�)d�

�
� (1� F (�j)) =f(�j) by the as-

sumption that (1� F (�)) =f(�) is decreasing, and similarly the RHS is at most (1� F (�j)) =f(�j).
This completes the proof that � � 0.
Now, starting from any mechanism, repeatedly combining adjacent intervals even-
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tually leads to the fully pooling mechanism, which yields weakly higher buyer surplus.

Thus � = 0 maximizes buyer surplus. Similarly � =1 minimizes buyer surplus. �

A.7 Proof of Proposition 5

With quadratic costs, total welfare contributed by a buyer of type � is �q(�)� (q(�))2=2.
Thus ex-ante total welfare is

R
q(�)�

�
� � q(�)

2

�
f(�)d�: Note that on each interval [�i�1; �i],

q(�) is constant and equal to the expected virtual valuation on this interval. Thus, ex-ante

total welfare can be equivalently written asZ
q(�) �

�
� � v(�)

2

�
f(�)d�: (11)

Compared with the above Equation (9) for buyer surplus, the di¤erence here is that the

function (� � v(�)=2) f(�) takes the place of 1� F (�).
Note that f(�) is increasing implies that �� v(�)=2 is decreasing, since its derivative

is �(1 � F (�))f 0(�)= (2f(�)2). Thus we can repeat the above argument to show that

combining two intervals increases total welfare, which must be maximized at � = 0 and

minimized at � =1. This proves the �rst half of the proposition.
As for the second half, we can apply a symmetric argument: If f(�) is decreasing,

then � � v(�)=2 is increasing. This implies that combining two intervals would decrease
total welfare, since the last inequality in Equation (10) would be reversed (and the �rst

inequality would hold equal thanks to quadratic costs). Therefore total welfare would be

minimized with a single interval, and maximized with full screening. �

A.8 Proof of Proposition 10

Throughout we assume � = e� 2 (1= (N + 1) ; 1=N ]. The seller�s problem is to �nd

an interval partition such that each interval has mass at least �, and pro�t is maximal

subject to buyer incentive constraints. Note that on any interval [�i�1; �i], the optimal

quality is either the average virtual value �i�1+ �i� � when this is positive, or zero when
the average virtual value is negative. Correspondingly, the pro�t contribution of any

interval is either (�i�1 + �i � �)2=2, or zero. It is no greater than (�i�1 + �i � �)2=2 in
either case.

Thus, for any interval partition with cuto¤s � = �0 < �1; : : : ; �n�1 < �n = �, total

pro�t is bounded from above by what is calculated in Lemma 5, with equality if and

only if the lowest interval has non-negative average virtual value. Now recall that each

interval has mass � � > 1= (N + 1), so the number of intervals satis�es n � N . It follows
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that the pro�t given by Lemma 5 is maximized when n = N and all intervals have equal

length. This upper bound is achieved in our current setting if and only if the lowest

interval under the equal partition has non-negative average virtual value. This requires

� +
�
� +

�
� � �

�
=N
�
� � � 0, which is precisely the condition stated in the �rst part of

the proposition.

Below we consider the case where this �rst best is not achievable, i.e. � < ((N � 1) = (2N � 1))�
�. Suppose the optimal partition has exactly n�1 intervals with positive average virtual
values, starting from some type �̂. Then the optimal mechanism simply excludes the

types lower than �̂ and reduces to an optimal mechanism for the uniform distribution on

[�̂; �]. It follows from Lemma 5 that these n� 1 intervals above �̂ must have equal length
(in order to minimize the cubic sum of their lengths). Thus n � N , for otherwise the

lowest of these n � 1 equal intervals would have negative average virtual value, by the
assumption that � < ((N � 1) = (2N � 1)) � �.
We can now formulate the seller�s problem as choosing a cuto¤ type �̂ and a positive

integer n � N in order to minimize the pro�t from an equal partition of [�̂; �] into n� 1
equal intervals, subject to the following two constraints:

(i) �̂ > ((n� 2) = (2n� 3)) ��, so the lowest of these n�1 intervals has positive average
virtual value;

(ii) � � �̂ � (n� 1)�(� � �), so these intervals have mass at least �.

The optimal �̂ will turn out to also satisfy �̂ < ��� and �̂�� � �(���), which means
there is another interval below �̂ in the overall partition of [�; �]. This n-th interval has

negative average virtual value, and has mass at least �. So the solution to our relaxed

problem will be feasible.

