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Abstract

An agent has access to multiple information sources, each of which provides in-

formation about a different attribute of an unknown state. Information is acquired

continuously—where the agent chooses both which sources to sample from, and also

how to allocate resources across them—until an endogenously chosen time, at which

point a decision is taken. We show that the optimal information acquisition strategy

proceeds in stages, where resource allocation is constant over a fixed set of providers

during each stage, and at each stage a new provider is added to the set. We addition-

ally apply this characterization to derive results regarding: (1) endogenous information

acquisition in a binary choice problem, and (2) equilibrium information provision by

competing news sources.

∗We are grateful to Yash Deshpande, Mira Frick, Drew Fudenberg, Boyan Jovanovic, George Mailath,

Konrad Mierendorff, Lan Min, Peter Norman Sørensen, Jakub Steiner, and Philipp Strack for helpful com-

ments and suggestions. Xiaosheng Mu acknowledges the hospitality of the Cowles Foundation at Yale

University, which hosted him during parts of this research.
†Department of Economics, University of Pennsylvania
‡Department of Economics, Columbia University
§Microsoft Research

1



1 Introduction

We study dynamic acquisition of information when a decision-maker has access to multiple

kinds of information, and limited resources with which to acquire that information. Our

decision-maker seeks to learn a Gaussian state, and we model each information source as a

Brownian motion whose drift is an unknown attribute which is correlated with the state and

with other attributes. This structure captures information acquisition in many economic

settings, including for example:

• An investor wants to learn the value of a stock portfolio, and can acquire information

about the value of each stock included in the portfolio.

• A voter wants to learn the quality of a candidate, and can acquire information about

the views of various political pundits, including those biased in favor of and against

the candidate.

• An analyst wants to forecast a macroeconomic variable such as GDP growth, and can

acquire information about recent economic activity across industries and locations.

At every instant of time, the decision-maker allocates a fixed budget of attention across the

information sources, where attention increases the amount/precision of information extracted

from the source. This information is used for a future decision taken at an endogenously

chosen stopping time.

Our model resembles, but does not fall under, the classic multi-armed bandit (MAB)

framework (Gittins, 1979; Bergemann and Välimäki, 2008). To see this, recall that in MAB,

the choice of which arm to pull plays the dual role of influencing the evolution of beliefs

and also determining flow payoffs. In our setting, information acquisition choices influence

the evolution of beliefs, whereas actions—taken separately—determine payoffs. Thus in our

paper, information acquisition decisions are driven by learning concerns exclusively, and the

exploration-exploitation trade-off central to bandit models does not appear.1

The static version of our problem, in which the decision-maker acquires information at

one instant only and takes an action immediately thereafter, is straightforward. Because

normal signals can be completely Blackwell-ordered based on their precisions (Hansen and

Torgersen, 1974), different attention allocations (i.e., different mixtures over the sources)

can be compared based on how much they reduce the variance of the payoff-relevant state.

1This feature also distinguishes our results relative to a classic literature on “learning by experimentation”

(Easley and Kiefer, 1988; Aghion et al., 1991; Keller et al., 2005).
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Moreover, because these are Blackwell comparisons, the optimal attention allocation does

not depend on the decision problem that the decision-maker faces. Our problem is also

straightforward if information is acquired over a known interval of time, as the decision-maker

should acquire information (in any order) to minimize uncertainty about the payoff-relevant

state at the known end date.

But if the decision time is not known ex-ante, then the decision-maker may have to

trade off between learning more about the state in a given period of time versus acquiring

information that will result in better decisions later on. This trade-off arises because a given

source not only provides information about the state; it also alters the information value of

the other sources due to correlation. To solve the dynamic problem, the decision-maker has

to take into account how acquisitions today change the value of information tomorrow; these

dynamic externalities can be quite complex to describe.

Our contribution is to demonstrate that the optimal dynamic acquisition strategy can

nevertheless be explicitly characterized, so long as the unknown attributes are not too

strongly correlated. Under this strategy, the decision-maker initially exclusively observes

the single most informative source, where “more informative” is evaluated with respect to

his prior belief over the unknown attribute values. At fixed times, the decision-maker begins

learning from additional sources, and divides his attention over these new sources as well

as the ones he was learning from previously. Eventually, the decision-maker acquires infor-

mation from all sources using a final and constant mixture. Similar to the solution for the

static problem, the optimal information acquisition strategy holds for all decision problems.

The main idea in the proof is the following. Consider the class of information acquisition

problems with a known (exogenously given) decision time t. Intertemporal trade-offs exist

if the optimal acquisitions for some time t are “in conflict” with those for a later time t+ ∆,

forcing the decision-maker to choose between what is best for the possible decision time t

versus what is best for t + ∆. Our key observation is that these trade-offs exist only if the

best allocation of t+ ∆ units of attention involves lower attention to some source compared

to the best allocation of t units. This would make it impossible for any sampling strategy

to simultaneously optimize for decisions at times t and t+ ∆.

If however the optimal attention allocations across different times t are non-decreasing

for each source, then between any t and t + ∆, the decision-maker can simply choose the

allocation that takes him from the optimal acquisitions for t to the optimal acquisitions

for t + ∆. Such a strategy would maximize learning about the payoff-relevant state at all

times, a property that we call “uniformly optimal.” We show that so long as the different

attributes are not too strongly correlated, a uniformly optimal strategy exists and has the

3



nested structure that we described above. See Section 5 for more detail.

Beyond the specific statements of the results, a main contribution of this paper is demon-

strating that in the present framework (i) the study of endogenous information acquisition is

quite tractable, permitting explicit and complete characterizations; and (ii) there is enough

richness in the setting to accommodate various economically interesting questions (e.g., about

comparative statics in primitives such as correlation across attributes). This makes the char-

acterizations useful for deriving new substantive results in settings motivated by particular

economic questions. We illustrate this with two applications:

The first setting that we consider is endogenous information acquisition for binary choice.

A large literature in economics and neuroscience (originating with Ratcliff and McKoon

(2008)) models a consumer’s decision process for choosing between two goods with unknown

payoffs. Although this literature has primarily focused on optimal stopping times given

exogenous information, a model in Fudenberg et al. (2018) endogenizes the information

acquisition process. They show that if payoffs are Gaussian, independent and symmetric,

then the decision-maker optimally mixes equally over the sources at every moment in time.

This model is nested in our framework as the case of two unknown attributes (the un-

known payoffs), and the decision-maker wants to learn the difference of these attributes (as

this is a sufficient statistic for which payoff is larger). A straightforward corollary of our main

result generalizes the Fudenberg et al. (2018) result to correlated payoffs, asymmetric initial

uncertainty, and asymmetric levels of source informativeness. In addition, we can use our

characterization to derive new comparative static results with respect to these primitives.

We find that an increase in initial uncertainty about either payoff results in uniformly more

attention paid to learning about that payoff at every instant, while an increase in signal

noise has an ambiguous effect (which we describe). We also consider a comparative static

in prior correlation across the payoffs, and find that an increase in the size of correlation

asymmetrically favors the source that the decision-maker attends to first. All of these are

new and empirically testable predictions.

In our next application, we consider a game between strategic information sources. Media

sources compete over readers’ attention by choosing the precision of the information they

provide. For any given precision levels, our main results tell us the optimal time path of

attention for the readers; this allows us to derive each source’s best-reply function. The key

insight is that sources face a trade-off: providing informative articles increases the immediate

competitive value of the source, but releasing information too quickly reduces the need

for readers to continue to engage with the source. We find that equilibrium level of news

informativeness is higher when the information providers are less patient and the information
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they provide are more positively correlated.

This part of our analysis contributes to a growing literature about how competition

across news sources affects the quality of news (Gentzkow and Shapiro, 2008). In particu-

lar, a large literature studies endogenous choice of media slant (Mullainathan and Shleifer,

2005; Gentzkow and Shapiro, 2006; Chan and Suen, 2008; Perego and Yuksel, 2020), and

recent models have additionally endogenized news informativeness (Galperti and Trevino,

2020; Chen and Suen, 2020). Our analysis focuses on this latter aspect of news informa-

tiveness. Different from the prior work, we consider the effect of information precision on

the time path of people’s information demand, and how these dynamic considerations affect

the informativeness of news. As far as we are aware, identification of how time preferences

interact with the informational environment is new, and our tractable characterizations for

the dynamic attention path are what allow us to study this.

1.1 Related Literature

We build on a large literature about optimal dynamic information acquisition. In contrast

to an earlier focus in the literature on the choice of signal precisions (Moscarini and Smith,

2001), our framework characterizes the choice between many kinds of information, each

providing information about a different unknown. Our model is closest in this respect to

Fudenberg et al. (2018) and Gossner et al. (2019).2 In Fudenberg et al. (2018), the agent can

learn about the (independent) values of two goods by observing the evolution of diffusion

processes, and in Gossner et al. (2019), the agent can learn about the values of each of K

goods (again, independent) by observing Bernoulli signals.3 Compared to these papers, we

study a setting where the agent dynamically learns about many correlated attributes.

