
Record

Java Records

Java Records (JEP 395)

📦 Final since Java 16 • “Nominal tuples” for immutable data

Java Records - Why Records? ❌➡✅

POJOs for plain data = tons of boilerplate (ctor, accessors,
equals/hashCode, toString)

IDEs generate code, but intent gets buried

Records: declare the state, get the canonical API for free

Java Records - The 1-liner vs. the Wall of Code

record Rectangle(double length, double width) {}

Equivalent to a final class with:

● private final fields
● public accessors length(), width()
● canonical constructor
● equals, hashCode, toString

Java Records - Using a Record

Rectangle r = new Rectangle(4, 5);

System.out.println(r.length() + " × " + r.width());

● Instances are created with new
● Access via accessors, not fields

Java Records - Constructors: Canonical & Compact

Canonical (explicit params):

record Rectangle(double length, double width) {

 public Rectangle(double length, double width) {

 if (length <= 0 || width <= 0) throw new IllegalArgumentException();

 this.length = length;

 this.width = width;

 }

}

Java Records - Constructors: Canonical & Compact

Compact (implicit params):

record Rectangle(double length, double width) {

 public Rectangle {

 if (length <= 0 || width <= 0) throw new IllegalArgumentException();

 }

}

👉 Compact = validate/normalize; assignments are implicit.

Java Records - What You Can/Can’t Declare

✅ You can:

● static fields/methods/initializers
● instance methods
● nested types (incl. nested records — implicitly static)
● implement interfaces
● generics (record Box<T>(T value) {})

❌ You can’t:

● add instance (non-static) fields or instance initializers
● make it non-final or extend a class (super is java.lang.Record)
● declare native methods

Java Records - Overriding Accessors / equals / hashCode / toString

You may override, but keep invariants:

● Accessors must stay public and return the component type

● equals/hashCode must remain consistent with component equality
 ⚠ Avoid “silent” transformations in accessors (breaks invariants).

Java Records - Validation & Normalization Patterns

Normalize in compact constructor:
record Rational(int num, int denom) {

 public Rational {

 int g = gcd(num, denom);

 num /= g; denom /= g; // normalized params

 }

}

Best practice: validate/normalize in ctor; keep accessors simple.

Java Records - Annotations on Components

@Retention(RUNTIME) @Target(FIELD) @interface GreaterThanZero {}

record Rectangle(@GreaterThanZero double length,

 @GreaterThanZero double width) {}

● Component annotations propagate to field/ctor param/accessor
when targets match

● Also supports type-use annotations

Java Records - Local & Nested Records

● Local records inside methods (implicitly static) improve
readability near usage

record MerchantSales(Merchant merchant, double sales) {}

● Inner classes (since Java 16) can declare static members →
includes records

Java Records - Records × Sealed × Pattern Matching

● Great with sealed hierarchies (ADTs): sealed interfaces + record
implementations

● Plays nicely with pattern matching for switch (JEP 441)
 (future/deconstruction patterns deepen this synergy)

Java Records - Serialization & Reflection

● Records are serializable; components govern serialization, canonical
constructtor governs deserialization (no custom
writeObject/readObject)

● Class::isRecord(), Class::getRecordComponents() in
reflection API

Java Records - Gotchas & Tips

● Name clash with your own Record class? Use fully-qualified
imports.

● Records are immutable by default; for mutable structures, use
classes.

● Don’t smuggle extra state via outer instance — nested records are
implicitly static.

Java Records - Key Takeaways 💡

● Records = concise, immutable data carriers with a standard API

● Focus on state + invariants; boilerplate handled by the compiler

● First-class citizens for modern Java: Generics, Sealed types,
Pattern matching