To characterize the optimal �̂ and n, we rely on the following lemma:

Lemma 6 For each positive integer n > 1, denote by �n�1(�̂) the optimal pro�t from

excluding types below �̂ and dividing types above �̂ into n�1 equal intervals. Then �n�1(�̂)
as a function of �̂ is strictly increasing when �̂ 2 [((n� 2) = (2n� 3)) � �; (n=2n� 1) � �],
and is strictly decreasing when �̂ � (n= (2n� 1)) � �.

Indeed, using Lemma 5 we can compute that

�n�1(�̂) =
� � �̂
� � �

�
��
1

6
� 1

6(n� 1)2

�
(� � �̂)2 + 1

2
�̂2
�
;
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where the term
�
� � �̂

�
=
�
� � �

�
represents the fact that each type in [�̂; �] occurs with

a scaled density compared to the uniform distribution on this interval. With a little

algebra, the derivative of the above function with respect to �̂ simpli�es to�
(2n� 3)�̂ � (n� 2)�

�
�
�
n� � (2n� 1)�̂

�
2(n� 1)2(� � �)

:

This yields Lemma 6.

We will apply this lemma to deduce the second and third parts of Proposition 10.

Suppose �= (2N � 1) > �(���), then the seller can choose n = N and �̂ = (N= (2N � 1))�
�, while satisfying the privacy constraint (ii) above. Note that �̂ < �� � by our previous
assumption about �, and �̂ � � > (1=N) (� � �) � �(� � �). So as we promised, the
excluded types below �̂ have negative average virtual value, and do not violate the privacy

constraint.

This feasible solution is optimal when n = N , by Lemma 6. Thus it only remains to

show that having a smaller n is not pro�table. For this we note the following simple fact:

�n�1(
n� 2
2n� 3�) = �n�2(

n� 1
2n� 3�): (12)

The reason is that the n� 1 intervals associated with the LHS simply adds the interval
[((n� 2) = (2n� 3)) � �; ((n� 1) = (2n� 3)) � �] to the n � 2 intervals on the RHS. But
since this extra interval has average virtual value equal to zero, its optimal quality is zero

whether or not it is included. So excluding it from the LHS has no e¤ect on total pro�t.

From Equation (12) and Lemma 6, we have

�n�1(
n

2n� 1�) > �n�1(
n� 2
2n� 3�) = �n�2(

n� 1
2n� 3�):

This means the optimal pro�t with n� 1 intervals is higher than the optimal pro�t with
n� 2 intervals, so on and so forth. Hence the choices n = N and �̂ = (N= (2N � 1)) � �
are optimal among any n � N and �̂ � ((n� 2) = (2n� 3)) � �. This proves the second
part of the proposition.

Finally, we suppose � < ((N � 1) = (2N � 1)) � � and for some m � N ,

�

2m� 3 > �(� � �) �
�

2m� 1 :

From the constraints (i) and (ii) above on �̂, we deduce �(� � �) < �= (2n� 3). Thus
the fact that �(� � �) � �= (2m� 1) implies n � m. Consider the choices n = m
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and �̂ = � � (m � 1)�(� � �). The privacy constraint (ii) is exactly satis�ed, and the
virtual value constraint (i) is satis�ed because �(� � �) < �= (2m� 3). Moreover, from
�(� � �) � �= (2m� 1) we deduce � � � � �= (�(2m� 1)) � � � N�= (2m� 1) <
((m� 1) = (2m� 1)) � �, with the last inequality being strict because we already know
� < ((N � 1) = (2N � 1)) � � when m = N . Together with �̂ = � � (m � 1)�(� � �) �
(m= (2m� 1)) � �, we deduce that the types below �̂ have negative average virtual value.
The mass of these types is 1� (m� 1)� � 1� (N � 1)� � �, so this solution is feasible.
Now observe that given the privacy constraint (ii), �̂ = � � (m � 1)�(� � �) is the

maximal value �̂ can take subject to n = m. As �̂ � (m= (2m� 1)) � �, we know from
Lemma 6 that this choice of �̂ is optimal for n = m. From that lemma we also have

�m�1(�̂) > �m�1(
m� 2
2m� 3�) = �m�2(

m� 1
2m� 3�):

Thus the choice of m�1 intervals starting from �̂ is better than the optimum with m�2
intervals, which is in turn better than any optimum with even fewer intervals. This

proves the third/last part of Proposition 10.