There is not a large prior literature on dynamic learning in the presence of correlation.

One interesting model is that of Callander (2011), where the available signals are the real-

izations of a single Brownian motion path at different points, and the agent (or a sequence

of agents) chooses myopically. This informational setting has since been extended in several

productive ways: Garfagnini and Strulovici (2016) consider the optimal experimentation

strategy for a forward-looking agent with acquisition costs, while Bardhi (2019) studies gen-

2Che and Mierendorff (2019) and Mayskaya (2019) also consider choice from a prescribed set of information

sources, but they focus on Poisson signals that confirm either of two states.
3Gossner et al. (2019) study the consequences of attention manipulations, where the agent is forced to

attend initially to one particular attribute. This interesting question bears certain high-level resemblances

to our comparative statics in Section 6. However, we focus on consequences for the time path of attention,

instead of consequences for the final decision (which good is chosen), as Gossner et al. (2019) do.
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eral Gaussian sample paths and introduces potential conflict between an agent acquiring the

information and a principal making the decision. These informational environments differ

from ours in that agents can perfectly observe any of an infinite number of attributes, and

the correlation structure across the attributes is derived from a primitive notion of similarity

or distance.4

In the context of learning about multiple attributes, Klabjan et al. (2014) and Sanjurjo

(2017) study a search problem where each attribute value is perfectly learned upon a single

inspection. Working with general distributions, these authors show that an attribute is

“more attractive for discovery” than another attribute whenever its distribution is a mean-

preserving spread of the latter. Besides having noisy Gaussian signals, the main distinction

of our informational setting is that we allow for correlation across attributes—much of our

analysis regards what this correlation implies for the optimal strategy.

Another strand of the literature considers agents who choose from completely flexible

information structures at entropic (or more generally, “posterior-separable”) costs, such as

in Yang (2015), Steiner et al. (2017), Hébert and Woodford (2018), Morris and Strack (2019),

and Zhong (2019).5 Compared to these papers, our agent has access to a prescribed (physical)

set of signals, and acquires information under an attention capacity constraint. Thus the

different signals in our setting are equally costly to acquire regardless of the current belief,

which is the key distinction from measuring information acquisition costs by the reduction

of uncertainty.6

In previous work (Liang et al., 2017), we studied a related setting in discrete time,

introduced the notion of “myopic information acquisition” and studied its (approximate)

optimality properties.7 We did not obtain a characterization of the optimal strategy itself.

Going beyond those results, the characterizations in the present paper precisely (and more

generally) describe the optimal path of attention allocations, which are useful in applications

4We also note that our main result is unlikely to apply to their setting, since “close” attributes are very

strongly correlated, violating the condition on the prior that we require.
5It is interesting that Steiner et al. (2017) also show how the solution to their dynamic problem reduces

to a series of static optimizations, similar to our multi-stage characterization. However, their argument is

based on the additive property of entropy and differs from ours.
6Formally, we consider a sequential sampling problem in which the flow cost of acquiring information only

depends on the current time and not on the current belief.
7In the present paper as well as in Liang et al. (2017), we study the complete path of information

acquisitions, but one corollary of the main results in these papers is that information acquisitions under a

myopic procedure will be asymptotically efficient. In Liang and Mu (2020), we provide a more thorough

analysis of the conditions on the informational environment under which myopic acquisitions lead to long-run

(in)efficient learning.
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as we illustrate. The technical methods in this paper also differ from the prior work—see

Section 8 for further discussion.

Finally, this paper is related to recent work on data acquisition by firms. Azevedo et al.

(2019) study allocation of resources (i.e., test users) to learn about the quality of multiple

innovations. These authors show that the tail distribution of innovation quality crucially

affects the (static) optimal experimentation strategy. Immorlica et al. (2018) consider dy-

namic allocations of a budget of data samples for learning about an evolving state, and

demonstrate near-efficiency guarantees for certain classes of benchmark policies.

2 Model

An agent has access to K information sources, each of which is a diffusion process that

provides information about an unknown attribute θk ∈ R. The random vector (θ1, . . . , θK) is

jointly normal with a known prior mean vector and prior covariance matrix Σ. We assume

Σ has full rank, so the attributes are linearly independent.

As we describe in more detail below, the agent’s decision depends on a payoff-relevant

state ω ∈ R. We assume the state is an affine function of the attributes:

Assumption 1. ω =
∑K

i=1 αiθi + b for some weights α1, . . . , αK ∈ R and constant b ∈ R.

It is equivalent to assume that ω is jointly normally distributed together with the θi, and that

there is no residual uncertainty about ω given complete knowledge of the attribute values.8

Because any attribute value can be replaced with its negative, assuming αi ≥ 0 is without

loss. For ease of exposition, we will further assume each weight αi is strictly positive.

Intuitively, an attribute with zero payoff weight does not matter for learning about ω; we

verify this in Appendix D.6. The weights α1, . . . , αK along with the prior covariance matrix

Σ are the key primitives of our model.

Time is continuous, and the agent has a budget of attention to allocate at every instant

of time. Formally, at each t ∈ [0,∞), the agent chooses an attention vector β1(t), . . . , βK(t)

subject to the constraints βi(t) ≥ 0 (attentions are positive) and
∑

i βi(t) ≤ 1 (allocations

respect the budget constraint).9

8If ω, θ1, . . . , θK are jointly normal, then the conditional distribution of ω | θ1, ..., θK is itself a normal

distribution whose mean is a linear combination of θ1, . . . , θK and the prior mean of ω. The assumption of

no residual uncertainty means that the conditional variance is zero, returning Assumption 1.
9Recent models that feature fixed budgets of attention include Fudenberg et al. (2018) and Che and

Mierendorff (2019).
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Attention choices influence the diffusion processes X1, . . . , XK observed by the agent, in

the following way:

dX t
i = βi(t) · θi · dt+

√
βi(t) · dBti .

Above, each Bi is an independent standard Brownian motion, and the term
√
βi(t) is a stan-

dard normalizing factor to ensure constant informativeness per unit of attention devoted to

each source.10 In particular, devoting T units of time to observation of source i is equivalent

to observation of the normal signal θi + N (0, 1/T ) or T independent observations of the

standard normal signal θi +N (0, 1).11

Remark 1. As these comments suggest, there is a natural discrete-time analogue to our

continuous-time model: At each period t ∈ Z+, the agent has a unit budget of precision

to allocate across K normal signals. Choice of attention vector (β1(t), . . . , βK(t)) results in

observation of θi + N (0, 1/βi(t)) for each i = 1, . . . , K. Our results are somewhat easier

to state for the continuous-time framework, so we take this to be our main model, but as

we show in Section 8, each of our results directly implies a corresponding result for the

discrete-time framework.

Let (Ω,P, {Ft}t∈R+) describe the relevant probability space, where the information Ft
that the agent observes up to time t is the collection of paths

{
X≤ti

}K
i=1

. An information

acquisition strategy S is a map from observations
{
X≤ti

}K
i=1

into ∆({1, . . . , K}), representing

how the agent divides attention at each instant as a function of the observed diffusion

processes. In addition to allocating his attention, the agent chooses how long to acquire

information for; that is, at each instant he determines (based on the history of observations)

whether to continue sampling information at some flow cost, or to stop acquiring information

and take an action. Formally, the agent chooses a stopping time τ , which is a map from Ω

into [0,+∞] satisfying the measurability requirement {τ ≤ t} ∈ Ft for all t.

At the endogenously chosen end time τ , the agent will choose from a set of actions A and

receive the payoff u(a, ω), where u is a known payoff function that depends on the action

taken a and the payoff-relevant state ω. The agent’s posterior belief about ω at this time

determines the action that maximizes his expected flow payoff E[u(a, ω)].

10Having constant informativeness across sources implies that it is with loss to further normalize the payoff

weights αi to be equal. Indeed, our subsequent results indicate that the case of equal weights is special. For

example, with K = 2, the conclusions of Theorem 1 always hold when α1 = α2 but not in general.
11Note that this definition also treats “attention” and “time” in the same way, in the sense that devoting

1/2 attention to source i for a unit of time provides the same amount of information about θi as devoting

full attention to source i for a 1/2 unit of time.
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To summarize, the agent chooses his information acquisition strategy and stopping time

(S, τ) to maximize

max
S,τ

E
[
max
a

E[u(a, ω)|Fτ ]− c(τ)
]
,

where c(τ) is a non-negative and weakly increasing function that measures the cost of waiting

until time τ .12 Our focus throughout this paper is on the optimal information acquisition

strategy S. In general the strategies S and τ should be determined jointly, but our results

will show that in many cases the optimal S can be characterized independently from the

choice of τ .

