

Save 50% on these books and videos – eBook, pBook, and MEAP. Enter mescdo50 in the
Promotional Code box when you checkout. Only at manning.com.

Flutter in Action
by Eric Windmill

ISBN 9781617296147
310 pages
$39.99

Xamarin in Action
by Jim Bennett

ISBN 9781617294389
608 pages
$43.99

React Native in Action
by Nader Dabit

ISBN 9781617294051
320 pages
$39.99

Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://www.manning.com/books/flutter-in-action
https://www.manning.com/books/xamarin-in-action
https://www.manning.com/books/react-native-in-action
https://www.manning.com/books/react-native-in-action
http://manning.com
https://www.manning.com/books/xamarin-in-action
https://www.manning.com/books/flutter-in-action

React in Action
by Mark Tielens Thomas

ISBN 9781617293856
360 pages
$35.99

React in Motion
by Zac Braddy

Course duration: 3h 51m
$59.99

Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://www.manning.com/books/react-in-action
https://www.manning.com/livevideo/react-in-motion
https://www.manning.com/livevideo/react-in-motion
https://www.manning.com/books/react-in-action

Exploring Cross-Platform Development with Flutter,
React Native, and Xamarin
Chapters chosen by Eric Windmill

Manning Author Picks

 Copyright 2019 Manning Publications
To pre-order or learn more about these books go to www.manning.com

Licensed to Vincent VAUBAN <vvauban@gmail.com>

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Erin Twohey, corp-sales@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617296789
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 24 23 22 21 20 19

Licensed to Vincent VAUBAN <vvauban@gmail.com>

http://www.manning.com

iii

contents
introduction iv

Building your first React Native app 2
Chapter 3 from React Native in Action

Hello MVVM—creating a simple cross-platform app using MVVM 31
Chapter 2 from Xamarin in Action

Flutter UI: Important widgets, theme, and layout 57
Chapter 4 from Flutter in Action

index 87

Licensed to Vincent VAUBAN <vvauban@gmail.com>

iv

introduction
Technology moves fast. Programming technology is constantly changing, which is a
good thing because we can create higher-quality products at a faster rate every day.
The tools that make this possible—SDKs, frameworks, and developer tools—are essen-
tially about abstracting away hard problems that exist for every app. In the world of
mobile app development, which is a fairly new field, the next set of tools that makes
our lives easier is cross-platform SDKs.

 These days, cross-platform options are becoming widely accepted, viable options
for all mobile apps. Historically, mobile developers have been extremely skeptical of
cross-platform tools, and for good reason. Native development (in iOS and Android)
is a pain compared with using cross-platform tools, but the apps have always been
much higher-quality. A few newer tools are finally challenging that situation—notably,
Flutter, React Native, and Xamarin.

 All three of these options are worth considering because they all have different
advantages. React Native’s biggest advantage is that it’s written in JavaScript and
ReactJS. Web developers can jump in without missing a beat. Xamarin is the most
established and therefore likely has the most engaged community. Flutter is the new-
est tool. Its main advantage is that it’s written in Dart but compiles completely to
native mobile code, so it’s as performant as native apps.

 If you’re new to mobile and considering jumping in, you should consider all your
options. The following chapter excerpts give you a brief intro to each of these plat-
forms. I’ve made my choice: I think that Flutter is the best development experience
that exists right now. But don’t take my word for it. The best way to figure out which
one you like is to give each a try!

Licensed to Vincent VAUBAN <vvauban@gmail.com>

 In this chapter, you’ll jump right into building a simple to-do app in React,
learning React concepts as you go.

Building Your First
React Native App

Licensed to Vincent VAUBAN <vvauban@gmail.com>

Chapter 3

Building your first
React Native app

Chapter 3 from React Native in Action
by Nader Dabit
When learning a new framework, technology, language, or concept, diving directly
into the process by building a real app is a great way to jump-start the learning pro-
cess. Now that you understand the basics of how React and React Native work, let’s
put these pieces together to make your first app: a todo app. Going through the
process of building a small app and using the information we’ve gone over so far
will be a good way to reinforce your understanding of how to use React Native.

 You’ll use some functionality in the app that we haven’t yet covered in depth,
and some styling nuances we’ve yet to discuss, but don’t worry. Instead of going
over these new ideas one by one now, you’ll build the basic app and then learn
about these concepts in detail in later chapters. Take this opportunity to play
around with the app as you build it to learn as much as possible in the process: feel
free to break and fix styles and components to see what happens.

This chapter covers
 Building a todo app from the ground up

 Light debugging
2

Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://www.manning.com/books/react-native-in-action

3Laying out the todo app
3.1 Laying out the todo app
Let’s get started building the todo app. It will be similar in style and functionality to
the apps on the TodoMVC site (http://todomvc.com). Figure 3.1 shows how the app
will look when you’re finished, so you can conceptualize what components you need
and how to structure them. As in chapter 1, figure 3.2 breaks the app into compo-
nents and container components. Let’s see how this will look in the app using a basic
implementation of React Native components.

Listing 3.1 Basic todo app implementation

Figure 3.1 Todo app design Figure 3.2 Todo app with descriptions

<View>
 <Heading />
 <Input />
 <TodoList />
 <Button />
 <TabBar />
</View>

The app will display a heading, a text input, a button, and a tab bar. When you add a
todo, the app will add it to the array of todos and display the new todo beneath the input.
Each todo will have two buttons: Done and Delete. The Done button will mark it as com-
plete, and the Delete button will remove it from the array of todos. At the bottom of the
screen, the tab bar will filter the todos based on whether they’re complete or still active.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

http://todomvc.com

4 CHAPTER 3 Building your first React Native app
3.2 Coding the todo app
Let’s get started coding the app. Create a new React Native project by typing react-
native init TodoApp in your terminal (see figure 3.3). Now, go into your index file:
if you’re developing for iOS, open index.iOS.js; and if you’re developing for Android,
open index.Android.js. The code for both platforms will be the same.

Figure 3.3 Initializing a new React Native app

NOTE I’m using React Native version 0.51.0 for this example. Newer versions
may have API changes, but nothing should be broken for building the todo
app. You’re welcome to use the most recent version of React Native, but if you
run into issues, use the exact version I’m using here.

In the index file, import an App component (which you’ll create soon), and delete the
styling along with any extra components you’re no longer using.

Listing 3.2 index.js

import React from 'react'
import { AppRegistry } from 'react-native'
import App from './app/App'

 const TodoApp = () => <App />

AppRegistry.registerComponent('TodoApp', () => TodoApp)

Here, you bring in AppRegistry from react-native. You also bring in the main App
component, which you’ll create next.

 In the AppRegistry method, you initiate the application. AppRegistry is the JS
entry point to running all React Native apps. It takes two arguments: the appKey, or
the name of the application you defined when you initialized the app; and a function
that returns the React Native component you want to use as the entry point of the
app. In this case, you’re returning the TodoApp component declared in listing 3.2.

 Now, create a folder called app in the root of the application. In the app folder,
create a file called App.js and add the basic code shown in the next listing.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

5Coding the todo app
Listing 3.3 Creating the App component

import React, { Component } from 'react'
import { View, ScrollView, StyleSheet } from 'react-native'

class App extends Component {
 render() {
 return (
 <View style={styles.container}>
 <ScrollView keyboardShouldPersistTaps='always'
 style={styles.content}>
 <View/>
 </ScrollView>
 </View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#f5f5f5'
 },
 content: {
 flex: 1,
 paddingTop: 60
 }
})

export default App

You import a new component called ScrollView, which wraps the platform Scroll-
View and is basically a scrollable View component. A keyboardShouldPersistTaps
prop of always is added: this prop will dismiss the keyboard if it’s open and allow the
UI to process any onPress events. You make sure both the ScrollView and the parent
View of the ScrollView have a flex:1 value. flex:1 is a style value that makes the
component fill the entire space of its parent container.

 Now, set up an initial state for some of the values you’ll need later. You need an
array to keep your todos, which you’ll name todos; a value to hold the current state of
the TextInput that will add the todos, named inputValue; and a value to store the
type of todo that you’re currently viewing (All, Current, or Active), named type.

 In App.js, before the render function, add a constructor and an initial state to the
class, and initialize these values in the state.

Listing 3.4 Setting the initial state

...

class App extends Component {
 constructor() {
 super()
 this.state = {
Licensed to Vincent VAUBAN <vvauban@gmail.com>

6 CHAPTER 3 Building your first React Native app
 inputValue: '',
 todos: [],
 type: 'All'
 }
 }
 render() {
 ...
 }
}

...

Next, create the Heading component and give it some styling. In the app folder, create
a file called Heading.js. This will be a stateless component.

Listing 3.5 Creating the Heading component

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

const Heading = () => (
 <View style={styles.header}>
 <Text style={styles.headerText}>
 todos
 </Text>
 </View>
)

const styles = StyleSheet.create({
 header: {
 marginTop: 80
 },
 headerText: {
 textAlign: 'center',
 fontSize: 72,
 color: 'rgba(175, 47, 47, 0.25)',
 fontWeight: '100'
 }
})

export default Heading

Note that in the styling of headerText, you pass an rgba value to color. If you aren’t
familiar with RGBA, the first three values make up the RGB color values, and the last
value represents the alpha or opacity (red, blue, green, alpha). You pass in an alpha
value of 0.25, or 25%. You also set the font weight to 100, which will give the text a
thinner weight and look.

 Go back into App.js, bring in the Heading component, and place it in the Scroll-
View, replacing the empty View you originally placed there.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

7Coding the todo app
 Run the app to see the new heading and app layout: see figure 3.4. To run the app
in iOS, use react-native run-ios. To run in Android, use react-native run-

android in your terminal from the root of your React Native application.

Listing 3.6 Importing and using the Heading component

Figure 3.4 Running the app

import React, { Component } from 'react'
import {View, ScrollView, StyleSheet} from 'react-native'
import Heading from './Heading'

class App extends Component {
 ...
 render() {
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 </ScrollView>
 </View>
)
 }
}
...
Licensed to Vincent VAUBAN <vvauban@gmail.com>

8 CHAPTER 3 Building your first React Native app
Next, create the TextInput component and give it some styling. In the app folder, cre-
ate a file called Input.js.

Listing 3.7 Creating the TextInput component

import React from 'react'
import { View, TextInput, StyleSheet } from 'react-native'

const Input = () => (
 <View style={styles.inputContainer}>
 <TextInput
 style={styles.input}
 placeholder='What needs to be done?'
 placeholderTextColor='#CACACA'
 selectionColor='#666666' />
 </View>
)

const styles = StyleSheet.create({
 inputContainer: {
 marginLeft: 20,
 marginRight: 20,
 shadowOpacity: 0.2,
 shadowRadius: 3,
 shadowColor: '#000000',
 shadowOffset: { width: 2, height: 2 }
 },
 input: {
 height: 60,
 backgroundColor: '#ffffff',
 paddingLeft: 10,
 paddingRight: 10
 }
})

export default Input

You’re using a new React Native component called TextInput here. If you’re familiar
with web development, this is similar to an HTML input. You also give both the 
TextInput and the outer View their own styling.

 TextInput takes a few other props. Here, you specify a placeholder to show text
before the user starts to type, a placeholderTextColor that styles the placeholder
text, and a selectionColor that styles the cursor for the TextInput.

 The next step, in section 3.4, will be to wire up a function to get the value of the
TextInput and save it to the state of the App component. You’ll also go into App.js and
add a new function called inputChange below the constructor and above the render
function. This function will update the state value of inputValue with the value passed
in, and for now will also log out the value of inputValue for you to make sure the func-
tion is working by using console.log(). But to view console.log() statements in
React Native, you first need to open the developer menu. Let’s see how it works.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

9Opening the developer menu
3.3 Opening the developer menu
The developer menu is a built-in menu available as a part of React Native; it gives you
access to the main debugging tools you’ll use. You can open it in the iOS simulator or
in the Android emulator. In this section, I’ll show you how to open and use the devel-
oper menu on both platforms.

NOTE If you aren’t interested in the developer menu or want to skip this sec-
tion for now, go to section 3.4 to continue building the todo app.

3.3.1 Opening the developer menu in the iOS simulator

While the project is running in the iOS simulator, you can open the developer menu
in one of three ways:

 Press Cmd-D on the keyboard.
 Press Cmd-Ctrl-Z on the keyboard.
 Open the Hardware > Shake Gesture menu in the simulator options (see fig-

ure 3.5).

When you do, you should see the developer menu, shown in figure 3.6.

NOTE If Cmd-D or Cmd-Ctrl-Z doesn’t open the menu, you may need to con-
nect your hardware to the keyboard. To do this, go to Hardware > Keyboard >
Connect Hardware Keyboard in your simulator menu.

Figure 3.5 Manually opening the developer
menu (iOS simulator)

Figure 3.6 React Native developer
menu (iOS simulator)
Licensed to Vincent VAUBAN <vvauban@gmail.com>

10 CHAPTER 3 Building your first React Native app
3.3.2 Opening the developer menu in the Android emulator

With the project open and running in the Android emulator, the developer menu can
be opened in one of three ways:

 Press F2 on the keyboard.
 Press Cmd-M on the keyboard.
 Press the Hardware button (see figure 3.7).

When you do, you should see the developer menu shown in figure 3.8.

Figure 3.7 Manually opening the
hardware menu (Android emulator)

Figure 3.8 React Native developer menu
(Android emulator)

Hardware menu

3.3.3 Using the developer menu

When the developer menu opens, you should see the following options:

 Reload (iOS and Android) —Reloads the app. This can also be done by pressing
Cmd-R on the keyboard (iOS) or pressing R twice (Android).

 Debug JS Remotely (iOS and Android) —Opens the Chrome dev tools and gives you
full debugging support through the browser (figure 3.9). Here, you have access
not only to logging statements in your code, but also to breakpoints and whatever
you’re used to while debugging web apps (with the exception of the DOM). If you
need to log any information or data in your app, this is usually the place to do so.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

11Opening the developer menu
 Enable Live Reload (iOS and Android)—Enables live reload. When you make
changes in your code, the entire app will reload and refresh in the simulator.

 Start Systrace (iOS only)—Systrace is a profiling tool. This will give you a good
idea of where your time is being spent during each 16 ms frame while your app
is running. Profiled code blocks are surrounded by start/end markers that are
then visualized in a colorful chart format. Systrace can also be enabled manu-
ally from the command line in Android. If you want to learn more, check out
the docs for a very comprehensive overview.

 Enable Hot Reloading (iOS and Android)—A great feature added in version .22 of
React Native. It offers an amazing developer experience, giving you the ability to
see your changes immediately as files are changed without losing the current state
of the app. This is especially useful for making UI changes deep in your app with-
out losing state. It’s different than live reloading because it retains the current
state of your app, only updating the components and state that have been
changed (live reloading reloads the entire app, therefore losing the current state).

 Toggle Inspector (iOS and Android)—Brings up a property inspector similar to
what you see in the Chrome dev tools. You can click an element and see where
it is in the hierarchy of components, as well as any styling applied to the ele-
ment (figure 3.10).

 Show Perf Monitor (iOS and Android)—Brings up a small box in the upper-left cor-
ner of the app, giving some information about the app’s performance. Here
you’ll see the amount of RAM being used and the number of frames per second
at which the app is currently running. If you click the box, it will expand to
show even more information (figure 3.11).

 Dev Settings (Android emulator only)—Brings up additional debugging options,
including an easy way to toggle between the __DEV__ environment variable
being true or false (figure 3.12).

Figure 3.9 Debugging in Chrome

Figure 3.10 Using the inspector (left: iOS, right: Android)
Licensed to Vincent VAUBAN <vvauban@gmail.com>

12 CHAPTER 3 Building your first React Native app
3.4 Continuing building the todo app
Now that you know how the developer menu works, open it and press Debug JS
Remotely to open the Chrome dev tools. You’re ready to start logging information to
the JavaScript console.

 You’ll import the Input component into app/App.js and attach a method to 
TextInput, which you’ll give as a prop to the Input. You’ll also pass the inputValue
stored on the state to Input as a prop.

Listing 3.8 Creating the inputChange function

...
import Heading from './Heading'

Figure 3.11 Perf Monitor (left: iOS, right: Android)

Figure 3.12 Dev Settings (Android emulator)
Licensed to Vincent VAUBAN <vvauban@gmail.com>

13Continuing building the todo app

import Input from './Input'
class App extends Component {
 constructor() {
 …
 }
 inputChange(inputValue) {
 console.log(' Input Value: ' , inputValue)
 this.setState({ inputValue })
 }
 render() {
 const { inputValue } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input
 inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 </ScrollView>
 </View>
)
 }}

inputChange takes one argument, the value of the TextInput, and updates the input-
Value in the state with the returned value from the TextInput.

 Now, you need to wire up the function with the TextInput in the Input compo-
nent. Open app/Input.js, and update the TextInput component with the new
inputChange function and the inputValue property.

Listing 3.9 Adding inputChange and inputValue to the TextInput

...
const Input = ({ inputValue, inputChange }) => (
 <View style={styles.inputContainer}>
 <TextInput
 value={inputValue}
 style={styles.input}
 placeholder='What needs to be done?'
 placeholderTextColor='#CACACA'
 selectionColor='#666666'
 onChangeText={inputChange} />
 </View>
)
...

You destructure the props inputValue and inputChange in the creation of the stateless
component. When the value of the TextInput changes, the inputChange function is
called, and the value is passed to the parent component to set the state of inputValue.
You also set the value of the TextInput to be inputValue, so you can later control and
reset the TextInput. onChangeText is a method that will be called every time the value
of the TextInput component is changed and will be passed the value of the TextInput.

Creates the inputChange method, which
takes inputValue as an argument

Logs out the inputValue value to
make sure the method is working

Sets the state with the new value—same
as this.setState({inputValue: inputValue})

Passes inputValue as a property
to the Input component

Passes inputChange as a property
to the Input component

Destructures the inputValue
and inputChange props

Sets the onChangeText
method to inputChange
Licensed to Vincent VAUBAN <vvauban@gmail.com>

14 CHAPTER 3 Building your first React Native app
 Run the project again and see how it looks (figure 3.13). You’re logging the value
of the input, so as you type you should see the value being logged out to the console
(figure 3.14).