B Proofs for the ex-ante measure

B.1 Proof of Proposition 6

We expand on the proof sketch outlined in the main text. As discussed, the key is to

�nd a replacement ~M for any mechanism M such that pro�t is not decreased, and the

number of intervals in ~M is bounded.

Step 1. Find a �big�interval. Set l = e��. We �rst show that any ex-ante �-feasible
interval mechanism contains a �big� interval with mass � l (according to F ). Indeed,

from Equation (6) we have

I(M) =
X
i

� [F (�i)� F (�i�1)] � log [F (�i)� F (�i�1)] � �:

Since
P

i [F (�i)� F (�i�1)] = 1, there exists some i s.t. � log [F (�i)� F (�i�1)] � �. In

other words, the interval mi has mass at least e��.

Fixing this choice of l, we de�ne � to be a small positive constant as given by Lemma

7 below. Starting from M, we will now look for the replacement ~M.

Step 2. From countable to �nite. We �rst �nd a replacement M̂ with at least as

much pro�t and only �nitely many intervals. Suppose p is an accumulation point of
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the cuto¤s in M. Then on the left of p we can order the intervals in M from left to

right as m1;m2; : : : , with mi converging to p. In particular, the mass of mi converges

to zero, and we can �nd some ms and ms+1 both with mass < �. Applying Lemma

7 below, we can merge the intervals ms and ms+1 and divide the �big� interval into

two sub-intervals, in such a way that the (ex-ante) privacy measure is unchanged and

pro�t is strictly increased. The achieved pro�t gain is su¢ cient to cover the loss from

additionally combining all the (countably many) intervals mt;mt+1; : : : , so long as we

choose t to be su¢ ciently large. As this last step also relaxes the privacy constraint,

we obtain a replacement mechanism in which p is no longer an accumulation point of

intervals on its left. Doing the same exercise for intervals on the right of p yields a

mechanism in which p is not an accumulation point.

In fact, we can achieve this replacement with some extra properties. Note that when-

ever an accumulation point p exists, the �big� interval must have mass strictly greater

than l = e��; otherwise the privacy constraint requires every interval in M to have mass

exactly l, a contradiction. Thus by choosingms andms+1 to have su¢ ciently small mass,

we can ensure that when they are merged and the �big�interval is divided into two sub-

intervals, the bigger sub-interval still has mass > l. In other words, we can perform the

replacement in such a way that the same big interval is sequentially divided (each time

creating a small sub-interval on the left and a big one on the right). The bene�t is that as

we get rid of the accumulation points in M one by one (which may be countably many),

we obtain a sequence of replacement mechanisms that become �ner in the original �big�

interval in M and more coarse everywhere else. This sequence converges, and the limit

mechanism has at most one accumulation point in the �big�interval.32 By merging and

dividing once more, we arrive at M̂ with �nitely many intervals and weakly higher pro�t

than M.

Step 3. From �nite to bounded. We now demonstrate how to replace the �nite

mechanism M̂ with yet another mechanism ~M with higher pro�t and at most N := 2=�+4

intervals. Starting from M̂, if there are two pairs of adjacent intervals (i.e., 4 distinct
ones) all with mass < �, then we combine both pairs at the same time and used the

privacy measure saved from one of the mergers to divide the �big� interval into two

sub-intervals. The privacy constraint is relaxed, and by Lemma 7 below, total pro�t is

increased if we choose the merger that induces greater pro�t loss.

Hence whenever M̂ contains two pairs of adjacent �small�intervals, it can be replaced

with a mechanism M̂(1) with higher pro�t and one less interval in total. The latter prop-

32If we do not divide the same big interval repeatedly, then it is possible that new accumulation points
arise in the iterative process. That would complicate the argument.
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erty ensures that when iterating this process, we will eventually reach a mechanism ~M
in which at most one pair of adjacent intervals both have mass < �. Excluding this pair

and the two intervals next to them, at least half of the remaining intervals have mass

� �. So the total number of intervals in ~M is bounded by N = 2=�+ 4. �

Lemma 7 Given l > 0, there exists � 2 (0; l) with the following property. If any interval
mechanism M has two adjacent small intervals both of mass < � as well as a big interval

of mass � l, then when merging the two small intervals and using the saved ex-ante

privacy measure to divide the big interval into two sub-intervals, the pro�t gain in the

latter step is at least twice as big as the pro�t loss in the former step.

