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1. INTRODUCTION

We consider a seller who aims to sell one unit of an indivisible good to a buyer, but faces limited
commitment, only able to commit to a price within the period it is o�ered. �e buyer, in turn, may
not initially know her willingness-to-pay, but can learn it through some (potentially complex)
process while considering purchase. We propose a new approach, motivated by the literature on
informational robustness, to analyze these se�ings when the seller reoptimizes each period to
maximize payo�s from that time onward.

A buyer may lack precise knowledge of her willingness-to-pay for many reasons. Consider, for
example, a new parent negotiating to buy a house from a previous homeowner who has already
vacated.1 Neighborhood characteristics—such as average annual NOx levels, risks from natural
disasters, or school quality—may not be immediately apparent.2 A �rst-time buyer may not even
initially understand how such characteristics should translate into a true willingness-to-pay.

Our starting point is the observation that buyer learning can take many forms in such se�ings.
�e buyer might be perfectly informed at the outset—or not. She might consult family or various
online resources, or even learn about when further information will arrive; an “unexpected” o�er
could in�uence the sources she considers. �is feature is important because learning can in�uence
purchase timing—for example, by incentivizing delay to obtain more information. Given the wide
range of possibilities, imposing any speci�c structure on buyer learning risks misrepresenting the
actual problem of interest. Such richness in the set of possible learning processes is a fundamental
feature of many economically signi�cant interactions.

In principle, the possibility of learning could fundamentally alter behavior in applications
where the seller lacks commitment to future prices. �is follows from the standard intuition that
the degree to which delay selects low willingness-to-pay buyers shapes equilibrium pricing (see
Section 1.4 for discussion). While incentives to delay under a given price path are determined by
expected surplus absent learning, this logic can break down once learning is possible. A buyer
who expects to value the product highly might nevertheless delay to become more certain that this
is the case. While the economic signi�cance of limited commitment is well recognized, relatively
li�le work has addressed its interaction with unrestricted buyer learning.3

1Such negotiations o�en lack mechanisms to avoid price revisions. �e sale of land is the leading example in Coase
(1972). Han and Strange (2015) discuss recent evidence on post-match price revisions in housing markets.

2Information availability about idiosyncratic value-relevant characteristics is particularly well-documented in housing
markets. Fairweather et al. (2023) conduct an experiment showing that providing information about �ood risk signif-
icantly changes buyer behavior. Ainsworth et al. (2023) show that households o�en lack accurate information about
local school quality, and that belief accuracy predicts child achievement. Bergman et al. (2020) show experimentally
that providing school information in�uences household location choices.

3As we discuss in Section 1.4, existing precedents impose particular structure on learning, generally excluding many
of the possibilities outlined here. As Pavan (2017) notes: “�e literature on limited commitment has made important
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In fact, without restrictions on learning, constant price paths can be sustained and multiple
equilibria can arise—a stark departure from outcomes without learning (see Section 6.1). We view
this as a proof of concept that some structure is necessary to derive interpretable pricing heuristics
or to characterize equilibrium properties. Yet in many cases such restrictions lack economic
justi�cation, motivating a di�erent perspective to serve as a useful baseline.

Our approach focuses on situations in which the seller is completely ignorant about how
the buyer learns. Even if an inexperienced seller were able to form a prior over the buyer’s true
willingness-to-pay using market data (e.g., transaction prices), he may nevertheless know nothing
about her information sources. A seller unfamiliar with up-to-date resources popular among
buyers may lack the con�dence needed to form a prior over the set of learning processes, and
thus may not anticipate any particular one. Assuming the con�dence needed to form such a prior
is o�en unrealistic as the information in question is typically intangible, making it unclear how a
seller would be able to specify such a concrete belief, especially when it may evolve over time.

�is motivation—to study the implications of uncertainty over buyer information—is also
central to work in the literature on informational robustness (Bergemann et al., 2017; Brooks and
Du, 2021, 2023; Deb and Roesler, 2023; Koh and Sanguanmoo, 2025).4 �e standard formalization
of “good performance under complete ignorance” associates this goal with a favorable worst-
case guarantee across the set of possibilities considered. �is formulation is also common when
uncertainty is unrelated to information per se (Bergemann and Morris, 2005; Carroll, 2015, 2017;
Lopomo et al., 2020; Che and Zhong, 2022; He and Li, 2022).

Despite this interest, there is no consensus on how to formally de�ne worst-case optimality in
dynamic se�ings without commitment. A key di�culty is the potential inconsistency of worst-
case solutions over time.5 To illustrate, suppose that at time 2 the seller fears that the buyer will
perfectly learn her value at time 10, encouraging a “wait-and-see” strategy. Yet once time 10
arrives, such learning might not be the worst for the seller; keeping a buyer with a value slightly
above the price ignorant could deter purchase. �e worst-case objective at time 2 would thus
con�ict with that at time 10. Seeking favorable worst-case performance across time can thus lead
to contradictory conjectures about what this entails, with no clear principle reconciling them.

�is gap in the literature is signi�cant: it makes dynamic models more dependent on correctly
speci�ed Bayesian beliefs about the informational environment than static models, even though
this assumption may be more demanding under dynamics. Sometimes the reason a seller lacks

progress in recent years…. However, this literature assumes information is static, thus abstracting from the questions
at the heart of the dynamic mechanism design literature. I expect interesting new developments to come out from
combining the two literatures.” We view our contribution in the spirit of this agenda.

4One reason for the popularity of the informationally robust approach in particular is the in�uence of the Wilson
Critique, which emphasizes that strong epistemic assumptions in mechanism design severely limit its applicability.

5See Carroll (2019) for discussion of this issue.
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con�dence to form a precise prior (e.g., limited experience selling one’s house) also suggests a lack
of commitment. We aim to provide a concrete step toward the agenda described by Bergemann and
Valimaki (2019), writing that dynamic mechanism design has focused on “… Bayesian solutions
and relied on a shared and common prior of all participating players. Yet, this clearly is a strong
assumption and a natural question would be to what extent weaker informational assumptions,
and corresponding solution concepts, could provide new insights into the format of dynamic
mechanisms.” While our approach still involves strong assumptions, o�ering some alternative that
makes the conceptual issues concrete is, we believe, a natural step toward ful�lling this agenda.

1.1. Our Approach

We consider a protocol in which (i) the seller posts prices over time and (ii) the buyer learns
about her willingness-to-pay. In each period, the seller o�ers the object at a chosen price, and the
buyer—a�er receiving her current information—either accepts or rejects the o�er. �e interaction
continues until a terminal date or inde�nitely. �is environment reduces to a standard model if
the buyer knows her willingness-to-pay from the outset; under a Bayesian approach, the seller
would then form a prior over the buyer’s learning process.

We propose a robust objective in which, at every period, the seller assumes that the buyer’s
information structure minimizes the seller’s continuation pro�t from that period onward. We call
such a process sequentially worst-case. �is benchmark preserves dynamic consistency: the worst
case the seller anticipates for tomorrow coincides with the “realized” worst case once tomorrow
arrives—both on and o� the equilibrium path. �is strikes us as a natural starting point for
extending the robust approach to se�ings without commitment, given the conceptual issues that
arise otherwise. Dynamic consistency in maxmin models has been extensively studied in decision
theory, and whether it is per se desirable remains a ma�er of debate.6

While we do not engage further in this debate, our se�ing is fundamentally di�erent from
single-agent applications of such formulations (Auster et al., 2022; Malladi, 2023). A de�ning
feature of robust mechanism design is the presence of another strategic agent; here, the buyer
may follow any behavior consistent with rationality.

Following common practice in the robustness literature, we formalize worst-case information
via an “adversarial Nature.” In each period, Nature chooses the buyer’s information for that period
to minimize discounted continuation pro�t. �e worst-case learning process then emerges as

6For example, Al-Najjar and Weinstein (2009) document behavioral anomalies that can emerge in dynamic maxmin
models without dynamic consistency, while Siniscalchi (2009) argues that several of these anomalies may be
natural. See also Epstein and Schneider (2003) for discussion of why dynamic consistency may be desirable. Related
inconsistencies can arise in sequential games with ambiguity even outside of worst-case information; see Ba�igalli
et al. (2019a,b) for versions under smooth-ambiguity preferences, which approximate maxmin in a limit.
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an equilibrium object. Viewing Nature’s choices as part of equilibrium is a shortcut for pinning
down the seller’s conjectures about the learning process both on and o� path. Doing so amounts
to ensuring that: (i) in every period the conjecture minimizes seller pro�t, and (ii) the realized
outcomes are consistent with earlier conjectures about what those outcomes would be. �e �rst
property explains why the benchmark is worst-case, and the second why dynamic consistency
holds—when the time comes for an information structure to be the worst case, it is.

Presenting the model using equilibrium notions allows us to leverage traditional intuitions and
techniques in formally analyzing dynamic worst-case solutions. Section 5 presents an alternative
formulation which shows that the substantive assumption is rather that the solution concept rules
out certain ways of coordinating buyer behavior with future information.7 �us, our exercise
does not require interpreting Nature literally, even though describing the model as we do yields a
convenient and transparent framework for analysis.

1.2. Our Results

Our main observations are the following twin results:

1. Equilibrium characterization. We characterize equilibrium outcomes and show that the
equilibrium is essentially unique,8 with the following property: in any period, the buyer’s
decision is identical to the decision she would make if she considered only the information
available in that period, as though no further learning would occur. �is property rules out
the dramatic departures from standard predictions that can arise under Bayesian approaches.

2. Safety condition. We provide a permissive condition under which the seller’s equilibrium
pro�t coincides exactly with the pro�t guaranteed by the equilibrium price path across all
learning possibilities. In such cases, restricting a�ention to sequentially worst-case learning
is not restrictive at all.

Our equilibrium characterization shows that sequentially worst-case learning minimizes the
probability of sale within each period given the price path. While our model assumes the worst
case is chosen to minimize total discounted pro�t, one might expect that a buyer anticipating future
information could be deterred from buying in the present. We show this does not occur under
sequentially worst-case learning. �is reduction allows us to characterize equilibrium explicitly
7Formally, Section 5 shows this setup admits an interpretation as a saddle-point under a particular objective, similar
to other (static) robust mechanism design exercises. While that objective does not require a literal interpretation of
Nature, we believe directly modeling the buyer–seller interaction as a dynamic game is more transparent.

8In the sense of Fudenberg et al. (1985): the seller’s and buyer’s actions are deterministic a�er possible seller
randomization in the �rst period.
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and to recover the familiar structure of the form of equilibrium price paths. In particular, the seller
does not randomize on the equilibrium path, except possibly in the initial period.

�e intuition for why the worst case minimizes the within-period sale probability comes from
backward induction. In the �nal period, worst-case information has the property that any buyer
who does not purchase is indi�erent between purchasing and not, making her payo� the same
regardless of her action. In particular, her payo� would be unchanged were she to instead always
purchase, despite her breaking indi�erence by not purchasing. Hence, in the second-to-last period,
the buyer behaves as if no future information will arrive. �e worst-case information in that period
thus simply minimizes the probability of purchase, and the same logic propagates backward.

Our second main result shows that, for a large class of environments, sequentially worst-case
learning minimizes the seller’s pro�t across all learning processes, �xing the pricing strategy
to be the one that arises in equilibrium. �is preserves the normative appeal of the worst-case
objective—good performance against unrestricted learning—while ensuring tractability. Put
di�erently, even if the seller were misspeci�ed about the buyer’s learning process (e.g., if the
dynamic consistency constraints need not hold), this misspeci�cation could not reduce her payo�.
We call any equilibrium pricing strategy with this property a safe solution.

�is result is conceptually subtle because it requires the worst case to be de�ned holding �xed
the seller’s pricing strategy. �is di�ers from the alternative approach in which one considers
the worst-case equilibrium between seller and buyer that can emerge given an arbitrary learn-
ing process. It is possible that some other pricing strategy could arise in equilibrium for some
(non–sequentially worst-case) learning process, for which the seller would be worse o�.9 Intu-
itively, providing more information in later periods involves a tradeo�, between: (i) inducing more
delay by higher-value buyers in earlier periods, and (ii) inducing more—or at least earlier—sales by
lower-value buyers in later periods. �e condition on the prior value distribution that we identify
ensuring the price path is a safe solution—which we call threshold-ratio monotonicity—essentially
requires that the increase in willingness-to-delay from additional future information is small
relative to the additional sales such information generates. While this property does rule out some
cases, it holds for many distributions considered in past work (e.g., Fuchs and Skrypacz, 2013).

1.3. Our Message

Our work achieves twin goals. First, we provide a baseline for understanding how the possibility
of learning interacts with limited commitment to prices. Despite several subtleties we identify, the
benchmark recovers traditional intuition and heuristics: the seller lowers prices over time to sell
9Indeed, under fairly general conditions, one can construct learning processes and corresponding equilibria in which
the seller earns less than under the sequentially worst-case criterion. But subjectively, these outcomes do not strike
us as sharing the intuitive appeal of sequentially worst case learning.
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to the residual (lower-value) buyers. We view this formulation as a useful step toward studying
outcomes under limited commitment without imposing restrictive structure on learning—especially
since (a) Bayesian approaches have not yet provided a clear benchmark for the combination of
general learning and limited commitment, and (b) insofar as they could, our analysis suggests
they may instead imply “anything goes,” making clear insights more di�cult to obtain.

�e second goal is to enrich the informationally robust approach to address conceptual di�-
culties related to limited commitment. �e literature on informational robustness o�en points
to the challenges in determining practically relevant learning processes as an economic motiva-
tion. Despite dynamic consistency issues, we see no reason such concerns would be irrelevant
absent commitment. Our result that the equilibrium price path is a safe solution suggests that
dynamic consistency concerns may be less restrictive than previously thought. Our framework
thus provides a template for interrogating such concerns formally.

1.4. Relevant Literature

�e literature on robust mechanism design originated from the goal of relaxing the strong common-
knowledge assumptions inherent in Bayesian mechanism design (Bergemann and Morris, 2005).
Early work assumed agents knew their own preferences; later work on informationally robust
mechanism design (e.g., Du (2018)) allowed designers to be uncertain about what agents know
about their own preferences. To our knowledge, relatively few papers have studied informationally
robust mechanism design in dynamic se�ings, and issues related to commitment are rarely
addressed. An exception is Koh and Sanguanmoo (2025), although in that se�ing the commitment
solution is implementable without commitment—a stark contrast to the dynamic durable goods
sales problem here.10 Limited commitment fundamentally requires evaluating the worst case
repeatedly, a de�ning feature of our exercise.

If the buyer knew her realized willingness-to-pay, our model would reduce to the textbook
durable goods monopoly without commitment (Fudenberg et al., 1985; Gul et al., 1986; Ausubel
and Deneckere, 1989). While we use some technical results from this literature, our focus is largely
orthogonal: the δ → 1 limit is not our main interest, unlike most papers in this area. A notable
exception is Fuchs and Skrypacz (2013), which characterizes non-trivial pricing dynamics with
“frequent o�ers” and a �nite time to trade.

Changes in preferences can alter the conclusions of the Coase conjecture literature (e.g., Ortner
(2017, 2023); Acharya and Ortner (2017)), and learning can be interpreted as a form of preference
change. Relatedly, Lomys (2018), Duraj (2020), and Laiho and Salmi (2020) study how Coasian
10Libgober and Mu (2021) studied robust dynamic pricing with commitment, avoiding the consistency and equilibrium

characterization challenges we face. Other dynamic robust mechanism design papers include Chassang (2013);
Penta (2015); Durandard et al. (2024), but in these and most others, the worst case is considered only once.
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dynamics are a�ected by buyer learning, but under restrictive assumptions on type distributions
or learning processes. �ese e�ects arise from the interaction between learning and selection; the
importance of the direction of selection for Coasian dynamics is highlighted in Tirole (2016) and
Ali et al. (2023). In contrast, one interpretation of our main result is that Coasian dynamics are
fully restored under our informationally robust objective. In Appendix B, we discuss alternative
dynamic worst-case formulations under which the prospect of learning introduces additional
forces, breaking this restoration.

A less directly related literature considers mechanism design where agents—rather than the
designer—have non-Bayesian preferences, including the maxmin case (Bose and Renou, 2014;
Wolitzky, 2016; Di Tillio et al., 2017). �e typical focus there is on how the designer can exploit
such preferences; some papers explicitly examine exploiting dynamic inconsistency (Bose et al.,
2006; Bose and Daripa, 2009).