Figure 3.13 Updated view after adding the TextInput

Figure 3.14 Logging out the TextInput value with the inputChange method
Licensed to Vincent VAUBAN <vvauban@gmail.com>

15Continuing building the todo app

.
Now that the value of the inputValue is being stored in the state, you need to create a
button to add the items to a list of todos. Before you do, create a function that you’ll
bind to the button to add the new todo to the array of todos defined in the construc-
tor. Call this function submitTodo, and place it after the inputChange function and
before the render function.

Listing 3.10 Adding the submitTodo function

...

submitTodo () {
 if (this.state.inputValue.match(/^\s*$/)) {
 return
 }
 const todo = {
 title: this.state.inputValue,
 todoIndex,
 complete: false
 }
 todoIndex++
 const todos = [...this.state.todos, todo]
 this.setState({ todos, inputValue: '' }, () => {
 console.log('State: ', this.state)
 })
}
...

Next, create the todoIndex at the top of the App.js file, below the last import state-
ment.

Listing 3.11 Creating the todoIndex variable

...
import Input from './Input'

let todoIndex = 0

class App extends Component {
...

Now that the submitTodo function has been created, create a file called Button.js and
wire up the function to work with the button.

Listing 3.12 Creating the Button component

import React from 'react'
import { View, Text, StyleSheet, TouchableHighlight } from 'react-native'

Checks whether inputValue is empty or
only contains whitespace. If it’s empty,
returns without doing anything else.

If inputValue isn’t empty, c
variable an object with a t
complete Boolean (you’ll c

Increments the todoIndex Pushes the new todo to the
existing array of todos

Sets the state of the todos to match the updated array of
this.state.todos, and resets inputValue to an empty string

Once the state is set, you have the option to pass a
callback function. Here, a callback function from setState

logs out the state to make sure everything is working
Licensed to Vincent VAUBAN <vvauban@gmail.com>

16 CHAPTER 3 Building your first React Native app

to
e
ed.
const Button = ({ submitTodo }) => (

 <View style={styles.buttonContainer}>
 <TouchableHighlight
 underlayColor='#efefef'
 style={styles.button}
 onPress={submitTodo}>

 <Text style={styles.submit}>
 Submit
 </Text>
 </TouchableHighlight>
 </View>
)

const styles = StyleSheet.create({
 buttonContainer: {
 alignItems: 'flex-end'
 },
 button: {
 height: 50,
 paddingLeft: 20,
 paddingRight: 20,
 backgroundColor: '#ffffff',
 width: 200,
 marginRight: 20,
 marginTop: 15,
 borderWidth: 1,
 borderColor: 'rgba(0,0,0,.1)',
 justifyContent: 'center',
 alignItems: 'center'
 },
 submit: {
 color: '#666666',
 fontWeight: '600'
 }
})

export default Button

In this component, you use TouchableHighlight for the first time. TouchableHigh-
light is one of the ways you can create buttons in React Native and is fundamentally
comparable to the HTML button element.

 With TouchableHighlight, you can wrap views and make them respond properly
to touch events. On press down, the default backgroundColor is replaced with a speci-
fied underlayColor property that you’ll provide as a prop. Here you specify an under-
layColor of '#efefef', which is a light gray; the background color is white. This will
give the user a good sense of whether the touch event has registered. If no underlay-
Color is defined, it defaults to black.

 TouchableHighlight supports only one main child component. Here, you pass in
a Text component. If you want multiple components in a TouchableHighlight, wrap
them in a single View, and pass this View as the child of the TouchableHighlight.

Destructures the submitTodo function, which
was passed as a prop to the component

Attaches submitTodo to the onPress function available
the TouchableHighlight component. This function will b
called when the TouchableHighlight is touched or press
Licensed to Vincent VAUBAN <vvauban@gmail.com>

17Continuing building the todo app

NOTE There’s also quite a bit of styling going on in listing 3.12. Don’t worry
about styling specifics in this chapter: we cover them in depth in chapters 4
and 5. But do look at them, to get an idea how styling works in each compo-
nent. This will help a lot in the in-depth later chapters, because you’ll already
have been exposed to some styling properties and how they work.

You’ve created the Button component and wired it up with the function defined in
App.js. Now bring this component into the app (app/App.js) and see if it works!

Listing 3.13 Importing the Button component

...
import Button from './Button'

let todoIndex = 0

...
constructor() {
 super()
 this.state = {
 inputValue: '',
 todos: [],
 type: 'All'
 }
 this.submitTodo = this.submitTodo.bind(this)
 }
...
render () {
 let { inputValue } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input
 inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 <Button submitTodo={this.submitTodo} />
 </ScrollView>
 </View>
)
 }

You import the Button component and place it under the Input component in the
render function. submitTodo is passed in to the Button as a property called
this.submitTodo.

 Now, refresh the app. It should look like figure 3.15. When you add a todo, the
TextInput should clear, and the app state should log to the console, showing an
array of todos with the new todo in the array (figure 3.16).

Imports the new Button component

Binds the method to the class in
the constructor. Because you’re
using classes, functions won’t be
auto-bound to the class.

Place the Button below the
Input component, and pass in

submitTodo as a prop.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

18 CHAPTER 3 Building your first React Native app
Figure 3.15 Updated app with the Button
component

Figure 3.16 Logging the state

 Now that you’re adding todos to the array of todos, you need to render them to the
screen. To get started with this, you need to create two new components: TodoList
and Todo. TodoList will render the list of Todos and will use the Todo component for
each individual todo. Begin by creating a file named Todo.js in the app folder.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

19Continuing building the todo app
Listing 3.14 Creating the Todo component

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

const Todo = ({ todo }) => (
 <View style={styles.todoContainer}>
 <Text style={styles.todoText}>
 {todo.title}
 </Text>
 </View>
)

const styles = StyleSheet.create({
 todoContainer: {
 marginLeft: 20,
 marginRight: 20,
 backgroundColor: '#ffffff',
 borderTopWidth: 1,
 borderRightWidth: 1,
 borderLeftWidth: 1,
 borderColor: '#ededed',
 paddingLeft: 14,
 paddingTop: 7,
 paddingBottom: 7,
 shadowOpacity: 0.2,
 shadowRadius: 3,
 shadowColor: '#000000',
 shadowOffset: { width: 2, height: 2 },
 flexDirection: 'row',
 alignItems: 'center'
 },
 todoText: {
 fontSize: 17
 }
})

export default Todo

The Todo component takes one property for now—a todo—and renders the title in a
Text component. You also add styling to the View and Text components.

 Next, create the TodoList component (app/TodoList.js).

Listing 3.15 Creating the TodoList component

import React from 'react'
import { View } from 'react-native'
import Todo from './Todo'

const TodoList = ({ todos }) => {
 todos = todos.map((todo, i) => {
 return (
 <Todo
 key={todo.todoIndex}
 todo={todo} />
Licensed to Vincent VAUBAN <vvauban@gmail.com>

20 CHAPTER 3 Building your first React Native app
)
 })
 return (
 <View>
 {todos}
 </View>
)
}

export default TodoList

The TodoList component takes one property for now: an array of todos. You then
map over these todos and create a new Todo component (imported at the top of the
file) for each todo, passing in the todo as a property to the Todo component. You also
specify a key and pass in the index of the todo item as a key to each component. The
key property helps React identify the items that have changed when the diff with the
virtual DOM is computed. React will give you a warning if you leave this out.

 The last thing you need to do is import the TodoList component into the App.js
file and pass in the todos as a property.

Listing 3.16 Importing the TodoList component

...
import TodoList from './TodoList'
...
render () {
 const { inputValue, todos } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input inputValue={inputValue} inputChange={(text) =>

this.inputChange(text)} />
 <TodoList todos={todos} />
 <Button submitTodo={this.submitTodo} />
 </ScrollView>
 </View>
)
 }
...

Run the app. When you add a todo, you should see it pop up in the list of todos (fig-
ure 3.17).

 The next steps are to mark a todo as complete, and to delete a todo. Open App.js,
and create toggleComplete and deleteTodo functions below the submitTodo func-
tion. toggleComplete will toggle whether the todo is complete, and deleteTodo will
delete the todo.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

21Continuing building the todo app

x

o
d
o
Figure 3.17 Updated app with the TodoList
component

Listing 3.17 Adding toggleComplete and deleteTodo functions

constructor () {
 ...
 this.toggleComplete = this.toggleComplete.bind(this)
 this.deleteTodo = this.deleteTodo.bind(this)
}
...
deleteTodo (todoIndex) {
 let { todos } = this.state
 todos = todos.filter((todo) => todo.todoIndex !== todoIndex)
 this.setState({ todos })
}

Binds the toggleComplete method
to the class in the constructor

Binds the deleteTodo method to the
class in the constructor

deleteTodo takes the todoInde
as an argument, filters the
todos to return all but the tod
with the index that was passe
in, and then resets the state t
the remaining todos.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

22 CHAPTER 3 Building your first React Native app

,
toggleComplete (todoIndex) {
 let todos = this.state.todos
 todos.forEach((todo) => {
 if (todo.todoIndex === todoIndex) {
 todo.complete = !todo.complete
 }
 })
 this.setState({ todos })
}
...

To hook in these functions, you need to create a button component to pass in to the
todo. In the app folder, create a new file called TodoButton.js.

Listing 3.18 Creating TodoButton.js

import React from 'react'
import { Text, TouchableHighlight, StyleSheet } from 'react-native'

const TodoButton = ({ onPress, complete, name }) => (
 <TouchableHighlight
 onPress={onPress}
 underlayColor='#efefef'
 style={styles.button}>
 <Text style={[
 styles.text,
 complete ? styles.complete : null,
 name === 'Delete' ? styles.deleteButton : null]}
 >
 {name}
 </Text>
 </TouchableHighlight>
)

const styles = StyleSheet.create({
 button: {
 alignSelf: 'flex-end',
 padding: 7,
 borderColor: '#ededed',
 borderWidth: 1,
 borderRadius: 4,
 marginRight: 5
 },
 text: {
 color: '#666666'
 },
 complete: {
 color: 'green',
 fontWeight: 'bold'
 },
 deleteButton: {
 color: 'rgba(175, 47, 47, 1)'
 }
})
export default TodoButtton

toggleComplete also takes the todoIndex as
an argument, and loops through the todos
until it finds the todo with the given index.
It changes the complete Boolean to the
opposite of complete’s current setting, and
then resets the state of the todos.

Takes onPress, complete
and name as props

Checks whether complete is
true, and applies a style

Checks whether the name property equals
“Delete” and, if so, applies a style
Licensed to Vincent VAUBAN <vvauban@gmail.com>

23Continuing building the todo app
Now, pass the new functions as props to the TodoList component.

Listing 3.19 Passing toggleComplete and deleteTodo as props to TodoList

render () {
 ...
 <TodoList
 toggleComplete={this.toggleComplete}
 deleteTodo={this.deleteTodo}
 todos={todos} />
 <Button submitTodo={this.submitTodo} />
 ...
}

Next, pass toggleComplete and deleteTodo as props to the Todo component.

Listing 3.20 Passing toggleComplete and deleteTodo as props to ToDo

...
const TodoList = ({ todos, deleteTodo, toggleComplete }) => {
 todos = todos.map((todo, i) => {
 return (
 <Todo
 deleteTodo={deleteTodo}
 toggleComplete={toggleComplete}
 key={i}
 todo={todo} />
)
 })
...

Finally, open Todo.js and update the Todo component to bring in the new TodoButton
component and some styling for the button container.

Listing 3.21 Updating Todo.js to bring in TodoButton and functionality

import TodoButton from './TodoButton'
...
const Todo = ({ todo, toggleComplete, deleteTodo }) => (
 <View style={styles.todoContainer}>
 <Text style={styles.todoText}>
 {todo.title}
 </Text>
 <View style={styles.buttons}>
 <TodoButton
 name='Done'
 complete={todo.complete}
 onPress={() => toggleComplete(todo.todoIndex)} />
 <TodoButton
 name='Delete'
 onPress={() => deleteTodo(todo.todoIndex)} />
 </View>
 </View>
)

Licensed to Vincent VAUBAN <vvauban@gmail.com>

24 CHAPTER 3 Building your first React Native app
const styles = StyleSheet.create({
...
 buttons: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'flex-end',
 alignItems: 'center'
 },
...
)}

You add two TodoButtons: one named Done, and one named Delete. You also pass
toggleComplete and deleteTodo as functions to be called as the onPress you defined
in TodoButton.js. If you refresh the app and add a todo, you should now see the new
buttons (figure 3.18).

Figure 3.18 App with TodoButtons
displayed

 If you click Done, the button text should be bold and green. If you click Delete,
the todo should disappear from the list of todos.

 You’re now almost done with the app. The final step is to build a tab bar filter that
will show either all the todos, only the complete todos, or only the incomplete todos.
To get this started, you’ll create a new function that will set the type of todos to show.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

25Continuing building the todo app
In the constructor, you set a state type variable to 'All' when you first created the
app. You’ll now create a function named setType that will take a type as an argument
and update the type in the state. Place this function below the toggle-Complete func-
tion in App.js.

Listing 3.22 Adding the setType function

constructor () {
 ...
 this.setType = this.setType.bind(this)
}
...
setType (type) {
 this.setState({ type })
}
...

Next, you need to create the TabBar and TabBarItem components. First, create the
TabBar component: add a file in the app folder named TabBar.js.

Listing 3.23 Creating the TabBar component

import React from 'react'
import { View, StyleSheet } from 'react-native'
import TabBarItem from './TabBarItem'

const TabBar = ({ setType, type }) => (
 <View style={styles.container}>
 <TabBarItem type={type} title='All'
 setType={() => setType('All')} />
 <TabBarItem type={type} border title='Active'
 setType={() => setType('Active')} />
 <TabBarItem type={type} border title='Complete'
 setType={() => setType('Complete')} />
 </View>
)

const styles = StyleSheet.create({
 container: {
 height: 70,
 flexDirection: 'row',
 borderTopWidth: 1,
 borderTopColor: '#dddddd'
 }
})

export default TabBar

This component takes two props: setType and type. Both are passed down from the
main App component.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

26 CHAPTER 3 Building your first React Native app
 You’re importing the yet-to-be-defined TabBarItem component. Each TabBarItem
component takes three props: title, type, and setType. Two of the components also
take a border prop (Boolean), which if set will add a left border style.

 Next, create a file in the app folder named TabBarItem.js.

Listing 3.24 Creating the TabBarItem component

import React from 'react'
import { Text, TouchableHighlight, StyleSheet } from 'react-native'

const TabBarItem = ({ border, title, selected, setType, type }) => (
 <TouchableHighlight
 underlayColor='#efefef'
 onPress={setType}
 style={[
 styles.item, selected ? styles.selected : null,
 border ? styles.border : null,
 type === title ? styles.selected : null]}>
 <Text style={[styles.itemText, type === title ? styles.bold : null]}>
 {title}
 </Text>
 </TouchableHighlight>
)

const styles = StyleSheet.create({
 item: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 border: {
 borderLeftWidth: 1,
 borderLeftColor: '#dddddd'
 },
 itemText: {
 color: '#777777',
 fontSize: 16
 },
 selected: {
 backgroundColor: '#ffffff'
 },
 bold: {
 fontWeight: 'bold'
 }
})

export default TabBarItem

In the TouchableHighlight component, you check a few props and set styles based on
the prop. If selected is true, you give it the style styles.selected. If border is true,
you give it the style styles.border. If type is equal to the title, you give it
styles.selected.

 In the Text component, you also check to see whether type is equal to title. If so,
add a bold style to it.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

27Continuing building the todo app
 To implement the TabBar, open app/App.js, bring in the TabBar component, and
set it up. You’ll also bring in type to the render function as part of destructuring
this.state.

Listing 3.25 Implementing the TabBar component

...
import TabBar from './TabBar'
class App extends Component {
...
render () {
 const { todos, inputValue, type } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 <TodoList
 type={type}
 toggleComplete={this.toggleComplete}
 deleteTodo={this.deleteTodo}
 todos={todos} />
 <Button submitTodo={this.submitTodo} />
 </ScrollView>
 <TabBar type={type} setType={this.setType} />
 </View>
)
}
...

Here, you bring in the TabBar component. You then destructure type from the state
and pass it not only to the new TabBar component, but also to the TodoList component; you’ll
use this type variable in just a second when filtering the todos based on this type. You
also pass the setType function as a prop to the TabBar component.

 The last thing you need to do is open the TodoList component and add a filter to
return only the todos of the type you currently want back, based on the tab that’s
selected. Open TodoList.js, destructure the type out of the props, and add the follow-
ing getVisibleTodos function before the return statement.

Listing 3.26 Updating the TodoList component

...
const TodoList = ({ todos, deleteTodo, toggleComplete, type }) => {
 const getVisibleTodos = (todos, type) => {
 switch (type) {
 case 'All':
 return todos
 case 'Complete':
 return todos.filter((t) => t.complete)
Licensed to Vincent VAUBAN <vvauban@gmail.com>

28 CHAPTER 3 Building your first React Native app
 case 'Active':
 return todos.filter((t) => !t.complete)
 }
 }

 todos = getVisibleTodos(todos, type)
 todos = todos.map((todo, i) => {
...

You use a switch statement to check which type is currently set. If 'All' is set, you
return the entire list of todos. If 'Complete' is set, you filter the todos and only return
the complete todos. If 'Active' is set, you filter the todos and only return the incom-
plete todos.

 You then set the todos variable as the returned value of getVisibleTodos. Now
you should be able to run the app and see the new TabBar (figure 3.19). The TabBar
will filter based on which type is selected.

Figure 3.19 Final todo app
Licensed to Vincent VAUBAN <vvauban@gmail.com>

29Continuing building the todo app
Summary

 AppRegistry is the JavaScript entry point to running all React Native apps.
 The React Native component TextInput is similar to an HTML input. You can

specify several props, including a placeholder to show text before the user
starts to type, a placeholderTextColor that styles the placeholder text, and a
selection-Color that styles the cursor for the TextInput.

 TouchableHighlight is one way to create buttons in React Native; it’s compara-
ble to the HTML button element. You can use TouchableHighlight to wrap
views and make them respond properly to touch events.

 You learned how to enable the developer tools in both iOS and Android emula-
tors.

 Using the JavaScript console (available from the developer menu) is a good way
to debug your app and log useful information.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

 In this chapter, we’ll discuss what the MVVM (model-view–view model)
design pattern is and how it maximizes your cross-platform code. You’ll also roll
up your sleeves and write some code!