Proof: Suppose there are two adjacent intervals with mass x; y < �; assume without
loss that x � y. If we combine them into a single interval, the pro�t loss is on the order

of xy(x + y) by Lemma 4. Meanwhile, Equation (6) implies that the amount of privacy

measure saved is

� = (x+ y) log(x+ y)� x log x� y log y = x log(1 + y
x
) + y log(1 +

x

y
): (13)

By assumption, there exists another interval of mass L � l. We use the saved privacy
measure to break this interval into two: That is, we look for a sub-interval of mass

� 2 (0; L=2) such that the total privacy measure is restored. This requires

L logL� (L� �) log(L� �)� � log � = �:

From this we obtain33

� � jlog �j � �

2
: (14)

We claim that (13) and (14) together imply � � xpx+ y (whenever x � y < �). For
this it su¢ ces to show that

x
p
x+ y � log( 1

x
p
x+ y

) <
x log(1 + y

x
)

2
<
�

2
:

33By the Mean Value Theorem, L logL� (L� �) log(L� �) = �(1 + log �) for some � 2 (L� �; L). So
�(1 + log (�=�)) = �. Since � � L=2 � �, this implies

� � � = x log(1 + y

x
) + y log(1 +

x

y
) � x � y

x
+ y � x

y
= x+ y � 1

e
:

Thus we further have 1+ log � � 1 � � log �. From �(1+ log (�=�)) = � we then deduce � � jlog �j � �=2.
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Rearranging, the above inequality is equivalent to

1

x
p
x+ y

<
�
1 +

y

x

� 1
2
p
x+y
:

For small x; y, the exponent 1= (2
p
x+ y) is at least 4. So by binomial expansion, the

RHS above has size at least� 1
2
p
x+y

4

�
�
�y
x

�4
�
�

1

8
p
x+ y

�4
� y
x
=

y

4096x(x+ y)2
� 1

8192x(x+ y)
:

This is indeed greater than the LHS, which was 1= (x
p
x+ y).

Hence we have shown that when using the saved capacity to divide the big interval

into two sub-intervals, the smaller sub-interval has mass � � xpx+ y. By Lemma 4, the
resulting pro�t gain is on the order of �(L��)L � L2�=2. Since L � l which is given, this
pro�t gain is at least on the order of � � xpx+ y. This pro�t gain exceeds the initial
pro�t loss (which is about xy(x + y)) due to combining two small intervals, completing

the proof.

B.2 Proof of Proposition 7

The argument is already sketched in the main text, after Proposition 7. In particular,

Lemma 4 ensures that the seller strictly bene�ts from dividing any interval into two

sub-intervals.

B.3 Proof of Proposition 8

We argue that Proposition 8 follows from Lemma 3, which we prove below. Indeed,

that lemma implies the existence of some � > 0 such that any ex-ante �-optimal interval

mechanism with � � 1 contains at most one interval with mass < �. For this �, de�ne

� = �� log �. Then in any �-optimal mechanism with � � � < 1, Equation (6) and

feasibility impliesX
i

� [F (�i)� F (�i�1)] � log [F (�i)� F (�i�1)] � � � �� log �:

In particular, [F (�i)� F (�i�1)] � log [F (�i)� F (�i�1)] > � log � holds for every interval.

Note that the function x log x is decreasing for x 2 [0; 1=e] and increasing for x 2 [1=e; 1].
Thus the preceding inequality implies either F (�i)�F (�i�1) < �, or F (�i)�F (�i�1) > 1

2
.

In words, each interval in M has mass either less than � or greater than 1
2
. By
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de�nition of �, there is at most on interval with mass < �. It is also clear that at most

one interval can have mass > 1
2
. Hence any ex-ante �-optimal interval mechanism with

� � � consists of at most two intervals. Since the ex-ante privacy constraint is exhausted,
exactly two intervals are employed. �

B.4 Proof of Lemma 3

In the proof of Proposition 6, we showed that in any ex-ante �-feasible mechanism there

is a �big� interval of mass at least e�� � e�k. So by Lemma 7, there cannot be two

adjacent intervals both with mass < � (for some small �).

It remains to deal with the situation where two small intervals are not adjacent. The

proof strategy is to move one of these intervals to be next to the other, and to show that

the pro�t change is at most on the order of xy, where x; y are the mass of these small

intervals. Once this is shown, we can repeat the argument in the proof of Lemma 7,

merging the now adjacent small intervals and dividing the big interval. As computed in

that proof, the pro�t gain in the last step is on the order of x
p
x+ y, which exceeds any

pro�t loss incurred earlier. This would complete the proof.