Finally, our safe solution requirement connects to recent proposals to strengthen robustness
criteria—seeking not only optimality against a single worst case, but also good performance across
a broader set of possibilities. Kambhampati (2025) pursues this goal, but evaluates performance
against alternative possibilities from the same set as the one initially used to de�ne worst-case
performance. Ball and Ka�winkel (2025) also considers mechanism performance under ambiguity
set expansions, as the safe solution requirement does, but focuses on local expansions—requiring
near-optimal performance when Nature’s choices are “close” to those the designer entertains. By
contrast, the safe solution concept here considers arbitrary alternative possibilities.

2. MODEL

We �rst present the basic primitives of the environment. We then turn to the mechanics of how the
buyer and seller interact, describing how strategies and beliefs are de�ned as well as how learning
works in our model. �e timing of moves within each period in the game is summarized in Figure 1.
Section 2.4 introduces our worst-case notion. To maintain focus, discussion of model assumptions
is deferred to Section 6.3, and alternative worst-case notions are covered in Appendix B.

2.1. Environment

A seller (he) of a durable good (e.g., a house) interacts with a single buyer (she) in discrete time
until a terminal date T ≤ ∞.11 �e buyer can purchase the good at any time t = 1, . . . , T . She
has unit demand and obtains utility v from purchasing, where v is drawn once at time 0 from a
commonly known distribution F and remains �xed throughout the game. �e distribution F has
11We handle the cases T =∞ and T <∞ separately.
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density f supported on a compact interval [v, v] ⊂ R+. �e case v > 0 is referred to as the “gap
case,” while v = 0 is the “no-gap case.” Both buyer and seller discount payo�s by a common factor
δ ∈ [0, 1).

However, neither the buyer nor the seller observes the realization of v. Instead, the buyer
may learn about v over time. Formally, an information structure is a pair (S, π), where S is a
standard Borel space and π : [v, v]→ ∆(S) is a measurable mapping from valuations to probability
distributions over signals. In the dynamic se�ing, the buyer receives signals according to such
information structures in a history–dependent manner, as described below.

2.2. Actions and Histories

Each period t begins with the seller choosing a price pt ∈ R+. While the seller may randomize
over prices, we assume that the realization of pt is observed before the game continues.

A�er the price pt is realized, the buyer observes a signal drawn according to some information
structure, determined in that period. We use the expositional device, common in the robustness
literature, that this information structure is chosen by some player, referred to as “Nature.” Later
in the paper, we will clarify in more depth what this expositional device delivers substantively,
but for now we simply mention that this simpli�es our presentation of our solution concept.
�roughout the paper, we assume that the information structure as well as the realized signals are
observed only by the buyer, and not by the seller.

A�er observing the price for the given period as well as the new information described in
the previous paragraph, the buyer then updates beliefs and decides whether to purchase or not.
Formally, the buyer’s action in period t is denoted at ∈ {0, 1}, where at = 1 indicates purchase
at price pt and at = 0 indicates no purchase. If at = 1 or t = T , the game ends; otherwise, play
proceeds to period t+ 1.

Notice that the information sets for each player—the seller, Nature, and the buyer—are distinct.
Since the buyer’s only decision is whether to purchase, and since the game ends once she does so,
our de�nition of histories will condition on the event that the buyer has not yet purchased. We let
H t
S , H t

N , and H t
B , denote the set of possible information sets for the seller, Nature, and the buyer,

respectively, at time t. �e set of seller histories, H t
S , is equal to the set of possible price histories

before time t. �e set of Nature histories, H t
N , is the set of price histories up to and including time

t, together with the set of all possible information structures and signal realizations before time
t. Finally, H t

B is equal to the same set of sequences as H t
N , concatenated with the information

structure and signal realization for period t. LetH denote the set of all such histories.
Although we have not yet speci�ed how learning is determined, it is worth noting that the

framework so far is standard. For example, the environment reduces to textbook bargaining with
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one-sided private information if π1 revealed v to the buyer. �e novelty lies in allowing the buyer
to acquire information about v over time, and in specifying a solution concept which allows for
endogenous interactions between this information and the seller’s strategy.

2.3. De�ning Strategies and Beliefs

We now describe strategies and beliefs for the players. �is step helps us de�ne our solution
concept capturing the seller’s informationally robust objective. As discussed in the introduction,
part of our contribution lies in formulating such an objective given the seller’s limited commitment.
To our knowledge, there is no consensus approach on how to do so.

Strategies. A pricing strategy is a function

σ :
⋃
t

H t
S → ∆(R+),

so that for each seller information set, σ speci�es a distribution over prices. A price path is a
sequence (p1, p2, . . .); we write pt = (p1, . . . , pt) for the history of prices up to period t. A learning
process is a function

Π :
⋃
t

H t
N → ∆ ({(π, S)}) ,

which assigns to each of Nature’s information sets a distribution over the signal space and the
information structure to be used in that period. A buyer strategy is a function

α :
⋃
t

H t
B → ∆({0, 1}),

where, for each buyer information set, α speci�es a probability distribution over {0, 1}: as
mentioned, 0 denotes “not buying,” and 1 denotes “buying.”12

Beliefs. Two histories h and h′ are non-contradictory if they coincide whenever possible for
them to do so. Given (σ, α,Π) as above, de�ne

Pσ,α,Π : H → ∆([v, v]×H)

to be the probability distribution over (v, h′) induced when starting from history h ∈ H and given
the strategy pro�le (σ, α,Π). For every h ∈ H, Pσ,α,Π(h) is supported on histories h′ that are
12In the standard Coasian bargaining model with a continuum of types, mixed strategies for the buyer are unnecessary

for equilibrium existence. However, with general learning possibilities, mixed strategies may be necessary.
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Seller chooses
price pt:

only observes
price history
p1, . . . , pt−1

· · ·

Nature chooses
information πt:

Observes both price
history p1, . . . , pt

and (π1, s1),
. . . , (πt−1, st−1)

Buyer updates beliefs,
then chooses to

buy (at = 1) or not
(at = 0) at price pt

· · ·at = 0 and
t < T

Payo�s
realized

at = 1 or t = T

Figure 1: Timing of moves and information sets within some period t.

non-contradictory with h.
A belief system for player j ∈ {S,B,N} is a function

µj :
⋃
t

H t
j → ∆([v, v]×H),

such that at each of j’s information sets, µj is supported on histories h ∈ H consistent with that
information set. Let µ = (µS, µB, µN).

A belief system satis�es Bayes’ rule where possible if, for t < s and ht non-contradictory with
hs, µ(hs) is obtained from µ(ht) via Bayes’ rule. Since Nature and the buyer observe the complete
history of prices, information structures and signal realizations, their beliefs concern only the
private type v. By contrast, the seller observes neither the information structure nor the signal
realization; he observes only past prices. Accordingly, the seller’s beliefs are de�ned over both v
and the unobserved history of information structures and signals. For any given seller information
set, these beliefs are degenerate on the observed prices.

2.4. Equilibrium Assumptions

We �nally specify our solution concept. Fix an arbitrary triple (σ, α,Π), the induced measure
Pσ,α,Π, and a belief system µ. Let htS, htB, htN denote representative decision nodes for the seller,
buyer, and Nature, respectively, at time t. Let F t

i (·) denote the prior F (·) conditional on hti for
i ∈ {S,B,N}.

�e buyer’s strategy is sequentially rational given µ if, for all htB , the action prescribed by α
maximizes the buyer’s expected continuation payo� conditional on reaching htB :

Eµ,Pσ,α,Π

[∑
τ≥t

δτ−t(v − pτ )1{accept at τ}
∣∣htB

]
,

10



where τ is the induced stopping time.
If the buyer purchases at some time s at price ps, then from the perspective of time t < s the

seller obtains payo� δ s−tps. �e seller’s pricing strategy is sequentially rational given µ if, at every
htS , the action prescribed by σ maximizes the seller’s expected continuation payo� conditional on
reaching htS :

Eµ,Pσ,α,Π

[
T∑
k=t

δk−tpk 1{ak=1}
∣∣htS
]
, (1)

where ak ∈ {0, 1} denotes the buyer’s acceptance decision at time k.
�e innovation behind our solution concept stems most directly from our speci�cation of how

the learning process is realized, which is as follows: We say that a learning process is sequentially
worst case given µ if, at every htN , Nature’s action prescribed by Π minimizes the seller’s expected
continuation payo� conditional on reaching htN :

Eµ,Pσ,α,Π

[
T∑
k=t

δk−tpk 1{ak=1}
∣∣htN

]
. (2)

De�nition 1. Let (σ, α,Π) be strategies for the seller, buyer, and Nature, respectively, and let µ be a
belief system. �e quadruple ((σ, α,Π), µ) is an equilibrium if and only if:

• α is sequentially rational for the buyer;

• σ is sequentially rational for the seller;

• Π is sequentially worst case;

• µ is derived from strategies using Bayes’ rule wherever possible; and

• �e distribution of v induced by µ at time t is consistent with Bayesian updating via informa-
tion structures and signal realizations,

v
∣∣ (π1, s1), . . . , (πt, st), (3)

where (πk, sk) denotes the information structure chosen and signal realized in period k.

Notice that according to De�nition 1, the distribution of v induced by µ at time t does not depend
on prices charged, signal spaces chosen, and so on. �us, the buyer only updates beliefs about v
based on the learning process—crucially, on or o� path.13 Our goal in this paper is to determine
13�is restriction is in the spirit of “no-signalling-what-you-don’t-know” re�nements (Fudenberg and Tirole, 1991).

Otherwise, one could construct equilibria in which a deviation is deterred by the buyer adopting a belief that v = 0
with probability 1, even if this lies outside the support of F .
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equilibrium outcomes.
We emphasize that, although our exposition imposes equilibrium conditions on Nature, this

should not be read as a�ributing it any intrinsic motivation. �e formulation serves only as an
expositional device to capture how the seller can correctly anticipate worst-case outcomes both
on-path and following deviations. In Section 5, we make this point precise by showing that the
solution admits an equivalent saddle-point interpretation, for which no such device is needed.

3. SOLUTION OF THE MAIN MODEL

We now characterize both the equilibrium price path and the induced learning process under
sequentially worst-case learning. Section 4 examines worst-case expected seller pro�t without
restricting to learning processes that emerge as sequentially worst-case.

3.1. Arbitrary Finite Horizon

�e sequentially worst-case learning process turns out to be characterized by a sequence of
thresholds adapted to the seller’s pricing strategy.

De�nition 2. Fix any seller strategy σ. For any realized pt, let wt(pt, σ) be the unique value
satisfying

wt(pt, σ)− pt = max
τ≥t+1

E
[
δ τ−t

(
wt(pt, σ)− pτ

) ∣∣ pt] ,
where τ ranges over all stopping times.

�e myopic threshold learning process is de�ned as the learning process where, at any htN , the
buyer learns whether v > yt, where yt satis�es

wt(pt, σ) = Ev∼F tN [ v | v ≤ yt ] . (4)

�e terminology re�ects the property that yt minimizes the probability of purchase at time t,
given the continuation strategy σ when v ∼ F t

N . �is problem, in turn, is equivalent to a static
Bayesian persuasion problem in which Nature (as Sender) seeks to induce the buyer (as Receiver)
not to purchase. While Nature’s objective is formally to minimize the seller’s discounted pro�t, in
our se�ing this coincides with minimizing the period-t sale probability.

�eorem 1. When T <∞, the equilibrium price path is unique and deterministic (following possible
randomization in period t = 1) and weakly decreasing over time. �e buyer behaves according to the
myopic threshold learning process with respect to the equilibrium price path.14

14Nature may in principle provide more information than the threshold structure, provided this does not alter the
buyer’s behavior.
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3.1.1. Illustrating �eorem 1 with T = 2 and Uniform Values

While the proof of �eorem 1 is involved, most of the economic intuition can be seen in the
special case where F = U [0, 2] and there are only two periods to sell. We walk through the key
arguments in this special case; the formal details behind the claims made as part of this sketch
appear as part of the proof of �eorem 1 in the Appendix.

Given any discount factor δ, �eorem 1 yields the seller’s equilibrium prices:

p∗1 =
(2− δ)2

8− 6δ
, p∗2 =

2− δ
8− 6δ

.

In each period t ∈ {1, 2}, the buyer learns whether v > y∗t , where:

y∗1 =
4− 2δ

4− 3δ
, y∗2 =

4− 2δ

8− 6δ
.

Buyers with v > y∗1 purchase in period 1. �ose with y∗1 ≥ v > y∗2 are indi�erent between
purchasing in period 1 or waiting until period 2, and in equilibrium purchase in period 2 (with
ties broken against the seller). Buyers with v ≤ y∗2 are indi�erent between purchasing in period
2 or never, and in equilibrium never purchase. Since F (y) = y

2
for the uniform distribution, the

seller’s equilibrium pro�t is:

π = p∗1 (1− F (y∗1)) + δp∗2 (F (y∗1)− F (y∗2)) =
(2− δ)2

4(4− 3δ)
.

We now outline the key steps leading to this equilibrium.

Step One: Worst-Case Information is �reshold Information in the Second Period. For
any second-period price p2, worst-case information solves an information design problem in the
spirit of Kamenica and Gentzkow (2011): Nature chooses information to persuade the buyer not
to buy. If p2 ≥ EF 1

N
[v], the buyer would not purchase even without any additional information,

yielding zero pro�t to the seller. We therefore focus on the case p2 < EF 1
N

[v] and p2 lies above the
lower bound of supp(F 1

N) (as otherwise, no possible information structure would deter purchase).
Since the buyer has a binary action set and the state space is continuous, Kolotilin (2015)

implies that the solution involves revealing whether v > y2, where y2 satis�es15

p2 =

∫ y2

v

v f(v | v ≤ y2) dv. (5)

15�e case in which the posterior distribution has atoms is measure zero and is ignored here.
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Under this threshold structure, the seller’s more-preferred action (purchase) occurs when v > y2,
while the less-preferred action (no purchase) occurs when v ≤ y2. �e threshold is uniquely pinned
down by the indi�erence condition: the buyer’s expected valuation conditional on a no-purchase
recommendation must equal p2. Any further a�empt to reduce the purchase probability would
require raising the buyer’s conditional expectation given a no-purchase signal, inducing purchase
and making the deviation infeasible.16

Step Two: Determining the Second-Period Price. Step One characterizes worst-case infor-
mation for any p2. Suppose the �rst period information structure also takes the form of a threshold:
the buyer purchases immediately if v exceeds this threshold, delaying otherwise.

Under this assumption, condition (5) and the fact that F = U [0, 2] imply that the pro�t-
minimizing second-period threshold is y2 = 2p2. Let y1(p1) denote the �rst-period sequentially
worst-case threshold. Because the buyer purchases whenever v > 2p2, the seller chooses p2 to
maximize expected pro�t

p2

(
1− 2p2

y1(p1)

)
,

yielding the optimal second-period price

p2(p1) =
y1(p1)

4
.

Step �ree: Determining the First-Period Indi�erence Point for the Buyer. In equilib-
rium, the function p2(p1) speci�es the second-period price for any on- or o�-path p1. By Step
One, a buyer who delays is indi�erent in period 2 between purchasing and not purchasing. Conse-
quently, her expected payo� at t = 1 would be unchanged even if she were to always purchase in
the �nal period.

It follows that a buyer indi�erent between immediate purchase and delay at t = 1 is also
indi�erent between purchasing in period 1 and purchasing in period 2. Given a signal s1, this
indi�erence requires

E[v | s1]− p1 = δ
(
E[v | s1]− p2(p1)

)
=⇒ E[v | s1] =

p1 − δp2(p1)

1− δ︸ ︷︷ ︸
=:w1(p1)

.

�is characterization holds even o� path: in Step One, the solved worst-case information structure
16Relative to standard information design, an additional technical issue is that our analysis requires assumptions

about o�-path buyer behavior. Nature can provide strict incentives to the buyer while increasing the seller’s pro�t
by only an arbitrarily small amount. �e limiting pro�t must also be achieved in equilibrium; otherwise Nature
would pro�tably deviate. Hence, the buyer breaks ties against the seller, even o� path.
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did not depend on whether the realized p2 was chosen on path, and the same reasoning applies
were the seller to deviate from the conjectured p1.

Step Four (Key Step): Finding the First-Period Information Structure. �e problem of
�nding worst-case information in period 1 is now analogous to the period-2 problem in Step One.
Seller pro�t is minimized if the buyer learns whether v > 2w1(p1). �e �rst-period threshold is:

y1(p1) = 2w1(p1).

�e key observation is that the seller’s payo� cannot be lowered beyond what this threshold
strategy achieves: her optimal period-2 choice already ensures that a buyer delaying to period 2 is
indi�erent at the price p2(p1). �erefore, the buyer is indi�erent between purchasing in period 1
and delaying if and only if her expected valuation equals w1(p1). Even following a deviation of
Nature, this conclusion remains given their last-period choice.

�us, the �rst-period worst-case information problem is essentially identical to that in Step
One, except that the relevant indi�erence point is now w1(p1) instead of p2.