Hello MVVM—creating a simple
cross-platform app using MVVM

Licensed to Vincent VAUBAN <vvauban@gmail.com>

Chapter 2

Hello MVVM—creating
a simple cross-platform

app using MVVM

Chapter 2 from Xamarin in Action
by Jim Bennett
Typically at this point in a book, it’s traditional to build a Hello World app to show off
the technology in question. For this book, though, I’m going to go slightly against tra-
dition and start by discussing the MVVM (model-view–view model) design pattern.
Then we’ll get our hands dirty with some code toward the end of this chapter.

This chapter covers
 What MVVM is and why it’s the best choice for cross-platform

Xamarin apps

 What the MVVM design pattern is all about, and why you’d want
to use it to maximize your cross-platform code

 Getting set up with Xamarin and the MvvmCross extension

 Creating HelloCrossPlatformWorld, your first Xamarin mobile app

 Running your app on iOS and Android
31

Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://www.manning.com/books/xamarin-in-action

32 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
WE’RE DISCUSSING MVVM FOR CROSS-PLATFORM XAMARIN APPS The principles
discussed in this chapter are for using MVVM with Xamarin apps. Although
these follow the principles for MVVM on other platforms, such as desktop
Windows apps or the web, there’s a lot more to it for Xamarin apps. If you’ve
done MVVM before (maybe with WPF) it’s still worth reading this chapter as
there are some important differences.

2.1 What are UI design patterns?
Over time, developers have come across and solved
the same problems again and again. Out of this has
come a set of abstract solutions that can be applied
when building your code. These are known as design
patterns—repeatable solutions to common problems
that occur when designing and building software.

 Building apps that interact with the user through
a user interface (UI) is no different. There are stan-
dard problems that developers want to solve, and a
number of patterns have come about as solutions to
these problems.

 Let’s consider a simple square-root calculator
app called Sqrt that has a text box you can put a
number in, and a button. When you tap the button,
it calculates the square root of the number in the
text box and shows the answer on a label. An exam-
ple of this app is shown in figure 2.1.

 The simplest way to write this app is to wire up the button to an event that takes the
value directly from the text box, calculates the square root, and writes the value to a
label. All this can be done in the code-behind file for the UI. Simple, and all in one
class. The following listing has some pseudocode for the kind of thing you might write.

Listing 2.1 Pseudocode for adding numbers by wiring to the UI directly

Listens for the Click
event of the button

The number comes from
reading the value from the
Text property of the text box.

Once the square root is calculated, the
Text property of the label is set directly.

MyAddButton.Click += (s, e) =>
{
 var number = double.Parse(NumberTextBox.Text);
 var sqrt = Math.Sqrt(number);
 MyResultLabel.Text = sqrt.ToString();
}

Although this seems simple, it has a number of flaws.

Sqrt

400

√
20

Square Root

Figure 2.1 A simple square-root
calculator app that calculates the
square root of a given number
Licensed to Vincent VAUBAN <vvauban@gmail.com>

33MVVM—the design pattern for Xamarin apps
 First, this isn’t easily testable. You can only test this
app by updating the value in the text box and tapping
the button. It would be better if you could write unit
tests so you could programmatically test the code, cov-
ering multiple cases including edge cases, such as
missing inputs or large or negative numbers. This way
you could run a set of automated tests quickly and
repeatably every time you change your code.

 Second, this isn’t cross-platform. One of the rea-
sons for building apps using Xamarin is so that parts
of your app can be written in shared code that works
on both iOS and Android. If your calculation is
wired directly to the view, you can’t do this. Think
back to the layers introduced in chapter 1, shown in
figure 2.2.

 In a Xamarin app we have three layers:

 Application layer —This is a small part of the code that makes your app runnable
on each platform and has different platform-specific implementations for iOS
and Android.

 UI layer —The UI layer also has separate platform-specific implementations for
iOS and Android.

 Business logic layer —The business logic layer is shared between the two plat-
forms.

To fit the calculator code into this structure, you’d need to have your calculation code
in the cross-platform business logic layer, and the button, text box, label, and all the
wiring in the UI layer. This is the kind of problem all UI developers come across on a
daily basis, and, as you’d expect, there’s a design pattern to help with this—MVVM.

2.2 MVVM—the design pattern for Xamarin apps
MVVM (model-view–view model) is the most popular design pattern for cross-plat-
form apps built using Xamarin, and it has a history of being a very successful design
pattern for building Windows desktop apps using WPF, Silverlight apps, and now Win-
dows 10 UWP apps. It has even made its way onto the web with frameworks like knock-
out.js using it. When Xamarin designed Xamarin.Forms, whose goal was to have as
much code sharing as possible, the principles of MVVM were baked into the underly-
ing framework right off the bat.

 Think back to the three layers in the Xamarin app. These three layers enable a rea-
sonable amount of code sharing, but we can do better. In the UI layer there are really
two layers—the actual UI widgets, and some logic around these widgets. For example,
we could put some logic around the answer label to make it only visible once the
square root has been calculated. This expands our three layers to four.

UI layer

Application
layer

Business
logic layer

iOS

C#

C#

C#

C#

C#

Android

Figure 2.2 Xamarin apps are
written in C# so you can share any
common business logic while
having a platform-specific UI.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

34 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
 Figure 2.3 shows the how the layers would look if
we could move this UI logic into shared code. If we
did this, the label in our example would be in the UI
layer, and the logic that decides whether it should
be visible or hidden would be in the cross-platform
UI logic layer. This is a great way to do things—we’re
maximizing code reuse by abstracting the UI logic
into cross-platform code.

 MVVM helps with this splitting-out of the UI and
its logic. This pattern is named based on the three
layers that you use in your app, as shown in figure
2.4. Let’s look at these layers in the context of our
calculator example:

 Model—Your data and business logic.
The model is the data, business logic, and

access to any external resources (such as web
services or databases) defined in terms of the domain, and this maps to the
business logic layer in our Xamarin app. In our example, the model contains
the number, the logic to calculate the square root, and the result.

 View—The actual UI, buttons, text controls, and all other widgets.
The view is the UI with all its widgets and layouts, and this maps to part of the

UI layer and holds the UI widgets (the text box, button, and label). This is a
passive view, so it doesn’t have any code to get or set the values or to handle
events, such as the button click.

 View model—The UI data and logic.
For our calculator app, this has properties that represent the numbers on

the model—the input value and the result. It also has a command property that
wraps the square root calculation logic on the model into an object (more on
commands in the next chapter). The view model knows about the model but
has no knowledge of the view.

In addition to these three layers, it has a binder, a binding layer that you can think of as
glue that connects the view model to the view. This removes the need to write boiler-
plate code to synchronize the UI—the binder can watch for changes in the view
model and update the view to match, or update the view model to match changes
made by the user in the UI. This binder is loosely coupled rather than tightly coupled,
and the connection is often made based on wiring up properties in the view and view
model based on their names (so in the case of a binding between a property called
Text and a property called Name, at runtime the binder will use reflection to map
these string values to the underlying properties).

UI layer

App
layer

UI logic
layer

iOS

C#

Business
logic layer

C#

C#

C#

C#

C#

Android

Figure 2.3 To maximize code reuse,
it would be good to have UI logic in
shared code.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

35MVVM—the design pattern for Xamarin apps
Reflecting on reflection
If you’ve never heard of reflection before, it’s a part of the C# API that allows you to
query details about a class—you can discover properties, fields, methods, or events.
Once you’ve found out the details, you can also execute code. For example, you can
find a property based on its name and then get the value of that property from a par-
ticular instance of that class. Reflection is also common in other languages such as
Java—C# reflection is basically the same as Java reflection.

This is great for binding—if you bind a property called Name, the binding code can use
reflection to find a property on your view-model class with that same name, and then
it can get the value on your view-model instance.

For our calculator app, the binding would wire up the text box, button, and label on
the UI to the equivalent properties and a command on the view model.

 There’s a bit of magic involved in making this binder work, and this is usually
implemented in an MVVM framework—a third-party library that gives you a set of
base classes providing the implementation of this pattern. I cover how this works later
in this chapter.

MVVM FRAMEWORKS There are multiple MVVM frameworks that work with
Xamarin native apps, such as MvvmCross, MVVM Light, and Caliburn.Micro.
Although each one has differences, they all follow the same basic principles
and do roughly the same things. Later in this book we’ll be using MvvmCross,
but everything in this book is applicable to most frameworks.

For example, as shown in figure 2.5, we could have a text box on our calculator app
UI that’s bound to a Number property. This means that at runtime it will try to find a
public property called Number on the view model that it’s bound to using reflection,

View

Binding

1. The binding keeps the data in
 sync between the view and the
 view model, and it wires events
 up to view-model commands.

2. The view model updates
 the model based on
 changes pushed from
 the binding layer. 3. State changes in the model are

 passed back to the view model,
 which can then notify the binding
 that something has changed, so
 the binding can keep the view in
 sync with the changes.

View model

Model

Figure 2.4 MVVM has a model, a view model, a view, and a binding layer that keeps the view
and view model in sync and connects events on the view to the view model.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

36 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
and it will show the string contained in that property in the text box. If the user
changes the value inside the text box, it will update the value of the Number property
to match what the user has typed in. Conversely, if the value of the Number property on
the view model changes, the binding will update the text box to match.

The Text property of the TextBox is bound to a property
called “Number” on the view model. The binding looks
up the “Number” property on the view model and finds
it using reflection.

The binding listens for updates to the Text property of
the TextBox (usually via a text-changed event raised by
the TextBox). When the user changes the text, the binding
updates the Number property on the view model.

The binding also listens for updates to Number. When
the property changes, it updates the Text property of the
TextBox on the UI.

TextBox

public string Text {get;set;}

View model
Binding

public string Number {get;set;}

Sqrt

400

√
20

Square Root

Figure 2.5 Binding keeps the value on the view in sync with the value in the view model.

 The binder doesn’t care what the underlying class type is of the view model you’re
using, just that it has a public property called Number that it can extract the value from.
In some of the MVVM frameworks, it doesn’t even care if the property is there or not. If
it can’t find the property, it just treats it as an empty value. This loose coupling is what
makes MVVM especially powerful—it allows view models to be completely agnostic to
the view, so you can write unit tests against the view model that simulate the UI without
worrying about UI code getting in the way. It also supports code reuse, so a view could
be glued to any view model that has properties with the names it’s expecting.

 Figure 2.6 expands on the previous figures by showing how these layers map to the
three layers of MVVM:

 App layer—The app layer is one that doesn’t really come under the pure MVVM
design pattern, but the different MVVM frameworks do provide some application-
layer features. This allows us to have some cross-platform code in our app layer
that can control app logic, such as which view is shown first and how the differ-
ent classes in the app are wired together, such as defining which view model is
used for each view.

 UI layer—The UI layer is our view layer, and this is platform-specific code.
 Binding—The binding between the UI layer and the UI logic layer is the

binder—the glue that connects the UI layer to its logic layer. This is usually
Licensed to Vincent VAUBAN <vvauban@gmail.com>

37What is cross-platform code?
a mix of cross-platform and platform-
specific code provided by a third-party
framework.

 UI logic layer—The UI logic layer is our
view-model layer. It provides logic for
the UI and other device interactions in
a cross-platform way. Part of this logic is
value conversion—converting from data
in your domain objects to data on the
UI. For example, you could model a
user in your domain with a first name
and last name but on the UI want to
show the full name. The view model will
provide this value conversion by concat-
enating the names and giving one string
value that will be shown by the UI.

 Business logic layer—The business logic
layer is the model layer. This contains data, domain objects, logic, and connec-
tivity to external resources such as databases or web services. Again, this is cross-
platform.

A QUICK HISTORY LESSON MVVM has been around since 2005 and was devel-
oped by two architects from Microsoft, Ken Cooper and Ted Peters. It was pri-
marily created for use with the new UI technology stack coming out of
Microsoft called WPF, and it leverages the data binding that was a key feature
of WPF. In WPF you write your UI using XAML, a UI-based markup language,
and in this XAML you can bind the properties of a UI widget to properties
defined in the data context of the view—essentially the view model. This
allowed UI/UX experts to design the UI using more designer-based tools,
and to simply wire the widgets, based on their names, to code written inde-
pendently by developers.

2.3 What is cross-platform code?
Some of the layers in our MVVM-based app use cross-platform code—specifically, part
of the app layer, the UI logic (view-model) layer, and the business logic (model) layer.
The reason for this is simple—we’re building an app for both iOS and Android, so the
app will need to work the same way on both platforms, use the same type of data, and
have roughly the same UI logic. It makes a lot of sense to build this once and use the
same code on both apps—code that we write once and can run on iOS and Android.
The term cross-platform code has come up a lot already in this book, and it will continue
to be a theme throughout. But what exactly do we mean when we talk about cross-
platform code in C#?

UI layer

App
layer

UI logic
layer

iOS

C#

Business
logic layer

View

View
model

ModelC#

C#

C#

C#

C#

Android

C#

Binding

Figure 2.6 The different layers of MVVM fit
with the different layers of a Xamarin app.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

38 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Cross-platform native apps are not truly cross-platform
In the Xamarin world we talk of cross-platform native apps, but these are not true
cross-platform apps where exactly the same app will run on all platforms. Neither is
it cross-platform in that all the code runs on all platforms (with a hidden app layer).

What I mean here is that we have two apps, one that runs on iOS and one that runs
on Android, both developed using the same language and sharing a large portion of
the code. They’re cross-platform in that the business logic (and ideally the UI logic)
is truly cross-platform, and the smallest possible device-specific UI and feature layer
is built to be platform-specific.

The MVVM design pattern is very well suited to helping you get as much code-sharing
as possible.

2.3.1 .NET Standard class libraries

When Microsoft released the .NET Framework, they provided a set of APIs that work
on Windows, and with each version of the framework they added more APIs that
developers can use. Over time, support for more platforms was added, such as Micro-
soft’s Silverlight (apps running in a browser) or the Windows Store (apps running in a
sandbox and distributed via a Microsoft app store). These different platforms didn’t
provide the same capabilities, so code written against the core .NET Framework might
not work on Silverlight if it required APIs that Silverlight didn’t (or couldn’t) imple-
ment. The initial solution to this was portable class libraries (PCLs)—libraries that tar-
geted a common subset of the .NET APIs that would run on all platforms. Xamarin
took advantage of this, using the same model to allow you to write portable class
libraries that targeted the subset of the .NET Framework that runs on iOS or Android.

 This worked after a fashion, but it caused a lot of confusion. PCLs come in pro-
files—a profile being a defined subset that will work on a particular combination of
platforms. One profile would work on iOS, Android, and Windows under .NET 4.5,
whereas another would also run on iOS and Android but require .NET 4.6. This
meant that not only would you need to choose the right profile for the platforms you
were targeting, but you’d also need any third-party libraries to also target a compatible
profile. If your profile included .NET 4.5 on Windows, you couldn’t use a library that
used a profile that needed .NET 4.6, for example.

 Things are now a lot better, thanks to a new initiative from Microsoft called .NET
Standard. This is an attempt to standardize the different .NET platforms into a ver-
sioned set of APIs. Each platform, such as Xamarin iOS, Xamarin Android, or the
.NET Framework on Windows implements a particular version of the standard, as well
as all previous versions. This is an inclusive standard, so if a platform supports .NET
Standard 1.6, it also includes 1.5, 1.4, and so on, all the way back to 1.0. The idea
Licensed to Vincent VAUBAN <vvauban@gmail.com>

39What is cross-platform code?
behind this is simple—each version has more APIs available than the previous version,
and your code can use libraries that target the same or an earlier version of the
standard. For example, if your code targets .NET Standard 1.6, you can use a library
that targets 1.4. You can think of the .NET Framework on Windows as the most com-
plete set of APIs, and each .NET Standard version as a more complete implementa-
tion of the full .NET Framework.

 You can read more on .NET Standard libraries, and see what version of the stan-
dard is implement by which version of each platform on Microsoft Docs at
http://mng.bz/sB0y. At the time of writing, Xamarin iOS and Android supports ver-
sion 2.0, so you can use code that targets 2.0 or earlier from your Xamarin apps. Be
aware, though, that targeting higher versions may limit the platforms you support. At
the time of writing, UWP only supports 1.4, so if you decide to add a UWP project to
your Xamarin apps to support Windows 10, you’ll need to ensure the core projects
used by your app target 1.4 or lower.

 These .NET Standard libraries are perfect for the cross-platform layer in your
Xamarin apps. The set of APIs that .NET Standard libraries implement includes all
the bits that would work on all platforms—collections, Tasks, simple I/O, and net-
working. What isn’t included is anything that’s specific to a platform, such as UI code.
This is left up to platform-specific code to implement. .NET Standard is just an API
specification, it’s not the actual implementation. Under the hood, the code that
makes up the subset of the .NET APIs isn’t the same on all platforms, each platform
implements their features using the native API that the platform provides. But the
interface to it—the classes and namespaces—are the same.

 When you write your cross-platform app,
you want as much code as possible inside
.NET Standard libraries, as this is the code
that’s shared. Thinking again about the layers
in our app, you can easily see which layers
would live in a .NET Standard library, as
shown in figure 2.7.

 To map this to the project structure you’re
probably used to in a C# solution, you’d have
(at least) three projects. One (or more)
would be a .NET Standard project containing
all your cross-platform UI and business logic
code. Another would be an iOS app project
that contains the iOS application code and
the iOS UI code. And the last would be an
Android app that contains the Android-
specific UI and application code. This is illus-
trated in figure 2.8.

UI layer

App
layer

UI logic
layer

iOS

C# (.NET Standard)

Business
logic layer

View

View
model

ModelC# (.NET Standard)

C#

C#

C#

C#

Android

C# (.NET Standard)

Binding

Figure 2.7 The cross-platform layers in a
mobile app are implemented in .NET
Standard libraries.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

http://mng.bz/sB0y

40 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
The Core project containing
the cross-platform code is

a .NET Standard library.

The Droid project contains
the Android app and is

Android-specific.

The iOS project contains the
iOS app and is iOS-specific.

Figure 2.8 A typical cross-platform app would contain a .NET Standard library with the core code,
an Android app with Android-specific code, and an iOS app with iOS-specific code

Now that you’ve seen some of the basics, let’s build a simple example app using the
MvvmCross MVVM framework.