To be more speci�c, suppose the two small intervals are [�i�1; �i] and [�j; �j+1], for

some i < j. Set x = F (�i) � F (�i�1) and y = F (�j+1) � F (�j). Consider moving

the small interval on the left toward the right while maintaining its mass: We can do

this sequentially by replacing �i with ~�i = F�1(F (�i+1) � x), then replacing �i+1 with
~�i+1 = F�1(F (�i+2) � x), so on and so forth until ~�j�1 = F�1(F (�j) � x) and the two
small intervals become adjacent. This process preserves the ex-ante privacy measure, and

it remains to estimate the pro�t change.

Note that in each step, the two intervals [~�t�1; �t] and [�t; �t+1] are changed into two

new intervals [~�t�1; ~�t] and [~�t; �t+1]. Thus, as in the proof of Proposition 2, the pro�t

increase is given by

�t = h(~u) �
h
F (~�t)� F (~�t�1)

i
+ h( ~w) �

h
F (�t+1)� F (~�t)

i
� h(u) �

h
F (�t)� F (~�t�1)

i
� h(w) � [F (�t+1)� F (�t)]

(15)

where u;w; ~u; ~w represent the expected virtual valuation on the intervals [~�t�1; �t], [�t; �t+1],

[~�t�1; ~�t], [~�t; �t+1] respectively.

We �rst consider the di¤erence h( ~w) �
h
F (�t+1)� F (~�t)

i
� h(u) �

h
F (�t)� F (~�t�1)

i
.

By construction, F (�t+1) � F (~�t) = F (�t) � F (~�t�1) = x, so this di¤erence simpli�es to
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(h( ~w)� h(u)) � x. Moreover, as we showed in the proof of Lemma 4,

u = E[v(�) j ~�t�1 � � � �t] = v(�t)+O(�t�~�t�1) = v(�t)+O(F (�t)�F (~�t�1)) = v(�t)+O(x)

where �O(�)� is the standard big O notation with implied constants depending on the

distribution and cost function. Thus h(u) = h(v(�t)) + O(x) and similarly h( ~w) =

h(v(�t+1)) +O(x). It follows that

h( ~w) �
h
F (�t+1)� F (~�t)

i
� h(u) �

h
F (�t)� F (~�t�1)

i
= [h(v(�t+1))� h(v(�t))] � x+O(x2):

Next we consider the other di¤erence h(~u)�
h
F (~�t)� F (~�t�1)

i
�h(w)�[F (�t+1)� F (�t)]

in Equation (15). It simpli�es to (h(~u)� h(w)) � [F (�t+1)� F (�t)]. Moreover,

~u =

R ~�t
~�t�1

v(�)f(�) d�

F (~�t)� F (~�t�1)
=

R ~�t
~�t�1

v(�)f(�) d�

F (�t+1)� F (�t)
= w +

R �t
~�t�1

v(�)f(�) d� �
R �t+1
~�t

v(�)f(�) d�

F (�t+1)� F (�t)

= w +
[v(�t)� v(�t+1)] � x
F (�t+1)� F (�t)

+

R �t
~�t�1

[(v(�)� v(�t)] � f(�) d� �
R �t+1
~�t

[v(�)� v(�t+1)] � f(�) d�
F (�t+1)� F (�t)

= w +
[v(�t)� v(�t+1)] � x
F (�t+1)� F (�t)

+O(x2);

where the last step holds because for each � 2 [~�t�1; �t], the di¤erence between [(v(�)� v(�t)]�
f(�) and [(v(� + �t+1 � �t)� v(�t+1)] � f(� + �t+1 � �t) is at most on the order of (�t �
�) � (�t+1 � �t) = O(x) � [F (�t+1)� F (�t)]. Thus h(~u) = h(w) + h0(w) � ([v(�t)� v(�t+1)] �
x= (F (�t+1)� F (�t))) +O(x2). It follows that

h(~u) �
h
F (~�t)� F (~�t�1)

i
� h(w) � [F (�t+1)� F (�t)] = h0(w) � [v(�t)� v(�t+1)] � x+O(x2)

Taken together, we have estimated the RHS of Equation (15), so that

�t = fh(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])g � x+O(x2):