Step Five: Putting Everything Together to Find the Optimal First-Period Price. From
Step Two, p2(p1) = y1(p1)/4, and from Step Four, y1(p1) = 2w1(p1). Combining these yields

p2(p1) =
w1(p1)

2
.

Substituting into the de�nition of w1(p1) from Step �ree gives

w1(p1) =
2p1

2− δ
.

Given p1, the seller’s expected pro�t is

p1

(
1− y1(p1)

2

)
+ δp2(p1)

(
y1(p1)

2
− y2(p1, p2(p1))

2

)
.

Since y1(p1) = 2w1(p1) and y2(p1, p2(p1)) = 2p2(p1) = w1(p1), this simpli�es to

p1

(
1− 2p1

2− δ

)
+ δ

p1

2− δ

(
2p1

2− δ
− p1

2− δ

)
.

Maximizing over p1 yields

p∗1 =
(2− δ)2

8− 6δ
,
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as stated earlier. �e equilibrium values y∗1 , y∗2 , and p∗2 then follow directly.

3.1.2. Discussion of the Solution

One of the main economic takeaways from the above analysis is that the sequentially worst-case
objective enables the seller to rely on simple pricing heuristics, avoiding much of the complexity
involved in optimizing against arbitrary learning processes.

�e key observation—highlighted in Step Four—is that the value at which the buyer is indif-
ferent between immediate purchase and delay depends only on the conjectured price path, and
not on the possibility of future learning. Consequently, the prospect of additional information in
the second period does not increase the probability of delay, thereby justifying the �rst-period’s
threshold information structure as worst-case.

By contrast, if the buyer were to learn v perfectly in period 2, say for exogenous reasons, the
�rst-period worst-case threshold would generally need to be higher. In that case, any buyer with
EF 1

N
[v] ≤ w1(p1) would strictly prefer to delay: knowing v exactly in period 2 allows her to avoid

purchasing when v < p2, delivering additional surplus. �e seller’s payo� could decrease if the
�rst-period threshold were increased to induce more delay.

Our analysis therefore implies that sellers concerned about buyer learning can adopt strategies
closely resembling those from the no-learning benchmark. In the general case with myopic
threshold learning, the seller’s discounted expected pro�t from time t onward (taking w0 =

y∗(w0) = v) is:
T∑
s=t

δ s−tps
F (y∗(ws−1))− F (y∗(ws))

F (y∗(wt−1))
.

By comparison, when the buyer knows v perfectly, the seller’s discounted pro�t resembles this
expression, with the only di�erence being that the purchase threshold in period each period
s ∈ {t, . . . , T} is ws rather than y∗(ws). �us, di�erences in the seller’s objective relative to the
known-value case arise entirely through the function y∗(·), which can be computed to primitives.

3.1.3. Additional Challenges in the Proof

�e two-period case captures the basic intuition underlying �eorem 1. �e same logic applies
generally: for sequentially worst-case information, the buyer cannot expect to obtain payo�-
relevant information if delaying, thus implying the solution is a myopic threshold learning process.

However, extending this reasoning to the general case is substantially more involved. Indeed,
our exercise requires solving for equilibrium strategies in a three-player game (seller, buyer, Nature)
for which establishing general existence and uniqueness is non-trivial.
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We mention two technical issues in our proof beyond those discussed for the T = 2 case:

(1) Handling arbitrary past information structures. In the informal construction, we solved
for the second-period information structure assuming the �rst-period information structure were
partitional. �is property need not hold in equilibrium (as other information structures can induce
buyer indi�erence following a recommendation to not buy). More signi�cant, however, is that
our general proof requires us to consider arbitrary (past) information structures, which cannot be
ruled out a priori—that is, before we determine what the worst-case actually is. Showing that the
intuition from Section 3.1.2 continues to hold in these general cases requires additional arguments.

(2) Allowing for on-path seller randomization. Our use of backward induction reasoning
prevents us from imposing assumptions on the buyer’s posterior value distribution at any given
time—in particular, we cannot make assumptions that would rule out “early” randomizations.
Indeed, the posterior value distribution depends endogenously on the equilibrium learning process.
Our proof accommodates the possibility that the seller might have randomized early, in anticipation
of an exotic information structure arising later. While our theorem ultimately implies that on the
equilibrium path seller randomization can occur only in the �rst period and is pinned down a�er
that—consistent with the standard results in Fudenberg et al. (1985) and Gul et al. (1986)—ruling
out randomization in later periods is a substantive part of the argument.

3.2. �e Gap Case with T =∞

We now turn to the in�nite-horizon case. Although the main focus of the paper is on the formula-
tion of the problem and the structure of the sequentially worst-case learning process, it is natural
as a theoretical exercise to compare our results with the standard Coasian bargaining benchmark.
�e main complication is that backward induction no longer applies in a straightforward way,
since the standard skimming property is absent from our model. Nevertheless, when v > 0, the
traditional Coasian intuitions can still be recovered.

Readers familiar with the bargaining literature may associate the assumption v > 0 with the
conclusion that the market clears in �nite time—i.e., that there exists a uniform bound T̂ (δ) such
that, a�er any history, the buyer purchases with probability one by period T̂ (δ). �is conclusion,
however, requires additional regularity assumptions on the distribution of willingness-to-pay, such
as Lipschitz continuity near the lower bound of its support (see Gul et al. (1986)). In our se�ing,
such regularity conditions may fail for posterior distributions that arise under some learning
processes, as we do not rule out any information structure a priori.

It is straightforward to verify that the myopic threshold learning process can still be sustained
as an equilibrium strategy, by the one-shot deviation principle. �e more subtle question is
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whether it is the unique sequentially worst-case learning process among all equilibria. We show
that uniqueness can be recovered under an intuitive restriction on the buyer’s equilibrium strategy.

De�nition 3. An equilibrium ((σ, α,Π), µ) is amonotone equilibrium if and only if the buyer’s
strategy α is weak-Markov—depending only on the posterior belief F t

B and the price pt—and whenever
F1 strictly FOSD F2, the condition 0 ∈ αt(F1, pt) implies αt(F2, pt) = 0.

Monotonicity requires that if the buyer’s perceived distribution of willingness-to-pay becomes
uniformly less favorable, her willingness to delay cannot increase. It is immediate that when
T = ∞, the equilibrium with the myopic threshold learning process is monotone. Moreover,
under the same regularity assumption as in Gul et al. (1986), we recover uniqueness.

Proposition 1. Suppose T =∞, v > 0, and F−1 is Lipschitz-continuous at 0. �en the equilibrium
price path is unique and deterministic (following possible randomization in period t = 1). In any
such equilibrium, every sequentially worst-case learning process induces the same buyer behavior as
the myopic threshold learning process.

�e proof shows that monotonicity restores the property that the market clears in �nite time.
Once this property holds, sequentially worst-case learning implies that future learning cannot be
used to induce delay. Consequently, the seller’s value function at time t can be wri�en as:17

V
(
yt−1(pt−1)

)
= max

pt

[
pt
(
F (yt−1(pt−1))− F (yt(pt))

)
+ δ V

(
yt(pt)

)]
, (6)

with y0 = v and yt(·) de�ned by (4).
Several structural properties of the equilibrium—such as the weak-Markov property18 and the

absence of on-path seller randomization a�er the initial period—follow directly from the existence
of this representation, by applying standard arguments from, for example, Fudenberg et al. (1985)
and Ausubel and Deneckere (1989).

4. BEYOND SEQUENTIALLY WORST-CASE VIA SAFE SOLUTIONS

�eorem 1 provides a sharp characterization of the sequentially worst-case learning process: it
consists of descending partitional thresholds that make the buyer indi�erent between purchasing
and not purchasing in the absence of any further information. We now ask whether a seller who
17�is representation is guaranteed only on the equilibrium path under sequentially worst-case learning; it is therefore

a result, not an assumption, that it characterizes price-se�ing behavior. �e proofs of Proposition 1 and �eorem 1
do not restrict learning processes and hence do not assume such a value function a priori.

18We call an equilibrium pro�le weak-Markov if the buyer’s acceptance decision depends only on F t
B and pt. �is

coincides with the standard de�nition when the buyer knows v.

18



prices optimally against sequentially worst-case learning can achieve the same performance when
arbitrary learning processes are allowed.

Speci�cally, our interest here concerns the robustness of a given price path: we ask whether
allowing for richer buyer learning possibilities—without changing the seller’s pricing strategy—
could lower the seller’s payo�. Formally, this yields the following criterion:

De�nition 4. An equilibrium pricing strategy is a safe solution if, at any on-path history, the
seller’s equilibrium payo� equals the worst-case pro�t obtained when using the same pricing strategy
against an arbitrary learning process and any sequentially rational buyer strategy under it.

We view this condition as natural even beyond the scope of our problem, but we restrict a�ention
to our model to maintain focus. If the seller’s equilibrium pricing strategy is safe, then at any
continuation history, the pro�t-guarantee against sequentially worst-case information coincides
with the pro�t guarantee against arbitrary learning. In particular, this applies in the initial period:
richer learning possibilities would not lower seller pro�t below the level identi�ed in �eorem 1
whenever the seller follows the equilibrium price path. �us, the equilibrium solution retains the
normative appeal that o�en motivates robust objectives.

In other words, if a sequentially worst-case price-path is safe, then a seller who is self-aware
of his lack of commitment, and anticipating that he will reason similarly in every future period,
would maintain their same pricing strategy. Since we apply this criterion at any on-path history,
we implicitly assume that the seller does not revisit “worst-case” scenarios from earlier periods.19

It is also important to note that safe solutions allow the seller to possibly be hurt under some
joint change in the price path and the learning process. Indeed, one can typically construct a
learning process such that the pricing strategy induced as an equilibrium strategy holding �xed
this (non–sequentially worst-case) learning process yields a lower payo� than the benchmark in
�eorem 1. Intuitively, this occurs when the learning process transfers additional surplus to the
buyer to induce further delay. Example 1 in Appendix B illustrates how such transfers may result
in a lower seller payo�. �is observation underscores the subtleties inherent in the concept.

�e following property is su�cient for the price path in �eorem 1 to be safe.

De�nition 5. Let y(w) satisfy w = Ev∼F [v | v ≤ y(w)]. We say that a distribution F is threshold-
ratio monotone if

y(w)

w
is weakly increasing in w.

19An asymmetry arises when modifying past learning to hurt the seller, since any history is conditional on no
purchase—implicitly assuming that signals were (relatively) unfavorable. By contrast, discouraging the buyer from
buying following a price drop will may require some information to be provided that would encourage purchase,
unable to condition on an unfavorable realization. We discuss implications of this possibility in Appendix B.3.
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Recall that the myopic threshold learning process in �eorem 1 informs the buyer whether
v > y(wt(pt)). Intuitively, threshold-ratio monotonicity ensures that increasing the threshold to
induce more delay does not disproportionately raise the conditional expectation E[v | v ≤ y]. In
other words, the expected value of buyers below the threshold in earlier periods changes less than
the expected value in later periods. �is guarantees that any reduction in early-period revenue is
smaller than the corresponding gain from later-period sales, as our second main �eorem shows:

�eorem 2. Suppose the value distribution is threshold-ratio monotone. �en the equilibrium pricing
strategy in �eorem 1 and Proposition 1 is a safe solution: if the seller uses the strategy described
there, no learning process can reduce the seller’s expected payo� at any on-path history.

�eorem 2 explicitly solves for the worst-case learning process over all possible processes
under the assumption of threshold-ratio monotonicity, and shows that this process coincides with
the one in �eorem 1. �e key di�erence from the exercise of �nding the sequentially worst-case
process lies in the conjectures the buyer may form regarding the learning process. Sequentially
worst-case constraints ma�er because the seller recognizes that the buyer will not anticipate
a learning process that is not itself sequentially worst-case. In �eorem 2, by contrast, we �x
the price path and, in principle, allow more information to be provided to the buyer to induce
additional delay. �e proof relies on the fact that the equilibrium price path is deterministic (a�er
the initial period), but otherwise places no restriction on the seller’s strategy.

A useful preliminary observation is that, given a �xed price path, the worst-case learning
process is partitional in each period. Even so, substantial work remains because the worst-case
thresholds may di�er from those implied by the sequentially worst-case process. Recall that
sequentially worst-case requires that whenever the buyer delays, she is indi�erent between delay
and purchase. Put di�erently, threshold information structures could still make the buyer strictly
prefer to delay. �us, solving for worst-case information involves a non-trivial choice of a threshold
for each period, subject to the buyer’s obedience constraints.

We address this by identifying a speci�c adjustment of the partition thresholds that lowers
discounted pro�t whenever a threshold fails to induce exact indi�erence a�er a recommendation
not to buy. While lowering the threshold increases sales in that period, we adjust the previous
period’s threshold to preserve obedience. In the Appendix, we verify that, under threshold-ratio
monotonicity, this adjustment strictly reduces the seller’s pro�t.

While not every distribution satis�es threshold-ratio monotonicity, the condition is still quite
permissive. �e following su�cient condition illustrates this point.

Proposition 2. For di�erentiable f , threshold-ratio monotonicity holds if vf(v)
F (v)

is decreasing in v.
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Proposition 2 implies that the class of threshold-ratio monotone distributions includes F (v) = va

for a > 0, exactly the case considered in Fuchs and Skrypacz (2013), for instance. �reshold-
ratio monotonicity also holds for uniform distributions supported on compact intervals of R+.
Consequently, the price path described in Section 3.1.1 is safe.

Finally, if threshold-ratio monotonicity holds, the restriction to monotone equilibria in Propo-
sition 1 can be substantially relaxed.

De�nition 6. An equilibrium ((σ, α,Π), µ) is a deterministic equilibrium if and only if the
equilibrium pricing strategy is deterministic except possibly in the �rst period.

�e actual price path from the second period onward may depend on the realization of the
�rst-period price. Equilibria in the known-values case under the Lipschitz condition satisfy this
restriction (see Fudenberg et al. (1985) and Gul et al. (1986)).20

Corollary 1. If, in addition to the conditions of Proposition 1, F is threshold-ratio monotone, then
the equilibrium in Proposition 1 is the unique deterministic equilibrium.

5. SADDLE-POINT WORST-CASE FORMULATIONS

We now discuss an equivalent formulation of our problem. Our reason for doing so stems from our
use of “Nature as a player” as an expositional device. Analytically, this step is useful as it motivates
our solution concept, which can be analyzed using well-known methods. But this formulation is
also conceptually useful since once equilibrium is imposed, (i) information minimizes seller pro�t
on- and o�-path, and (ii) the seller correctly anticipates these choices so that dynamic consistency
holds. We view the economic content of our model to be clearer when described in the extensive
form, analogous to classic works like Fudenberg et al. (1985) and Gul et al. (1986). Nevertheless, it
is also instructive to formulate a normal-form version of this interaction to shed further light on
its interpretation and connection to past work.

While this expositional device is o�en invoked in static se�ings, the existence of a saddle-
point solution—where the designer’s choice, say x ∈ X , facing uncertainty over y ∈ Y , solves
maxx∈X miny∈Y u(x, y)—implies that “Nature” need not be interpreted literally. It simply turns
out that the optimal choices under this objective coincide with the equilibrium of a game where
Nature chooses y ∈ Y . We show the same conclusion holds in our framework by identifying the
analogous saddle-point formulation. �us, the di�erence with static worst-case formulations is
not that our appeal to Nature as a player is more literal, but rather in terms of the possibilities
considered. �ese observations clarify more precisely the role of Nature in our formulation.
20Gul et al. (1986) also discuss why the equilibrium pricing strategy may not be deterministic in the initial period,

hence our inclusion of this condition in the de�nition.
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5.1. Sequentially Worst-Case Learning

To motivate the formulation, consider the no-learning version of our problem; say, where the
buyer knows v at time 0. In this case, the equilibrium outcome delivers a pricing strategy, say
(p∗1, p

∗
2, . . .). �is same price path emerges in Nash equilibrium if, instead of choosing a new price

at every point in time, the seller chose a price path at time 0 with future prices “hidden”—so that
the buyer only observes the price in a given period once that period arrives. In this case, the seller
chooses pt conditional on the buyer not having bought by time t. �us, consider the following
normal form game, which we refer to as the hidden-price-hidden-information normal form:

• �e seller’s action set is the set of all randomized pricing strategy σ : ∪tH t
S → ∆(R+).

• Nature’s action set is the set of all history-dependent learning processes

Π :
⋃
t

H t
N → ∆ ({(π, S)}) ,

• A�er the seller and Nature simultaneously choose their actions, the buyer chooses α, given
µ (with µ derived from Bayes rule given σ and Π), for all htB , to maximize the continuation
payo� conditional on reaching htB :

Eµ,Pσ,α,Π

[∑
τ≥t

δτ−t(v − pτ )1{accept at τ}
∣∣htB

]
,

where τ is the induced stopping time.