2.4 Getting started—creating your first solution
As promised, you’re now going to create a Hello World app—a simple app that
doesn’t do very much but allows you to be sure your development environment is
working correctly, and to see how simple it is to create a working app. Because the big
strength of Xamarin is to allow you to create cross-platform apps with a large amount
of code sharing, you’re going to create two apps: one for iOS and one for Android.
They will share a common core library with all the business logic—inasmuch as you
can have business logic in a Hello World app. You’ll also leverage what you’ve learned
in this chapter and build it using MVVM. The MvvmCross framework you’ll be using
here will save you writing a lot of boilerplate code. This framework is hugely popular
with developers building cross-platform Xamarin apps, and it’s very actively main-
tained and enhanced.

MVVMCROSS We’ll be covering what you need to know about MvvmCross to
build your example apps in this book. If you want to read more about it (or
contribute to the framework—it’s fully open source and welcomes contribu-
tions) then head to https://mvvmcross.com.

We’ll be following these steps to achieve this:

 Creating and running a new cross-platform app—We’ll be creating a cross-platform
MvvmCross app using a Visual Studio extension that we’ll be installing. Once this
solution has been created, we’ll fire it up on iOS and Android as a sanity check.

 Proving the code is cross-platform—Just to prove we have a cross-platform app with
shared code, we’ll be tweaking the code in one place and seeing the effect it has
on both apps.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://mvvmcross.com

41Getting started—creating your first solution
Despite using MvvmCross here and in the apps we’ll build in later chapters, the aim is
not to lock you into this framework. We’ll only be using some small parts of it, and the
principles behind those parts are pretty standard for the MVVM pattern. These princi-
ples are easy to apply when using other frameworks, such as MVVM Light.

2.4.1 Requirements—what hardware or software do you need 
for each mobile platform?

In chapter 1 we discussed Xamarin’s platform support and the tooling you can use.
Here’s a quick refresher:

 If you have a Windows PC, you need to install Visual Studio 2017 and ensure the
“Xamarin” workload is ticked in the installer.

 If you have a Mac, you need to install Visual Studio for Mac, which includes
Visual Studio as well as the iOS and Android Xamarin components, the
Android SDK, and Google’s Android emulator. You also need to install Xcode
from the Mac App Store for iOS development.

 If you want to develop iOS apps using Visual Studio on Windows, you need to
have access to a Mac with Xamarin and Xcode installed.

 Always install or upgrade to the latest stable versions of all components, such as
the latest version of VS 2017, the latest VS for Mac, the latest Xcode, and the lat-
est Android SDK and tools. To install the latest Android SDK and tools, you’ll
need to use the Android SDK manager, available from Visual Studio by going to
Tools > Android > Android SDK Manager on Windows or Tools > SDK Manager
on the Mac.

This book doesn’t cover installation
The Visual Studio installers change pretty often, so it’s hard to keep up with them in
print. Although this book does outline what’s needed, it doesn’t cover installation and
configuration in detail.

At the time of writing, the Visual Studio for Mac installer gives you everything you
need on Mac, including Android SDKs and emulators. The only extra thing you need
to install is Xcode from the Mac App Store to build iOS apps.

On Windows, the Visual Studio 2017 installer installs everything, as long as you tick
the right options for cross-platform development, Android SDKs, and emulators,
which change a bit with each update. If you’re using a Windows virtual machine on
your Mac to run Visual Studio, you’ll need to enable your virtual machine to host a
nested virtual machine if you want to run the Android emulators—check the VM doc-
umentation for how to do this. If you use a PC, you’ll need an Intel CPU with virtual-
ization enabled (most modern CPUs have this). The system requirements for running
the emulators are listed at the Android Studio site (http://mng.bz/hkXV).
Licensed to Vincent VAUBAN <vvauban@gmail.com>

42 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
(continued)
If you get stuck, Xamarin has great documentation on its website (https://aka
.ms/XamDocs) covering everything you need for installation and setup. The site also
has helpful forums with a great community of users, and Xamarin’s own engineers if
you get a particularly strange problem. And obviously, there’s always Stack Overflow.

At this point I’m going to assume you already have everything you need installed. If
not, now would be a good time to do it.

 For this little test app, we’re only going to test on the Android emulator and iOS
simulator, so don’t worry if you don’t have a physical device to use. If you do have a
physical device, then put it to one side for now and just use the emulator/simulator as
there’s a bit of device setup you need to do to run and debug apps on real devices. On
Android this is simple, but on iOS it’s a bit more complicated. We’ll be discussing this
in chapter 13.

 As previously mentioned, we’ll be using the MvvmCross framework, and luckily for
us there’s an extension available for Visual Studio that allows us to create a new cross-
platform solution. This solution contains a core library and platform-specific apps for
all supported platforms (so on Visual Studio for Mac you get an iOS app and an
Android app; on Windows it’s iOS, Android, WPF, and UWP). Seeing as we’ll be
installing an extension, and the projects we create will need NuGet packages, you’ll
need internet access. This may sound obvious, but if you’re in a coffee shop, now
would be a good time to grab their WiFi password.

2.4.2 Creating the solution

Let’s look at how to install the extension and create our first solution.

CREATING THE SOLUTION USING VISUAL STUDIO FOR MAC

From Visual Studio, select Visual Studio > Extensions. This will bring up a dialog box
to allow you to add or remove extensions. From here, select the Gallery tab, ensure
the repository is set to Visual Studio Extension Repository, and look for MvvmCross
Template Pack under IDE Extensions, or by using the search (see figure 2.9). Select
this and click Install. Then click Install on the dialog box that pops up.

Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://aka.ms/XamDocs
https://aka.ms/XamDocs
https://aka.ms/XamDocs

43Getting started—creating your first solution
The MvvmCross Template
Pack is under IDE
extensions in the tree.

Enter text in here
to search the
extension gallery.

Visual Studio has multiple repositories
covering stable versions of extensions
as well as alpha and beta versions.

Click Install to install the extension. You can install extensions from files instead
of from the repository if needed.

Figure 2.9 Selecting the MvvmCross Template Pack from the Visual Studio extension manager

Once this is installed, it’s a good idea to restart Visual Studio, as the new solution type
won’t appear in the right place until you do.

 Once Visual Studio is restarted, you can start creating a new solution. You can
access the New Solution dialog box in three ways.

 From the menu by going to File > New > Solution
 Using the keyboard shortcut Shift-Command-N (++N)
 By clicking the New Project button at the bottom of the Get Started page shown

when you open Visual Studio for the first time. Whichever way you choose,
you’ll then be presented with the New Solution dialog box (figure 2.10).

Licensed to Vincent VAUBAN <vvauban@gmail.com>

44 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Select Other >.Net, then select
MvvmCross Single Page Native Application
from the MvvmCross section.

Enter the project name here.
By default, the solution is given
the same name as the project.

You can change the folder the
project is created in here.

Visual Studio will, by default, create all the files
needed to push this to a Git repository, even
creating an appropriate .gitignore file for you.

Figure 2.10 The New Solution dialog boxes showing the MvvmCross cross-platform app
solution template, and setting the project name
Licensed to Vincent VAUBAN <vvauban@gmail.com>

45Getting started—creating your first solution
From this dialog box select Other > .NET from the left-side list, and then select Mvvm-
Cross Single Page Native Application from the list in the middle. Click Next. On the
next screen enter HelloCrossPlatformWorld as the project name and click Create.

 This will create a new solution for you containing three projects: a .NET Standard
core project (HelloCrossPlatformWorld.Core), an iOS app (HelloCrossPlatform-
World.iOS), and an Android app (HelloCrossPlatformWorld.Droid), as shown in fig-
ure 2.11. Once the solution has been created, it will try to download all the NuGet
packages it needs—you’ll see the status bar at the top showing Adding Packages. This
may take a while, depending on the speed of your internet connection, and you may
be asked to agree to some license agreements as they download. You’ll need to let
them fully download before building the apps.

Figure 2.11 The three projects that
are created for you in the new solution

WHY NOT HELLOCROSSPLATFORMWORLD.ANDROID The convention for Android
apps is to use “Droid” in their names instead of Android. This is because the
project name becomes the default namespace, and if you have “<some-
thing>.Android” in your namespace, you can get a clash with the global
“Android” namespace. You end up littering your code with global::Android
.<whatever> in using directives or types, making it harder to read. Stick to
.Droid, it’s easier!

CREATING THE SOLUTION USING VISUAL STUDIO FOR WINDOWS

From Visual Studio select Tools > Extensions and Updates. Select the Online section on
the left, and use the search box to search for MvvmCross for Visual Studio (figure 2.12).
There are multiple extensions with the same and similar names, so ensure the one you
install is named “MvvmCross for Visual Studio” and is at least version 2.0. Select it and
click the Download button, and click Install in the dialog box that pops up.

 Once this is downloaded, you’ll be prompted to restart Visual Studio to install the
extension, so close Visual Studio and wait for the extension installer to finish. After this
has finished, restart Visual Studio, and you can create the new solution in two ways:

 From the File menu by selecting File > New > Project
 By clicking the New Project option from the Start section of the Start Page

that’s shown whenever you open Visual Studio

Licensed to Vincent VAUBAN <vvauban@gmail.com>

46 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Choose Online to search the extensions
available in the Visual Studio gallery.

Updates shows updates to
extensions and Visual Studio.

Type here to search
the extension gallery.

Click Download to download
and install the extension.

Installed shows you the extensions
you already have installed.

Figure 2.12 Selecting the MvvmCross for Visual Studio extension from the Visual Studio
Extension manager

From the New Project dialog box (shown in figure 2.13), select the MvvmCross section
under Visual C# on the left, choose MvvmCross Single Page Native Application from
the list in the middle, enter HelloCrossPlatformWorld as the project name, and click
OK. Windows has problems with paths longer than 256 characters, and some of the
directories that will be created when your app is built have long names, so you may
want to ensure your solution is created in a folder close to the root of a drive. If you do
it in C:\Users\<username>\Documents\visual studio 2017\Projects, your path may be
too long.

 This will create five projects for you: a .NET Standard core project, an iOS app, an
Android app, and a couple of Windows apps covering WPF and UWP. We’re only
interested in supporting iOS and Android here, so you can delete the Universal Win-
dows and WPF projects by selecting them and pressing Delete or using Remove from
the right-click context menu. This will leave you with the same three projects as on
Visual Studio for Mac: the core project, the iOS app, and the Android app, as shown
in figure 2.14.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

47Getting started—creating your first solution
You can change the
folder the project is
created in here.

Visual Studio will, by default, create
all the files needed to push this to a
Git repository, even creating an
appropriate .gitignore file for you.

Enter the project name. By
default, the solution is given
the same name as the project,
but you can change the solution
name if you want.

If you don’t want to select a template
from the tree, you can type “MvvmCross”
in here to quickly find it.

Select Templates > Visual C# > MvvmCross,
then select MvvmCross Single Page
Native Application.

Figure 2.13 The New Project dialog box, where you can create your new solution

Figure 2.14 The three projects
left in the solution after deleting
the unwanted ones

Connecting Visual Studio to a Mac for iOS development
I won’t be covering this in detail here, as this is well documented in Xamarin’s “Get-
ting Started” guide, on the developer site at http://mng.bz/KbiM, and it could
potentially change between the time of writing and when you are reading this.

Essentially, though, you need to allow remote login on a Mac that already has Xama-
rin and Xcode installed. Visual Studio then connects to this Mac to build your iOS app.
The process is pretty simple, and if you use a Mac hosted in the cloud, your provider
should be able to provide instructions about how to set it up.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

http://mng.bz/KbiM

48 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
2.4.3 What have we just created?

The MvvmCross extension has given us three projects that we care about. We have a
cross-platform core project and two app projects. These projects reference MvvmCross
NuGet packages providing the MvvmCross MVVM framework.

When you create this project, the NuGet packages may not be the latest
NuGet packages are versioned. You can install version 1.0 of a package from the
public NuGet server, and later the author could update it to version 1.1. You can then
easily update the NuGet package from inside Visual Studio.

Be wary though. Sometimes packages may not be backwards compatible. The Mvvm-
Cross extension may not always install the latest versions of the MvvmCross NuGet
packages, and if you update them, the code created by the extension will probably
still work, but there are no guarantees.

The core project is a combination of two of our layers—the cross-platform business logic
layer and the cross-platform UI logic layer. These layers don’t need to exist in separate
projects—they’re just conceptual layers. The core contains a view model for the app
plus some cross-platform application logic (we’ll discuss the application layer in the
next chapter). Figure 2.15 shows the structure of this project in the solution pad.

The core, cross-platform project

View models live in this folder.

App.cs contains cross-platform
application layer code.

Figure 2.15 The structure of the cross-platform core project

 You’ll notice here that we don’t have any models. In this simple example, the
model is just a string that’s wrapped up inside the view model (and we’ll play with
this string a bit later). This isn’t normal—in a real-world case, the view model would
need something in the model layer so that it could represent the model layer’s state
and behavior. For now though, as this is a trivial Hello World, there’s no model layer.

 The platform-specific app and view layers, as well as the binding, live inside the
two app projects—one for iOS and one for Android—as the code for these apps is
Licensed to Vincent VAUBAN <vvauban@gmail.com>

49Getting started—creating your first solution
platform-specific. The structure is shown in figure 2.16. In the upcoming chapters
we’ll go into more detail about how Android and iOS define their application layers
and their views.

Views live here in iOS and
consist of a storyboard
that defines the layout
and some code-behind.

Android defines views using two parts:
an XML layout file and some code-behind.
The XML files live here.

The code-behind for the views lives here.

Figure 2.16 The structure of the iOS and Android app projects

2.4.4 Building and running the apps

We have two apps now, so let’s run them and see what happens. Figure 2.17 shows
what you’ll see when they’re running. In both cases we have an app that has an edit-
able text box and a label. If you change the text in the text box, the label will be
updated instantly.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

50 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Figure 2.17 Our Hello Cross-Platform World apps running on both Android and iOS

When you used the MvvmCross extension to create the solution, it created these two
apps for you, both using some shared common code.

ANDROID

Let’s start by taking the Android app for a spin.

SWITCHING FROM MAC TO WINDOWS The project and solution files created by
Visual Studio for Mac are fully compatible with Visual Studio on Windows,
and vice versa. This means if you use one tool and want to change to the
other, you can. It also means you can load anyone else’s solution, regardless
of what tools were used to create it.

The first thing to do is to ensure the Android app is the startup project, so right-click
it and select Set as Startup Project. Once this is selected, you’ll see options for choos-
ing the device to run it on in the menu.

 On Visual Studio for Mac (on the left in figure 2.18), you’ll see two drop-down
menus in the top left, and from the second one you can choose the device to run on—
Licensed to Vincent VAUBAN <vvauban@gmail.com>

51Getting started—creating your first solution
an emulator or a physical device (if you have one plugged in). Visual Studio uses the
emulators from Google and installs and configures two of these by default. You should
select the Accelerated x86 emulator, as this will be faster on a Mac; ARM-based emula-
tors run about 10 times slower than the x86 version.

Figure 2.18 The Android device selection menus

 Visual Studio for Windows installs the Visual Studio Emulator for Android as part
of its installer (assuming the option was ticked when you ran the installer), and it will
configure a few of these inside Visual Studio for you to use.

 These emulators come in different hardware types and different Android OS ver-
sions. You’ll need to use an x86-based emulator (it’s much faster than the ARM ver-
sion), and all the x86 emulators are basically the same in terms of hardware, just using
a different version of the Android OS. For now, just choose the latest OS version, and
run the app either by clicking the Run button on the toolbar, or by choosing Run >
Start Debugging on Visual Studio for Mac or Debug > Start Debugging on Windows.
Sit back and relax as your app is built and the emulator is launched.

 Be aware that the first time your app builds, it will take a very long time—there are
a number of SDK files that Xamarin needs to download in order to build an Android
app, and it downloads these the first time your app is built with no feedback in the
output except that it’s building. Don’t kill the build—if you do, you may have to man-
ually clean up half-downloaded zip files. If you do get errors about corrupt zip files,
you can find information on how to fix them in Xamarin’s Android Troubleshooting
guide at http://mng.bz/MKSQ.

DON’T RUN MORE THAN ONE ANDROID EMULATOR Android emulators can be a
bit fussy sometimes, as they run inside virtual machines. If you try to run more
than one, they can freeze up and not start. If you ever get this happening—
the emulator screen stays black and nothing happens—quit it and close all
other emulators you have running, and try again.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

http://mng.bz/MKSQ

52 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
This app doesn’t do much. It just shows off the very basic features of MvvmCross. If
you change the text in the text box, the label below will update to reflect this. We’ll
dive into what’s happening a bit more later, but for now you’re over the first hurdle—
you have an app that runs. Let’s crack on with iOS.

IOS
Building and running the iOS app is very similar to Android. First, ensure the iOS app
is the startup project, just as you did for the Android app.

 Next you need to select the device to run on. This is slightly different from
Android. Android always builds the same code for emulators and physical devices, so
all you need to do is choose the device. On Visual Studio for Mac, this is the same—
from the drop-down menu choose a simulator or a physical device if one is available
(on the left in figure 2.19). From here, select the iPhone simulator of your choice,
though a recent one is always good.

Figure 2.19 The iOS device selection menus

Visual Studio for Windows is similar, though it breaks this out into two drop-down
menus—one to choose either a physical device or a simulator, and another that shows
the available devices or simulators (on the right in figure 2.19). In this case, choose
iPhoneSimulator from the first menu, and select the simulator of your choice from
the second.

 Once the appropriate simulator is selected, run the app. If you’re using Visual Stu-
dio for Mac, the simulator will run on your Mac. If you’re using Windows, the simula-
tor will either launch on your Mac, or on your Windows PC if you have the iOS
simulator for Windows installed.

 Once the simulator fires up, you’ll see the basic MvvmCross sample app. This is
identical to the Android app—edit the text and the label updates to match. Awe-
some—your Xamarin app is running on iOS without any extra work.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

53Is this really a cross-platform app?
2.5 Is this really a cross-platform app?
One of the big upsides of Xamarin is being able to write cross-platform apps—sepa-
rate apps for each platform with shared core code. The question on your lips now is
probably “is this what we’re seeing here?” The answer is yes! The iOS and Android
projects have part of the application layer (the code to actually run an application),
and the view layer (the UI is defined in platform-specific code), but the core of every-
thing is in a shared core project. This is pretty simple to prove, so let’s make a simple
code change to demonstrate it.

 In the apps you’ve run on Android and iOS, you have a text box with “Hello Mvvm-
Cross” in it, and a label that matches this text, updating whenever the text changes.
Let’s now change the initial value of this text.