3 Preliminaries

At every time t, the agent’s past attention allocations integrate to a cumulated attention

vector

q(t) = (q1(t) . . . , qK(t))′ ∈ RK
+

describing how much attention has been paid to each source thus far. A useful property

of Bayesian updating from Gaussian signals is that the agent’s posterior covariance matrix

about (θ1, . . . , θK) can be expressed as a function solely of q(t), and in particular does not

depend on the realizations of the diffusion processes. This posterior covariance matrix is

(Σ−1 + diag(q(t)))−1, (1)

where Σ is the prior covariance matrix over the attribute values, and diag(q(t)) is the diagonal

matrix with entries q1(t), . . . , qK(t). The above formula says that the posterior precision

matrix (i.e., inverse of the posterior covariance matrix) is the sum of the prior precision

matrix (Σ−1 in this case) and the signal precision matrix (diag(q(t)) in this case).

Due to the Gaussian structure of the problem, maximizing the informativeness of the

learning process about ω up to time t is equivalent to minimizing the posterior variance of

this payoff-relevant state. Using (1) and the decomposition of ω from Assumption 1, the

agent’s posterior variance about ω is

V (q) = α′(Σ−1 + diag(q))−1α. (2)

This function V is globally convex, differentiable, and decreasing in each qi. See Appendix

A for the proof of these and additional properties.

12Adding geometric or other forms of discounting to the model would not affect any of the results.
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In the special case in which the agent stops at a fixed and known time T , every information

acquisition strategy that minimizes posterior variance about ω at time T is optimal (see

Section 5 for details), and the order of acquisitions does not matter. Note that the sequence

of acquisitions will matter outside of this special setting.

4 Optimal Information Acquisition Strategy

We begin with the case of two information sources, as the simpler setting allows us to derive

stronger results and explain certain key intuitions. Following this we present results for the

case of any finite number of sources, as well as an extended outline of our proof strategy.

4.1 K = 2

Suppose there are two information sources and two attributes θ1 and θ2. The agent seeks to

learn ω = α1θ1 + α2θ2, with each αi > 0. His prior over the unknown attributes is(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

The covariances between the attributes and the payoff-relevant state are

covi := Cov(ω, θi) = αiΣii + αjΣji

and we assume that these covariances satisfy the following relationship:

Assumption 2. cov1 + cov2 = α1(Σ11 + Σ12) + α2(Σ21 + Σ22) ≥ 0.

Since both variances Σ11,Σ22 are positive, Assumption 2 can be understood as requiring

that the covariance Σ12 is not too negative relative to the size of either variance. A sufficient

condition is for the weights on the two attributes to be equal (i.e., α1 = α2), in which case

Assumption 2 holds for all priors.13 Another sufficient condition is for the attributes to be

positively correlated (Σ12 = Σ21 ≥ 0), in which case Assumption 2 holds for all weights α1

and α2.

Our first result establishes the optimal information acquisition strategy under this as-

sumption.

13This follows from 2 · |Σ12| ≤ 2 ·
√

Σ11 · Σ22 ≤ Σ11 + Σ22.
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Theorem 1. Suppose Assumption 2 is satisfied.14 Define

t∗i :=
covi − covj
αj det(Σ)

.

W.l.o.g. let covi ≥ covj. Then an optimal information acquisition strategy is history-

independent and hence can be expressed as a deterministic path of attention allocations

(β1(t), β2(t))t≥0. This path consists of two stages:

• Stage 1: At all times t ≤ t∗i , the agent optimally allocates all attention to attribute i

(that is, βi(t) = 1 and βj(t) = 0).

• Stage 2: At all times t > t∗i , the agent optimally allocates attention in the constant

proportion (β1(t), β2(t)) =
(

α1

α1+α2
, α2

α1+α2

)
.

Under mild assumptions on the primitives, this optimal strategy is in fact unique up to the

stopping time τ (after which attention allocations obviously do not matter). We defer the

technical discussion to Appendix A.3.

Thus there are two stages of information acquisition. In the first stage, which ends at

some t∗, the agent allocates all of his attention to one of the attributes. After time t∗, he

divides his attention across the attributes in a constant ratio across time. The long-run

instantaneous attention allocation is proportional to the weights α. Note that depending on

the agent’s stopping rule, Stage 2 of information acquisition may never be reached along some

histories of realized Brownian motion paths. But whenever the agent continues acquiring

information, his optimal attention allocations are as given above.

The characterization reveals that the optimal information acquisition strategy is com-

pletely determined from the prior covariance matrix Σ and the weight vector α. In particu-

lar, it does not depend on the agent’s cost of waiting or the payoff function. Thus, when the

prior belief satisfies Assumption 2, the optimal information acquisition strategy is constant

across different objectives and also across different stopping rules. Relatedly, we can solve

for the optimal stopping rule in this setting as if information acquisition were exogenously

given by Theorem 1.

Below we illustrate this optimal information acquisition strategy using a few simple ex-

amples.

14The condition provided in Assumption 2 for K = 2 is not only sufficient but also necessary for our

characterization to hold independently of the agent’s payoff criterion—see Appendix B.1 and Proposition 4

for details.
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Example 1 (Independent Attributes). First consider the case of independent attributes. For

example, suppose the two unknown attribute values are distributed as(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
6 0

0 1

))

under the agent’s prior, and he wants to learn θ1 + θ2. Then, applying Theorem 1, the agent

begins by putting all attention towards learning θ1. At time t∗1 = 5
6
, his posterior covariance

matrix is the identity matrix. After this time he optimally splits attention equally between

the two attributes, which are now symmetrically distributed.

Example 2 (Correlated Attributes). Now suppose the attributes are correlated; for example,

the unknown attribute values are distributed as(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
6 2

2 1

))

under the agent’s prior, and he wants to learn θ1 +θ2. Applying Theorem 1, the agent begins

by putting all attention towards learning θ1. At time t∗1 = 5
2
, his posterior covariance matrix

as given by (1) becomes

(
3/8 1/8

1/8 3/8

)
, which makes the two attributes symmetric. After

this time he optimally splits attention equally between the two attributes.

Example 3 (Unequal Payoff Weights). Consider the prior belief given in the previous example,

but suppose now that the agent wants to learn θ1+2θ2. As before, the agent begins by putting

all attention towards learning θ1. Stage 1 ends at time t∗1 = 3
2
, when the posterior covariance

matrix is

(
3/5 1/5

1/5 2/5

)
. After this time, he optimally acquires information in the mixture

(1/3, 2/3).

To interpret the optimal strategy, first consider the case of equal payoff weights (α1 = α2),

as in Examples 1 and 2. Then, the condition cov1 = α1Σ11 + α2Σ21 ≥ α1Σ21 + α2Σ12 = cov2

reduces to Σ11 ≥ Σ22. So Stage 1 involves a direct comparison of prior uncertainty about the

two attributes, where the agent initially chooses to learn exclusively about the attribute over

which he is more uncertain. More generally, we can measure value of information by how

much it reduces the variance of the payoff-relevant state ω. Then the condition cov1 ≥ cov2

equivalently says that the marginal value of learning about attribute θ1 exceeds that of

learning about θ2, according to the prior belief.
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Suppose without loss of generality that cov1 ≥ cov2, so that the agent initially learns

exclusively about θ1, which has greater marginal value. As information about θ1 accumu-

lates, the marginal values of learning either attribute evolve, with the marginal value of

θ1 decreasing faster than θ2. Eventually, these marginal values equalize. From this point

on, the agent optimally acquires information in a constant ratio that is proportional to the

weight vector α. Dividing attention in this way achieves the most efficient aggregation of

information about ω. Moreover, as we show in the proof, acquisition of information propor-

tional to α maintains equal marginal values of the two information sources, so that acquiring

information in this mixture remains optimal. We provide a more involved proof outline in

Section 5, but the intuition is readily seen through the previous examples. In Examples 1

and 2, since the agent seeks to learn θ1 +θ2, the two attributes become symmetric once their

posterior variances equalize. After that, equal attention allocation maintains symmetry and

equal marginal values.

Although symmetry is lost in Example 3, the posterior covariance matrix

(
3/5 1/5

1/5 2/5

)
at time t∗1 = 3

2
has the key property that the payoff-relevant state ω = θ1 +2θ2 is independent

of θ1−θ2, as they are jointly normal and have zero covariance.15 As we show in Lemma 5, this

independence property implies equal marginal values.16 This explains why the agent is willing

to mix at time t∗1. The specific mixture (1/3, 2/3) ensures that every subsequent posterior

covariance matrix continues to have the independence property. Hence equal marginal values

are maintained, and the agent optimally follows this mixture at future times as well.

4.2 General K

We now consider the case of multiple attributes, where we will show that the results for the

K = 2 case extend qualitatively.