Crucially, the buyer’s strategy here depends only on htB , the set of prices and information observed
up until time t. It does not include future prices or future information—buyer actions at time t
cannot condition on choices of other players at time t+ s. We have the following:

Lemma 1. �e Nash equilibrium in the hidden-price-hidden information normal form induces the
same equilibrium outcome as in the equilibrium of the main model.

Lemma 1 provides a mapping between our worst-case formulation and those from static
robustness se�ings, where optimal outcomes correspond to a saddle point: choices are optimal
against the worst-case realizations from a given set of possibilities. �e same conclusion holds in
the hidden price-path formulation of the model, simply with the additional requirement that future
information structures cannot be revealed to the buyer to shape her strategy. While described as a
Nash equilibrium outcome, as mentioned above, the implication is that the solution corresponds
to a saddle-point of an objective for which no such literal interpretation is necessary. Ultimately,
the sequentially worst-case benchmark requires only that future information is “hidden.”
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5.2. Safe Solutions

We now show that safe solutions emerge naturally in the saddle-point formulation when the
restrictions in the previous paragraph are dropped:

De�nition 7. A pro�le (σ, α,Π) is one-shot worst-case learning process Π minimizes

Eµ,Pσ,α,Π

[
T∑
k=t

δk−tpk 1{ak=1}

]
, (7)

i.e., the ex-ante expected seller’s discounted payo�, and the buyer’s strategy is optimal at every htB
given the realized Π.

While this notion maintains the assumption from the previous section that the price is revealed
to the buyer period-by-period, the key di�erence is that it allows the information arrival process
to be revealed to the buyer at the very beginning. �us, given Π, the game becomes a two-player
game between the seller and the buyer.

Motivated by this observation, we consider the normal-form game that arises under this
modi�cation, which we call the hidden-price-observed-information normal form:

• �e seller’s action set is the set of all randomized pricing strategy σ : ∪tH t
S → ∆(R+).

• Nature’s action set is the set of all history-dependent learning processes

Π :
⋃
t

H t
N → ∆ ({(π, S)}) ,

• �e buyer chooses α, given µ and Π, for all htB , maximizing the continuation payo�
conditional on reaching htB :

Eµ,Pσ,α,Π

[∑
τ≥t

δτ−t(v − pτ )1{accept at τ}
∣∣htB

]
,

where τ is the induced stopping time.

�e di�erence with the hidden-information case in Section 5.1 arises since when Π is chosen,
this choice is observed by the buyer as suggested by the name of this normal form. Note, however,
that we still assume simultaneity in the choice of pricing strategy and the choice of learning
process. We have the following lemma:

23



Lemma 2. �e Nash equilibrium in the hidden-price-observed-information normal form game
(between the seller and Nature) induces a one-shot worst-case learning process. A sequentially worst-
case equilibrium pricing strategy is a safe solution only if it can be sustained in some Nash equilibrium
of the hidden-price-observed-information normal form game.

Taken together, these results shed new light on both the notions of sequentially worst-case
learning process and safe solutions—and their connection as articulated in �eorem 2. In particular,
Lemma 1 shows that the sequentially worst-case benchmark arises from restricting the set of
possibilities over which the seller considers worst-case outcomes, rather than representing a literal
opponent per se, while Lemma 2 shows that safe solutions arise from removing these restrictions.
As such saddle-point formulations have come up naturally in the analysis of static contexts, our
hope is that articulating these benchmarks connects our assumptions to those in past work.

6. CONCLUSION

6.1. Outcomes under Equilibrium with Fixed Learning Process

Part of the motivation for our robust approach is the observation that classical Bayesian approaches
have tended to only analyze particular forms of learning processes. Here, we argue that insofar
as this could be allowed, the benchmark results would likely resemble “anything goes” more
than anything sharp. Speci�cally, allowing for general unrestricted leaning processes without
imposing some restriction (such as our sequentially worst-case) may yield dramatic departures
from the known-values equilibrium.21 �e following shows that indeed this possibility enables
constant-price path equilibria to emerge for some �xed learning process:

Proposition 3. Fix F and δ, and take T =∞. Suppose the equilibrium outcome when the buyer
knows v does not involve market clearing at t = 1. �en there exists a �xed learning process admi�ing
an equilibrium (between the seller and the buyer under this process) such that:

• �e seller follows a constant price path.

• �e seller’s expected payo� is v∗, where v∗ is any value strictly less than EF [v] and strictly
greater than the equilibrium payo� identi�ed in Proposition 1.

• �e market does not clear in any �nite time (i.e., there is no T̂ such that the buyer purchases
before time T̂ with probability one on-path).

21�is exercise is in the spirit of robust predictions; Liu (2022) performs such an exercise when the seller may obtain
extra information about the buyer’s value, showing that a rich set of payo�s may emerge in the frequent-o�er limit.
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Moreover, when T <∞, there exists a �xed learning process and an equilibrium satisfying the �rst
two points as long as v∗ is strictly greater than the equilibrium payo� identi�ed in �eorem 1.

�is result highlights (i) the possibility of equilibrium multiplicity for a �xed learning process,
and (ii) the absence of a �nite time horizon by which the market clears, neither of which arises
in the known-values gap case.22 Proposition 3 further shows that if arbitrary learning process is
possible, then severe departures from the known-values predictions can emerge.

�e learning process used to prove Proposition 3 is surprisingly simple: On path, the seller
sets price equal to EF [v], no information is provided if the seller adheres to the constant price
path, and a deviation by the seller causes the buyer to learn v perfectly. Since the buyer’s expected
payo� is 0 at every time, this construction supports an equilibrium in which the buyer randomizes
with a probability that induces the seller to maintain the constant price path rather than deviating.
In particular, triggering the release of information can lead to highly unfavorable outcomes for
the seller. �e key property of this learning process is that the prospect of learning does shape
equilibrium outcomes, as it prevents the seller from deviating.

�e takeaway from this discussion is that our robust approach has an appealing feature: it
recovers much of the usual intuition from the well-studied literature on known-values bargaining.
It is worth emphasizing that a conclusion as sharp as the one we derive need not hold under
alternative formulations of the robust objective, a point discussed in detail in Appendix B.23

6.2. Discussion of the No-Gap Case

While our main analysis focused on either the �nite-horizon or gap cases, many of our main
insights also apply to the no-gap case:

Proposition 4. Suppose T = ∞ and v = 0. An equilibrium exists in which Nature implements
myopic threshold learning process.

Given that it is typically impossible to impose �nite-time market clearing when v = 0,
monotonicity alone does not su�ce to rule out non-myopic-threshold learning processes. However,
the threshold-ratio monotonicity condition on F does imply that this outcome belongs to the
same class of equilibria, with possible multiplicity:

Proposition 5. Suppose T =∞ and v = 0. If F is threshold-ratio monotone, then in any determin-
istic equilibrium Nature implements myopic threshold learning process.

22�e combination with a constant price path is also distinct, although constant prices would arise in the degenerate
case where the market clears at time 1.

23For example, naivete may lead the seller not to sell at all if she expects the buyer to have strong delay incentives.
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�is proposition highlights the relevance of myopic-threshold learning process even in the no-gap
case. Note that in the no-gap case we no longer obtain unique equilibrium price paths, just as in
the known-values case—identical constructions such as in Ausubel and Deneckere (1989) apply
once Nature’s strategy is restricted to being myopic threshold learning process.

6.3. Discussion of Model Assumptions

We defer a detailed exploration of alternative formulations to Appendix B. �e explicit use of
“Nature” as a player is primarily an expositional device, clarifying why one might expect dynamic
consistency of the learning process to be preserved. In equilibrium, actions must maximize payo�s
given that future actions are determined by the equilibrium pro�le, which in turn must satisfy
the same requirement. While ours is an incomplete-information game (complicating backward
induction), this reasoning provides the key intuition. In particular, equilibrium requires that the
learning process the seller anticipates is precisely the one that materializes both on-path and a�er
deviations—there is no ambiguity regarding which learning process the seller should consider
at time 10. Section 5 further underscores that the sequentially worst-case learning process also
emerges under a traditional (static) formulation of the worst case.

Our introduction contrasted our use of a maxmin objective with earlier approaches in the
literature. Epstein and Schneider (2003) propose a “rectangularity” condition on the set of priors
that characterizes when the maxmin decision rule is dynamically consistent. While Epstein and
Schneider (2003) also provide a procedure for constructing a set of priors to represent a decision
maker’s ex-ante preference, their se�ing di�ers from ours in part due to the presence of the buyer.
�at said, we acknowledge that our exercise is in spirit similar to their proposal. We simply �nd it
more direct, in our se�ing, to relax assumptions on “Nature’s commitment power” rather than on
the set of learning processes and (endogenous) buyer equilibrium strategies.24

On this note, we have in mind situations where the buyer can consult any source that comes
to mind costlessly. �e restrictions on what the buyer knows about v re�ect limits on what the
buyer has access to at any time, rather than a choice to exert less e�ort. We share this assumption
about how information is generated with much of the informational robustness literature (e.g., Du
(2018); Brooks and Du (2021, 2023); Deb and Roesler (2023), among others).

A general issue for robust objectives concerns the timing of the worst case. We have in mind
situations where buyers have some time to respond to o�ers, or where new o�ers are made very
shortly a�er rejection (so that the buyer can learn while considering the o�er). While the seller
may randomize, the information realized in a given period can depend on the seller’s actions (i.e.,
24Another approach to accommodating ambiguity aversion is introduced in Klibano� et al. (2009), which develops a

dynamically consistent version of smooth ambiguity preferences allowing for a richer separation between ambiguity
and ambiguity a�itudes than maxmin. Hanany et al. (2020) extend this framework to games.
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the posted price), insofar as such actions lead the buyer to obtain some other information source.
Indeed, many papers have noted channels through which information can depend on price in
practice—see, for instance, Xu and Yang (2022); Liu et al. (2023); Ichihashi and Smolin (2023). Ke
and Zhang (2020) provide decision-theoretic foundations for the assumption that the worst case
depends on realized choices, an assumption also adopted in other work applying such approaches
(e.g., Carroll (2015); Bergemann et al. (2017); Chen (2023); Guo and Shmaya (2023); Malladi (2023)).

For us, allowing the worst case to condition on realized seller choices is more compelling for
three reasons. First, allowing information to depend on the randomization but not on its realization
evokes commitment, since it requires a seller who observes the outcome of the randomization not to
reconsider (for instance, a�er observing the price draw but before posting it). Our interest, however,
is in cases where no commitment ability is present. �e inability to commit to a randomization has
traditionally been used to justify restricting a�ention to deterministic mechanisms more generally
(see La�ont and Martimort, 2002, p. 67). Second, assuming that information is independent of
realized seller choices implies that information cannot react to deviations. Yet a seller may well be
deterred from deviating by the prospect of directly in�uencing the informational environment
(e.g., a�racting a�ention through unexpected actions). Allowing some price dependence therefore
seems natural. As we see no universally plausible a priori restriction, we therefore leave this
possibility unconstrained. �ird, given that our goal is to study a seller completely unsure of how
their actions in�uence buyer learning, it seems reasonable to start with the case where Nature has
as much power as possible.

6.4. Final Remarks

In this paper, we propose a new approach to modeling a seller who reoptimizes a dynamic worst-
case objective. By treating adversarial Nature as a strategic player in a dynamic game, we obtain a
dynamically consistent worst-case objective and sharp characterizations of equilibrium outcomes.
A seller of a house, for instance, need not worry about delay caused by the buyer wishing to
consult a family member: the sequentially worst-case learning process simply minimizes the
seller’s payo� period by period, given conjectures about how prices will evolve. Even when
other learning processes are possible, in many cases this is immaterial, as no prospective future
information would further reduce the seller’s payo�.

Durable goods pricing is a natural �rst se�ing to study informational robustness without
commitment, as the buyer’s problem reduces to choosing when to purchase. Our analysis also
uncovers conceptual issues that arise more broadly when relaxing commitment in a robust
framework. To clarify these, Appendix B considers alternative speci�cations of the robust objective,
arguing that our formulation yields the most intuitive and tractable solution for informationally
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robust sales.25 We do not claim this conclusion extends to all environments, but in our application
the potential for dynamic inconsistency appears less severe than previously thought; when safe
solutions exist, as they do for a large class of environments, allowing for potentially dynamically
inconsistent learning processes would not hurt a dynamically-consistent seller.

We view our contribution to the agenda outlined by Bergemann and Valimaki (2019) as
presenting a tractable dynamically consistent informationally-robust objective. We also aim to
o�er a template for extending the robust approach to other dynamic interactions. While one might
argue that focusing on a restricted worst case departs from the fully robust objective, we have
shown that in our se�ing this objection o�en has li�le bite. By introducing the notion of a safe
solution, we aim to facilitate tractable solutions in other dynamic models and support the case that
such solutions can remain consistent with the original motivation for adopting a robust approach.

25For example, a seller who considers the worst case over all learning processes but does not anticipate that the
process may change over time might never a�empt to sell, even if only moderately patient; see Appendix B.1.
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�éo Durandard, Udayan Vaidya, and Boli Xu. 2024. Robust Contracting for Sequential Search.
(2024). Working paper.

Larry Epstein and Martin Schneider. 2003. Recursive Multiple Priors. Journal of Economic �eory
113 (2003), 1–31.

Daryl Fairweather, Ma�hew E. Kahn, Robert Metcalfe, and Sebastian Sandoval-Olascoaga. 2023.
�e Impact of Climate Risk Disclosure on Housing Search and Buying Dynamics: Evidence
from a Nationwide Field Experiment with Red�n. Working Paper (2023).

Chaim Fershtman and Daniel J. Seidmann. 1993. Deadline E�ects and Ine�cient Delay in Bargain-
ing with Endogenous Commitment. Journal of Economic �eory 60, 2 (August 1993), 306–321.
https://doi.org/10.1006/jeth.1993.1051

William Fuchs and Andrzej Skrypacz. 2013. Bargaining with Deadlines and Private Information.
American Economic Journal: Microeconomics 5, 4 (2013), 219–243.

Drew Fudenberg, David Levine, and Jean Tirole. 1985. In�nite-horizon models of bargaining with
one-sided incomplete information. In Game-�eoretic Models of Bargaining, Alvin Roth (Ed.).
Cambridge University Press, Chapter 5, 73–98.

Drew Fudenberg and Jean Tirole. 1991. Perfect Bayesian Equilibrium and Sequential Equilibrium.
Journal of Economic �eory 53, 2 (April 1991), 236–260.

Faruk Gul, Hugo Sonnenschein, and Robert Wilson. 1986. Foundations of Dynamic Monopoly
and the Coase Conjecture. Journal of Economic �eory 39 (1986), 155–190.

Yingni Guo and Eran Shmaya. 2023. Robust Monopoly Regulation. Working Paper (2023).

Lu Han and William C. Strange. 2015. �e Microstructure of Housing Markets: Search, Bargaining,
and Brokerage. In Handbook of Regional And Urban Economics, Gilles Duranton, J. Vernon
Henderson, and William C. Strange (Eds.). Vol. 5. Elsevier, Chapter 13, 813–886.

Eran Hanany, Peter Klibano�, and Sujoy Mukerji. 2020. Incomplete Information Games with
Ambiguity Averse Players. American Economic Journal: Microeconomics 12, 2 (May 2020),
135–187.

31

https://doi.org/10.1006/jeth.1993.1051


Wei He and Jiangtao Li. 2022. Correlation-Robust Action Design. Journal of Economic �eory 200
(2022), 105403.

Shota Ichihashi and Alex Smolin. 2023. Buyer-Optimal Algorithmic Consumption. Working Paper
(2023).

Ashwin Kambhampati. 2025. Proper Robustness and the E�ciency of Monopoly Screening.
Unpublished manuscript (2025).

Emir Kamenica and Ma�hew Gentzkow. 2011. Bayesian Persuasion. American Economic Reivew
101, 6 (October 2011), 2590–2615.

Shaowei Ke and Qi Zhang. 2020. Randomization and Ambiguity Aversion. Econometrica 88, 3
(2020), 1159–1195.

Peter Klibano�, Massimo Marinacci, and Sujoy Mukerji. 2009. Recursive Smooth Ambiguity
Preferences. Journal of Economic �eory 144, 3 (May 2009), 930–976.

Andrew Koh and Sivakorn Sanguanmoo. 2025. Robust Technology Regulation. Unpublished
manuscript (2025).

Anton Kolotilin. 2015. Experimental design to persuade. Games and Economic Behavior 90 (2015),
215–226.