 In the Core project there’s a ViewModels folder (figure 2.20), and inside this is a
view-model class called FirstViewModel (in the FirstViewModel.cs file). Look at the
hello field, and you’ll see it’s initialized to Hello MvvmCross. Update this to be Hello
Xamarin in Action as follows.

The core, cross-platform project

View models live in this folder.

FirstViewModel is the one we
want to edit.

Figure 2.20 The structure of the core project showing the location of the FirstViewModel class

Listing 2.2 Updated hello field in FirstViewModel

string hello = "Hello Xamarin in Action";

This is a one-line code change in one file in shared code. If you build and run the
Android and iOS apps now, you’ll see that both have the new text showing in the text
box and label, as in figure 2.21.

 The apps look the same and work the same. The only difference is the original
string value that’s shown on startup.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

54 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM
Figure 2.21 Both sample apps showing the new text, changed by changing only one line
of code

So how does this all work? Let’s look at this solution to see how it fits into our layers.
This app has two views, one on iOS and one on Android, a view model in shared cross-
platform code, and a string that acts as a model (figure 2.22).

 Before we can go into much more detail about what’s happening here, there’s a lot
more about MVVM we need to discuss. In the next chapter we’ll take that deeper dive
into MVVM, and once you’ve seen in more depth how MVVM works we’ll look in
more detail at the code we’ve just built.

UI layer

App
layer

UI logic
layer

iOS

Business
logic layer

View

View
model

Model

C#

C#

C#

C#

Android

C# (.NET Standard)

C# (.NET
Standard)

Binding (from framework)

App

FirstView

UILabel
UITextField

FirstView

TextView
EditText

FirstViewModel

string Hello{get;set;}

C# (.NET
Standard) "Hello Xamarin

in Action"

Figure 2.22 Our UI code is in
the platform-specific UI layer;
our core class with its string
property is in the cross-platform
business logic layer.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

55Is this really a cross-platform app?
Summary
In this chapter you learned that

 A number of design patterns have evolved over time to help in making better
UI applications. The latest incarnation of these, MVVM, is very well suited to
building Xamarin apps, as it maximizes the amount of cross-platform code in
our apps.

 A cross-platform Xamarin app is not totally cross-platform. Instead it’s an app
where all platforms are written in the same language (C#) so that you can share
a large portion of your code.

 Cross-platform code is written in .NET Standard libraries that provide access to
a subset of .NET that works on all platforms.

 The MVVM pattern consists of three layers. You can write two of these layers,
the model and the view model, once inside a .NET Standard library and share
the code between your iOS and Android apps.

You also learned how to

 Use an extension in Visual Studio to create a cross-platform Xamarin app, with
projects for iOS and Android, and a .NET Standard library core project for
shared code.

 Run these apps inside the iOS simulator and Android emulator.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

In this chapter, you’ll start to build a Flutter app with a focus on the (UI)
user interface. You’ll explore the elements that help you make your Flutter
apps beautiful including layout, themes, styling, and Flutter’s built-in
widgets.

Flutter UI: Important
widgets, theme, and layout

Licensed to Vincent VAUBAN <vvauban@gmail.com>

Chapter 4

Flutter UI: Important
widgets, theme, and layout

Chapter 4 from Flutter in Action by
Eric Windmill
Flutter is more than a framework; it’s also a complete SDK. And perhaps the most
exciting piece of this SDK to me, as a web developer, is the massive library of built-
in widgets that make building the front end of your mobile app easy.

 This chapter is all about the user interface and making an app beautiful. It
includes exploring some of the widgets built into Flutter, as well as layout, styling,
and more.

 Figure 4.1 shows the app I’ll use to explain the UI in Flutter.

This chapter covers
 Your first Flutter app

 User interface in Flutter

 Layout widgets

 Themes and styling

 Custom form elements

 builder patterns
57

Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://www.manning.com/books/flutter-in-action

58 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
Figure 4.1 Screenshots of the weather app

In this chapter, I look at these high-level categories:

 Structural widgets that outline the app.
 Theme and styling, which this app is heavy on. Here, you set the custom color

scheme and look at the MediaQuery class to help with styling.
 Next, you look in the broad category of widgets that help with layout, including

building-block widgets like Table, Stack, and BoxConstraint, as well some fan-
tastic convenience widgets like TabBar, which provides entire features for free.

 Finally, you move on to a section about layout widgets—specifically, ListView.
This widget can be scrollable and uses something called the builder pattern.

Before I get started, there are a couple of caveats and disclaimers that I’d like to men-
tion:

 There’s no way that a single book or app could (or should) cover all (or even
most) of Flutter’s built-in widgets and features. The purpose of this minibook is
learning, and although you won’t learn about every single widget, you do learn
how to find and use what you’re looking for when the time comes. Flutter’s doc-
umentation is among the best I’ve ever seen, and all the widgets’ descriptions
are robust. The Flutter team is hard at work adding more widgets and plug-ins
every day.1

 A lot of code in the app doesn’t have anything to do with Flutter. Models are
models, for example, regardless of the language and framework you’re using. I
won’t leave you wondering, though. I’ll point out where the relevant code is
when the time is right; I won’t walk through it line by line.

1 You can find all the widgets and their descriptions in the official Widget Catalog: https://flutter.dev/docs
/development/ui/widgets
Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://flutter.dev/docs/development/ui/widgets
https://flutter.dev/docs/development/ui/widgets
https://flutter.dev/docs/development/ui/widgets
https://flutter.dev/docs/development/ui/widgets

59Setting up and configuring a Flutter app
4.1 Setting up and configuring a Flutter app
In the flutter_in_action repository2 is a directory called chapter_4_5_6. This
repository is where this chapter will begin.

Listing 4.1 Weather app file structure

weather_app
├── README.md
├── lib
│ ├── blocs
│ │ └── forecast_bloc.dart
│ ├── main.dart
│ ├── models
│ │ └── // models...
│ ├── page
│ │ ├── // pages...
│ ├── styles.dart
│ ├── utils
│ │ ├── // many utils files...
│ └── widget
│ ├── // all the custom widget's for this app
├── pubspec.lock
├── pubspec.yaml There’s new Flutter-specific configuration in this yaml file.

I’ll begin in the pubspec.yaml file.

4.1.1 Configuration: pubspec and main.dart

All Dart applications require a pubspec.yaml file, which describes some configuration
for the app. Dart has a build system that builds your app, and the first thing it does when
you run your app is look for the pubspec file. When you’re building a Flutter app, some
specific configuration items need to exist in the pubspec file for the app to run:

// weather_app/pubspec.yaml
 name: weather_app
description: Chapters 4 - 6, Flutter in Action by Eric Windmill
version: 1.0.0+1

environment:
 sdk: ">=2.0.0-dev.68.0 <3.0.0"

dependencies:
 flutter:
 sdk: flutter

flutter:
 uses-material-design: true
 fonts:
 - family: Cabin

2 The repository is at https://github.com/ericwindmill/flutter_in_action_public, or you can download the
source code from Manning’s website.

This business logic component (bloc) initializes some data
for the app. All the data in this app is fake. It’s randomly
generated in the utils/generate_weater_data file.

This app uses a lot of colors. I made an AppColors class so
that referencing all the colors would be clean and easy. This class
extends Color from dart:ui, which is the class that Flutter
uses to define Color. This file is covered in this chapter.

This line is the app’s entry point.

This app is going to use material
design. This flag tells Flutter to
include the material package.

When importing a font, give it a family
name, which you’ll use to reference
the font throughout your app.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://github.com/ericwindmill/flutter_in_action_public

60 CHAPTER 4 Flutter UI: Important widgets, theme, and layout

Th
cla
 
fonts:

 - asset: assets/fonts/Cabin-Regular.otf
 - asset: assets/fonts/Cabin-Bold.otf
 // ...

Along with declaring assets and importing libraries, this information is all you need
for your Flutter pubspec file.

TIP If you’re writing an app that’s heavy on iOS-style widgets, you can include
an additional flag to import iOS icons.

Along with the pubspec file, your app must have an entry point: a file that includes a
main function. In Flutter apps, the entry point is, by convention, a file called main.dart.

 Check out weather_app/main.dart. The main() function runs the app, as in every
Dart program, but it’s also useful for setting up some configuration for the app before
the app runs.

Listing 4.2 The weather app’s main function

void main() {
 AppSettings settings = new AppSettings();

 // Don't allow landscape mode
 SystemChrome.setPreferredOrientations(
 [DeviceOrientation.portraitUp, DeviceOrientation.portraitDown])
 .then((_) => runApp(new MyApp(settings: settings)));
}

4.1.2 SystemChrome

SystemChrome is a Flutter class that exposes some easy methods to control how your
app displays on the native platform. This class is one of the only classes you’ll use to
manipulate the phone itself (unless you’re writing plug-ins, which are outside the
scope of this chapter.)

 In this app, I’m using SystemChrome.setPreferredOrientations to restrict the
app to portrait mode. This class also exposes methods that control what the phone’s
overlays look like. If you have a light-colored app, for example, you can ensure that
the time and battery icons on your phone’s status bar are dark (and vice versa):

void main() {
 AppSettings settings = new AppSettings();

 // Don't allow landscape mode
 SystemChrome.setPreferredOrientations(
 [DeviceOrientation.portraitUp, DeviceOrientation.portraitDown])
 .then((_) => runApp(MyApp(settings: settings)));
}

List all the variations of
this font you want to use.

Create an instance of AppSettings,
which is a class I made to fake persisting
user settings in the weather app.

e main function also talks to the SystemChrome
ss, which is the subject of the next section.

You must include a call to runApp
and pass it your root-level widget!

Use then(callback) to asynchronously execute code when 
a Future completes. This line is also the entry point of your 
app. Passing a widget into runApp is always the entry point.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

61Configuring structural widgets and more

);,

g.
The SystemChrome class is something you’ll set once and then forget. I’m showing it to
you up front so that you’re aware of it, but there’s no need to spend too much time on
it. If you’re curious, you can find more on it here: https://api.flutter.dev/flutter/ser-
vices/SystemChrome-class.html.

 Before moving on, I need to address the then function used in that code.

EXAMPLE 1. JUST IN TIME: DART FUTURES

You won’t get far into Dart without seeing some async methods here and there.
A Future is the foundational class of all async programming in Dart.

 Futures are a lot like receipts at a burger quick-serve restaurant. You, the burger
orderer, tell the employee that you want a burger. The server at the restaurant says,
“Okay, here’s a receipt. This receipt guarantees that sometime in the future, I will give
you a burger as soon as it’s ready.”

 So you, the caller, wait until the employee calls your number and then delivers on
the guarantee of a burger. The receipt is the Future. It’s a guarantee that a value will
exists but isn’t quite ready.

 Futures are then-able, so when you call a Future, you can always say myFuture-
Method().then((returnValue) ⇒ … do some code …);

 Future.then takes a callback, which is executed when the Future value resolves.
In the burger restaurant, the callback is what you decide to do with the burger when
you get it (such as eat it). The value passed into the callback is the return value of the
original Future:

Future<Burger> orderBurgerFromServer() async {
 var burger = await prepareBurger();
 return burger;
 }

orderBurgerFromServer().then((Burger burger) => eatBurger(burger));

The callback, (Burger burger) ? eatBurger(burger
will be passed the return value of orderBurgerFromServer
without the Future when the Future has finished processin

The orderBurgerFromServer method returns the type of Future, with the subtype of
Burger (which, in a program, looks like Future<Burger>). So orderBurgerFrom-
Server processes and then the callback is called, with the return value passed as an
argument.

 Asynchronous programming is a big topic; this excerpt is meant to be an introduc-
tion. Don’t get too bogged down here.

 That’s it for app configuration. I’ll be talking about widgets for the rest of the
chapter, starting with the top-level widget: MyApp in the weather_app/main.dart file.

4.2 Configuring structural widgets and more
You’ll likely use a few convenience widgets in every Flutter app you ever build. These
widgets provide configuration and structure to your app with little work on your part.
In this section, I explain the MaterialApp, Scaffold, AppBar, and Theme widgets.

prepareBurger is likely going to take
time (for the burger to cook). When it’s
done being prepared, return it.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://api.flutter.dev/flutter/services/SystemChrome-class.html
https://api.flutter.dev/flutter/services/SystemChrome-class.html

62 CHAPTER 4 Flutter UI: Important widgets, theme, and layout

T
p
y

M
w
e

4.2.1 MaterialApp widget

The MaterialApp widget provides a ton of benefits that affect its entire subtree. This
section is the beginning of many widgets that provide helpful functionality for free.

 MaterialApp is an extension of the generic top-level widget provided by Flutter:
WidgetsApp. WidgetsApp is a convenience widget that abstracts away several features
that are required for most mobile apps, such as setting up a navigator and using an
appwide theme. The WidgetsApp is completely customizable and makes no assump-
tions about default configuration, style, or structure of the app’s UI. Although the wid-
get abstracts away some difficult pieces of functionality in your app, it requires more
work to set up than the MaterialApp or CupertinoApp. I won’t discuss the WidgetsApp
here because it’s a base class for the other two and not intended to be used directly.

 MaterialApp is even more convenient than WidgetsApp, adding Material design-
specific functionality and styling options to your app. It doesn’t only help set up the
Navigator, but also does that for you. If you use the MaterialApp widget, you don’t
have to worry about implementing the animations that happen when a user navigates
between pages. This widget takes care of that for you. It also allows you to use widgets
that are specifically in the Material widgets collection, and there are plenty of those.

 The app is called a Material app because it leans on Material style guidelines.
Page animations from one route to another, for example, are designed as you'd
expect on an Android device, and all the widgets in the Material widget library have
the standard Google look and feel. These facts can be concerns if you have a specific
design system that isn't similar to Material. But I don't see a drawback to using Mate-
rialApp even if you don't want to use Material design guidelines. Your theme is still
fully customizable. (In fact, in this app, you’ll build an app that doesn't look Material
at all.) You can overwrite routing animations, and you don’t have to use the widgets in
the Material library. The MaterialApp widget provides quite a bit of convenience,
but everything is reversible.

 In the weather app, the MaterialApp widget is used in the build method of the
MyApp widget—the convention used in every Flutter app. This is the code in the main
file in the app, showing the main function again as well as the root widget:

Listing 4.3 The top-level widget in main.dart

// weather_app/main.dart
void main() { (1)
 AppSettings settings = new AppSettings();

 // Don't allow landscape mode
 SystemChrome.setPreferredOrientations(
 [DeviceOrientation.portraitUp, DeviceOrientation.portraitDown])
 .then((_) => runApp(MyApp(settings: settings)));
}

class MyApp extends StatelessWidget {
 final AppSettings settings;

he entry
oint of
our app.

runApp is being
passed MyApp, the root
of your Flutter app.

yApp is a
idget, like
verything else.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

63Configuring structural widgets and more

Retu
Mat

One
of yo
Mat
take
you
The
shor
 const MyApp({Key key, this.settings}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 // ...
 return MaterialApp((4)
 title: 'Weather App',
 debugShowCheckedModeBanner: false,
 theme: theme,
 home: PageContainer(settings: settings),
);
 }
}

Again, this is standard in Flutter apps. Your top-level widget is one that you write your-
self—in this case, MyApp. That widget turns around and uses MaterialApp in i\s build
method, providing a widget in your app in which you can do additional setup.

 Looking at that build method again, the following arguments are being passed to
MaterialApp.

Listing 4.4 The build method of the MyApp widget

//
@override
 Widget build(BuildContext context) {
 // ...
 return MaterialApp((1)
 title: 'Weather App',
 debugShowCheckedModeBanner: false,
 theme: theme, (3)
 home: PageContainer(settings: settings),
);
 }

4.2.2 Scaffold

Like the MaterialApp widget, a Scaffold is a convenience widget that’s designed to
make applications that follow Material guidelines as easy as possible to build. The
MaterialApp widget provides configuration and functionality to your app. Scaffold is
the widget that gives your app structure. You can think of the MaterialApp widget as
being the plumbing and electricity of your app, whereas Scaffold is the foundation
and beams that give your app structure.

 Like the MaterialApp, a Scaffold provides functionality that you’d otherwise have
to write yourself. Again, even if you have a highly customized design style that’s not
Material at all, you’ll want to use Scaffold.

 Per the Flutter docs, a Scaffold defines the basic Material design visual layout,
which means that it can make your app look like figure 4.2 pretty easily.

 Scaffold provides functionality for adding a drawer (an element that animates in
from one of the sides and is commonly used for menus) and a bottom sheet, which is

The build method of MyApp returns
a MaterialApp as the top-level app.

rn a
erialApp.

This flag removes a banner that is shown when
you’re developing your app and running it locally.
I turned it off only so the screenshots in this book
would be cleaner.

of the aspects
ur app that
erialApp
s care of for
is the appwide
me (covered
tly).

home represents the home page of your app. It can
be a widget. PageContainer is a widget written
for the weather app that will be covered later.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

64 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
Figure 4.2 Diagram of the most important Scaffold widget properties

an element that animates into view from the bottom of the screen and is common in
iOS-style apps. And unless you configure it otherwise, the AppBar in a Scaffold is auto-
matically set up to display a menu button in the top-left corner of your app, which will
open the drawer; when you aren’t on a screen that has a menu, it changes that menu but-
ton to a back button. Those buttons are already wired up and work as expected on tap.

 It’s important to know, though, that you can choose the features you want and the
ones you don’t. If your app doesn’t have a drawer-style menu, you can simply not pass
it a drawer, and those automatic menu buttons disappear.

 The Scaffold widget provides many optional features, all of which you configure
from the constructor. Here’s the constructor method for the Scaffold class:

Listing 4.5 Scaffold full property list

// From Flutter source code. Scaffold constructor.
const Scaffold({
 Key key,
 this.appBar,
 this.body,
 this.floatingActionButton,
 this.floatingActionButtonLocation,
 this.floatingActionButtonAnimator,
 this.persistentFooterButtons,
 this.drawer,
 this.endDrawer,
 this.bottomNavigationBar,
 this.bottomSheet,
 this.backgroundColor,
 this.resizeToAvoidBottomPadding = true,
 this.primary = true,
 }) : assert(primary != null), super(key: key);
Licensed to Vincent VAUBAN <vvauban@gmail.com>

65Configuring structural widgets and more
I wanted to show this code so you can see that none of these properties is marked as
@required. You can use an AppBar, but you don’t have to. The same is true of drawers,
navigation bars, and so on. For this app, I used only the AppBar. The point is (again)
that even if you’re building an app that you don’t want to look Material, the Scaf-
fold widget is valuable, and I recommend using it.