A sufficient condition on the prior belief, parallel to the one stated in Assumption 2, is

the following:

Assumption 3. The prior covariance matrix satisfies |Σij| ≤ 1
2K−3

· Σii,∀i 6= j.

This condition requires that the size of the covariance between every pair of attribute values

15Cov(θ1 + 2θ2, θ1 − θ2) = Var(θ1) + Cov(θ1, θ2)− 2Var(θ2) = 3/5 + 1/5− 2× 2/5 = 0.
16Indeed, Lemma 5 shows that the marginal value of learning θi is given by γ2i , where γi is the posterior

covariance between ω and θi. Thus the marginal values are equal if and only if Cov(ω, θ1) = ±Cov(ω, θ2);

that is, ω is independent of either θ1 − θ2 or θ1 + θ2.
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is bounded by an expression depending on the variances.17 For the case of two attributes, we

require only that the covariance Σ12 is smaller in magnitude than both variances Σ11 and Σ22,

which would imply our previous Assumption 2.18 In general, the condition in Assumption 3

is more restrictive for larger numbers of sources K.

To interpret the use of Assumption 3, note that prior covariances measure the comple-

mentarity or substitution effects across the information provided by different sources (i.e.,

whether information from one source increases or decreases the learning benefits from other

sources). Assumption 3 limits the magnitude of such complementarity/substitution, so that

the agent’s short-run and long-run information acquisition incentives are aligned. In Ap-

pendix B.1, we provide a counterexample to illustrate that misalignment can occur when

Assumption 3 is violated.

Under this assumption, the optimal information acquisition strategy is described as fol-

lows:

Theorem 2. Suppose Assumption 3 is satisfied.19 Then, there exist times

0 = t0 ≤ t1 ≤ · · · ≤ tK−1 < tK = +∞

and nested sets

∅ = B0 ( B1 ( · · ·BK−1 ( BK = {1, . . . , K},

such that an optimal information acquisition strategy is described by a deterministic path of

attention allocations (β1(t), . . . , βK(t))t≥0. This path consists of K stages: For each 1 ≤ k ≤
K, the instantaneous attention allocation is constant at all times t ∈ [tk−1, tk) and supported

on the sources in Bk. In particular, the optimal attention allocation at any time t ≥ tK−1 is

proportional to α.

17Note that this condition requires the covariances to be not too negative, and also not too positive, which

differs from the previous Assumption 2. Loosely, the difference between the K = 2 and K > 2 cases is that

with K > 2, the relationship between any two sources (i.e., whether they are complements or substitutes) is

affected by observation of other sources outside of this pair. In particular, two sources that were previously

complementary can cease to be so when the agent (optimally) samples a third source, and their covariance

can switch sign along the path of information acquisition. This does not happen with K = 2.
18However, when K = 2 our previous Assumption 2 is strictly weaker. So Theorem 1 does not follow as a

corollary from Theorem 2 below.
19The condition we provide in Assumption 3 for general K is sufficient but not necessary for the char-

acterization to hold. In fact, a weaker, but less interpretable, sufficient condition that we use in the

proofs is the following: The inverse of the prior covariance matrix Σ−1 is diagonally-dominant ; that is,

[Σ−1]ii ≥
∑
j 6=i |[Σ−1]ij | for all 1 ≤ i ≤ K. Nonetheless, the constant 1

2K−3 in Assumption 3 is tight, in a

sense that we formalize in Appendix D.7.
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The times tk as well as the attention allocations (and their support Bk) at each stage

can be determined directly from the primitives α and Σ, and are history-independent. In

Appendix C, we explain how to compute these times and sets. Theorem 2 thus tells us that

the agent can reduce the dynamic information acquisition problem to a sequence of K static

problems, each of which involves finding the optimal constant ratio of attention for a fixed

period of time (from tk−1 to tk). Moreover, as in the K = 2 case, the optimal information

acquisition strategy does not depend on the agent’s payoff function or waiting cost.

We again demonstrate this result in an example:

Example 4. Suppose there are three unknown attributes, and the agent wants to learn ω =

θ1 + θ2 + θ3. The agent’s prior over these attribute values is θ1

θ2

θ3

 ∼ N

 µ1

µ2

µ3

 ,

 4 0 0

0 4 −1

0 −1 3




Note that this prior satisfies Assumption 2.

The optimal information acquisition strategy consists of three stages:

Stage 1. The agent initially puts all attention towards learning θ1. To interpret, notice

that negative correlation between attributes θ2 and θ3 reduces the overall uncertainty about

the sum θ2 + θ3; thus, the marginal value of learning θ1 is initially higher than learning

either θ2 or θ3. The agent attends only to θ1 until time t1 = 1
12

, at which point his posterior

covariance matrix becomes  3 0 0

0 4 −1

0 −1 3

 ,

as given by (1). This posterior belief has the property that ω = θ1 + θ2 + θ3 is independent

of θ1 − θ2, so as discussed the marginal values of learning θ1 and learning θ2 have equalized.

Since the posterior variance of θ3 is smaller than θ2, the marginal value of learning θ3 is

strictly lower.

Stage 2. The agent next splits his attention between learning θ1 and learning θ2 in the

constant proportion (4/7, 3/7). These acquisitions reduce the marginal value of learning θ1

and the marginal value of learning θ2 at the same rate, thus maintaining the equality between
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these marginal values. At time t2 = 13
44

, the agent’s posterior covariance matrix is 11/5 0 0

0 44/15 −11/15

0 −11/15 44/15

 .

The marginal values of learning all three attributes have become the same, since at this time

ω = θ1 + θ2 + θ3 is independent of both θ1 − θ2 and θ1 − θ3.

Stage 3. From this time on, the agent acquires information evenly from each source via

the constant attention allocation (1/3, 1/3, 1/3).

4.3 Arbitrary Priors

Suppose the prior belief does not satisfy the assumptions given above; can we still say

anything about optimal information acquisition? It turns out that under optimal sampling

from any prior belief, the agent’s posterior beliefs will eventually satisfy Assumption 3. In

fact, optimal sampling is not required: Along any path in which each source receives infinite

attention (which is necessary for complete learning of ω and thus satisfied under optimal

sampling), the agent’s beliefs will enter the set of beliefs defined by Assumption 3.

Formally, consider the cumulated attention vector q(t) introduced earlier. We then have:

Lemma 1. Starting from any prior belief, the optimal information acquisition strategy has

the property that the induced cumulated attentions qi(t)→∞ for each 1 ≤ i ≤ K as t→∞.20

Lemma 2. Suppose qi(t) → ∞ for each 1 ≤ i ≤ K. Then, the agent’s posterior beliefs

satisfy Assumption 3 at all sufficiently late times.

Once Assumption 3 is met, the characterization given in Theorem 2 holds (taking the

“prior” to be the posterior belief at that time). In particular, we can conclude from Lemma

1, Lemma 2 and Theorem 2 that:

Proposition 1. Starting from any prior belief, the optimal information acquisition strategy

is eventually a constant attention allocation (across all sources) proportional to the weight

vector α.

20We note that starting from a general prior belief, qi(t) can be a random variable depending on past

signal realizations. Thus the lemma asserts that each source receives infinite attention along every history.
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Thus, in general, the optimal information acquisition strategy will eventually have the

properties described earlier: independence of signal realizations, of the payoff function and

of the waiting cost. The notion of “eventual” is uniform on these dimensions. Specifically,

we show in the proof that there exists t depending only on α and Σ, such that the optimal

attention allocation at any time t ≥ t is proportional to α.

5 Proof Outline for Theorems 1 and 2

The plan of the proof is to first define a uniformly optimal strategy, which minimizes the

agent’s posterior variance about ω at every possible stopping time. When uniformly optimal

strategies exist, they are the optimal information acquisition strategy. We then show that

under the assumption on the prior belief that we provide, uniformly optimal strategies do

exist, and have the structure that we characterize.

Definition of a uniformly optimal strategy. For every time t, define the t-optimal

attention vector to be the allocation of t units of attention that minimizes posterior variance

about ω:21

n(t) = argmin
q1,...,qK≥0,

∑
i qi=t

V (q1, . . . , qK),

We will say that an attention allocation strategy is uniformly optimal if it integrates to the

t-optimal vector at every t.

Definition 1. Say that an information acquisition strategy S is uniformly optimal if the

induced cumulated attention vector at each time t is n(t), independently of signal realizations.

This is a strong property, and existence of such a strategy is in general not guaranteed.

When a uniformly optimal strategy exists, it is optimal. By definition, if a cumu-

lated attention vector is t-optimal, it implies that the agent has learned as much about ω as

possible in the interval [0, t). Thus, if the agent stops acquiring information at time t (and

takes the optimal action), his expected flow payoff is maximized among all strategies that

deterministically stop at t. The form of the payoff function u does not matter because, due

to normal beliefs, achieving minimum posterior variance means that the agent’s information

up to time t is Blackwell more informative than under any other strategy (Blackwell, 1951;

Hansen and Torgersen, 1974).