Jean-Jacques La�ont and David Martimort. 2002. �eory of Incentives. Princeton University Press.

Tuomas Laiho and Julia Salmi. 2020. Coasian Dynamics and Endogenous Learning. Working Paper,
University of Oslo and University of Copenhagen (2020).

Jonathan Libgober and Xiaosheng Mu. 2021. Informational Robustness in Intertemporal Pricing.
Review of Economic Studies 88, 3 (2021), 1224–1252.

Heng Liu. 2022. Robust Predictions in Coasian Bargaining. American Economic Review: Insights 4,
2 (2022), 209–222.

Tingjun Liu, Dan Bernhardt, and Odilon Camara. 2023. Extracting surplus by walking away from
acquiring information. Working Paper (2023).

Niccolo Lomys. 2018. Learning while Bargaining: Experimentation and Coasean Dynamics.
Working Paper, Toulouse School of Economics (2018).

32



Giuseppe Lopomo, Luca Rigo�i, and Chris Shannon. 2020. Uncertainty in Mechanism Design.
Working Paper, Duke University, University of Pi�sburgh and University of California, Berkeley
(2020).

Suraj Malladi. 2023. Searching in the Dark and Learning Where to Look. Working Paper (2023).

Paul Milgrom and Chris Shannon. 1994. Monotone Comparative Statics. Econometrica 62, 1 (1994),
157–180.

Juan Ortner. 2017. Durable goods monopoly with stochastic costs. �eoretical Economics 12, 2
(2017), 817–861.

Juan Ortner. 2023. Bargaining with Evolving Private Information. �eoretical Economics Forth-
coming (2023).

Alessandro Pavan. 2017. Dynamic Mechanism Design: Robustness and Endogenous Types. In
Advances in Economics and Econometrics. Vol. 1. Cambridge University Press, 1–62.

Antonio Penta. 2015. Robust Dynamic Implementation. Journal of Economic �eory 160 (December
2015), 280–316.

Marciano Siniscalchi. 2009. Two out of three ain’t bad: a comment on ’�e ambiguity aversion
literature: A critical assessment’. Economics and Philosophy 25, 3 (November 2009), 335–356.

Nancy Stokey. 1981. Rational Expectations and Durable Goods Pricing. �e Bell Journal of
Economics 12, 1 (Spring 1981), 112–128.

Jean Tirole. 2016. From Bo�om of the Barrel to Cream of the Crop: Sequential Screening With
Positive Selection. Econometrica 84, 4 (2016), 1291–1343.

Alexander Wolitzky. 2016. Mechanism Design with Maxmin Agents: �eory and an Application
to Bilateral Trade. �eoretical Economics 11 (2016), 971–1004.

Wenji Xu and Kai Hao Yang. 2022. Informational Intermediation, Market Feedback, and Welfare
Losses. Working Paper (2022).

33



A. PROOFS

A.1. Characterization of Sequentially Worst-Case

Proof of Lemma 1. We prove the result by backward induction. Let the Nash equilibrium strategy
be denoted by (σ∗,Π∗). At time t = T , since Nature can secretly deviate, for any pT in the
support of σ∗(hTS ) the information structure Π∗(hTN) must minimize the seller’s expected payo�.
For o�-path pT , it is also without loss of generality to assume that Π∗(hTN) minimizes the seller’s
expected payo�, as this does not a�ect the equilibrium outcome. Given Nature’s strategy Π∗, since
the seller can also secretly deviate at t = T , σ∗(hTS ) must maximize the seller’s expected payo�
given Π∗. Repeating this reasoning recursively, the conclusion follows by backward induction.

Proof of Lemma 2. In the Nash equilibrium, the learning process must minimize the seller’s ex-ante
pro�t as otherwise Nature can secretly deviate to another learning process to hurt the seller even
more as this deviation will be observed by the buyer. Now if a sequentially worst-case learning
process is a safe solution, then by the de�nition Nature’s learning process on the equilibrium path
is a one-shot worst-case learning process. And because the seller and buyer are both sequentially
rational on the equilibrium path, we conclude it is a Nash equilibrium between the seller and
Nature.

Proof of �eorem 1.

Step 1. Reduction to Binary Recommendations. We �rst show that, without loss of gen-
erality, Nature can be assumed to provide only binary recommendations to the buyer in each
period—“buy” or “wait.” �is is the familiar “recommendation principle” from the information
design literature.

Lemma 3. Given equilibrium strategies (σ, α,Π) and the corresponding belief system µ, there exist
equilibrium strategies (σ̃, α̃, Π̃) and a belief system µ̃ such that Π̃ provides only two signals (buy or
wait) at every history htN , and the induced equilibrium outcome is identical to that under (σ, α,Π, µ).

Proof. Let (πt, St) = Π(htN) denote the information structure chosen by Nature at history htN .
With a slight abuse of notation, write α(htB, st) for the probability that the buyer purchases a�er
observing st ∈ St in period t.

We �rst show that it is without loss to assume the buyer doesn’t randomize. Ifα(htB, st) ∈ (0, 1)

for some st, Nature can “re�ne” the signal to implement the buyer’s mixed action deterministically.
Speci�cally, construct a new information structure (π̃t, S̃t) that, conditional on st, sends:

st with probability α(htB, st), and st otherwise,
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where the buyer always buys a�er st and never buys a�er st. Let α̃ coincide with α except that it
is now deterministic. �is transformation preserves all outcomes and incentives. Applying this to
each (t, st), we may assume α(·) is deterministic.

With α deterministic, all signals on which the buyer buys can be pooled into a single “buy”
signal st, and all others into a single “wait” signal st. Formally, replace πt by

π̃t : [v, v]→ ∆({st, st}),

where st is sent if and only if the original α prescribes purchase. To retain any �ner distinctions
lost by pooling at period t that might ma�er in later periods, Nature can carry forward the original
detailed signals at period t to period t+ 1 if needed. Formally:

Π̃(htN) = (π̃t, {st, st}),

and a�er (htN , π̃t, s̃t, pt+1), Nature delivers the continuation information (πt, St)∪Π(htN , πt, st, pt+1).
�is construction changes neither the buyer’s nor the seller’s behavior, and the induced

outcome is identical to that under (σ, α,Π, µ). By induction on t, we conclude that Nature can be
restricted, without loss, to binary recommendations at every history.

Step 2. Notation and Preliminaries. Given Lemma 3, we may assume without loss that Nature
provides binary recommendations in every period. We now introduce notation used throughout
the remainder of the proof.

Histories and posterior bounds. Fix a seller history htS , and let vtS be the in�mum of the support of
F t
S , the posterior distribution of v conditional on htS .

Unconditional CDFs. For convenience, we express all Bellman iterations in terms of unconditional
probabilities. Let

Gt
S(·)

denote the CDF associated with a general Radon measure on [v, v]. Note that Gt
S(v) need not

equal 1; rather, it can be scaled to F t
S(·) divided by the remaining buyer mass.26

�reshold information structures. Given a history htS and a scalar x, de�ne

ytS(x) := inf
{
y ≥ vtS : x ≤ EF tS [ v | v ≤ y ]

}
. (8)

Intuitively, ytS(x) is the threshold type below which the buyer’s expected valuation is at most x.
26Formally, we work in the space Radon([v, v]) with the weak-∗ topology.
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Since F has a well-de�ned density, and—by Lemma 3—we may restrict a�ention to binary
recommendations, F t

S is continuous everywhere except possibly at histories where the buyer
is certain to purchase. In particular, in (8) the inequality either holds with equality or yields
ytS(x) = vtS . Moreover, ytS(·) is continuous in x.

Buyer cuto�. Let wt = wt(h
t
B) be the buyer expected valuation indi�erent between buying

immediately at t and delaying. �is is purely for expositional convenience: at this point we
have not established the skimming property or characterized the equilibrium. In principle, a
low-posterior buyer could expect future information that increases her valuation.

Seller best-response correspondences. De�ne:

Mt(G
t
S) = arg max

pt
V t(Gt

S(·))

and
mt
S(b) = arg max

pt+1

V t+1(Gb,t
S (·)),

whereGb,t
S (·) is the CDF obtained by truncatingGt

S(·) at b, and V t(·) is the seller’s expected payo�
in period t.27

Step 3. Backward induction We now proceed by backward induction. �e general strategy is
as follows: since, along the equilibrium path, the buyer’s ex-ante value of future information is
zero, Nature’s best response in any given period is to minimize the probability of purchase in that
period, as the equilibrium price path is decreasing.

Nature’s last-period problem

Consider t = T .
Case 1: Market already cleared. If the market has already cleared, any strategy is optimal for
Nature; in particular, she can provide a trivial “no information” structure.
Case 2: Market not cleared. Let F T

S denote the posterior distribution of v among remaining buyers,
with unconditional CDF GT

S .
If pT ≤ vTS , the buyer must purchase with probability 1 in equilibrium, regardless of Nature’s

choice.28 In this case, the claim that Nature uses a threshold information structure giving the same
buyer payo� as no information is trivially satis�ed.
27Since uniqueness is not yet established, V t(·) need not be uniquely de�ned, and the weak-Markov property need

not hold; the continuation value may depend on both the distribution and the full history. We therefore reference a
particular equilibrium throughout.

28�is is a standard argument in the Coasian bargaining literature; see Fudenberg et al. (1985).
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If instead pT > vTS , Step One of Section 3.1.1 implies the worst-case information structure is a
threshold with cuto� yTS (pT ). Under such a structure, one of two things happens:

(a) �e buyer is indi�erent between purchasing and not when recommended to wait, or

(b) Nature’s choice has no e�ect on the buyer’s action (e.g., if pT is too high).

In either case, the buyer’s expected payo� matches that under no new information. By sequential
rationality, Nature’s equilibrium last-period strategy at any history hTN is therefore a threshold
rule. For any pT > vTS , Nature can approximate the worst-case pro�t while giving the buyer a
strict incentive to buy by, e.g., revealing whether v ≤ yTS (pT ) − ε for arbitrarily small ε > 0.
�erefore, in equilibrium, the buyer must break indi�erence against the seller; otherwise Nature
could pro�tably deviate.

Seller’s last-period problem

Consider the history pT−1.

Case 1: Market should have cleared but hasn’t. If, under (Π, α) (with Nature and the buyer following
equilibrium strategies, but allowing possible seller deviations), the market should have cleared
yet continues, this history is o�-path. We may assign arbitrary beliefs and prices to deter such
deviations.29

Case 2: Market not cleared on path. If the market should not have cleared and indeed has not, then
the only equilibrium-consistent belief for the seller is that Nature and the buyer have followed
(Π, α). �us the remaining posterior is F T

S with unconditional CDF GT
S .

For any pT in the support of σT we must have:

pT ∈MT (GT
S ) = arg max

pT
V T (GT

S (·)) = arg max
pT

pT
(
GT
S (v)−GT

S

(
yTS (pT )

))
.

Since both GT
S (·) and yTS (·) are continuous, the objective is jointly continuous in (GT

S , pT ). By
Berge’s Maximum �eorem,

V T (GT
S ) = max

pT
pT
(
GT
S (v)−GT

S (yTS (pT ))
)

is continuous in GT
S ,30 and MT (GT

S ) is non-empty and compact. �is establishes the seller’s
optimal response.

29For example, the seller could post v.
30If Fn → F in the weak-∗ topology, then Fn(x)→ F (x) only at all continuity points of F (·). Since we restrict to

continuous CDFs, this technical issue does not arise.
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Furthermore, the period-T − 1 indi�erence condition is:

wT−1 − pT−1 = EσT [δ (wT−1 − pT )] ,

since at t = T − 1 there is no ex-ante informational value from delaying. �is pins down wT−1

uniquely, given anticipated future play, and implies:

pT−1 ≥ EσT [pT ].

�e inductive step for Nature. Consider t = k < T , assuming the market has not yet cleared,
and let F k

S be the posterior distribution of v among remaining buyers.

Case 1: pk ≤ vkS . If the seller posts pk ≤ vkS , the buyer purchases with probability 1 in equilibrium,
regardless of Nature’s choice.

Case 2: pk > vkS . By the induction hypothesis, Nature’s continuation strategy from t = k + 1

onward employs thresholds {wk+s}s≥1 that yield the same expected payo� to the buyer as if no
further information were provided. �e unique cuto� wk is therefore determined by:

wk − pk = Eσk+1

[
δ(wk − pk+1)

]
.

Let Nature’s binary information structure be (πk, {sk, sk}). If EFkS [v | πk, sk] > wk, the buyer
strictly prefers to purchase at t = k.

We claim: if sk occurs with positive probability, then E[v | sk] = wk. Suppose instead
E[v | sk] < wk. Modify πk to (π̃k, {sk, sk}) by reassigning sk to sk with probability ε > 0. For
su�ciently small ε, E[v | π̃k, sk] < wk, so the buyer waits a�er sk. At t = k + 1, Nature can split
π−1
k (sk) from the new types π̃−1

k (sk) \ π−1
k (sk), and revert to the original continuation strategy

for the �rst group. �e second group no longer buys at t = k; since the price path is decreasing
by induction, the pro�t from them is at most δEσk+1

[pk+1]. Because

pk ≥ Eσk+1
[pk+1] > δEσk+1

[pk+1],

this deviation (not detected by the seller) is strictly pro�table for Nature — a contradiction. We
also claim sk corresponds exactly to buyers with v ≤ ykS(wk). If not, there exist v′ > v′′ with
v′ ∈ π−1

k (sk) and v′′ ∈ π−1
k (sk). Swapping v′ and v′′ leaves E[v | sk] above wk (so buyer actions

unchanged) but lowers E[v | sk] strictly below wk. �is reduces to the previous case and Nature
can further reduce pro�t when the seller’s strategy is �xed — again contradicting optimality.
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Fixed-point condition. Because Nature can lower the threshold slightly to make the buyer’s
incentive strict, the equilibrium cuto� must:

wk − pk ∈ δ
[
wk − m̄k

S(ykS(wk))
]
,

equivalently,
pk = (1− δ)wk + δ m̄k

S

(
ykS(wk)

)
, (9)

where m̄k
S(·) is the convex hull of mk

S(·), and

mk
S(b) = arg max

pk+1

{
pk+1

(
Gk
S(b)−Gk

S(yk+1
S (wk+1(pk+1)))

)
+ δV k+2(G

yk+1
S ,k

S (·))
}
.

�e objective in mk
S has strict single-crossing in (pk+1, b) via the term pk+1G

k
S(b), so by the Mono-

tone Selection �eorem (Milgrom and Shannon, 1994), any selection frommk
S(b) is non-decreasing.

Since ykS(wk) is continuous and strictly increasing in wk, there exists a unique continuous, non-
decreasing function wk(pk) satisfying (9).31 �us wk is uniquely determined by pk. To induce
cuto� wk = c, the seller posts pk = maxw−1

k (c), which maximizes current pro�t without a�ecting
future play or today’s purchasing set.32 �is eliminates all the randomization on-path, and the
indi�erence condition simpli�es to:

wk − pk = Eσk+1

[
δ(wk − pk+1)

]
⇒ wk − pk = δ(wk − pk+1),

consistent with Fudenberg et al. (1985) and Gul et al. (1986).

�e inductive step for the seller. Consider the seller’s pricing decision in period t = k following
the history pk−1.

Case 1: Market should have cleared but has not. If, under the equilibrium strategies (Π, α) (allowing
for possible seller deviation), the market is predicted to have cleared yet continues, this history is
o�-path. As before, we may assign arbitrary beliefs and allow the seller to post any price that
deters such deviations.

Case 2: Market not cleared on-path. If the market is not cleared and this is consistent with the
equilibrium path, the remaining posterior over v is F k

S with unconditional CDF Gk
S . For any pk in

the support of σk we have:

pk ∈Mk(G
k
S) = arg max

pk

[
pk
(
Gk
S(v)−Gk

S(ykS(wk(pk)))
)

+ δV k+1(G
ykS ,k+1

S (·))
]
,

31Existence follows from Berge’s Maximum �eorem and upper-hemicontinuity.
32Seller randomization a�er deviations may still be necessary, as in standard equilibrium constructions.
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and the value function satis�es:

V k(Gk
S) = max

pk

[
pk
(
Gk
S(v)−Gk

S(ykS(wk(pk)))
)

+ δV k+1(G
ykS ,k+1

S (·))
]
.

By the induction hypothesis:

• wk(pk) is continuous in pk,

• ykS(wk) is continuous in wk,

• Gy,k+1
S (·) is continuous in y, and

• V k+1(·) is continuous.