 In the weather app, you can see the Scaffold in the ForecastPage widget.3 The
part I want to point out right now is at the bottom of the file: the return statement of
the ForecastPageState.build method. I only want to show you that the Scaffold is a
widget, and like many widgets, most of its arguments are optional, making it highly
customizable.

// weather_app/lib/page/forecast_page.dart
 return Scaffold(
 appBar: // ... preferred sized widget
 body: // ... gesture detector

body is the argument on the Scaffold that represents the the main portion of the
screen. If there’s no appBar, the body is the entire screen for all intents and purposes.

Recall the Scaffold constructor method that I showed earlier, which had more than
ten named arguments. Here, I’m using only two. The point is that these widgets give
you a lot but are highly customizable. In the next section, I give concrete examples of
how the Scaffold is used in the weather app.

4.2.3 AppBar widget

The AppBar widget is yet another convenience widget that gives you all kinds of fea-
tures for free. The AppBar is typically used in the Scaffold.appBar property, which
fixes it to the top of the screen at a certain height.

 The most notable feature of the AppBar provides navigation features for free. The
AppBar automatically inserts a menu button if the AppBar’s parent is a Scaffold and
the drawer argument isn’t null. And if the Navigator of your app detects that you’re
on a page that can navigate back (like a browser’s back button), it automatically
inserts a back button.

 In the AppBar widget, multiple parameters expect widgets as arguments. These
arguments correspond to specific positions within the AppBar (figure 4.3).

Figure 4.3 Most important properties of the AppBar widget

3 The ForecastPage is in the directory at weather_app/lib/page/forecast_page.dart.

You can pass a widget to the appBar
argument, and that widget is placed
at the top of the screen of your app.
(AppBar and PreferredSize are
covered in the next section.)
Licensed to Vincent VAUBAN <vvauban@gmail.com>

66 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
The property that handles these menu buttons and back buttons is called the leading
action; it can be configured with the AppBar.leading property and the AppBar.auto-
maticallyImplyLeading property. Suppose that you don’t want that menu button to
appear. You can set AppBar.automaticallyImplyLeading to false and then pass the
leading argument to whatever widget you want. This argument attempts to place that
widget on the far-left side of the AppBar (figure 4.4).

Figure 4.4 Most important properties of the AppBar widget

4.2.4 Preferred Size widget

In Flutter, widgets’ sizes are generally constrained by the parent. When a widget knows
its constraints, it chooses its own final size. The importance of this concept can’t be
understated when it comes to UI. The constraints passed to a widget by its parent tell the
widget how big it can be, but isn’t concerned with the widget’s final size. The advantage
of this system (as opposed to HTML, for example, in which elements control their own
constraints), is flexibility. It allows Flutter to make intelligent decisions about what wid-
gets should look like and removes some of that burden from the developer.

 There are some cases in which flexibility isn’t desirable, though. You may want to
set explicit sizes for widget. A good example is the AppBar.

 The AppBar class extends a widget called PreferredSizeWidget. This widget allows
you to define an explicit height and width, and Flutter does its best to make sure it’s
that size when the screen renders. This widget isn’t commonly used, but it serves as an
example for a valuable lesson.

 The Scaffold.appBar property expects a widget that’s specifically of the Pre-
ferredSizeWidget class because it wants to know the size of the AppBar before it sets
constraints.

 In this app, I use a PreferredSize widget directly rather than using an AppBar in
the Scaffold.appBar argument. The practical application of this approach is that you
can wrap any widget in a PreferredSize and use it in place of the Material-specific
AppBar widget. The lesson, again, is that Flutter widgets are fleshed out by default but
are also customizable.

Listing 4.6 Using PreferredSize in a Scaffold

// weather_app/lib/page/forecast_page.dart -- line ~217
return Scaffold(
 appBar: PreferredSize(

Use the PreferredSize widget to use any arbitrary widget in the Scaffold.appBar
property. This approach works because the AppBar widget extends PreferredSize, and
the Scaffold.appBar expects a PreferredSize rather than an AppBar specifically.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

67Styling in Flutter and Theme
 preferredSize: Size.fromHeight(ui.appBarHeight(context)),
 child: ...
),
),

Now that I’ve talked about PreferredSize at a high-level, I’ll use the weather app for
a concrete example. The point of using a PreferredSize for the app is that the built-
in AppBar widget doesn’t provide a way to animate its colors by default. If you’ve
poked around the app, you may notice that the colors change as the time of day
changes, which required a custom widget called TransitionAppBar. I’ve wrapped it in
a PreferredSize so that the Scaffold accepts it in the appBar argument.

Named imports in Dart

4.3 Styling in Flutter and Theme
Styling your app in Flutter can be simpler than you’d expect. If you’re diligent about
setting up a Theme when you start your Flutter app, you shouldn’t have to do much
work to keep the app looking consistent. The Theme widget allows you to set many
default styles in your app, such as colors, font styles, and button styles. In this section,
you look at how to use the Theme.

 Along with Themes, I talk about other important pieces of styling in Flutter: Media-
Query, fonts, animations, and Flutter’s Color class.

4.3.1 Theme widget

The Theme widget allows you to declare styles that in some instances will be applied
throughout your app automatically. In instances in which your styles aren’t applied or
need to be overridden, the Theme widget is accessible anywhere in your widget tree.

 To give you an idea of the many color-related styles that your Theme can control,
here are some (but not all) properties you can set on the widget that will permeate
throughout the app.

 Properties that affect all the widgets in your app:

 brightness (which sets a dark or light theme)
 primary Swatch
 primary Color
 accent Color

You may have noticed in previous examples that I’m calling ui.appBarHeight, but
ui doesn’t seem to be a class. ui refers to the utils file with this name: import
'package:weather_app/utils/flutter_ui_utils.dart' as ui;

This name requires you to prefix any class, method, or variable in that library with ui.

PreferredSize needs two bits of information as
arguments. The first is its preferredSize, which takes
a Size class. The Size class defines a height and width.

The second
required
argument is
its child.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

68 CHAPTER 4 Flutter UI: Important widgets, theme, and layout

This
you
to u
that
it ab
pub
file.
These are some properties that control specific features:

 canvas Color
 scaffoldBackgroundColor
 dividerColor
 cardColor
 buttonColor
 errorColor

That’s only 6 of about 20 that are available, for colors. But there are almost 20 more
arguments you can pass to Theme that set defaults for fonts, page animations, icon styles,
and more. Some of those arguments expect classes themselves, which have their own
properties, offering even more customizations for your app. The point is, the Theme wid-
get is robust and can do a lot of the heavy lifting for you when it comes to styling.

 Although this level of theming is nice, it can be overwhelming to think about every
last one of those properties. Flutter thought about them, though. If you’re using the
MaterialApp widget at the root of your app, every property has a default value, and you
can elect to override only the properties that you care about. Theme.primaryColor, for
example, affects almost all widgets in your app. It changes the color of all widgets to
your brand’s color. In the app I’m building at my current job, we have an app that looks
completely on brand (and not material), and we set only properties on our theme.

 In other words, you can be as granular or hands-off as you’d like to be. I’ve said it
many times, but one of the aspects of Flutter that you should take advantage of is the
fact that it does so much for you until you decide that you need more control.

 Next, you look at how you can implement a Theme in your Flutter app.

4.3.2 Using Themes in your app

The class you use to configure your Theme is called ThemeData, and to add a Theme to
your app, you’d pass a ThemeData object to the MaterialApp.theme property of your
app. You can also create your own Theme widget and pass it a ThemeData object. Theme
is a widget, so you can use it anywhere you can use any widget! The theme properties
that any given widget uses are inherited from the closest Theme widget up the tree. In
practice, you can create multiple Theme widgets throughout your app, and these wid-
gets will override the top-level theme for everything in that subtree.

 Here’s an example of using ThemeData in real life.

Listing 4.7 ThemeData in the weather app

// weather_app/lib/main.dart
var theme = ThemeData(
 fontFamily: "Cabin",
 primary Color: AppColor.midnightSky,
 accent Color: AppColor.midnightCloud,
 primaryTextTheme: Theme.of(context).textTheme.apply(
 bodyColor: AppColor.textColorDark,
 displayColor: AppColor.textColorDark,
),

 is how 
tell Flutter
se the font
 you’ve told
out in the

spec.yaml

AppColor is a class I created because
this app will use almost all custom colors.
You can find the class in styles.dart.

apply is a method on theme classes
that copies the current theme but
changes the properties you’ve passed it.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

69Styling in Flutter and Theme
 textTheme: Theme.of(context).textTheme.apply(
 bodyColor: AppColor.textColorDark,
 displayColor: AppColor.textColorDark,
),
);

The other case in which you’d want to use the ThemeData is when you want to set a
style property explicitly. You may want set a container’s background to be the accent
Color of the Theme, for example. Anywhere in your app, you can grab that Theme data
thanks to BuildContext.

 BuildContext provides information about a widget’s place in the widget tree,
including information about certain widgets that are higher in the tree, such as Theme.
If you want to know the accent Color of the theme for any given widget, you can say
“Hey, BuildContext, what’s the accent color assigned to the ThemeData that’s closest
up the tree from this widget?” In the next section, I explain that sentence further and
make it less abstract.

4.3.3 MediaQuery and the of method

If you came from the web like me, you may find writing styles in Flutter to be cumber-
some at first, particularly spacing and layout. On the web, you use CSS, and CSS has
many units of measurement that you can use anywhere sizing comes into play. CSS has
standard pixels, units of measurement based on the percentage of space the element
can take up, and units of measurement based on the size of the viewport.

 Flutter has only one unit measurement: the logical pixel. The consequence is that
most of the layout and sizing problems can be solved with math. Much of the math
you’ll want to do is based on screen size. Suppose that you want a widget to be one-third
the width of the screen. Because Flutter has no percentage unit of measurement, you
have to grab the screen size programmatically by using the MediaQuery widget.

 MediaQuery is similar to Theme in that you can use the BuildContext to access it
anywhere in the app via a method of the MediaQuery class called of. The of method
looks up the tree, finds the nearest MediaQuery class, and gives you a reference to that
MediaQuery instance anywhere in your app. A few widgets built into Flutter provide an
of method.

NOTE You can create widgets that have their own of method, and you can
access the state of those widgets anywhere in the tree. For now, all that mat-
ters is that certain built-in widgets can be accessed anywhere in your app.

As mentioned, the MediaQuery class is great for getting size information about the
entire screen on which your app is rendered. You access that information by calling
the static method MediaQuery.of(context).size. This method returns a a Size
object with the device’s width and height. Let me break that down a bit more.

 Because of is a static method, you call it directly on the MediaQuery class rather than
on an instance of the class. Also, the of method can provide the MediaQuery class only if
Licensed to Vincent VAUBAN <vvauban@gmail.com>

70 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
it knows the BuildContext in which of is called. That’s why you pass it context. Finally,
size is a getter on the MediaQuery class that represents the device’s width and height.

 Look at this example of using MediaQuery. After grabbing the information, you
can use it to determine the size of a widget, based on the screen size. To get 80 per-
cent of the width of the phone, for example, you could write

var width = MediaQuery.of(context).size.width * 0.8;

Again, a widget’s build context gives Flutter a reference to that widget’s place in the
tree. The of method, which always takes a context regardless of which object it’s
defined on, says “Hey, Flutter, give me a reference to the nearest widget of this type in
the tree above myself.”

 MediaQuery is the first place you should look if you’re trying to get specific infor-
mation about the physical device your app is running on or if you want to manipulate
the device. You can use it to

 Ask whether the phone is in portrait or landscape orientation.
 Disable animations and invert colors for accessibility reasons.
 Ask the phone whether the user has the text-size factor scaled up.
 Set the padding for your entire app.

In the weather app, I use MediaQuery to ensure that widgets are scaled to the proper
sizes based on the size of the screen. The following section shows an example.

4.3.4 ScreenAwareSize method

Recall this code from the Scaffold in the ForecastPage:

Listing 4.8 Using PreferredSize in a Scaffold

// weather_app/lib/page/forecast_page.dart -- line ~217
return Scaffold(
 appBar: PreferredSize(
 preferredSize: Size.fromHeight(ui.appBarHeight(context)),
 child: ...
),
),

The method Size.fromHeight is a constructor on the Size class that creates a Size
object with the given height and an infinite width. That leaves the ui.appBarHeight
method.

NOTE ui is a package alias for a local file. It’s imported as import 'pack-
age:weather_app/utils/flutter_ui_utils.dart' as ui; at the top of the
forecast_page.dart file.

In the file at weather_app/lib/utils/flutter_ui_utils.dart, you’ll find the code
that defines the function ui.appBarHeight(context) from the preceding code snippet.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

71Styling in Flutter and Theme

ne.

ize.
Listing 4.9 Screen-aware sizing methods

// weather_app/lib/wutils/flutter_ui_utils.dart

final double kToolbarHeight = 56.0;
double appBarHeight(BuildContext context) {
 return screenAwareSize(kToolbarHeight, context);
}

const double kBaseHeight = 1200.0;
double screenAwareSize(double size, BuildContext context) {
 double drawingHeight = MediaQuery.of(context).size.height -

MediaQuery.of(context).padding.top;
 return size * drawingHeight / kBaseHeight;
}

MediaQuery.of(context).size returns a size that represents the screen size. Media-
Query.of(context).padding returns a Padding that gives padding details for the app
itself—that is, the padding between the edge of the device screen and the top-level
widget.

 The purpose of these methods is to provide accurate sizing for the PreferredSize
widget (and to see the MediaQuery class in action). These methods are mapping the
height of the appBar in the weather app to its appropriate size on any given screen. If the
“average” screen is 1200 pixels tall, and on that screen, the appBar is 56 pixels high,
these functions give you the equivalent height for the appBar on a screen of any size.

NOTE The built-in AppBar widget is smart itself, but you need a custom wid-
get because you’ll eventually add custom style and animation to it.

Again, this function is used in the ForecastPageState.Scaffold:

Listing 4.10 Using PreferredSize in a Scaffold

// weather_app/lib/page/forecast_page.dart -- line ~217
return Scaffold(
 appBar: PreferredSize(
 preferredSize: Size.fromHeight(ui.appBarHeight(context)),
 child: ...
),
),

This bit of code is going to tell the Scaffold (the preferred size’s parent) how big the
AppBar wants to be. Specifically, it tells Flutter to create a Size instance from a height
that’s appropriate for any screen.

 This example is specific, to be sure. The appBarHeight method is useful only for the
AppBar. The screenAwareSize method could be reused. In any case, the point is to
show off the MediaQuery widget, which you’ll likely use quite a bit for styling and layout.

 For now, that’s it for the MediaQuery class.

56.0 is the default heights
of toolbars in Flutter.

I’m passing context into the
method so I can use the context to
get MediaQuery information.

The bulk of the functionality is in this li
I’m using the context to get some
information about the app and screen s
Licensed to Vincent VAUBAN <vvauban@gmail.com>

72 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
4.4 Using common layout and UI widgets
This section is devoted to individual layout widgets and widgets that represent physical
UI elements. In Flutter, everything is a widget, so I’ll never stop talking about widgets,
but after this section, I talk about complex widgets that do stuff rather than show stuff.
In particular in this chapter, I cover Stack, Table, and TabBar, three built-in widgets
that make layout easier.

4.4.1 Stack widget

Stack is what it sounds like. It’s used to layer widgets or stack them. Its API can be
used to tell Flutter exactly where to position widgets relative to the stack’s border on
the screen. (If you come from the web development world, this is much like posi-
tion: fixed in CSS.) In this section, you use it to make a fancy background that
reflects the time of day and current weather via images. The color of the sun is ani-
mated to change as the time of day changes, and it also shows clouds and weather con-
ditions (figure 4.5).

Figure 4.5 The background of the weather app

The sun, the clouds and the content are different widgets stacked on top of one
another. All the children of a Stack are positioned or (by default) nonpositioned. Before
I talk about the idea of being positioned, it’s important to understand the Stack’s
default behavior. The widget treats nonpositioned children the same way that a col-
umn or row treats its children. It aligns its children widgets by their top-left corners
and lays them out one after the other next to each other. You can tell the widget which
direction to align in with the alignment property. If you set the alignment to hori-
zontal, for example, the Stack behaves like a row.

 In other words, a Stack could work exactly like a column, laying its children out
vertically unless you explicitly make a child positioned, in which case it’s removed
from the layout flow and placed where you tell it to be.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

73Using common layout and UI widgets

Th
re
su
pa
ba
 To make a widget positioned, you wrap it in a Positioned widget. The Positioned
widget has the properties top, left, right, bottom, width, and height. You don’t
have to set any of these properties, but you can set at most two horizontal properties
(left, right, and width) and two vertical properties (top, bottom, and height).
These properties tell Flutter where to paint the widget. The children are painted by
the RenderStack algorithm:

1 It lays out all its nonpositioned children in the same way that a row or column
would, which tells the stack its final size. If there are no nonpositioned chil-
dren, the stack tries to be as big as possible.

2 It lays out all its positioned children relative to the Stack’s render box, using its
properties: top, left, and so on. The positioned properties tell Flutter where to
place the Stack’s children in relation to the Stack’s parallel edge. top: 10.0,
for example, insets the positioned widget 10.0 pixels from the top edge of the
Stack’s box.

3 When everything is laid out, Flutter paints the widgets in order, with the first
child being on the bottom of the stack (figure 4.6).

In the weather app, you use a Stack in the ForecastPage. In the Scaffold.body prop-
erty, which has three children, the children are the content of the ForecastPage,
which looks like this:

Listing 4.11 Stack code in ForecastPage

Stack(
 children: <Widget>[
 SlideTransition(
 position:
 // ...
 child: Sun(...),
),
 SlideTransition(
 // ...
 child: Clouds(...),
),

Figure 4.6 An example of using Positioned

A Stack takes children,
such as a row or column.

is widget
presents the
n (or moon)
inting in the
ckground.

The position property is similar to the
Positioned.position property because
it tells the widget explicitly where to be. The
difference is that this property is animated.