21We show in Lemma 6 that this minimizer is unique.
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Requiring that q(t) is t-optimal at every time t then implies that the information ac-

quisition strategy is most informative about ω at every history and maximizes expected

payoffs given any exogenous stopping time. In our Gaussian environment, such a strategy

also maximizes expected payoffs even when the stopping time can be endogenously chosen;

this follows from a result of Greenshtein (1996) (see Lemma 7 in the appendix). It follows

that whenever a uniformly optimal strategy exists, it must be the optimal strategy in our

problem.22 It remains to show that under Assumption 3, a uniformly optimal strategy does

exist, and has the structure described in Theorem 2.

Existence of a uniformly optimal strategy. To show that a uniformly optimal strategy

exists, we make use of the following simple lemma:

Lemma 3. A uniformly optimal strategy exists if and only if the t-optimal attention vector

n(t) weakly increases (in each coordinate) over time.

In words, we require that for every t′ > t, the optimal allocation of t′ units of attention

devotes a higher amount of attention to all sources compared to the optimal allocation of t

units. This is necessary and sufficient for a single information acquisition strategy to achieve

the optimal cumulated attention vectors at both times.

Whether or not this condition is satisfied turns out to depend on the cross-partials of

the posterior variance function V , as given by (2). When information from the different

sources are complements—meaning that additional information about one attribute improves

the value to additional information about another—the agent optimally chooses a positive

mixture to take advantage of the complementarity. In contrast, if more information about

attribute i decreases the marginal value of information about attribute j, then the agent

may prefer to re-allocate attention away from attribute i towards attribute j. This can lead

the optimal allocation of t + ∆ units to involve less attention towards attribute i than the

optimal allocation of t units. The consequence is a failure of monotonicity in the t-optimal

vectors n(t), precluding existence of a uniformly optimal strategy. See Appendix B.1 for

such an example.

Assumptions 2 and 3 control the sizes of the cross-partials of V at the prior belief, and

have the implication that at all subsequent beliefs along the optimal sampling path, different

22While it is possible to write down the Bellman equation for this control problem, the value function (as

a function of the current belief) is high-dimensional and difficult to solve for explicitly, especially if we do

not have any structure on u(·) and c(·). Our argument based on Blackwell comparisons gets to the optimal

policy (i.e., attention allocation) without going through the value function. See also Appendix A.2.
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sources are complements whenever their marginal values are highest. This ensures that the

agent will always acquire signals in positive mixtures,23 so that a uniformly optimal strategy

exists.

Structure of the uniformly optimal strategy. When a uniformly optimal strategy

exists, the instantaneous attention allocations β(t) are simply the time-derivatives of the t-

optimal vectors n(t). Under this strategy, the agent divides attention at every moment across

learning those attributes that maximize the instantaneous marginal reduction of posterior

variance V .

When there is a single attribute that maximizes reduction in V , as is the case for a generic

prior belief, the agent optimally allocates all attention towards learning the corresponding

attribute. As beliefs about that attribute, say attribute i, become more precise, the marginal

value of learning about i decreases continuously relative to the marginal value of learning

other attributes. Eventually the marginal value of learning about i will equal the marginal

value of learning about some other attribute j.

At this point, there are multiple attributes that yield the same marginal value of reduc-

tion in variance. Since V is differentiable, directional derivatives can be written as a convex

combination of the partial derivatives in each of the coordinate directions. Hence, all mix-

tures over i and j lead to the same, maximal, instantaneous reduction in uncertainty about

the state. However, these mixtures have different implications for the marginal values of

the different sources at future instants. For the dynamic problem, the agent thus optimally

turns from the “first-order” comparison of marginal values to a “second-order” comparison

of mixtures.24 We demonstrate that there is a unique mixture over i and j that maintains

equivalence of their marginal values, and this mixture is selected in the optimal dynamic

rule. Technically, we derive the (second-order) optimal mixture by working with the Hessian

matrix of V ; see Lemmata 5, 11 and 12 in the appendix.

23The formal version of this claim is Lemma 10 in the appendix. Note that complementarity or substitution

of two sources is captured by the relevant cross-partial derivative of the posterior variance function V , given

in Lemma 5.
24We mention that the idea of trying to maximize the marginal value of learning is known in the operations

research literature as knowledge-gradient ; see for example Frazier et al. (2008, 2009). These papers establish

the asymptotic optimality of knowledge-gradient strategies when the agent seeks to select the best one out

of K unknown payoffs. Although we also study a (correlated) Gaussian environment, we have a different

decision problem based on a weighted sum of the unknowns, and the two settings overlap only when K = 2

as we discuss in Section 6. Moreover, our Theorems 1 and 2 show that knowledge gradient is exactly optimal

in many situations. In this sense our results complement those of Frazier et al. (2008, 2009), which give

general bounds on the potential loss of adopting knowledge-gradient.
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The rest of the proof follows similarly: as uncertainty about attributes i and j decrease,

eventually their marginal values equal those of a third attribute. At this point the agent ex-

pands his observation set to include the new source(s), and we can repeat the same reasoning.

This yields the “nested-set” property in Theorems 1 and 2.

6 Application 1: Binary Choice

The framework we study relates to a large body of work regarding “binary choice tasks,”

in which an agent has a choice between two goods with payoffs v1 and v2, and can devote

effort towards learning about these payoffs before making his decision. The leading model

in this domain, the drift-diffusion model (Ratcliff and McKoon, 2008), supposes that the

agent observes a Brownian motion whose drift depends on which good yields the higher

payoff. In our framework, this model corresponds to a case in which the agent’s prior belief

is supported on two points—either (v1, v2) = (vL, vH) or (v1, v2) = (vH , vL) where vH > vL

are known quantities. Thus the agent has uncertainty over which good is better, but not

over how much better it is.25 Fudenberg et al. (2018) recently proposed a variation on this

model to allow for the latter kind of uncertainty. In their uncertain drift-diffusion model,

the agent has a jointly normal prior over (v1, v2), and has access to two Brownian motions

with drifts corresponding to these unknown payoffs.

Both the classic drift-diffusion model and also Fudenberg et al. (2018) focus primarily

on deriving the optimal stopping rule given exogenous information, which we do not pursue

here. Fudenberg et al. (2018) additionally consider a version of their model in which the

agent endogenously acquires information by choosing attention allocations (subject to an

budget constraint) that scale the drifts of the two Brownian motions.26 Since the payoff

difference v1 − v2 is a sufficient statistic for the agent’s decision, this corresponds exactly to

our framework with K = 2, θ1 = v1, θ2 = −v2, and equal payoff weights α1 = α2 = 1.

These authors show that if the agent’s prior is both independent and symmetric—that

is, Σ = I—then the agent optimally devotes equal attention to both payoffs at all times.

We now show how our Theorem 1 generalizes this result in two directions: arbitrary priors

(Section 6.1) and asymmetric information precision about the two payoffs (Section 6.2).

25That is, the classic DDM assumes that |v1 − v2| is known to the agent.
26See Section E of Fudenberg et al. (2018).
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6.1 General Prior Covariance Matrix

Suppose the agent’s prior is(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

Here, ρ ∈ (−1, 1) captures the prior correlation between the two unknown payoffs. Recall

that for the case of equal payoff weights α1 = α2 = 1, Theorem 1 characterizes the opti-

mal information acquisition strategy starting from any prior. We thus obtain the following

corollary:

Corollary 1. Suppose σ1 ≥ σ2. The agent’s optimal information acquisition strategy (β1(t), β2(t))

in this binary choice problem consists of two stages:

• Stage 1: At all times

t ≤ t∗1 =
1/σ2

2 − 1/σ2
1

1− ρ2
,

the agent optimally allocates all attention to the first information source (about v1).

• Stage 2: At times t > t∗1, the agent optimally allocates half of his attention to each

information source.

When Σ = I, the threshold is t∗1 = 0, so that the agent splits his attention evenly from the

beginning. This returns Theorem 5 in Fudenberg et al. (2018). Corollary 1 demonstrates that

two aspects of their characterization generalize: Starting from an arbitrary prior covariance

matrice Σ, the agent will eventually acquire information according to the constant proportion

(1
2
, 1

2
). Moreover, this proportion is optimal from the beginning whenever the two unknown

payoffs have the same initial uncertainty. But if the prior belief is ex-ante “asymmetric,” the

agent initially devotes all attention to learning about the payoff he deems more uncertain.27

Corollary 1 additionally allows us to derive new comparative statics in the prior belief.