�erefore the objective

pk
(
Gk
S(v)−Gk

S(ykS(wk(pk)))
)

+ δV k+1(G
ykS ,k+1

S (·))

is jointly continuous in (pk, G
k
S). By Berge’s Maximum �eorem, V k(Gk

S) is continuous in Gk
S ,

and Mk(G
k
S) is non-empty and compact. Because the period-k information structure leaves the

delaying buyer indi�erent, her payo� equals that from buying immediately in period k at price pk.
�us, at t = k − 1 the indi�erence condition is:

wk−1 − pk−1 = δ · Eσk [wk−1 − pk],

where wk−1 de�ned this way is the unique cuto� anticipating continuation play. It follows
immediately that:

pk−1 ≥ Eσk [pk].

Iterating the seller’s inductive step together with the inductive step for Nature from t = T

backward completes the proof.

Step 4. Equilibrium strategy pro�le. �e constructed equilibrium has the following on-path
strategies:

• Deterministic play on path. �e strategies of the buyer, the seller, and Nature are deterministic
on the equilibrium path, following possible seller randomization in period t = 1.

• Nature’s strategy. In each period t—whether htS is on-path or o�-path—Nature reveals to the
buyer whether

v ≤ ytS
(
wt(pt)

)
.
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• Seller’s strategy. In period t, the seller chooses pt to solve

max
pt

T∑
s=t

δ s−t ps(pt)
F
(
y(ws−1(pt))

)
− F

(
y(ws(pt))

)
F
(
y(wt−1)

) ,

where ps(pt) denotes the price posted in period s along the continuation path following pt
in period t.

• Buyer’s strategy. In period t, the buyer purchases if and only if

v > yt,

given the signal from Nature; otherwise, she waits.

Proof of Proposition 1.

Step 1. �reshold learning. We �rst show that in any monotone equilibrium, Nature must
employ a threshold information structure in every period.

Fix an arbitrary monotone equilibrium and de�ne

λt := Pr
[
buyer is recommended to purchase in period t

∣∣ pt],
the on-path probability—conditional on the realized price history pt—that Nature recommends
purchase in period t. Let λ∞ be the probability that the buyer is never recommended to purchase,
and let y∞ denote the buyer’s expected valuation conditional on this event. We can construct a
sequence of price-dependent thresholds

∞ = v0 ≥ v1 ≥ v2 ≥ · · · ≥ v∞ = 0

such that each vt depends only on the realized price path pt, and satis�es

Pr
[
vt < v ≤ vt−1

∣∣ pt] = λt

for every t and every price history pt. Under this process, in period t Nature recommends “buy” if
v > vt and “wait” if v ≤ vt.

Consider a deviation where Nature uses this threshold-based rule in every period. Since
the seller observes only the price path, he cannot detect this deviation, so the price sequence
is unchanged. For any history pt, a buyer who is recommended to wait now faces a posterior
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distribution that is (by construction) inferior in the FOSD sense to the original equilibrium posterior.
By the monotonicity property, such buyers will still obey the “wait” recommendation. Under the
deviation, for every period t and price history pt, at least as much buyer mass is deferred as in the
original equilibrium. Hence total social surplus weakly decreases. Buyers who are recommended
to purchase in a given period retain the option to buy immediately or wait, so their utility does
not decline. Since buyers’ utilities do not fall and total surplus weakly decreases, the seller’s
payo� must fall—implying that Nature’s payo� increases. �erefore, in any monotone equilibrium,
Nature’s on-path strategy can be taken to be a threshold rule in every period.

Step 2. Market clearing in �nite time under threshold learning. Using the notation from
above, for any b let F b denote the cdf of the lower part of the prior F truncated at b. We �rst show
there exists b∗ such that if the seller faces posterior F b∗ , he optimally posts price v and clears the
market. Suppose the seller faces F b at htS . If he charges pt, one feasible strategy for Nature is to
fully reveal the buyer’s type. �en:

V (F b) ≤ pt
(
F (b)− F (wt)

)
+ δF (wt)wt ≤ wt

(
F (b)− F (wt)

)
+ δF (wt)wt,

where the second inequality uses pt ≤ wt. On the other hand, by posting v and selling to all
remaining buyers,

V (F b) ≥ F (b) v.

Note that V (·) is de�ned relative to a particular equilibrium (since multiple equilibria may exist).
Because F−1 is Lipschitz-continuous at 0, there exists q∗ > 0 and L <∞ such that

F−1(q)− v ≤ Lq ∀q ∈ [0, q∗],

which implies
v − v ≤ LF (v) ∀v ∈ [v, F−1(q∗)].

Take b ≤ F−1(q∗). Combining the above bounds on V (F b):

0 ≥ F (b) v − wt
(
F (b)− F (wt)

)
− δF (wt)wt

≥ F (b) v −
(
LF (wt) + v

)(
F (b)− F (wt)

)
− δF (wt)

(
LF (wt) + v

)
≥ (1− δ)F (wt) v − LF (wt)

(
F (b)− F (wt)

)
− δLF (wt)

2

≥ F (wt)
[
(1− δ)v − LF (b) + LF (wt)− δLF (wt)

]
≥ F (wt)

[
(1− δ)v − LF (b)− δLF (b)

]
.

�e �nal term is positive for b su�ciently small, which forces wt = v and hence pt = v. �us
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there exists b∗ such that if the seller’s posterior is F b∗ , he clears the market by se�ing pt = v.
From thresholds to �nite-time clearing. Suppose Nature uses a threshold information arrival
process on-path with thresholds

∞ = v0 ≥ v1 ≥ v2 ≥ · · · ≥ v∞ = 0.

By Nature’s sequential rationality, in each t buyers recommended to wait do so. Let yt be the
upper bound of the support of the posterior at time t. Starting from any y > b∗, and for any ε > 0,
there exists �nite k such that ε mass of buyers exit the market within k periods. If not, then:

V (F y) ≤ ε v + δkv,

which can be made arbitrarily small as ε→ 0 and k →∞. But also

V (F y) ≥ F (y) v ≥ F (b∗) v > 0,

a contradiction. �erefore, the market must be cleared within

T (δ) =

⌈
k(1− F (b∗))

ε
+ 1

⌉
periods.

Step 3. Backward induction. Since the market clears in �nite time a�er any history, we can
solve for the equilibrium by backward induction on t and the �nite T exactly as in the proof of
�eorem 1. �is induction terminates at T = T (δ).

Proof of �eorem 2.

Step 1. Fixing a price path and admissible threshold processes. Fix an arbitrary determinis-
tic price path (p1, p2, . . .). By Proposition 3 in Libgober and Mu (2021), the worst-case information
structure against any �xed price path can be taken to be a threshold process (not necessarily
myopic). Hence Nature’s choice is summarized by a nonincreasing sequence (yt)t≥1, with the
buyer purchasing at the �rst t such that v > yt.

Under any such process, at time t the IC constraint is

∫ yt

v

(v − pt)f(v) dv ≤
T̄∑

s=t+1

δ s−t
∫ ys−1

ys

(v − ps)f(v) dv, (10)
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and the seller’s discounted pro�t is

T̄∑
s=1

δ s−1

∫ ys−1

ys

psf(v) dv. (11)

Our goal is to show that for every t either (i) yt = yt−1, or (ii) (10) binds at t.

Step 2. Block decomposition of the price path and Pooling thresholds within a block.
Let p0 ≡ +∞ and de�ne recursively the block start times

t1 := 1, tk := min{t > tk−1 : δ t−tk−1pt < ptk−1
}, k ≥ 2.

�us, within each block {tk, . . . , tk+1 − 1} we have the monotonicity of discounted prices:

ptk ≤ δ ptk+1 ≤ · · · ≤ δ tk+1−tk−1ptk+1−1. (12)

We �rst prove that for any k, it is (weakly) optimal for Nature to pool the thresholds inside the
block:

ytk = ytk+1 = · · · = ytk+1−1 (13)

with the pooled level �xed at ytk+1−1.
IC under pooling. Start from any pro�le {ytk , ytk+1, . . . , ytk+1−1} and replace it by (13) with the

pooled level �xed at ytk+1−1. By (12), for every v and every ` ∈ {1, . . . , tk+1 − tk − 1},

(v − ptk) > δ ` (v − ptk+`).

Hence any type who was recommended to buy at some tk + ` inside the block (ytk ≥ v > ytk+1−1)
strictly (weakly) prefers buying already at tk a�er pooling; any type with v ≤ ytk+1−1 still learns
“wait” at tk and prefers to wait. �us recommendations of waiting remain obedient a�er pooling.

Pro�t under pooling. Pooling moves all within-block purchases forward to tk. For any type that
originally bought at tk + `, the seller’s discounted revenue changes from δ `ptk+` to ptk , which
weakly decreases by (12), strictly if some inequality is strict. If the pooling (by raising the value
of waiting) causes some types to defer beyond the block, pro�t weakly decreases further because
purchases can occur only at block starts {t1, t2, . . .}, and these satisfy

pt1 > δ t2−t1pt2 > δ t3−t1pt3 > · · · ,

so shi�ing a purchase from tk to a later block tk′ lowers discounted revenue. �erefore pooling
within each block is (weakly) pro�table for Nature and (weakly) reduces the seller’s pro�t. �us, it
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is without loss to assume there is no information (as the thresholds are equal) and no sale within
each block.

A�er pooling, Nature’s problem reduces to choosing the block–start thresholds {ytk}k≥1

subject to the (block–level) IC constraints∫ ytk

v

(v − ptk)f(v) dv ≤
∞∑

s=k+1

δ ts−tk
∫ yts−1

yts

(v − pts)f(v) dv, (14)

(where the sum is �nite if the horizon is �nite).
Of course, this is slightly more general than required for the proof of �eorem 2, since the

equilibrium pricing path in �eorem 1 automatically satis�es p1 > δp2 > δp3 > . . . .

Step 3. Identifying the binding constraints. De�ne vtk such that

(1− δ tk+1−tk) vtk := ptk − δ tk+1−tkptk+1

and ytk such that
E[ v | v ≤ ytk ] = vtk .

In other words, vtk is the expected valuation indi�erent between buying at tk at price ptk , and
buying at tk+1 at price ptk+1

. Because in Step 1 we established that

pt1 > δ t2−t1pt2 > δ t3−t1pt3 > · · · ,

it follows that vtk > 0. In particular, de�ne yT such that E[ v | v ≤ yT ] = pT .
We aim to prove that, Nature’s optimal threshold learning process takes the following form: for

every tk, either ytk = ytk−1
or ytk ≥ ytk . If this is the case, then at any tk, there is no information

value in the future, and we must have ytk = ytk as ytk > ytk will violate the IC constraint.

Perturbation idea. We construct a perturbation of (ytj , ytk) that strictly reduces the seller’s pro�t if
both of the following two conditions holds at tk:

(a) ytk < ytk , (b) ytk < ytk−1
.

We will use tk = T as an example, but the same argument works for all tk. Suppose tk = T ,
and assume all previous IC constraints are slack. �en increasing ytk reduces the seller’s pro�t,
since some mass of buyers who would have purchased at tk−1 delay to tk, and we already know
ptk−1

> δptk . �e increase of ytk is always feasible while leaving all other thresholds yt unchanged,
until one of the following occurs:
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(a) ytk = ytk−1
.

(b) ytk ≥ ytk

(c) Some earlier IC constraint binds.

If either of the �rst two cases occurs, the claim follows immediately. For the third case, note that
because multiple earlier IC constraints could bind simultaneously, we focus on the binding IC
with the largest time index, denoted by tj .

At tj , the binding IC condition is∫ ytj

v

(v − ptj)f(v) dv =
∞∑

s=j+1

δ ts−tj
∫ yts−1

yts

(v − pts)f(v) dv. (15)

We now increase ytk while simultaneously adjusting ytj so that (15) remains satis�ed. Because
the IC at tj stays binding, all earlier IC constraints remain valid: from the buyer’s perspective,
there is no information value a�er tj , since she is indi�erent between buying and waiting at tj .
Moreover, all later IC constraints remain locally satis�ed because tj was chosen as the largest
time index with a binding IC, implying that all subsequent IC are slack.

Derivative computations. Let ytj(ytk) denote the tj–threshold that satis�es (15) given ytk . Di�eren-
tiate (15) w.r.t. ytk , holding other yts �xed for s 6= j, k:
From the ytk term on the RHS of (15):

δ tk−tj (−(ytk − ptk)) f(ytk). (16)

From the ytj term: Move the ytj–integral on the RHS of (16) to the LHS and di�erentiate:

(ytj − ptj)f(ytj)− δ tj+1−tj(ytj − ptj+1
)f(ytj) = (1− δ tj+1−tj)(ytj − vtj)f(ytj), (17)

By the chain rule, keeping (15) binding requires that (15) equals (17) multiplied by y′tj(ytk):

δ tk−tj(ptk − ytk)f(ytk) = (1− δ tj+1−tj)(ytj − vtj)f(ytj) y
′
tj

(ytk). (18)

We claim that ytj > vtj . Indeed, by hypothesis the IC at tj binds. Recall that vtj is de�ned as
the expected value at which the buyer is indi�erent between buying and waiting at tj even if no
future information arrives. If instead ytj ≤ vtj , then any buyer told v ≤ ytj would strictly prefer
to wait at least until tj+1, contradicting the binding of the IC at tj .

�is establishes the derivative relationship (18) with (ytj−vtj) > 0, which is the key ingredient
for the pro�t-sign calculation in the next step.
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E�ect of the perturbation on pro�t. We now di�erentiate the seller’s pro�t (11) under the
perturbation of (ytj , ytk) constructed above. Since all other thresholds are �xed, only the tj–,
tj+1–, and tk–terms in (11) vary. �us it su�ces to di�erentiate

ptj
(
1− F (ytj(ytk))

)
+ δ tj+1−tjptj+1

F (ytj(ytk))− δtk−tjptkF (ytk)

where we have made explicit the dependence of ytj on ytk . Di�erentiating term–by–term with
respect to ytk yields:

− ptjf(ytj(ytk)) y
′
tj

(ytk) + δ tj+1−tjptj+1
f(ytj(ytk)) y

′
tj

(ytk))− δtk−tjptkf(ytk)

Multiply through by (ytj−vtj) > 0 (recall this sign was established above) and use (18) to substitute
for y′tj(ytk) wherever it appears. A�er straightforward algebra and factoring out common positive
terms, the derivative of pro�t with respect to ytk+1

is proportional to

(
− ptj + δ tj+1−tjptj+1

) δ tk−tj

1− δ tj+1−tj

(
ptk − ytk

)
− δ tk−tjptk(ytj − vtj).

Divide by δ tk−tj and substitute the de�nitions of vtk . �e change in pro�t from increasing ytk is
proportional to

vtj
(
ytk − ptk

)
+ ptk

(
vtj − ytj

)
= vtjytk − ptkytj . (19)

Case analysis.
Case 1: ptk > vtj . Since ytj ≥ ytk , (19) is strictly negative. Pro�t is reduced by increasing ytk .

�is is also slightly more general than required for the proof of �eorem 2, since the equilibrium
pricing path in �eorem 1 automatically satis�es ptk < vtj .

Case 2: ptk ≤ vtj . We want to prove

vtjytk − ptkytj

is globally negative. �reshold–ratio monotonicity says v 7→ v/y(v) is decreasing, so ptk
ytk
≥ vtj

ytj
,

which implies
vtj ytk − ptk ytj ≤ 0.

Note we must have ytj ≥ ytj . Since the IC at tj is binding, if ytj < ytj , then any buyer recommended
to wait would strictly prefer waiting even in the absence of future information—a contradiction.
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�us, we conclude globally that (given ytk < ytk )

vtj ytk − ptk ytj < 0,

and it is optimal for Nature to increase ytk while adjusting ytj until one of the following occurs:

(a) ytk = ytk−1
;

(b) ytk ≥ ytk ;

(c) ytj = ytj+1
;

(d) Some constraint between tj and tk binds.

If either of the �rst two cases occurs, the claim follows. �e third case is simply a special instance
of the fourth: it means we can identify a larger time index and repeat the same procedure. Since
the game has only �nitely many periods, and the largest binding constraint can only shi� forward
in time, eventually we must reach a point at which either of the �rst two cases occurs.

For tk 6= T , the argument is essentially the same as before except at the last period T , adjusting
yT has no e�ect on future pro�ts (as T is the last period), while in earlier periods we must adjust
for the impact on future pro�ts. �e logic, however, is unchanged.

By similar algebra, the change in pro�t from increasing ytk is proportional to

vtjytk − vtkytj .

By threshold–ratio monotonicity, the map v 7→ v/y(v) is decreasing, so

vtk
ytk
≥

vtj
ytj
,

which implies
vtj ytk − vtk ytj ≤ 0.