The clouds are the second
child in the stack, which
overlaps the sun.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

74 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
 Column(
 children: <Widget>[
 forecastContent,
 mainContent,
 Flexible(child: timePickerRow),
]
),
],
),

For the sake of example, the app could look like this if it weren’t animated:

Listing 4.12 Example of nonanimated Stack code

Stack(
 children: <Widget>[
 Positioned(
 left: 100.0,
 top: 100.0,
 child: Sun(...),
),
 Positioned(
 left: 110.0,
 top: 110.0,
 child: Clouds(...),
),
 Column(
 children: <Widget>[
 forecastContent,
 mainContent,
 Flexible(child: timePickerRow),
]
),
],
),

Stack is your go-to widget if you want to place widgets either on top of each other, or
in an explicit way in relationship to each other.

4.4.2 Table widget

The final static multichild widget that I want to show off is the Table, which uses a
table-layout algorithm to make a table of widgets. Along with stacks, rows, and col-
umns, tables are the building blocks of layout (ignoring scrollable widgets for now).

 In the weather app, you’ll use a Table to lay out the weekly weather data on the
bottom half of the screen (figure 4.7).
Tables are more strict than other layout widgets you’ve seen because they have one pur-
pose: to display data in a readable manner. Tables line up widgets in columns and rows,
and each cell in the table has the same height as every other cell in its row and the same
width as every widget in its column. Flutter tables require explicit column widths in

This last widget represents
all the content that’s on the
topmost layer of the stack.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

75Using common layout and UI widgets

Th
for
tab

tly.
Figure 4.7 Screenshot of the Table widget in the context of the weather app

advance, and no table cell can be empty. Given these rules, you implement a table in
code similar to that of other multichild widgets. The simple version API looks like this:

Listing 4.13 The API for the Table widget

Table(
 columnWidths: Map<int, TableColumnWidth>{},
 border: Border(), (2)
 defaultColumnWidth: TableColumnWidth(),
 defaultVerticalAlignment: TableCellVerticalAlignment,
 children: List<TableRow>[]
);

4.4.3 Working with tables

These are a few things worth mentioning when working with tables:

 You don’t have to pass in columnWidths, but defaultColumnWidth can’t be null.
 defaultColumnWidth has a default argument, FlexColumnWidth(1.0), so you

don’t have to pass in anything, but it can’t be null. You can’t pass in null
explicitly: defaultColumnWidth: null would throw an error. Because it has a
default argument, however, you can ignore it if you want each column to be the
same size and you want the table to be as wide as possible.

 You define column widths by passing a map to the columnWidths. The map takes
the index of the column (starting at 0) as the key and how much space you want it
to take up as the value. I discuss TableColumnWidth later in this chapter.

 The children argument expects List<TableRow>, so you can’t pass it any wid-
get. It’s a rare occasion in Flutter when you can’t pass in any widget willy-nilly.

 Border is optional.
 TableCellVerticalAlignment works only if your row’s children are TableCells

(another widget that you see shortly).

A map of the widths for each column,
starting with the 0th row.

e border
 the entire
le.

A default column width for column
widths you don’t want to set explici

This optional argument tells
Flutter where to align the content
of the cells within the cell itself.

A list of the column rows. The table works by
establishing rows, each of which has multiple
children that represent the cells in the rows.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

76 CHAPTER 4 Flutter UI: Important widgets, theme, and layout

e
th.

r

.

Th
to
With all that in mind, if you pass in some children, all the columns have the same
width because they’re all flexed, sizing themselves in relationship to one other. The ele-
ments in a row work together to take up the full width. I’ve configured the Table wid-
get that displays in the ForecastPage to be spaced as shown in figure 4.8. (The dotted
lines are added for the example and not in the code.)

Figure 4.8 Table diagram with borders to show rows and columns

Following is the code snippet that defines the sizes of some rows. This code is import-
ant! Notice that there’s no definition for the width of column one.

Listing 4.14 Using FixedColumnWidth on rows 0,2,3

// weather_app/lib/widget/forecast_table.dart -- line ~39
Table(
 columnWidths: {
 0: FixedColumnWidth(100.0),
 2: FixedColumnWidth(20.0),
 3: FixedColumnWidth(20.0),
 },
 defaultVerticalAlignment: TableCellVerticalAlignment.middle,
 children: <TableRow>[...],
);

The remaining piece of the puzzle is a TableRow, which is a bit simpler than a normal
row. Keep in mind two important configurations:

 Every row in a table must have an equal number of children.
 You can, but don’t have to, use TableCell in the children’s subwidget trees.

The TableCell doesn’t have to be a direct child of the TableRow, either, as long
as somewhere above it in the widget tree, it has a TableRow as an ancestor.

The look I wanted required column 1 (in a 0-based column count, so it’s the second
column visually) to take up as much space as possible while the rest are fixed. Becaus
the defaultColumnWidth defaults to being flexed, you don’t need to give it a wid

To reiterate, I skipped
1 in the map, forcing the table

to be as big as possible and take
up the space that’s left over afte

distributing the fixed widths to
their columns

is constant value of TableCellVerticalAlignment tells Flutter
 lay out the content of the cells halfway between their tops and bottoms.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

77Using common layout and UI widgets

s.

t
x

.

he
 to

g is
g the

ferent
eration
.
ays is

t of

This i
you n
pertin
but it
hourl
which
displa
tempe

The c
retur
shou
into
list a
index
In this app, you’re going to use TableCell because it makes alignment super-easy.
This widget knows how to control the children’s alignment in the context of the table.

 To complete this example, look at the code for the cells themselves. This table has
four columns and seven rows. It would be cumbersome to write 28 widgets, so you’re
going generate each row. Later in this chapter, you explore what Flutter calls the
builder pattern, which is important and used commonly in Flutter apps.

4.4.4 Generating widgets from Dart’s List.generate() constructor

Everything in Flutter is Dart code. What’s more, Dart has features that make it useful
specifically as a language for creating UI. Here, I want to show you a nifty example of
how helpful it is that everything is Dart code. Rather than pass a list to the children
property of the table, you can give it a function that returns a list of widgets.

Listing 4.15 Table code from weather app

Table(
 columnWidths: {
 0: FixedColumnWidth(100.0),
 2: FixedColumnWidth(20.0),
 3: FixedColumnWidth(20.0),
 },
 defaultVerticalAlignment: TableCellVerticalAlignment.middle,
 children: List.generate(7, (int index) {
 ForecastDay day = forecast.days[index];
 Weather dailyWeather = forecast.days[index].hourlyWeather[0];
 var weatherIcon = _getWeatherIcon(dailyWeather);
 return TableRow(
 children: [
 //
],
); // TableRow
 });
); // Table

This List.generate constructor function is going to execute at build time. If the con-
cept seems confusing, it’s fine to think of the List.generate function as a loop. It’s
going to run seven times. (The index at each loop iteration is actually be 0-6, though.)
At each iteration, you have an opportunity to do some logic. You know that in each
iteration, you have access to an index, which is different in each iteration, so you can
fetch the data for this widget without knowing what that data is.

 List.generate is a Dart feature that’s not specific to Flutter, but it’s a great tool to
use when you need to build several widgets for a row, column, table, or list, each with
different data. Without using List.generate, you’d have to write more verbose code,
which would look something like this:

List.generate is a constructor for the Dart List clas
It takes int as the first argument, which is the number of
items the list will hold, and it takes a callback to generate tha
many items in the list. The callbacks receive the current inde
as an argument and are called exactly as many times as the
int that they’re passed. In this case, it’s called seven times

The data that t
table cells need
display. The
interesting thin
that you’re usin
index to get dif
data for each it
of the table row
forecast.d
a variable that
represents a lis
daily weather
descriptions.

s more data
eed. It’s not
ent to Flutter
 provides
y weather,
 is used to
y the current
rature.

This is the same idea.
_getWeatherIcon is a method
that returns the correct icon to
represent the current weather.

allback 
ns whatever
ld be inserted
the generated
t the current
.

Licensed to Vincent VAUBAN <vvauban@gmail.com>

78 CHAPTER 4 Flutter UI: Important widgets, theme, and layout

T
d
t

Listing 4.16 Verbose code without a function

Table (
 children: [
 TableRow(
 children: [
 TableCell(),
 TableCell(),
 TableCell(),
 TableCell(),
]
),
 TableRow(
 children: [
 TableCell(),
 TableCell(),
 TableCell(),
 TableCell(),
]
),
 //... etc, 5 more times,
]
)

Ack! Even with all the content of each TableCell stripped out, you can see how cum-
bersome this code is, especially because each group of rows and cells is the same as every
other one. Using a function to build the rows programmatically is nice and common in
Flutter.

WARNING The caveat is that this example works only because the array of the
data is specifically ordered. If you can’t guarantee the order of your list, and if
order matters, this solution may not be the best one.

The important point is that all this code is doing is creating a list of widgets. It’s not the
most profound discovery, but it’s an example of the advantage of writing purely Dart
code without a markup language. Flutter takes advantage of this feature quite a bit.

 The remaining code to implement creates the table rows themselves, which display
basic widgets by using TableCell, Text, Icon, and Padding. For the sake of familiariz-
ing yourself with Flutter code, here’s a snippet of the rows:

Listing 4.17 Table cell examples from the weather app

// weather_app/lib/widget/forecast_table.dart -- line ~52
children: List.generate(7, (int index) {
 ForecastDay day = forecast.days[index];
 Weather dailyWeather = forecast.days[index].hourlyWeather[0];
 var weatherIcon = _getWeatherIcon(dailyWeather);
 return TableRow(
 children: [
 TableCell(
 child: Padding(
 padding: const EdgeInsets.all(4.0),
 child: ColorTransitionText(
 text: DateUtils.weekdays[dailyWeather.dateTime.weekday],

This widget is returned once for each
iteration of List.generate.

his TableCell
isplays the day of
he week.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

79Using common layout and UI widgets

Th
ho
co
F

t

n

Thi
the

M
i

 style: textStyle,
 animation: textColorTween.animate(controller),
),
),
),
 TableCell(
 child: ColorTransitionIcon(
 icon: weatherIcon,
 animation: textColorTween.animate(controller),
 size: 16.0,
),
),
 TableCell(
 child: ColorTransitionText(
 text: _temperature(day.max).toString(),
 style: textStyle,
 animation: textColorTween.animate(controller),
),
),
 TableCell(
 child: ColorTransitionText(
 text: _temperature(day.min).toString(),
 style: textStyle,
 animation: textColorTween.animate(controller),
),
),
],
);
}),
// ...

This code is standard Flutter UI code. It’s adding four table cells to each row with stan-
dard table cells and other widgets. Outside the List.generate portion, there are no
special tricks here.

 Finally, look at the code that adds this Table widget to the tree. It’s located in the
ForecastPageState.build method.

Listing 4.18 A portion of the ForecastPageState.build method

// weather_app/lib/page/forecast_page.dart
return Scaffold(
 appBar: // ...
 body: new Stack(
 children: <Widget>[
 // ... sun and clouds positioned widgets
 Column((1)
 verticalDirection: VerticalDirection.up,
 children: <Widget>[
 forecastContent,
 mainContent,
 // Flexible(child: timePickerRow),
],
),
],
),
);

This TableCell displays the icon that
corresponds to current weather conditions.

This TableCell displays the daily high temperature.

This TableCell displays the daily low temperature.

is column
uses all the
ntent of the
orecastPage.

This reverses the direction
of the column. The first
child widget is at the
bottom of the Column
render box. In this case,
you want the content of
the column to be aligned a
the bottom of the screen
and laid out accordingly.
This nice little feature of
Flutter’s Column widget
makes it much easier to
achieve this alignment tha
by writing your own code.

s variable represents
 Table widget.

ore widgets 
n the weather app.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

80 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
Table generally isn’t much different from any other widgets, but the lessons in that
section are valuable. Soon, you’ll learn about the builder pattern, which is similar to
the List.generate method.

4.4.5 TabBar widget

Tabs are common UI element in mobile apps. The Flutter material library provides
built-in tab widgets, which make working with tabs relatively easy.

 The built-in TabBar widget displays its children in a scrollable horizontal view, and
makes them tappable. The widgets in the TabBar, when tapped, executes a callback to
which you can pass the TabBar. Tabs are most commonly used to switch between pages
or UI components without navigating, so, the callback passed to the TabBar’s children
widgets are most commonly used to swap out some widgets on the page (figure 4.9).

Figure 4.9 Diagram of tab-related widgets in Flutter

This diagram represents the basic idea of tabs. When you click an element on the tab
bar, the corresponding tab content changes. In the Flutter app, I use a tab bar to build
the row of times that can be clicked to update the temperature for that time of day.

 The TabBar widget has two important pieces, one of which is the children—the
widgets that display the time of day that the user wants to select. The other important
part is TabController, which handles the functionality.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

81Using common layout and UI widgets
4.4.6 TabController

In Flutter, many widgets that involve interaction have corresponding controllers to man-
age events. ATextEditingController is used with widgets that allow users to type input,
for example. In this case, you’re using a TabController. The controller is responsible for
notifying Flutter app when a new tab is selected so that your app can update the tab to
display the desired content. The controller is created higher in the tree than the TabBar
and passed into the TabBar widget. This architecture is required because the parent of
the TabBar is also the parent of the tab widgets. For a concrete example, the TabBar
code in the weather app is in the weather_app/lib/widget/time_picker_row.dart file.

 In that file, you’ll find the custom widget called TimePickerRow, a stateful widget
that displays the tabs and tells its parent when a tab-change event happens, by using
TabController.

Listing 4.19 TabController and TabBar widget setup

// weather_app/lib/widget/time_picker_row.dart
class TimePickerRow extends StatefulWidget {
 final List<String> tabItems;
 final ForecastController forecastController;
 final Function onTabChange;
 final int startIndex;
// ...
}

Those are the important properties passed into the widget itself, but all the function-
ality lives in the State object.

This StatefulWidget establishes some properties that are passed
into it. In this case, the widget expects a list of Strings, which are
displayed as the times of day ("12:00", "3:00", and so on).

This controller is a class that I made
to make it easier to fetch the forecast
data. It’s not important to Flutter.

This is the callback that the parent passes in,
which in this case should be used to notify
the parent when a new tab is selected.

The TabBar needs to know which
tab is selected by—in this case,
the widget that represents the
current time of day.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

82 CHAPTER 4 Flutter UI: Important widgets, theme, and layout

.

Declare
TabCo
er to
tab fun
It’s cre
the con

v
w

Listing 4.20 Flutter tabs implementation in weather app

// weather_app/lib/widget/time_picker_row.dart -- line ~30
class _TimePickerRowState extends State<TimePickerRow> with

SingleTickerProviderStateMixin {
 TabController _tabController;
 int activeTabIndex;

 @override
 void initState() {
 _tabController = TabController(
 length: utils.hours.length,
 vsync: this,
 initialIndex: widget.startIndex,
);
 _tabController.addListener(handleTabChange);
 super.initState();
 }

 void handleTabChange() {
 if (_tabController.indexIsChanging) return;
 widget.onTabChange(_tabController.index);
 setState(() {
 activeTabIndex = _tabController.index;
 });
 }

 // ...
}

JUST IN TIME: LISTENERS

Listeners aren’t specific objects or type of object, but naming conventions used for dif-
ferent asynchronous functionality.

 At many places in the Flutter library, you see the words listener, change notifier, and
stream. These words are different flavors and pieces of the same kind of programming
concept: observables. Observables are known as Streams in Dart.

 A listener is an aptly named piece of the observable ecosystem. It generally refers
to a function that’s called in response to some event that will happen at an unknown
time. The function is sitting around listening for someone to say “Okay, now’s your
time to execute.”

 The TabController’s addListener function is called whenever a user changes the
tabs, giving you a chance to update some values or state whenever a user changes tabs.
In this example, the listener knows to execute the callback provided to it whenever a
tab in the TabBar is tapped.

 Along with listener s, the TabController has getters that help you manage your
tabs and corresponding content. Inside the _handleTabChange method, you could do
something like this to make sure that your app knows which tab is active (currently
displayed onscreen):

TickerProviderStateMixin is
a mix-in that tells Flutter this widget
has some properties that will animate
TabBars have built-in animations,
so it’s needed.

 a
ntroll
handle
ctionality.
ated in
structor.

Here, the controller is created.
TabController must know
how many tabs will exist.sync has to do

ith animations.
You can add a listener to
your controller that will
execute the callback
whenever the tab changes.

This check prevents a
new event from
starting in the middle
of an animation.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

83Using common layout and UI widgets

.

 The
TabCo
which
in the
widget
constr
passed
widget
parent

.
By
ta
al
Listing 4.21 TabController index getter

int activeTab;
void _handleTabChange() {
 setState(() => this.activeTab = _tabController.index);
}

setState is also important here. In the weather app, whenever you tap a different
time of day in the tab bar, the UI rerenders with the weather conditions for that time
of day. This action is possible because setState tells Flutter to rerender and to display
the newly selected tab when it does. The TabController.index getter refers the cur-
rently active tab.

 The last note I’d like to make about the TabBar controller is that you don’t have to
change it directly. This object is used to get information about the tabs and to update
which tabs are active. You need only to interact with it, not extend it into a custom class.

4.4.7 TabBar widget in practice

Now that you’ve been exposed to the functionality of tabs and using the tab bar in
Flutter, consider an example from the weather app. Although most of the TabBar
functionality lives in the controller, developers care about the widget itself and passing
it the the arguments you pass to it. This is how the TabBar is used in the weather app.

Listing 4.22 TabBar widget in build method

// weather_app/lib/widget/time_picker_row.dart
@override
Widget build(BuildContext context) {
 return TabBar(
 labelColor: Colors.black,
 unselectedLabelColor: Colors.black38,
 unselectedLabelStyle:
 Theme.of(context).textTheme.caption.copyWith(fontSize: 10.0),
 labelStyle: Theme.of(context).textTheme.caption.copyWith(fontSize: 12.0),
 indicatorColor: Colors.transparent,
 labelPadding: EdgeInsets.symmetric(horizontal: 48.0, vertical: 8.0),
 controller: _tabController,
 tabs: widget.tabItems.map((t) => Text(t)).toList(),
 isScrollable: true,
);
}

At this point, you’ve seen all the moving parts of the TabBar. It’s a lot, but the import-
ant takeaways are this:

 Using tabs requires a TabController and children widgets. The children are
the widgets that will be displayed and are tappable.

TabController.index returns the selected tab index
This example assumes that some content relies on the
activeTab piece of State.

The TabBar widget comes with many
configuration options, which are aptly
named. Here, labelColor,
unselectedLabelColor, and every
property down to labelPadding are
configuration options that define styles.

ntroller,
was created
parent
’s
uctor, is
 into the
 from the
.