Summing across t 2 fi; : : : ; j� 1g, we obtain that when moving the small interval on the
left to be adjacent to the one on the right, the total pro�t change is34

�LR= O(x
2)+

Pj�1
t=i

�
h(v(�t+1))� h(v(�t))�

�
v(�t+1)� v(�t)

�
� h0(E[v(�) j � 2 [�t; �t+1]])

	
� x:

If we instead move the small interval on the right to be adjacent to the one on the

34There are j� i terms of order at most x2, and since j� i is bounded by the total number of intervals
which in turn is bounded by Lemma 7, their sum is still O(x2).
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left, then total pro�t change is similarly computed as

�RL = O(y
2)�

j�1X
t=i

fh(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])g�y:

Note the minus sign in front of the second term; this is because when moving from the

right to the left, the ordering of the subscripts need to be reversed.

Now observe that if we compute the weighted sum y ��LR+ x ��RL, then the second

term is cancelled out. This yields

y ��LR + x ��RL = O(x
2y + y2x):

Therefore �LR and �RL cannot both be very negative. To be concrete we may without

loss assume �LR � �O(xy). Then in moving the small interval on the left to the right,
the initial pro�t loss (if any) is small relative to the pro�t gain provided in Lemma 7.

This again contradicts optimality, and hence there cannot even be two small intervals

that are non-adjacent. �

B.5 Proof of Proposition 9

We will show that in any pro�t-maximizing partition with exactly n intervals, all but one

of the intervals have the same lengths and the last interval has weakly smaller length. To

see how this claim implies the result, suppose � 2 (log(N � 1); log(N)]. By Proposition
7, the number of intervals in the optimal solution satis�es n � e� > N � 1. Thus n � N .
Moreover, if n > N , then at least N intervals would have the same lengths. It would

follow that each of the intervals in the optimal partition has mass smaller than 1
N
, which

is at most e��. This would contradict feasibility, i.e., Equation (6). Hence, with the

preceding claim, we will know that the optimal partition involves exactly N intervals.

The two lengths are then uniquely determined, as described in the Proposition. Finally,

the ordering of the intervals does not matter for either the privacy measure or for pro�t,

thanks to Lemma 5.

It remains to prove the above claim that characterizes the lengths of the optimal inter-

vals. For an interval partition, let xi = (�i � �i�1) =
�
� � �

�
denote the probability mass

of the i-th interval. In what follows we will work with the probability masses fxig instead
of the cuto¤s f�ig. By Lemma 5 and Equation (6), seller�s pro�t maximization problem
under the ex-ante privacy constraint can be rewritten as the following constrained mini-

mization problem: min
Pn

i=1 x
3
i subject to xi � 0;

Pn
i=1 xi = 1; and

Pn
i=1 xi log xi � ��:

For a �xed n, the Lagrangian is given by:
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L (�; �; fxigni=1) =
nX
i=1

x3i + �(1�
nX
i=1

xi)� �(
nX
i=1

xi log xi + �):

Thus, whenever each xi is strictly positive and fxig is a local constrained minimizer, the
�rst order conditions imply

3x2i � � log xi = �+ � for all 1 � i � n: (16)

If � � 0, then the function 3x2 � � log x is monotonically increasing. Thus every
xi is the same, which completes the proof. Otherwise assume � > 0. In this case the

derivative of the function 3x2 � � log x is 6x � �=x, which is monotonically increasing
and crosses 0 at x̂ =

p
�=6. Thus, the function 3x2 � � log x decreases on [0; x̂] and

increases on [x̂;1). Equation (16) yields that xi can take at most two values x and x,
with x < x̂ < x.

Below we analyze the second order conditions to show that at most one xi can be

equal to x. Suppose for the sake of contradiction that in the optimal solution � > 0 and

x1 = x2 = x. Let g(x) = (
Pn

i=1 xi;
Pn

i=1 xi log xi)
0 2 R2 denote the constraint values.

Then its Jacobian Dg(x) is the 2 � n matrix whose �rst row is all 1s and whose second
row is (1 + log x1; : : : ; 1 + log xn). Consider v = (1;�1; 0; : : : ; 0)0 2 Rn. Then clearly v
belongs to the null space of Dg(x).