Corollary 2. Suppose σ1 ≥ σ2. Then, holding all else equal:

• an increase in σ1 results in uniformly higher attention towards source 1 (i.e., β1(t) is

weakly smaller at every t);

27We note additionally that the Fudenberg et al. (2018) result does not characterize “off-equilibrium”

attention allocations (where the agent has paid unequal attention to the two sources in the past). In contrast,

our corollary above applies to all prior beliefs and thus allows for characterization of optimal information

acquisition following any history, including those in which the agent has previously behaved sub-optimally.
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• an increase in σ2 results in uniformly lower attention towards source 1;

• an increase in |ρ| results in uniformly higher attention towards source 1.

Since the long-run frequencies with which the sources are viewed is independent of Σ

(Stage 2 in Corollary 1), changes in the prior only affect the attention strategy by changing

t∗1, the time at which the agent switches from observing source 1 to source 2. The first two

comparative statics are intuitive: since σ1 > σ2, the agent initially has greater uncertainty

about the first payoff. As we increase this difference in prior uncertainty—either by increas-

ing σ1 or decreasing σ2—Stage 1 increases in length and the threshold t∗1 moves later. To

understand the third comparative static, note that as the degree of correlation |ρ| increases

in magnitude, information about the first payoff becomes more revealing about the second

payoff. Thus, everything else equal, it takes longer for the agent’s uncertainty about the

first payoff to “catch up” with his uncertainty about the second payoff; so t∗1 increases. All

of these are new predictions enabled by our previous results, and are testable empirically.

6.2 Asymmetric Levels of Informativeness

We can alternatively enrich the Fudenberg et al. (2018) setting by allowing the informa-

tiveness of the two sources to be different, which would be the case if for example it was

easier to obtain information about one of the payoffs than the other. Formally, suppose that

(θ1, θ2)′ ∼ N ((µ1, µ2)′, I) as in Fudenberg et al. (2018), but each diffusion process Xi evolves

as

dX t
i = βi(t)θidt+ ζi

√
βi(t)Bti .

ζi > 0 moderates the informativeness of the process, and larger ζi corresponds to a more

noisy source. Under this setup, a unit of attention paid to source i delivers a normal signal

of the form

θi + εi, εi ∼ N (0, ζ2
i ).

The Fudenberg et al. (2018) setting is nested as ζ1 = ζ2 = 1.

To map this setting into our main model, we normalize the noise terms to have unit

variances as follows: Define θ̃i = θi/ζi, so that each unit of attention spent on source i

equivalently generates a standard normal signal about θ̃i. Under this transformation, the

payoff-relevant state is ζ1θ̃1 + ζ2θ̃2, and the agent’s prior covariance matrix over (θ̃1, θ̃2) is

Σ̃ =

(
1/ζ2

1 0

0 1/ζ2
2

)
.
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Assumption 2 is satisfied in this transformed problem; thus the optimal attention choices

(β1(t), β2(t)) are again characterized by Theorem 1.

Corollary 3. Suppose ζ1 ≤ ζ2. The agent’s optimal information acquisition strategy (β1(t), β2(t))

in this binary choice problem consists of two stages:

• Stage 1: At all times

t ≤ t∗1 = ζ1(ζ2 − ζ1),

the agent optimally allocates all attention to source 1.

• Stage 2: At times t > t∗1, the agent optimally allocates his attention in the constant

fraction
(

ζ1
ζ1+ζ2

, ζ2
ζ1+ζ2

)
.

When ζ1 = ζ2 so that the sources are equally informative, the threshold is t∗1 = 0 and the

mixture at Stage 2 is (1/2, 1/2), again returning Theorem 5 in Fudenberg et al. (2018). But

when the sources have different levels of informativeness, then the agent initially devotes

all attention to learning from the more informative source, which however receives lower

attention in the long run.

This corollary permits study of how changes in ζi, the noisiness of a source, affect the time

path of attention. Recall that in the previous section we considered a similar comparative

static regarding initial uncertainty (Corollary 2). Comparison of the two corollaries reveals

that prior noise and signal noise affect attention allocation in different ways. In contrast

to the straightforward comparative static in σ1 reported in Corollary 2, the effect of a local

increase in ζ1 has two, potentially competing, effects: (1) it changes the length of Stage

1 (i.e., t∗1), and (2) it also affects the long-run frequencies with which the two sources are

viewed in Stage 2.

The direction of the second effect is clear: increasing the noise level ζ1 always results in a

higher long-run share of viewership for source 1. But the first effect on the length of Stage 1

can be ambiguous: making its information more noisy simultaneously reduces the marginal

value of source 1, but also reduces the speed at which its marginal value shrinks to that of

source 2’s. From the closed-form expression for t∗1 in Corollary 3, we see that

∂t∗1
∂ζ1

≥ 0⇐⇒ ζ1 ≤ ζ2/2.

Thus, when ζ1 is quite small relative to ζ2, it holds that
∂t∗1
∂ζi

> 0. In this regime, increasing

the noisiness of source 1 makes it receive higher attention both in Stage 1 and in Stage 2.

As ζ1 increases beyond the threshold ζ2/2, further increasing this noise level leads to lower
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attention paid to source 1 in Stage 1, and higher attention in Stage 2. We are not aware of

prior literature that studies this effect of information precision on the time path of people’s

information demand.

Finally, it is straightforward to consider a model incorporating both the generalizations

of Section 6.1 and 6.2; we defer this analysis to Appendix F.

7 Application 2: Competing News Sources

Next, we apply our results to study information provision in a setting with strategic infor-

mation providers. Specifically, we are interested in how competition affects the quality of

information, when sources strategically determine the precision of the information that they

provide.

To fix ideas, suppose a politician has been associated with two potential cases of miscon-

duct in office: negligence in handling sensitive military information and use of public office

to advance personal goals. The severity of each of these acts is unknown, and the public

expects them to be correlated: e.g., politicians who are careless with sensitive materials

are more likely to abuse power, and vice versa. Two online news sources respectively have

connections with military personnel and with staff in the White House, and report on the

corresponding misconduct case. These sources primarily earn revenue by running ads, so

they aim to maximize time spent on their site. The choice variable is the informativeness of

articles on their site, i.e., how quickly to reveal what they know.

Formally, a representative news reader seeks to learn the sum of attributes θ1 and θ2, and

his prior over these parameters is(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
,

where ρ ∈ (−1, 1) measures prior correlation between θ1 and θ2. All of our results extend

to a mass of readers sharing this common prior. We assume that the prior covariance is not

too negative compared with the prior variances; specifically, we require:

Assumption 4. σ1 + ρσ2 ≥ 0 and σ2 + ρσ1 ≥ 0.

This is guaranteed if the prior is symmetric (σ1 = σ2) or positively correlated (ρ ≥ 0).

Each of two news sources i = 1, 2 (freely) chooses a standard deviation ζi, where a unit

of time spent on its site generates the signal

θi + εi, εi ∼ N (0, ζ2
i ).
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Note that there is no cost for the news sources to provide more informative articles. Nonethe-

less, as we demonstrate below, in equilibrium the sources will choose strictly positive noise

levels ζi.

The news reader has some underlying decision to make at a future date (e.g., whether or

not to support the politician), and optimally allocates attention given ζ1 and ζ2, which are

fixed across time. Denote his optimal allocation at time t by (β1(t), β2(t)). Each news source

i’s payoff is the discounted average attention paid to that source
∫∞

0
re−rtβi(t) dt, where r

is a (common) discount rate. We can interpret this as reduced form for advertising revenue,

where each news source receives profit proportional to the amount of viewership.28

For any fixed (ζ1, ζ2), we can transform the reader’s information acquisition problem to

our main model by normalizing the signals to have unit noise variances and scaling the

states θ1, θ2 accordingly (as we did in Section 6.2). For this transformed problem, Theorem

1 characterizes the full time path of attention. In Stage 1, the higher marginal value source

receives all viewership; whereas in Stage 2, the reader mixes over both sources. If source 1

is selected in Stage 1, then its payoff is

U1(ζ1, ζ2) =

∫ t∗1

0

re−rt dt+

∫ ∞
t∗1

re−rt
ζ1

ζ1 + ζ2

dt,

while source 2’s payoffs is

U2(ζ1, ζ2) =

∫ ∞
t∗1

re−rt
ζ2

ζ1 + ζ2

dt,

where t∗1 is the switch-point as described in Theorem 1.

The key tension is between optimizing for greater long-run viewership—where larger

noise ζi increases the long-run frequency ζi
ζi+ζj

—versus competing to be chosen in the short-

run—which encourages smaller ζi. Intuitively, more precise information improves the com-

petitive value of the source at the beginning of time, but reduces the value of continual

engagement with the source. This trade-off is not straightforward, as the importance of

being chosen first depends on t∗1 (the length of Stage 1), which is itself endogenous to the

chosen noise levels ζ1 and ζ2.