TabItems are passed in from the ForecastPage and happen to
be displaying Text. It could be any widget, though. Icons are common
This is another instance of using Dart code to programmatically create
the widgets. It iterates through every String from tabItems and
returns a Text widget for each one.

 default, 
bs aren’t scrollable. This argument
lows them to be scrollable.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

84 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
 The functionality required to switch tabs when a widget in the TabBar is tapped
is done via a callback. This callback should use the properties exposed by the
TabController to tell Flutter when to render a new tab.

This mental paradigm is common in Flutter.

4.5 Working with ListView and builder
ListView is arguably the most important widget in the book, which is apparent by the
sheer length of its documentation page on the Flutter website.4 It’s not only used fre-
quently, but also introduces some patterns and ideas that are crucial in writing an
effective Flutter app.

 The ListView widget is like a column or row in that it displays its children widgets
in a line. It’s important that it’s scrollable. This widget is commonly used in the case of
an unknown number of children. You could use ListView in a to-do app to display all
your to-dos. You could have 0 or many to-dos. ListView provides a way to say “Hey, for
each of these pieces of information, create a widget and add it to this list.”

 In the weather app (figure 4.10), a ListView widget is used in the SettingsPage
widget in lib/page/settings_page.dart. It uses (fake, generated) data to build a scrolla-
ble list that lets you select which cities the user of the weather app cares about.

Figure 4.10 Weather app settings page

According to the docs, a ListView is a “scrollable list of widgets arranged linearly.” In
human English, it’s a scrollable row or column, depending on what axis you tell it to
lay out on. The power of ListView is how flexible it is. It has a couple of constructors
that let you make choices based on the content of the list. If you have a static, small
number of items to display, you can create a ListView with the default constructor,

4 The documentation for ListView is at https://api.flutter.dev/flutter/widgets/ListView-class.html.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

https://api.flutter.dev/flutter/widgets/ListView-class.html

85Working with ListView and builder

Lis
poss
wou

A
m
m
it

ack

e
e
nd
ed

Th
co
Fl
ch

pass
e
ctive.
and it’s created with code similar to a row or column. This option is the most perfor-
mant one, but it may not be ideal if you have tens or hundreds of items to put in the
list or an unknown number of items.

 What I want to focus on here, though, is the builder pattern in Flutter. The
builder pattern is used all over Flutter; it essentially tells Flutter to create widgets as
needed. In the default ListView constructor, Flutter builds all the children at the
same time and then renders. The ListView.builder constructor takes a callback in
the itemBuilder property, and that callback returns a widget. In this case, the callback
returns a ListTile widget. This builder makes Flutter smarter about rendering items
if you have a huge (or infinite) number of list items to display in your list. Flutter ren-
ders only the items that are visible onscreen.

 Imagine a social media app like Twitter, which is an infinite list of tweets. It
wouldn’t be possible to render all the tweets in that list every time some state changes
because the number is infinite. Instead, the app renders as needed as the user scrolls
the tweets into view. This practice is common in UI, and Flutter provides ListView as
a built-in solution to this problem.

 Here’s an example in the weather app. ListView is used on the SettingsPage.

Listing 4.23 ListView builder code in SettingsPage

// weather_app/lib/page/settings_page.dart -- line ~58
Expanded((1)
 child: ListView.builder(
 shrinkWrap: true,
 itemCount: allCities.length,
 itemBuilder: (BuildContext context, int index) {
 var city = allCities[index];
 return CheckboxListTile(
 value: widget.settings.selectedCities[city],
 title: Text(city),
 onChanged: (bool b) => _handleCityActiveChange(b, city),
);
 }),
)

ListView probably seems to be more complicated than many of the other widgets dis-
cussed in this chapter. The important piece of this example is builder. The ListView
builder is a simple way to create a scrolling list with potentially infinite items. That’s
often what the builder pattern is used for in Flutter: to create widgets that display
unknown data.

tView expands on its main axis to be as big as
ible. Because it’s the child of a column in this app, it
ld expand infinitely if Expanded didn’t constrain it.

shrinkWrap is another way
to protect against infinite size.
It tells ListView to try to
be the size of its children.

builder 
ust know how
any total items
 will create.

This itemBuilder
property takes a callb
that will be passed a
build context and the
index of the item in th
list. This function is th
builder function, a
functions like it are us
frequently in Flutter.

e CheckboxListTile is a
nvenience widget built into
utter that displays a check box as
ildren in ListView widgets.

The onChanged argument is used to control the check box. The function you
it is called whenever the item is checked. The _handleCityActiveChang
method is a method I wrote to make sure that the app knows which cities are a
Licensed to Vincent VAUBAN <vvauban@gmail.com>

86 CHAPTER 4 Flutter UI: Important widgets, theme, and layout
 It’s worth noting that ListView has a couple of other constructors:

 ListView.separated is similar to ListView.builder but takes two builder
methods: one to create the list items and a second to create a separator that will
be placed between list items.

 ListView.custom is the last constructor. As the name suggests, it allows you to
create a ListView with custom children. This isn’t quite as simple as updating
the builder. Suppose that you have a ListView in which some list items should
be a certain widget, and other list items are an entirely different widget. This sit-
uation is where the custom ListView comes into play, because it gives you fine-
grained control of all aspects of how the ListView renders its children.

Sincerely, ListView is one of the widgets that beautifully represents Flutter as a whole.
It’s clean, functional, but highly useful. The API is simple enough but doesn’t pigeon-
hole you into a certain paradigm.

Summary
 Flutter includes a ton of convenience structural widgets, such as MaterialApp,

Scaffold, and AppBar. These widgets give you an incredible amount for free:
navigation, menu drawers, theming, and more.

 Use the SystemChrome class to manipulate features of the device itself, such as
forcing the app to be in landscape or portrait mode.

 Use MediaQuery to get information about the screen size. This widget is useful if
you want to size widgets in a way that ensures that they scale by screen size.

 Use Theme to set style properties that affect nearly every widget in your app.
 Use the Stack widget to overlap widgets anywhere on the screen.
 Use the Table widget to lay out widgets in a table.
 ListView and its builder constructor give you a fast, performant way to create

lists with infinite items.
Licensed to Vincent VAUBAN <vvauban@gmail.com>

 index

A

Android operating system
building apps on 50–52
running apps on 50–52

app layer 36
app structure, Scaffold widget and 63
AppBar widget 86

properties of 65
AppBar.automaticallyImplyLeading property 66
AppBar.leading property 66
appKey argument 4
AppRegistry method 4
apps

building and running 49–52
on Android 50–52
on iOS 52

asynchronous programming 61

B

backgroundColor property 16
binding layer 34, 36
BoxConstraint widget 58
build method, MaterialApp and 62–63
BuildContext, adding Themes in Flutter apps 69
builder constructor 86
builder pattern 58, 85
business logic layer 33, 37
Button component 17

C

children argument, working with tables and 75
class libraries, .NET Standard 38–40

code
cross-platform 37–40

.NET Standard class libraries 38–40
column widths, defining, working with tables

and 75
components

designing apps using 3
console.log() function 8
cross-platform apps

creating using MVVM 33–37, 53–54
creating solutions 40–52
cross-platform code 37–40
UI design patterns 32–33

D

Dart
applications and pubspec.yaml file 59
Future class 61
List.generate() constructor and generating

widgets 77–80
main.dart as an entry point 60
named imports in 67

Debug JS Remotely option 10
defaultColumnWidth, working with tables

and 75
deleteTodo function 20
design patterns, UI 32–33
designing apps 3
Dev Settings option 11
developer menu

opening 9–10
overview of 10
87

Licensed to Vincent VAUBAN <vvauban@gmail.com>

88 INDEX
E

emulators 10
Enable Hot Reloading option 11
Enable Live Reload option 11
entry point 60

F

FirstViewModel class 53
flexed columns 76
Flutter

and constraints of widgets’ sizes 66
and diagram of tab-related widgets in 80
as a complete SDK 57
built-in widgets 57
Dart code 77
importing iOS icons 60
logical pixel 69
main.dart 60
of method 70
specific configuration items 59
styling in 67
SystemChrome and 60–61
TextEditingController 81
weather app example 57–86

background of 72
file structure 59
main function 60
table code from 77

flutter_in_action repository 59
ForecastPage widget, weather app example 65
Future, and asynchronous programming in

Dart 61

G

getVisibleTodos function 27

H

hot reloading 11

I

Input component 12
inputChange function 8, 13
inputValue property 5, 13
iOS operating system, building and running apps

on 52

K

keyboardShouldPersistTaps prop 5

L

laying out apps 3
leading action, AppBar widget property 66
List.generate() constructor 77–80
listeners 82
ListView widget 58, 84–86

builder pattern 85
described 84
flexibility 84
frequent use of 84
Twitter 85

M

main function 60
MaterialApp widget 86

helpful functionality and 62
Material widget library 62
WidgetsApp and 62

MediaQuery class 58
MediaQuery widget 86

of method 69
MediaQuery.of(context).size, static method 69
mobile platforms 41–42
MVVM (model-view-view model) design pattern

creating cross-platform apps 53–54
creating solutions 40–52
cross-platform code 37–40
UI design patterns 32–33

overview of 33–37

N

Name property 35
.NET Standard specification

class libraries 38–40
New Solution dialog box 44
Number property 36

O

onPress method 24

P

PCLs (portable class libraries) 38
placeholderTextColor 8
Licensed to Vincent VAUBAN <vvauban@gmail.com>

89INDEX
Positioned widget 73
PreferredSize widget, and providing accurate

sizing for 71
profiles 38
pubspec.yaml file, Dart applications and 59

R

React Native apps
creating 2–3, 9
designing 3

react-native run-android 7
react-native run-ios 7
Reload option 10

S

Scaffold widget 86
and app structure 63
and providing functionality 63
bottom sheet 63
constructor method and configuring optional

features 64
drawer 63
optional features 64
properties of 64

Scaffold.appBar property 66
screen-aware sizing methods 70–71
ScrollView component 5
selectionColor 8
setType function 25, 27
Show Perf Monitor option 11
simulators 9
Stack widget 58, 72–74, 86

default behavior 72
nonpositioned children 72

Start Systrace option 11
State object 81
styles, color-related, controlled by Theme widget 67
styles.border 26
styles.selected 26
submitTodo function 15, 17, 20
SystemChrome 60–61
SystemChrome class 86
SystemChrome.setPreferredOrientations 60
Systrace 11

T

TabBar component 25
TabBar widget 58

in practice 83–84

scrollable horizontal view of its schildren 80
TabController 81–83

TabBarItem component 25
TabController 81–83

getters 82
listeners 82
setState 83

table row, equal number of children and 76
Table widget 58, 79, 86

displaying data in a readable manner 74
table-layout algorithm 74

TableCell
in children’s subwidget trees 76
working with tables and 77

tables, working with 75–77
Text property 34
TextInput component 5, 8, 13
Theme widget 86

accessibility 67
and applying styles automatically 67
arguments and 68
BuildContext and 69
implementing in Flutter apps 68
multiple Themes 68

Theme.primaryColor, and changing the color of
all widgets 68

ThemeData class 68
then function 61
this.submitTodo 17
TimePickerRow widget 81
todo app, creating 2

design 3
developer menu, opening 9

Todo component 18, 20, 23
TodoButton component 23
todoIndex function 15
TodoList component 18, 20, 27
TodoMVC site 3
todos variable 28
Toggle Inspector option 11
toggleComplete function 20, 25
TouchableHighlight component 16, 26
Twitter, as infinite list of tweets 85

U

UI (user interface)
designing, design patterns 32–33

UI layer 33, 36
UI logic layer 37
underlayColor property 16
Licensed to Vincent VAUBAN <vvauban@gmail.com>

90 INDEX
V

versioned packages 48
Visual Studio

for Mac, creating solutions with 42–45
for Windows, creating solutions with 45–47

W

widgets
and of method 69
AppBar 65
building-block widgets 58
built-in, Flutter and 57
configuring structural 61–67
constraints and final size 66

convenience widgets 58
iOS-style 60
layout widgets 58
ListView 84–86
making a widget positioned 73
MaterialApp 62–63
MediaQuery 69–70
PageContainer 63
PreferredSize 66–67
Scaffold 63–65
Stack widget 72–74
structural 58
TabBar 80–84
Table widget 74
Theme 67–69
WidgetsApp 62
Licensed to Vincent VAUBAN <vvauban@gmail.com>

	contents
	introduction
	Building Your First React Native App
	Building your first React Native app
	3.1 Laying out the todo app
	Figure 3.1 Todo app design

	3.2 Coding the todo app
	Figure 3.3 Initializing a new React Native app
	Figure 3.4 Running the app

	3.3 Opening the developer menu
	3.3.1 Opening the developer menu in the iOS simulator
	Figure 3.5 Manually opening the developer menu (iOS simulator)

	3.3.2 Opening the developer menu in the Android emulator
	Figure 3.7 Manually opening the hardware menu (Android emulator)

	3.3.3 Using the developer menu
	Figure 3.9 Debugging in Chrome
	Figure 3.10 Using the inspector (left: iOS, right: Android)
	Figure 3.11 Perf Monitor (left: iOS, right: Android)
	Figure 3.12 Dev Settings (Android emulator)

	3.4 Continuing building the todo app
	Figure 3.13 Updated view after adding the TextInput
	Figure 3.14 Logging out the TextInput value with the inputChange method
	Figure 3.15 Updated app with the Button component
	Figure 3.16 Logging the state
	Figure 3.17 Updated app with the TodoList component
	Figure 3.18 App with TodoButtons displayed
	Figure 3.19 Final todo app

	Summary

	Hello MVVM—creating a simple cross-platform app using MVVM
	Hello MVVM—creating a simple cross-platform app using MVVM
	2.1 What are UI design patterns?
	2.2 MVVM—the design pattern for Xamarin apps
	Figure 2.4 MVVM has a model, a view model, a view, and a binding layer that keeps the view and view model in sync and connects events on the view to the view model.
	Figure 2.5 Binding keeps the value on the view in sync with the value in the view model.

	2.3 What is cross-platform code?
	2.3.1 .NET Standard class libraries
	Figure 2.8 A typical cross-platform app would contain a .NET Standard library with the core code, an Android app with Android-specific code, and an iOS app with iOS-specific code

	2.4 Getting started—creating your first solution
	2.4.1 Requirements—what hardware or software do you need for each mobile platform?
	2.4.2 Creating the solution
	Creating the solution using Visual Studio for Mac
	Figure 2.9 Selecting the MvvmCross Template Pack from the Visual Studio extension manager
	Figure 2.10 The New Solution dialog boxes showing the MvvmCross cross-platform app solution template, and setting the project name
	Figure 2.11 The three projects that are created for you in the new solution

	Creating the solution using Visual Studio for Windows
	Figure 2.12 Selecting the MvvmCross for Visual Studio extension from the Visual Studio Extension manager
	Figure 2.13 The New Project dialog box, where you can create your new solution
	Figure 2.14 The three projects left in the solution after deleting the unwanted ones

	2.4.3 What have we just created?
	Figure 2.15 The structure of the cross-platform core project
	Figure 2.16 The structure of the iOS and Android app projects

	2.4.4 Building and running the apps
	Figure 2.17 Our Hello Cross-Platform World apps running on both Android and iOS
	Android
	Figure 2.18 The Android device selection menus

	iOS
	Figure 2.19 The iOS device selection menus

	2.5 Is this really a cross-platform app?
	Figure 2.20 The structure of the core project showing the location of the FirstViewModel class
	Figure 2.21 Both sample apps showing the new text, changed by changing only one line of code
	Figure 2.22 Our UI code is in the platform-specific UI layer; our core class with its string property is in the cross-platform business logic layer.

	Summary
	Figure 2.1 A simple square-root calculator app that calculates the square root of a given number
	Figure 2.7 The cross-platform layers in a mobile app are implemented in .NET Standard libraries.
	Figure 2.2 Xamarin apps are written in C# so you can share any common business logic while having a platform-specific UI.
	Figure 2.3 To maximize code reuse, it would be good to have UI logic in shared code.
	Figure 2.6 The different layers of MVVM fit with the different layers of a Xamarin app.
	Chapter 2 from Xamarin in Action by Jim Bennett

	Flutter UI: Important widgets, theme, and layout
	Flutter UI: Important widgets, theme, and layout
	Figure 4.1 Screenshots of the weather app

	4.1 Setting up and configuring a Flutter app
	4.1.1 Configuration: pubspec and main.dart
	4.1.2 SystemChrome
	Example 1. Just In Time: Dart Futures

	4.2 Configuring structural widgets and more
	4.2.1 MaterialApp widget
	4.2.2 Scaffold
	Figure 4.2 Diagram of the most important Scaffold widget properties

	4.2.3 AppBar widget
	Figure 4.3 Most important properties of the AppBar widget
	Figure 4.4 Most important properties of the AppBar widget

	4.2.4 Preferred Size widget

	4.3 Styling in Flutter and Theme
	4.3.1 Theme widget
	4.3.2 Using Themes in your app
	4.3.3 MediaQuery and the of method
	4.3.4 ScreenAwareSize method

	4.4 Using common layout and UI widgets
	4.4.1 Stack widget
	Figure 4.5 The background of the weather app
	1 It lays out all its nonpositioned children in the same way that a row or column would, which tells the stack its final size. If there are no nonpositioned children, the stack tries to be as big as possible.
	2 It lays out all its positioned children relative to the Stack’s render box, using its properties: top, left, and so on. The positioned properties tell Flutter where to place the Stack’s children in relation to the Stack’s parallel edge. top: ...
	3 When everything is laid out, Flutter paints the widgets in order, with the first child being on the bottom of the stack (figure 4.6).
	Figure 4.6 An example of using Positioned

	4.4.2 Table widget
	Figure 4.7 Screenshot of the Table widget in the context of the weather app

	4.4.3 Working with tables
	Figure 4.8 Table diagram with borders to show rows and columns

	4.4.4 Generating widgets from Dart’s List.generate() constructor
	4.4.5 TabBar widget
	Figure 4.9 Diagram of tab-related widgets in Flutter

	4.4.6 TabController
	Just in time: Listeners

	4.4.7 TabBar widget in practice

	4.5 Working with ListView and builder
	Figure 4.10 Weather app settings page

	Summary
	Chapter 4 from Flutter in Action by Eric Windmill

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Promo
	Flutter in Action
	Xamarin in Action
	React Native in Action
	React in Action
	React in Motion