Similarly, we must have ytj ≥ ytj . Since the IC at tj is binding, if ytj < ytj , then any buyer recom-
mended to wait would strictly prefer waiting even without future information—a contradiction.
�us, we conclude globally that (given ytk < ytk )

vtj ytk − vtk ytj < 0,

and it is optimal for Nature to increase ytk while adjusting ytj .
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Proof of Corollary 1. Note that for any given deterministic price path, �eorem 2 and thresh-
old–ratio monotonicity imply that the worst–case learning process is the myopic threshold
process. We claim that Nature can implement this process sequentially, without commi�ing ex
ante: in each period tk, by construction

E[ v | v ≤ ytk ] = vtk ,

and the buyer is weakly indi�erent between purchasing at tk and waiting until tk+1 even if she
conjectures that no further information will arrive.

�us, for any deterministic price path generated by an equilibrium strategy, Nature would
deviate to the myopic threshold process, and hence in any deterministic equilibrium Nature uses
the myopic threshold process on path. Under this condition, solving for equilibrium reduces to
determining the seller’s optimal deterministic price path subject to sequential rationality. �e
remaining steps follow exactly as in the previous proof.

Proof of Proposition 4. When Nature implements myopic threshold learning process, the seller’s
discounted expected pro�t from time t onward (taking w0 = y∗(w0) = v) is:

T∑
s=t

δ s−tps
F (y∗(ws−1))− F (y∗(ws))

F (y∗(wt−1))
.

From Gul et al. (1986) and Ausubel and Deneckere (1989), we know there exists an weak-Markov
equilibrium which pin downs the seller’s equilibrium price path. And Nature and the buyer will
have no incentive to deviate just as the proof of �eorem 1.

Proof of Proposition 5. �e argument is exactly the same as in the proof of Corollary 1.

A.2. Distributional Assumptions Yielding �reshold-Ratio Monotonicity

Proof of Proposition 2. Our goal is to show that w
y(w)

is decreasing in w, or decreasing in y(w) since

it increases in w. Let y = y(w), then w = E[v | v ≤ y] =
∫
v≤y vf(v) dv

F (y)
so that

w

y
=

∫
v≤y vf(v) dv

yF (y)
.

�e derivative with respect to y is

∂(w/y)

∂y
=
yf(y) · yF (y)− (yf(y) + F (y)) · (

∫
v≤y vf(v) dv)

y2F (y)2
.
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Rearranging, this derivative is non-positive if and only if∫
v≤y

vf(v) dv ≥ y2f(y)F (y)

yf(y) + F (y)
.

�e above inequality holds at y = v, so a su�cient condition for it to hold at every y is that the
derivatives of two sides are ordered. �at is, we want

yf(y) ≥
(
y2f(y)F (y)

yf(y) + F (y)

)′
.

We can compute the derivative of y2f(y)F (y)
yf(y)+F (y)

to be

(yf(y) + F (y)) · (2yf(y)F (y) + y2f ′(y)F (y) + y2f(y)2)− y2f(y)F (y) · (2f(y) + yf ′(y))

(yf(y) + F (y))2
,

which simpli�es to

y3f(y)3 + y2f(y)2F (y) + y2f ′(y)F (y)2 + 2yf(y)F (y)2

(yf(y) + F (y))2
.

�is expression is smaller than yf(y) if and only if

yf(y)(yf(y) + F (y))2 ≥ y3f(y)3 + y2f(y)2F (y) + y2f ′(y)F (y)2 + 2yf(y)F (y)2.

A�er some more algebra, the desired inequality becomes

y2f(y)2F (y) ≥ y2f ′(y)F (y)2 + yf(y)F (y)2.

Dividing both sides by yF (y), this is equivalent to

yf(y)2 ≥ yf ′(y)F (y) + f(y)F (y).

We can further divide both sides by F (y)2 to arrive at

y
f(y)2

F (y)2
≥ y

f ′(y)

F (y)
+
f(y)

F (y)
.

Let h(y) = f(y)
F (y)

with h′(y) = f ′(y)
F (y)
− f(y)2

F (y)2 . �e above inequality then becomes

yh′(y) + h(y) ≤ 0.
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Note that yh′(y) + h(y) is the derivative of yh(y), so this reduces to yh(y) decreasing in y.

A.3. Using Learning to Sustain Constant Price Paths and Equilibrium Multiplicity

Proof of Proposition 3. We consider two cases for this proof: �rst the case where T =∞, and then
the modi�ed argument for T <∞. In both cases, we construct the following equilibrium:

• On-path, the seller posts a price equal to the buyer’s expected value EF [v], and no informa-
tion is revealed.

• �e buyer randomizes purchase with a probability to be speci�ed—speci�cally, chosen so
that the seller has incentives to follow the equilibrium strategy.

• If the seller deviates, the equilibrium reverts to the sequentially worst-case outcome described
in �eorem 1/Proposition 1.

We now prove this pro�le forms an equilibrium. It is immediate that following a deviation by
the seller, the future play constitutes an equilibrium, by �eorem 1/Proposition 1. �e same holds
on-path: since the buyer’s purchasing decision does not depend on v, the on-path distribution of v
conditional on not having purchased at time t is simply F . �us, the buyer is indi�erent between
purchasing and delaying, as both deliver payo� 0, making them willing to randomize. Moreover,
because we assume the buyer (strictly) randomizes, no pro�table deviation is available to them, as
all actions occur with positive probability on-path.

It remains to show that the seller does not prefer to deviate on-path, for appropriately chosen
randomization probabilities. Let r∗ denote the pro�t obtained in the equilibrium of Proposition
1/�eorem 1. �e seller obtains at most r∗ following any deviation; in particular, since the buyer’s
posterior distribution on-path is always F , and the horizon is in�nite, this property holds at every
time. Suppose we seek an equilibrium where the seller’s continuation value is v∗ at every point
in time, with v∗ > r∗. In this case, set the buyer’s purchase probability to be ρ in every period,
where ρ satis�es

v∗ = ρEF [v] + (1− ρ)δv∗ ⇒ ρ =
v∗(1− δ)

EF [v]− δv∗
,

with ρ ∈ (0, 1) whenever v∗ ∈ (r∗,EF [v]).
�us, by charging EF [v], the seller obtains a higher payo� than from deviating. �is veri�es

the conditions in the proposition: (i) the seller uses a constant price path; (ii) the pro�t obtained is
any v∗ ∈ (r∗,EF [v]); and (iii) the market does not clear in any �nite time, since ρ is constant and
hence the probability the buyer has not purchased at or before time K is (1− ρ)K > 0.

51



For the T <∞ case, de�ne vT = EF [v] so that the buyer buys with probability 1 in the last
period. Given any vt+1 with t < T , de�ne vt and ρt by

vt = ρtEF [v] + (1− ρt)δvt+1.

Let rt denote the T = t equilibrium payo� identi�ed in �eorem 1 with prior F , clearly rt < EF [v]

unless it is optimal for the seller to clear the market at price v at t = 1. Hence, the equilibrium can
take the same form as above, provided the sequence v1, ρ1, v2, ρ2, . . . , vt−1, ρt−1 (with vT = EF [v])
is such that vt ≥ rt for all t. �is can be done by carefully choosing ρt close to 1 so each vt is close
enough to EF [v]. In this case, the seller obtains a higher payo� under the constant price path than
from deviating, and the buyer remains indi�erent between purchasing at any time and thus is
willing to follow the mixed strategy.

B. DYNAMICALLY INCONSISTENT INFORMATIONALLY ROBUST OBJECTIVES

As we hope the analysis in this paper will be useful more broadly beyond pricing applications, it
is instructive to discuss which alternative assumptions we could have adopted. �is detour aims
to deepen appreciation for our main benchmark while clarifying challenges that may arise in
future work. We articulate alternative benchmarks and explain why these are less appealing in
the informationally robust dynamic durable goods se�ing. Of course, this conclusion may not
hold in other applications, so it is worth highlighting what some alternatives could be.

Fully developing each benchmark formally would take us too far a�eld; instead, we rely
on examples or simpli�cations to clarify how each would have a�ected the analysis, thereby
providing intuition for the impact of our modeling choices. �roughout this section, we again
focus exclusively on the gap case, while fully maintaining the basic structure of the game; therefore,
Sections 2.1, 2.2, and 2.3 apply in their entirety. Instead, we consider alternative solution concepts
distinct from De�nition 1.

In all three cases we discuss, the seller is assumed to set prices each period under the belief
that Nature has commi�ed to arbitrary learning processes and that the buyer has already observed
the learning process—in contrast to our baseline model, where Nature commits only within period.
�ese cases di�er along two dimensions:

1. Whether the seller chooses prices anticipating that the worst case will change over time.
�is determines how the seller sets today’s price.

Section B.1 considers the naive case, where the seller does not take such changes into account, and
thus assumes the t̃ price would be part of an equilibrium outcome under the worst-case learning
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process at time t, for all t̃ > t. Sections B.2 and B.3 instead consider sophisticated sellers, who
recognize that the time-t̃ price will be optimal against a di�erent learning process than the worst
case at time t.

2. Whether the worst-case learning process at time t > 1 is restricted to the information
structures Nature would have chosen in equilibrium at time t̃ < t.

As mentioned in the main text, the sequentially worst case implicitly assumes that the seller
does not revisit “worst-case” scenarios from earlier periods. Section B.3 considers the case where
Nature can re-optimize over past information structures; in Sections B.1 and B.2, it cannot.

Note that none of these three cases can generally be formulated as saddle points of a game between
the seller and Nature. �ey are therefore less grounded in game theory and less directly related to
the standard robustness approach.

B.1. Naiveté over Future Actions

An alternative would be to assume that the seller does consider the worst case over all learning
processes, but fails to recognize that this worst case will change over time, and thus does not
anticipate that his future choices will di�er. Under this assumption, the seller displays naı̈veté:
he simply expects himself to take certain actions in the future and considers a worst case with
respect to those actions, failing to recognize that the worst case changes with t.

Speci�cally, suppose that at every time t, for t = 1, 2, . . ., the seller chooses pt by considering
the following game:

1. Nature commits to a strategy

Π :
⋃
t

H t
N → ∆ ({(π, S)}) ,

2. �e seller and the buyer play the dynamic game taken Nature’s strategy as given. �e seller
chooses σ : ∪tH t

S → ∆(R+). �e buyer chooses α, given µ and Π, for all htB , maximizing
the continuation payo� conditional on reaching htB :

Eµ,Pσ,α,Π

[∑
τ≥t

δτ−t(v − pτ )1{accept at τ}
∣∣htB

]
,

where τ is the induced stopping time.

3. Nature chooses strategy minimizing the seller’s payo� in the equilibrium induced.
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Note that because the seller and the buyer obverse Nature’s strategy (unlike in the baseline model),
Nature can be viewed as having greater “commitment power”. To see what this “commitment
power” implies, given strategies (σ, α,Π), denote the seller’s expected surplus starting from t = 2

by R2. �en the seller’s expected surplus is

mp1 + δ(1−m)R2,

where m denotes the mass of buyers who purchase at t = 1. Now suppose Nature modi�es the
original t = 2 strategy Π(h2

N) as follows:

1. If the seller charges R2, Nature provides no information.

2. If the seller charges any other price, Nature implements the original strategy.

It is then optimal for the seller to charge R2 at t = 2 given σ is sequentially rational. �e market
clears in the second period, because R2 is the seller’s surplus, which is strictly less than the total
surplus E[v | h2

S]. Since no further information arrives, all remaining buyers purchase at t = 2.
We now prove that the buyers who originally waited at t = 1 strictly prefer to wait under this

modi�cation. Clearing the market at t = 2 maximizes total surplus, since additional delay only
decreases total surplus. Because the seller’s expected surplus remains unchanged, the waiting
buyer’s expected surplus must increase, making buyers more willing to wait at t = 1.

Of course, some buyers who originally purchased at t = 1 may now delay to t = 2, but this
only hurts the seller: further delay reduces total surplus, while buyer surplus cannot fall since
buyers are always optimizing.

�us, we have shown that for any learning process and the seller–buyer equilibrium induced
by the dynamic game, there exists another learning process of the form above that induces an
equilibrium in which the seller obtains a lower pro�t. �us, the seller-worst equilibrium must
take the above form. Consider the following example, which illustrates the solution the seller
anticipates when choosing his �rst-period price:

Example 1. Suppose T = 2 and F ∼ U [0, 2], consider the following learning process:

• In the �rst period, the seller charges some p∗1 on-path; following any p1, the buyer learns whether
v > ṽ(p1) and buys if and only if it is. We leave ṽ(p1) as to-be-speci�ed for now.

• In the second period, the seller charges price ṽ(p1)
8

, the buyer receives no additional information,
and the buyer purchases.

• If the seller deviates in the second period to a price p̂2 6= ṽ(p1)
8

, the buyer learns whether or not
v > 2p̂2.
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Since all remaining buyers in the second period have v ≤ ṽ(p1), the above construction ensures that
the seller has no (strictly) pro�table second-period deviation following any �rst period price. Indeed, in
t = 2, on-path the seller obtains pro�t ṽ(p1)

8
· ṽ(p1)

2
, where ṽ(p1)

8
is the price and ṽ(p1)

2
is the probability

that v ≤ ṽ(p1). But as shown in the main text, the best alternative price p2 for the seller is p2 = ṽ(p1)
4

,
which delivers the same pro�t level ṽ(p1)

4
· ṽ(p1)

4
where ṽ(p1)

4
is both the price and the probability that

v ≤ ṽ(p1)
2

, the threshold that Nature would use. Since E[v | v < ṽ] = ṽ/2, if the buyer learns that
v < ṽ in period 1 and does not buy, then the buyer obtains 3ṽ

8
in the second period. Since every buyer

with v ≤ ṽ faces the same information set (and in particular, chooses the same action), the value of ṽ
such that the buyer is indi�erent between buying at time 1 and delaying purchase to time 2 satis�es:

ṽ

2
− p1 = δ

3ṽ

8
⇒ ṽ =

8p1

4− 3δ
.

Suppose that Nature, in the �rst period, tells the buyer whether her value is above or below 8p1

4−3δ
.

Given this information structure (as well as understanding that the seller will follow the equilibrium
strategy), the buyer will delay if told her value is below the threshold and not if it is above the
threshold. Since the probability the buyer’s value is above the �rst period threshold is 1− 4p1

4−3δ
(since

v ∼ U [0, 2]), the seller’s pro�t can be wri�en as:

p1

(
1− 4p1

4− 3δ

)
+ δ

4p1

4− 3δ

p1

4− 3δ

Take �rst order condition:

1− 8p1

4− 3δ
+

8p1δ

(4− 3δ)2
= 0⇒ p1 =

(4− 3δ)2

32(1− δ)
.

Pro�t at this price is:

(4− 3δ)2

32(1− δ)

(
1− 4(4− 3δ)

32(1− δ)

)
+δ

4(4− 3δ)2

(32(1− δ))2
=

(4− 3δ)2(32(1− δ)− 4(4− 3δ) + 4δ)

(32(1− δ))2
=

(4− 3δ)2

64(1− δ)

We check that this solution does indeed involve interior solution so �rst order condition is su�cient.
Given p1, we have ṽ = 2 if:

1− (4− 3δ)2

32(1− δ)
= δ

3

4
⇒ δ = 4/5.

So, if δ < 4/5, this scheme involves pro�t exactly as above. If δ ≥ 4/5, all buyers delay to the second
period and no sale occurs in the �rst period, meaning the total pro�t is δ/4. �e optimal price in the
�rst period given ṽ(p1) is chosen to minimize the seller’s pro�t is p1 = (4−3δ)2

32(1−δ) .
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�is example illustrates what the seller will “think” and how he will set the �rst-period price
p1. In the second period, however, providing no information to the buyer is not worst case. �us,
instead of charging ṽ(p1)/8 as in Section 3.2, the seller will charge ṽ(p1)/4. Once the second
period begins, the seller updates his conjecture (realizing that Nature will not implement the
commitment solution in the �rst period) and therefore charges the optimal price in this subgame,
which is precisely ṽ(p1)/4.

One important distinction is that this example does not contradict �eorem 2, even if the prior
F is still the uniform distribution. �e reason is that in this example the seller and buyer act a�er
observing Nature’s strategy, so the seller’s pricing strategy is endogenous rather than exogenous.

Example 2. Take T = ∞ and v ∼ U [0, 2]. �e sequentially worst-case equilibrium outcome
with v ∼ U [0, 2] coincides with the known-values case with v ∼ U [0, 1]. �e Coasian equilibrium
with v ∼ U [0, 1] is solved in Gul et al. (1986) and Stokey (1981).33 In the known-values case with
v ∼ U [0, 1], the seller’s pro�t when ṽ is the highest buyer value remaining is

r∗(ṽ) =
1

2

(
1− 1

δ
+

1

δ

√
1− δ

)
ṽ2.