The following proposition characterizes the equilibrium:

Proposition 2. Under Assumption 4, the unique equilibrium between two competing news

sources is a pure strategy equilibrium (ζ∗1 , ζ
∗
2 ) with

ζ∗1 = σ1(σ1 + ρσ2)z and ζ∗2 = σ2(σ2 + ρσ1)z,

28Here, for the sake of illustrating the equilibrium, we are considering the case where the reader samples

forever. In the politician example, this would be reasonable if the election is far away.
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where

z =

√
σ1σ2(1− ρ2)

r(σ1 + ρσ2)(σ2 + ρσ1)(σ2
1 + 2ρσ1σ2 + σ2

2)
.

Given these equilibrium choices of noise levels, the reader optimally mixes over the sources

in the constant fraction
(

ζ∗1
ζ∗1+ζ∗2

,
ζ∗2

ζ∗1+ζ∗2

)
at every moment.

These expressions simplify substantially if we suppose that the prior covariance matrix

is symmetric (i.e., the reader is initially equally uncertain about θ1 and θ2):

Corollary 4. If σ1 = σ2 = σ, then the unique equilibrium is (ζ∗, ζ∗) where

ζ∗ = σ ·
√

1− ρ
2r

.

Our first observation is that in equilibrium, there is no “Stage 1” of information gather-

ing: the reader immediately begins mixing in a constant fraction over the sources. This is

despite the possibility of initial asymmetry in how well each attribute is understood. Thus,

Proposition 2 reveals that in equilibrium, sources choose noise levels that exactly offset this

prior asymmetry, equalizing their marginal values from the beginning.

Asymmetry in σi does, however, impact how the reader mixes over the sources and the

profits that the sources receive, as we discuss in the subsequent corollary.29

Corollary 5 (Division of Attention). Equilibrium attention paid to source 1,
ζ∗1

ζ∗1+ζ∗2

(a) exceeds equilibrium attention paid to source 2 if and only if σ1 ≥ σ2;

(b) is increasing in σ1 and decreasing in σ2;

(c) is decreasing in ρ if σ1 ≥ σ2 and increasing in ρ if σ1 ≤ σ2;

(d) is independent of r.

Part (a) says that the source providing information about the less-understood attribute

receives more attention at every moment in time (and thus also receives higher profit).

Intuitively, greater initial uncertainty increases the marginal value of learning from the cor-

responding source, giving this source a competitive advantage. But the result is more subtle

than it seems, since this asymmetry is in the prior belief only. From Corollary 1, we know

that if the sources were to provide equally informative signals (ζ1 = ζ2), then the reader

29For this set of comparative statics, we assume that changes in σ1, σ2 and ρ maintain Assumption 4, so

that Proposition 2 continues to hold.
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would eventually mix equally between these sources regardless of the prior. What Part (a)

says, then, is that the initial advantage conferred to a source is turned into a persistent

advantage in this strategic setting: this source can afford to provide noisier information, and

can thus capture more attention at every moment. The greater this initial asymmetry, the

larger the persistent advantage, as described in Part (b) of the corollary.

Part (c) says that attention paid to the more frequented source is decreasing in the

correlation ρ. Thus, when attributes are positively correlated—as in our example, where

negligence increases the probability of corruption and vice versa—attention is more equal

across the sources, and the strategic advantage conferred to the source with the more un-

certain attribute is lower. In contrast, when attributes are negatively correlated—so that a

higher level on one attribute implies a lower value on the other—then initial asymmetries are

exaggerated in equilibrium, and the amount of attention paid to the sources becomes more

unequal. To the best of our knowledge, this relationship between the direction of correlation,

and how competitive the setting is, has not been noted.30 Finally, Part (d) says that the

share of attention is independent of the sources’ common discount rate.31

Our final result in this section is about the overall quality of information, and how this

depends on the primitives. In equilibrium, the sampling procedure described in Proposition

2 leads to posterior variances about ω approximately given by
(ζ∗1+ζ∗2 )2

t
at large times t.32

Thus, the sum of standard deviations ζ∗1 + ζ∗2 is an appropriate measure of aggregate noise

in equilibrium.

Corollary 6 (Informativeness of News). Equilibrium aggregate noise level, ζ∗1 + ζ∗2

(a) is decreasing in the discount rate r;

(b) is increasing in the prior variance σ1 if σ1 ≥ σ2 (and otherwise increasing in σ2);

(c) is decreasing in the prior correlation ρ.

30More formally, the noise terms ζ1 and ζ2 must make equal Cov( θ1ζ1 , ω) = σ2
1/ζ1 + ρσ1σ2/ζ1 and

Cov( θ2ζ2 , ω) = σ2
2/ζ2 + ρσ1σ2/ζ2. Large positive ρ implies a smaller asymmetry in ζ1 and ζ2, while large

negative ρ implies a greater asymmetry.
31If the discount rate differed across sources, then this asymmetry would matter for the equilibrium share

of attention.
32To see this, recall the transformation θ̃i = θi/ζi (described in Section 6.2), which maps this game

with endogenous noise variances to our main model with unit variances. Under this transformation, the

sources provide standard normal signals about θ̃1 and θ̃2, and the payoff-relevant state ω can be rewritten

as ζ1θ̃1 + ζ2θ̃2. The asymptotic approximation of posterior variances then follows from Claim 1 in Liang and

Mu (2020).
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Part (a) says that the more patient the information providers are (larger r), the less

precise their signals will be in equilibrium. This is because less patient information providers

compete over short-run profits (i.e., being chosen in Stage 1), and thus prefer precise signals,

while patient providers compete for long-run profits (i.e., long-run frequency), and thus prefer

imprecise signals. Part (b) and Part (c) can be similarly explained by this trade-off between

short-run and long-run profits. Recall that the length of Stage 1 is determined by how long

it takes for the marginal value of information about the less-understood attribute to “catch

up” with the other. When prior uncertainty about the less-understood attribute is larger, so

is the initial difference in the two sources’ marginal values. Thus Stage 1 becomes shorter,

and sources prioritize Stage 2 by providing noisier information, as described in Part (b) of

the corollary.

To understand the effect of correlation on equilibrium informativeness, note that when

the reader initially learns about the less-understood attribute 1, he also learns about the

other attribute 2 due to correlation. Thus the marginal values of both information sources

decrease. As ρ increases, the two sources become closer to substitutes, and the marginal

value of source 2 decreases faster. Hence it takes longer for the marginal value of source

1 to equalize the marginal value of source 2, implying a longer Stage 1. The sources thus

have stronger incentives to be chosen first, and they provide more precise information in

equilibrium.

These results contribute to a large literature regarding how competition affects infor-

mation provision (Gentzkow and Shapiro, 2006). Here we are specifically interested in how

providers with imperfectly correlated information interact strategically. Imperfect correlation

means that some information is common across the sources, but that each source also has a

monopoly on a residual component of the unknown that readers would like to know. This

places our setting intermediate between monopolists—who can fully extract rents by noising

up information—and perfect competition—where firms compete away rents by providing

precise information. What our analysis in this section reveals is that information providers

compete for readers in the short-run and exploit readers in the long-run. Thus, a crucial

force determining the equilibrium quality of information is how information providers trade

off between these two time periods. We find that news is of higher quality when information

providers are less forward-looking, when the information they provide is more positively corre-

lated, and when prior uncertainty is lower, as each of these increases the relative importance

of the short-run competition.

Finally, in Appendix I we generalize these insights to a game where K > 2 news sources

compete, and where readers seek to learn θ1 + · · · + θK . Assuming a symmetric prior over
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these attributes, we can generalize Corollary 4 to show that ζ∗ = σ ·
√

1−ρ
Kr

is the equi-

librium noise level in the unique symmetric pure strategy equilibrium. Note that for this

problem, the transformed prior covariance matrix Σ̃ does not in general satisfy Assumption

3.33 Nonetheless, we are able to directly compute the uniformly optimal strategy (defined

in Section 5) and show that our K-stage characterization of optimal information acquisition

extends to this setting.

8 Discrete Time

Although our main model is in continuous time, our results have immediate implications for

a related discrete-time model (previously described in Remark 1): Suppose time is discrete

with period length ∆, and at each period t = 0,∆, 2∆, . . . , the agent allocates a budget

of ∆ precision across the K information sources. Choice of precision levels π1(t), . . . , πK(t)

(subject to
∑
πi(t) ≤ ∆) produces independent observation of the signals

Yi = θi + εi, εi ∼ N
(

0,
1

πi(t)

)
.

At each period t, the agent also decides whether or not to stop and take an action. Our

main results can be directly mapped into statements for this setting.

Corollary 7. Suppose Assumption 3 holds. Then at each period t = 0,∆, 2∆, . . . , the

optimal mixture over signals is (π1(t), . . . , πK(t)) where

πi(t) =

∫ t+∆

t

βi(t)dt,

with βi(t) being the optimal attention allocation for the continuous-time model that is de-

scribed in Theorem 2.

