Improving Out-of-Distribution Robustness via Selective Augmentation

Huaxiu Yao1, Yu Wang2, Sai Li3, Linjun Zhang4
Weixin Liang1, James Zou1, Chelsea Finn1

1Stanford University, 2University of California San Diego 3Renmin University of China, 4Rutgers University
Machine Learning Systems are Fragile

Models often fail when domain shift happens

Deploy model to new environment

Trained on 3 hospitals

Deploy to a new hospital
Why ML Models Fail – Spurious Correlation

y_1: digit < 5

y_2: digit \geq 5

40% of train data

10% of train data

10% of train data

40% of train data

Spurious Correlation: color

Prediction: digit < 5

True: digit \geq 5
Why ML Models Fail – Spurious Correlation

y_1: digit < 5

40% of train data

y_2: digit ≥ 5

10% of train data

Domain-invariant Correlation: digit information

Prediction: digit > 5

True: digit ≥ 5
Why ML Models Fail – Spurious Correlation

Building robust machine learning models that can capture domain-invariant information

Prediction: digit > 5
True: digit ≥ 5
Prior Works Focus on Explicit Regularization

Standard empirical risk minimization (ERM)

\[
\min_{\theta} \mathbb{E}_{(x,y) \sim \hat{p}} \left[\ell(f_{\theta}(x), y) \right]
\]

loss

average over training examples

Prior approaches to learn invariant representations/predictors

\[
\min_{\theta} \mathbb{E}_{(x,y) \sim \hat{p}} \left[\ell(f_{\theta}(x), y) \right] + \lambda \mathcal{L}_{reg}
\]

explicit regularizers to learn domain-invariant representations/predictors
Discussion of Prior Works

Camelyon17

Standard ERM

70.3% → 74.7%

Best prior domain invariance method

RxRx1

29.9% → 28.4%

[PW Koh et al. ICML 2021]
LISA: Learning Invariant Predictors with Selective Augmentation

Mixup: $x_{mix} = \lambda x_i + (1 - \lambda)x_j, y_{mix} = \lambda y_i + (1 - \lambda)y_j$

$\lambda \sim \text{Beta}(\alpha, \beta)$

Intra-label LISA – Interpolates samples with the same label but different domains ($d_i \neq d_j, y_i = y_j$)

Colored MNIST

Different background, same label
LISA: Learning Invariant Predictors with Selective Augmentation

Mixup: $x_{mix} = \lambda x_i + (1 - \lambda)x_j, y_{mix} = \lambda y_i + (1 - \lambda)y_j$

$\lambda \sim \text{Beta}(\alpha, \beta)$

Intra-domain LISA – Interpolates samples with the same domain but different labels ($d_i = d_j, y_i \neq y_j$)

Colored MNIST

Domain information is **not** the reason for the label change

Use p_{sel} to determine intra-label LISA or intra-domain LISA
Performance – Subpopulation Shift

<table>
<thead>
<tr>
<th></th>
<th>ERM</th>
<th>Best prior domain invariance method</th>
<th>LISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMNIST</td>
<td>0.0%</td>
<td>70.7%</td>
<td>73.3%</td>
</tr>
<tr>
<td>Waterbirds</td>
<td>63.7%</td>
<td>79.8%</td>
<td>89.2%</td>
</tr>
<tr>
<td>CelebA</td>
<td>47.8%</td>
<td>86.7%</td>
<td>89.3%</td>
</tr>
<tr>
<td>CivilComments</td>
<td>56.0%</td>
<td>71.1%</td>
<td>72.6%</td>
</tr>
</tbody>
</table>
Performance – Domain Shift

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ERM</th>
<th>Best prior domain invariance method</th>
<th>LISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camelyon17</td>
<td>70.3%</td>
<td>74.7%</td>
<td>77.1%</td>
</tr>
<tr>
<td>FMoW</td>
<td>32.3%</td>
<td>34.6%</td>
<td>35.5%</td>
</tr>
<tr>
<td>RxRx1</td>
<td>29.9%</td>
<td>28.4%</td>
<td>31.9%</td>
</tr>
<tr>
<td>Amazon</td>
<td>53.8%</td>
<td>53.8%</td>
<td>54.7%</td>
</tr>
<tr>
<td>MetaShift</td>
<td>52.1%</td>
<td>52.3%</td>
<td>54.2%</td>
</tr>
</tbody>
</table>
Analysis

Analysis I: Are the performance gains of LISA from data augmentation?

<table>
<thead>
<tr>
<th>Method</th>
<th>Averaged performance over all datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla mixup</td>
<td>60.9%</td>
</tr>
<tr>
<td>LISA</td>
<td>64.2% (\uparrow)</td>
</tr>
</tbody>
</table>

Analysis II: Does LISA lead to more invariant predictors?

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy of domain prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best invariant learning</td>
<td>68.1%</td>
</tr>
<tr>
<td>LISA</td>
<td>64.9% (\downarrow)</td>
</tr>
</tbody>
</table>
Takeaways

• LISA eliminates spurious correlations between domain & label via **selective augmentation**

• Essentially, LISA improves out-of-distribution robustness by learning more domain-invariant predictors

Code: https://github.com/huaxiuyao/LISA

Thanks

Q & A