One can verify that limδ→1 r
∗(1) = 0, as predicted by the Coase conjecture.

We now guess and verify a naivete equilibrium. In this equilibrium,

1. At t = 1, the seller charges p1, and threshold ṽ is revealed.

2. At t = 2, the seller charges p2, all buyers purchase, and Nature provides no further information.

Since ṽ must make the buyer indi�erent between purchasing and not when learning v < ṽ, we
have

ṽ

2
− p1 = δ

(
ṽ

2
− p2

)
.

�e implied pro�t is

p1

(
1− ṽ

v̄

)
+ δ

ṽ

v̄
p2.

By uniformity, price should be linear in v̄. �us, suppose the seller’s (optimal) prices are p1 = k1v̄

and p2 = k2ṽ. By the indi�erence condition, we obtain

ṽ =
k1

1
2
− δ

2
+ δk2

v̄.

33�e known-values case has a unique outcome, for �xed δ, when v ∼ U [ε, 1], which converges to the Coasian
outcome as ε→ 0. For our purposes, the same point can be made by considering a su�ciently small ε.
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�e pro�t is therefore

v̄

[
k1

(
1− k1

1
2
− δ

2
+ δk2

)
+ δk2

(
k1

1
2
− δ

2
+ δk2

)2 ]
.

Now, the seller expects to be able to capture, in the second period, exactly the continuation surplus
that remains a�er the �rst period, according to the previous construction. In the second period, the
seller must charge a price equal to the available surplus, implying

k2ṽ
ṽ

v̄
= ṽ

[
k1

(
1− k1

1
2
− δ

2
+ δk2

)
+ δk2

(
k1

1
2
− δ

2
+ δk2

)2 ]
.

Solving yields

k2

(
1
2
− δ

2
+ δk2

)
=
(

1
2
− δ

2
+ δk2

)2

− k1

(
1
2
− δ

2
+ δk2

)
+ δk1k2,

so that
k1 = 1

2

(
1− 2k2 − δ + 4k2δ − 4k2

2δ
)
.

Now suppose in the �rst period the seller charges kv̄. �en we must have

ṽ

2
− kv̄ = δ

(
ṽ

2
− k2ṽ

)
.

Solving gives

ṽ =
k

1
2
− δ

2
+ δk2

v̄.

�e corresponding pro�t is

kv̄

(
1− k

1
2
− δ

2
+ δk2

)
+ δ

k
1
2
− δ

2
+ δk2

· kk2

1
2
− δ

2
+ δk2

v̄.

�is uses the one-shot deviation principle to determine how p2 changes with p1. Taking the �rst-order
condition with respect to k, we have

k∗ =

(
1
2
− δ

2
+ δk2

)2

1− δ
.
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Because k∗ = k1 in equilibrium, we require(
1
2
− δ

2
+ δk2

)2

1− δ
= 1

2

(
1− 2k2 − δ + 4k2δ − 4k2

2δ
)
.

Solving yields

k2 =
1− δ
4− 2δ

, k1 =
1− δ

(2− δ)2
.

�us the seller �rst period price is 1−δ
(2−δ)2 v̄, and ṽ = 4

(2−δ)3 v̄. Note that indeed when δ = 0, this reduces
to one period static case, as expected.

Here, when δ ≥ 2− 3
√

4 ≈ 0.4126, the seller again does not a�empt to sell in the �rst period.
A key di�erence, however, is that the horizon is now in�nite. As a result, the seller’s problem at
time 2 looks identical to the problem at time 1 whenever sale occurs with probability 0 in period 1.

�is observation shows that the seller would never induce a sale in this alternative, for this
speci�cation with su�ciently high δ—and, importantly, δ need not be particularly close to one for
this to occur. A�er waiting one period, the seller e�ectively “resets” the worst case. �is property
is unusual and highlights how, in principle, the use of the maxmin objective can dramatically
change the pricing strategies a seller might adopt. We are not aware of other environments where
the seller does not even a�empt to sell in equilibrium.

On the other hand, this result also provides a reason why our benchmark may be more useful
than the fully-pessimal-and-naive case. It seems di�cult to imagine that a seller, capable of
computing discounted payo�s, would not anticipate never even a�empting to sell under this
objective. We note that a similar phenomenon can also arise in Bayesian models with a �nite
horizon (e.g., Fershtman and Seidmann (1993)).

B.2. Sophistication

While the previous section shows that the worst-case information structure for the seller at t = 1

will generally induce an equilibrium where the seller does not optimize against the worst case at
t = 2, one might instead insist that the seller maximizes against the worst-case learning process,
while acknowledging that this may change over time. Such a seller is dynamically inconsistent,
but aware of this fact.

To be precise, this alternative induces the following assumptions regarding the objectives of
each player:

• At t = 1, the seller chooses p1 anticipating the equilibrium strategies σ2(h2
S) he would adopt

at t = 2. In particular, p1 is chosen to maximize pro�t in the equilibrium induced by some
worst-case learning process. Denote this learning process by Π1,Π2,1.
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• Nature then provides π1 according to Π1 from the previous step to the buyer.

• At t = 2, the seller maximizes pro�t assuming the worst-case information structure at t = 2,
holding �xed π1. Denote this information structure by π2,2. �is determines the equilibrium
price p2.

• In particular, we require p2 to be consistent with σ2(h2
S), while π2,2 is not necessarily

consistent with Π2,1.

�is model is substantially more complicated than the benchmark, since it requires multiple
�xed-point arguments and the existence of such a pro�le is not obvious. �is alternative benchmark
provides a new interpretation of �eorem 2: under threshold-ratio monotonicity, the price path
chosen by a sophisticated maxmin seller coincides with the price path in the main model. �e
reason is straightforward: under threshold-ratio monotonicity, the one-shot worst case always
coincides with the sequentially worst case in each period along the equilibrium path. �us, under
threshold-ratio monotonicity, the price path in the main model can be viewed as a special case of
the sophisticated maxmin seller (special in the sense that π2,2 is consistent with Π2,1).

In general, however, the sophisticated benchmark di�ers from the one in this model. We
present an example in Section B.2.1—featuring discrete values—where the equilibrium learning
process is not the one required to induce the outcome described in �eorem 1.34 Beyond this, we
are not able to say much more. Solving for the equilibrium price paths under this alternative,
even in simple examples, is beyond the scope of existing techniques we are aware of, and thus
for now we leave it as an open problem.35 While we expect the resulting price paths to be
qualitatively similar, the key point for our purposes is the following: the resulting equilibrium can
be interpreted as displaying non-Coasian forces, since both our model and this alternative induce
identical single-period problems but di�erent dynamic solutions.

B.2.1. Example of Sophsticated Maxmin Di�ering from Sequentially Worst Case

Consider the discrete distribution where v = 1 with probability 1/2 and v = 0 with complemen-
tary probability. �e concavi�cation arguments of Kamenica and Gentzkow (2011) immediately
34�e assumption of discrete values does not change the analysis relative to the continuous case; we discuss why

continuous distributions that approximate discrete ones will typically violate threshold-ratio monotonicity.
35For instance, the approach of Auster et al. (2022), who derive an HJB representation for a sophisticated maxmin

decision maker, does not directly apply in our se�ing, since it is not clear which state variable one could use. �e
natural choice (and the choice in Auster et al. (2022)) would be the set over which the seller has uncertainty at time
t. However, the set of possible Nature choices from time t onward does not pin down the seller’s payo�, since past
information structures in�uence which buyers have already purchased or remain in the market, and thus ma�er for
the seller’s continuation value. Note that in Auster et al. (2022), Nature’s choice at time t is the initial prior, making
their se�ing closer to Section B.3 than Section B.2.
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imply that the worst case makes the buyer indi�erent between purchasing and not whenever
recommended to not purchase. �erefore, in the static problem, given a price p < 1/2, the
information structure recommends purchase with probability r when v = 1, where r satis�es

p =
(1− r)q

(1− r)q + 1− q
⇒ r =

q − p
q(1− p)

,

where q is the prior that v = 1.

Although our model assumed a continuous value distribution, this is not essential to obtain
�eorem 1 in the two-period case. In the second period, Nature induces expectation p2, which
generates no additional option value, and in the �rst period, Nature induces expectation w(p1), the
indi�erence value for a consumer facing price p1. Given w(p1), the second-period price maximizes

p2

(
w(p1)− p2

w(p1)(1− p2)

)
,

since w(p1) is also the probability that v = 1 in period 2. Maximizing this over p2 yields

p2 = 1−
√

1− w(p1).

Using this, we can solve for w(p1) from the indi�erence condition

w(p1)− p1 = δ
(
w(p1)− p2

)
.

Given a solution for w(p1) (assuming it is interior), p1 is then chosen to maximize

1

2
·p1

(
1/2− w(p1)

(1/2)(1− w(p1))

)
+

(
1
2

+ 1
2

(
1− 1/2− w(p1)

(1/2)(1− w(p1))

))
·w(p1)δp2(p1)

(
w(p1)− p2(p1)

w(p1)(1− p2(p1))

)
.

�is expression can be maximized numerically; doing so for δ = 2/3 yields the following solution:

p1 ≈ 0.2609, w(p1) ≈ 0.3700, p2 ≈ 0.2072, Seller Payo� ≈ 0.0763.

For this price path, we verify that the resulting solution is not safe, and hence that the sophisticated
fully maxmin seller would use a di�erent pricing strategy than the one outlined above. Suppose
instead that the seller charged prices p1 and p2 as above, but Nature used an information structure
that perfectly revealed the value to the buyer in the second period. In this case, the buyer would
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optimally delay, since when δ = 2/3:

1
2
− 0.2609 < 1

2
· 2

3
(1− 0.2072).

On the other hand, the seller’s payo� under this alternative—where the buyer purchases at time 2
whenever v = 1—is (2/3)(1/2)p2 ≈ 0.0691 < 0.0763. �us, the fully worst-case learning process
is not the one previously identi�ed.

While threshold-ratio monotonicity is only de�ned for continuous distributions, we note that
it will be violated for continuous distributions approximating this discrete case—for instance, by
taking n even and su�ciently large and considering

f(v) = (v − 1/2)n(1 + n)2n.

Intuitively, for moderate values of v—say, in the range [1/4, 1/3]—and for n very large, the
threshold y∗(v) will be very close to 1 for all values in this range. As a result, over this interval,
y(v) increases only slightly as v increases, even with large changes in v. Hence, the ratio v

y(v)
will

increase as well.

B.3. Worse Past Information

We have assumed that the seller treats all past actions of Nature as “sunk.” Since the seller knows
Nature has already moved, a seller se�ing a price at time t does not consider the worst-case
information structure at any s < t—that is, these information structures are taken as known.
However, if the seller at time t were to consider the worst case over all information arrival
processes, these could include past information as well.

Speci�cally, assume the following, and for simplicity36 take T = 2:

• At time 1, the timing protocol is exactly as in the main model.

• At time 2, the seller chooses a price to maximize the pro�t guarantee, taken over all π1, π2,
conditional on the buyer not having purchased at time 1.

To obtain a coherent statement while avoiding conceptual di�culties, we treat the buyer as a
completely passive player and do not consider their incentives, taking p̂2(p1) as primitive—a more
complete model would require an assumption about how this is determined.

For this model, Section B.3.1 presents a result showing that in the two-period se�ing, and under
the restrictive assumption that sales occur in both periods with positive probability, the worst-case
36While there is no conceptual di�culty in considering the general time-horizon case, doing so formally requires

additional technical details regarding the de�nition of equilibrium.
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“past information structure” from the perspective of time 2 is one where the time-1 information
was most favorable to the seller. �is corresponds to the buyer being informed whether v lies
above or below a threshold, but where the buyer is indi�erent between buying and not whenever
buying (as opposed to whenever delaying).

�e intuition for this result is that Nature can condition on the fact that the buyer has not
purchased when choosing a “past information structure.” �is is still restricted, since coherence
requires that the information structure be such that the buyer would have been willing to purchase
under the conjecture. But by selecting past information in this way, Nature ensures that the buyers
who remain have the lowest possible values.

We do not present a full characterization of equilibrium for this benchmark for two reasons.
First, doing so formally requires specifying how the seller resolves his time inconsistency, as well
as how the seller believes the buyer believes the seller resolves his time inconsistency. At t = 1,
the problem appears to the seller exactly as in the model described in Section 2, but at t = 2 the
problem appears very di�erent. �us, there are (at least) two possible candidates for p̂2(p1), and
without an assumption on (the seller’s belief of) buyer equilibrium behavior, we cannot specify
which �rst-period indi�erence threshold is relevant.

Second, characterizing the full equilibrium requires identifying primitive conditions that ensure
sale occurs in both periods with positive probability, in order to avoid making assumptions on
endogenous objects. Without this assumption, the seller could form a t = 2 conjecture implying
that the buyer should have purchased at t = 1 with probability one. If this were possible, the
seller would then believe himself to be at a probability-zero event whenever the game continues to
time 2. We wish to avoid taking a stand on how the seller disciplines beliefs in this case.

Still, this discussion clari�es the kind of dynamic inconsistency issues that arise when the
seller allows the worst case to extend to past information. �e result strikingly suggests that the
seller always believes the past information was chosen favorably, despite future information being
unfavorable. We leave our analysis of this alternative at this observation.

B.3.1. Proof of the above claim

We now present a formal statement of the result alluded to in the previous section:

Proposition 6. Suppose T = 2, and that at time 2 the seller seeks to maximize the pro�t guarantee
over the worst-case choices of

π̃1 : [v, v]→ ∆(S1) and π2 : [v, v]× S1 → ∆(S2).

Suppose further that, at time 2, the seller conjectures that the buyer anticipated a second-period price
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p̂2(p1). Let

v∗ =
p1 − δp̂2(p1)

1− δ
,

and assume v∗ > EF [v]. �en, given a price p1, the worst-case π̃1 (for the seller at time 2) involves
the buyer learning whether v > y∗, where y∗ is either equal to v or characterized by

E[v | v > y∗] =
p1 − δp̂2(p1)

1− δ
.

Proof of Proposition 6. We consider the time-1 problem, and assume without loss assume all signals
are collapsed to action recommendations via a revelation argument. Le�ing s1 denote the time-1
recommendation for the buyer to buy and s1 denote the time-1 recommendation to not buy, note
that we cannot have E[v | s1] < p1−δp̂2(p1)

1−δ , since otherwise the information structure would not be
obedient and such buyers would rather not buy. On the other hand, suppose E[v | s1] > p1−δp̂2(p1)

1−δ .
Consider an alternative information structure where, whenever s1 is drawn, the recommendation
is switched to s1 with probability ε (and otherwise remains the same). Since this modi�cation
does not change the conditional distribution but scales the total mass by 1− ε, the seller’s optimal
second period price is unchanged. But since the total mass of buyers remaining at time 2 under
this modi�cation decreases, this hurts the seller.

It follows that E[v | s1] = p1−δp̂2(p1)
1−δ must hold. Consider any information structure that is not

partitional with this property. Let ū(v) denote the probability that the buyer is recommended
to buy at time 1 with value v; for u ∼ U [0, 1], we can without loss consider an implementation
where the information structure recommends “buy” whenever u > ū(v). Note that an information
structure is partitional if and only if ū(v) is a step function (outside of a set of measure 0).

For ε small, let ṽ(ε̃) be such that
∫ ṽ(ε)

v
ū(v)f(v) = ε. Consider a modi�cation where (i) all

buyers with v < ṽ(ε̃) are recommended to not purchase at time 1, and (ii) all buyers with v > v̂(ε)

purchase at time 1, with v̂(ε) chosen so that E[v | s1] = p1−δp̂2(p1)
1−δ still holds given the modi�cation

(i). First, note there exists ε su�ciently small so that ṽ(ε) < v̂(ε) if and only if ū(v) is not a step
function, since the information structure is not partitional if and only if the minimum of the
support of v given s̄ is strictly less than the maximum of the support of v given s, and since these
are limε→0 v̂(ε) and limε→0 ṽ(ε), respectively. Since E[v | s] is unchanged, but with the lowest
values no longer receiving s, we must have

∫ ṽ(ε)

v
ū(v)f(v)dv <

∫ v
v̂(ε)

ū(v)f(v)dv.
Now, for ε su�ciently small, remaining buyers with v > v̂(ε) buy with probability 1 in the

second period under the original information structure (but never in the replacement), since v̂(ε)

converges to the maximum of the support of time-2 values. But the increase in the sale probability is
at most

∫ ṽ(ε)

v
ū(v)f(v)dv. Since

∫ ṽ(ε)

v
ū(v)f(v)dv <

∫ v
v̂(ε)

ū(v)f(v)dv, this modi�cation hurts the
seller. So this modi�cation must be infeasible, making the information structure partitional.
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