The second derivative of the Lagrangian L(�; �; x) with respect to (the vector) x is
the diagonal matrix H =diag(6x1 � �=x1; : : : ; 6xn � �=xn). It is easy to see that

v0Hv = 6x1 �
�

x1
+ 6x2 �

�

x2
= 2

�
6x� �

x

�
;

which is negative because x < x̂. But this fails the second derivative test for constrained

local minima; see, e.g., Simon and Blume (1994), page 468. Hence the proof is complete.

C Extension to Multi-Agent Mechanisms

Extending our analysis to mechanisms with more than one agent presents some chal-

lenges. In particular, the notion of privacy loss needs to be extended to accommodate

the possibility that di¤erent participants are exposed to di¤erent losses of privacy.35 One

approach is to require that the maximal loss of privacy for any agent is at most �; an

alternative is to measure the average loss of privacy across all agents. As in our single-

35This is particularly important since the literature on optimal mechanisms with restricted message
spaces has highlighted the usefulness of asymmetric mechanisms; see Kos (2012).
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agent model, the privacy notion also has to address the fact that loss of privacy may

di¤er across types of the same agent.

Aside from these challenges, our framework can be extended to allow for multiple

agents. To illustrate, we analyze here the simple case of a seller with a single unit of a

good and no production costs, and m buyers who independently draw private valuations

for the good from a uniform distribution over
�
�; �
�
, where � � 1

2
� ensuring that virtual

valuations are non-negative. We restrict attention to symmetric mechanisms and require

that each agent�s ex-post privacy loss be at most �.

By essentially the same arguments as in our single-agent model, it can be shown

that the optimal privacy-constrained mechanism partitions the set of types into �nitely

many intervals. In light of this, we consider the class of mechanisms where the types are

partitioned into intervals, each buyer reports the interval to which his type belongs, and

the bidder with the highest report is awarded the good (with ties broken evenly). The

optimal mechanism within this class is given in the following result:

Proposition 11 Suppose there are m � 5 buyers with uniformly distributed values, and
no production costs. Then for any � 2 [log(n); log(n + 1)), the optimal ex-post privacy-
constrained symmetric auction partitions the type space into n intervals. Each of the

upper n � 1 intervals has equal mass of e�� (which is privacy-binding), and the lowest
interval has the remaining mass of 1� (n� 1)e�� (which is weakly greater).

Our proof below also shows that with 2 buyers, the optimal auction partitions the

set of types into n equally long intervals, which coincides with the solution for a single

buyer under quadratic costs. The solutions to 3 or 4 buyers are more complex.

Proof. Consider a symmetric auction that asks each agent which of n intervals his type
belongs to. Suppose the partition has cuto¤s � = �0 < �1 < � � � < �n�1 < �n = �.

Then, for each buyer, the probability of winning upon reporting the interval [�i�1; �i] is

computed as

qi =
Pm�1

k=0

1

k + 1

�
m� 1
k

��
�i�1 � �0
�n � �0

�m�k�1�
�i � �i�1
�n � �0

�k
;

where each element in the sum corresponds to the event that m�k�1 opponents report
an interval lower than [�i�1; �i] and k opponents report the interval [�i�1; �i], in which

case the buyer wins the object with probability 1= (k + 1). Simplifying the right-hand
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side yields36

qi =
1

(�n � �0)m�1
� 1
m
� (�i � �0)

m � (�i�1 � �0)m

�i � �i�1
:

By the envelope theorem, type �i�s interim expected utility is given by the integral of

quantities assigned to lower types, which is

ui =
Pi

j=1 (�j � �j�1) qj =
1

m

(�i � �0)m

(�n � �0)m�1
:

The expected payment when reporting the interval [�i�1; �i] is

pi = �i � qi � ui =
1

(�n � �0)m�1
� 1
m
� �i�1(�i � �0)

m � �i(�i�1 � �0)m
�i � �i�1

The total pro�t from all buyers is therefore:

�(M) = m �
nX
i=1

�
�i � �i�1
�n � �0

�
� pi

=
1

(�n � �0)m
�

nX
i=1

(�i�1(�i � �0)m � �i(�i�1 � �0)m)

= �0 +
1

(�n � �0)m
nX
i=1

(�i � �0) (�i�1 � �0)
�
(�i � �0)m�1 � (�i�1 � �0)m�1

�
.

We denote zi � (�i � �0) = (�n � �0). Then the seller seeks to maximize the expression

�̂ �
nX
i=1

zi � zi�1
�
zm�1i � zm�1i�1

�
; (17)

subject to 0 = z0 < z1 < � � � < zn = 1 and the ex-post privacy constraint that requires
zi�zi�1 � e�� for all 1 � i � n. In what follows we show that whenm � 5, the solution to
this problem is unique, with all but one interval having the same mass z2�z1 = z3�z2 =

36To see this note that (1= (k + 1))
�
m�1
k

�
= (1=m)

�
m
k+1

�
, and thus:

Pm�1
k=0

1

k + 1

�
m� 1
k

�
(�i�1 � �0)m�k�1 (�i � �i�1)k =

1

m

Pm�1
k=0

�
m

k + 1

�
(�i�1 � �0)m�(k+1) (�i � �i�1)k

=
1

m

1

�i � �i�1
Pm

l=1

�
m

l

�
(�i�1 � �0)m�l (�i � �i�1)l

=
1

m

1

�i � �i�1

�Pm
l=0

�
m

k

�
(�i�1 � �0)m�l (�i � �i�1)l � (�i�1 � �0)m

�
=
1

m

(�i � �0)m � (�i�1 � �0)m

�i � �i�1
:
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� � � = zn � zn�1 = e��, and the lowest interval having greater mass z1 2 [e��; 2e��). As
a corollary, the optimal number of intervals n is also uniquely determined, as stated in

the Proposition.

Toward this goal, we �rst argue that in any optimal solution, the intervals are ordered

in decreasing mass from left to right. That is, zi�zi�1 � zi+1�zi for all i 2 f1; :::; n� 1g.
To prove this, it su¢ ces to consider the e¤ect of �switching�two adjacent intervals on the

pro�t �̂. Since this switch essentially replaces zi with the number zi�1+zi+1�zi, the result
reduces to showing the following inequality: For any positive numbers a < b < c < d

with d� c = b� a, it holds that

ac(cm�1 � am�1) + cd(dm�1 � cm�1) > ab(bm�1 � am�1) + bd(dm�1 � bm�1):

Simplifying, we need to show that (c� b)(dm � am) > (d� a)(cm � bm), which can also
be rewritten as

(c� b)
Z d

a

xm�1 dx > (d� a)
Z c

b

xm�1 dx:

That is, we need to show

(c� b)
�Z b

a

xm�1 dx+

Z d

c

xm�1 dx

�
> (b� a+ d� c)

Z c

b

xm�1 dx:

Since b� a = d� c, we can further rewrite it as

(c� b)
�Z b

a

xm�1 + (a+ d� x)m�1 dx
�
> (b� a)

�Z c

b

xm�1 + (a+ d� x)m�1 dx
�
:

Since the function xm�1 is strictly convex when m > 2, the integrand on the LHS is in

fact uniformly larger than the integrand on the RHS, which proves the result.

Next we argue that z1 < 2(z2 � z1), meaning that the longest interval is less than
twice the length of the second longest. Indeed, if this were not the case, we could break

the longest interval into two equal sub-intervals and still satisfy the ex-post privacy

constraint. As can be easily seen from Equation (17), this modi�cation strictly increases

the pro�t, contradicting optimality.

Finally, we argue that in the optimal solution, the second-longest interval already

exhausts the privacy constraint (and so must every �higher�interval). Indeed, if z2�z1 >
e��, we could increase z1 slightly without violating the privacy constraint. The e¤ect on

pro�t of this change is
@�̂

@z1
= zm�12 �mzm�11
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We have already shown that z1 < 2(z2� z1), so z2 > 1:5z1. Further note that for m � 5,
1:5m�1 > m. Thus the above display implies that increasing z1 would strictly increase

pro�t, again leading to a contradiction.

Summarizing the above, we must have z2 � z1 = z3 � z2 = � � � = zn � zn�1 = e�� and
z1 2 [e��; 2e��). This proves the Proposition.

We mention that a similar (but more involved) analysis yields the optimal partitions

for the cases m = 3 and m = 4 as well. As for m = 2, the pro�t as given by Equation

(17) can be simpli�ed as

nX
i=1

z2i zi�1 � z2i�1zi =
1

3

nX
i=1

�
z3i � z3i�1 � (zi � zi�1)3

�
=
1

3
� 1
3

nX
i=1

(zi � zi�1)3:

So maximizing pro�t is this auction problem is equivalent to minimizing the cubic sum

of the interval lengths, as in the single-agent uniform-quadratic case. Hence the solution

is an equal partition with as many intervals as allowed by the privacy constraint. �
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