In a companion piece, Liang et al. (2017), we discretize not only time but also information

acquisitions: at each period t, the agent has to choose one of the K signals with precision

∆, without the ability to mix. The necessity of an integer approximation complicates char-

acterization of the full sequence of signal choices. Nevertheless, we provide conditions under

which myopic acquisition is optimal or eventually optimal.

33This can happen if the endogenously chosen noise levels ζ1, . . . , ζK are very different.
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9 Conclusion

Information acquisition is a classic problem within economics, but there are relatively few

dynamic models that are tractable and admit explicit characterizations. In this paper we

present a class of dynamic information acquisition problems whose solution can be explicitly

characterized in closed-form. It turns out that a complete analysis is feasible if we assume:

(1) Gaussian uncertainty, (2) a one-dimensional payoff-relevant state, and (3) correlation

across the unknowns that is not too strong. In return, we can allow for a great deal of

generality in other aspects of the problem, such as arbitrary payoff functions and/or many

patterns of correlation and asymmetry across the unknown variables. In the present paper,

we show how our characterization of optimal information acquisition can be used to derive

new results in two example economic settings. We believe that the tractability of the solution

opens the door to additional interesting applications.
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Appendix

A Preliminaries

A.1 Posterior Variance Function

Given qi units of attention devoted to learning about each attribute i, the posterior variance

about ω can be written in two ways:

Lemma 4. It holds that

V (q1, . . . , qK) = α′
[
(Σ−1 + diag(q))−1

]
α = α′

[
Σ− Σ(Σ + diag(1/q))−1Σ

]
α

where diag(1/q) is the diagonal matrix with entries 1/q1, . . . , 1/qk.

This function V extends to a rational function (quotient of polynomials) over all of RK

(i.e., even if some qi are negative).

Proof. The equality (Σ−1 + diag(q))−1 = Σ − Σ(Σ + diag(1/q))−1Σ is well-known. To see

that V is a rational function, simply note that (Σ−1 + diag(q))−1 can be written as the

adjugate matrix of Σ−1+diag(q) divided by its determinant. Thus each entry of the posterior

covariance matrix is a rational function in q.

The next lemma calculates the first and second derivatives of the posterior variance

function V :

Lemma 5. Given a cumulated attention vector q ≥ 0, define

γ := γ(q) = (Σ−1 + diag(q))−1α

which is a vector in RK. Then the first and second derivatives of V are given by

∂iV = −γ2
i , ∂ijV = 2γiγj ·

[
(Σ−1 + diag(q))−1

]
ij
.

Proof. From Lemma 4 and the formula for matrix derivatives, we have

∂iV = −α′(Σ−1 + diag(q))−1∆ii(Σ
−1 + diag(q))−1α = −

[
e′i(Σ

−1 + diag(q))−1α
]2

= −γ2
i

where ei is the i-th coordinate vector in RK , and ∆ii = ei · e′i is the matrix with “1” in the

(i, i)-th entry and “0” elsewhere. For the second derivative, we compute that

∂ijV = −2γi·
∂γi
∂qj

= 2γi·e′i(Σ−1+diag(q))−1∆jj(Σ
−1+diag(q))−1α = 2γi·

[
(Σ−1 + diag(q))−1

]
ij
·γj
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as we desire to show. The last equality follows by writing ∆jj = ej · e′j, and using e′i(Σ
−1 +

diag(q))−1ej = [(Σ−1 + diag(q))−1]ij as well as e′j(Σ
−1 + diag(q))−1α = e′jγ = γj.

Corollary 8. V is decreasing and convex in q1, . . . , qK whenever qi ≥ 0.

Proof. By Lemma 5, the partial derivatives of V are non-positive, so V is decreasing. Addi-

tionally, its Hessian matrix is

2 diag(γ) · (Σ−1 + diag(q))−1 · diag(γ),

which is positive semi-definite whenever q ≥ 0. So V is convex.

These technical properties are used to show that for each t, the t-optimal vector n(t) is

unique:

Lemma 6. For each t ≥ 0, there is a unique t-optimal vector n(t).

Proof. Suppose for contradiction that two vectors (r1, . . . , rK) and (s1, . . . , sK) both mini-

mize the posterior variance at time t. Relabeling the sources if necessary, we can assume

ri − si is positive for 1 ≤ i ≤ k, negative for k + 1 ≤ i ≤ l and zero for l + 1 ≤ i ≤ K. Since∑
i ri =

∑
i si = t, the cutoff indices k, l satisfy 1 ≤ k < l ≤ K.

For λ ∈ [0, 1], consider the vector qλ = λ · r + (1 − λ) · s which lies on the line segment

between r and s. Then by assumption we have V (r) = V (s) ≤ V (qλ). Since V is convex,

equality must hold. This means V (qλ) is a constant for λ ∈ [0, 1]. But V (qλ) is a rational

function in λ, so its value remains the same constant even for λ > 1 or λ < 0. In particular,

consider the limit as λ→ +∞. Then the i-th coordinate of qλ approaches +∞ for 1 ≤ i ≤ k,

approaches −∞ for k + 1 ≤ i ≤ l and equals ri for i > l.

For each qλ, let us also consider the vector |qλ| which takes the absolute value of each

coordinate in qλ. Note that as λ→ +∞, diag(1/|qλ|) has the same limit as diag(1/qλ). Thus

by the second expression for V (see Lemma 4), limλ→∞ V (|qλ|) = limλ→∞ V (qλ) = V (r). For

large λ, the first l coordinates of |qλ| are strictly larger than the corresponding coordinates

of r, and the remaining coordinates coincide. So the fact that V is decreasing and V (|qλ|) =

V (r) implies ∂iV (r) = 0 for 1 ≤ i ≤ l.

Consider the vector γ = (Σ−1 + diag(r))−1α. By Lemma 5, ∂iV (r) = −γ2
i for 1 ≤ i ≤ K.

Thus γ1 = · · · = γl = 0. Since γ is not the zero vector,34 there exists j > l s.t. γj 6= 0. It

follows that ∂1V (r) = 0 > ∂jV (r). But then the posterior variance V would be reduced if

we slightly decreased the first coordinate of r (which is strictly positive since r1 > s1) and

increased the j-th coordinate by the same amount. This contradicts the assumption that r

is a t-optimal vector. Hence the lemma holds.
34This follows because α is not the zero vector, by assumption.
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A.2 Optimality and Uniform Optimality

The following result ensures that a strategy that minimizes the posterior variance uniformly

at all times is an optimal strategy in any decision problem.

Lemma 7. A uniformly optimal strategy is dynamically optimal regardless of the payoff

function u(·) or the waiting cost function c(·).

Proof. This is essentially a continuous-time version of Theorem 3.1 in Greenshtein (1996),

which establishes a Blackwell ordering over sequential experiments for dynamic decision

problems. In our environment with normal signals about an one-dimensional unknown (our

payoff-relevant state ω), this theorem implies that a sequence of signals Blackwell-dominates

another if and only if the former sequence leads to uniformly lower posterior variances. While

the general result of Greenshtein (1996) covers decision problems in which the agent takes

multiple actions, a simpler proof suffices for the class of stopping problems considered in this

paper. The argument follows the proof of Theorem 5 in Fudenberg et al. (2018), with some

modifications. For completeness we reproduce this proof below, using our notation.

Fix any attention strategy S and denote by ES[·] the associated expectation operator,

and by ES∗
[·] the expectation operator associated with the uniformly optimal strategy S∗.

The optimal stopping rule τ (under S) is a solution to

sup
τ

ES[max
a

E[u(a, ω) | Fτ ]− c(τ)]. (3)

By the Dambis–Dubins–Schwartz Theorem (see for example Theorem 1.6 in Chapter V of

Revuz and Yor (1999)), there exists a Brownian motion (Bν)ν∈[0,v0] such that

Bv0−vt = E[ω | Ft],

where v0 denotes the prior variance of ω, and the random variable vt is the posterior variance

at time t under strategy S. This change of variables is a time change where the new scale is

the posterior variance.

For each v ∈ (0, v0], define the stochastic process φv := inf{t : vt ≤ v}. If the agent stops

with posterior variance v, his posterior expectation of ω is the value of Bv0−v. Denote by

U(·, ·) his maximum expected payoff when taking the optimal action given this belief, where

the arguments are the expected value and variance of ω. Then by (3), the value of the agent

can be rewritten as35

sup
v

E [U(Bv0−v, v)− c(φv)] .

35This generalizes Fudenberg et al. (2018), where the U function is simply its first argument (in the special

case of binary choice).
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As the posterior variance vt is greater than the minimum posterior variance v∗t under S∗ at

all times t, we have that

φv ≥ φ∗v := inf{t : v∗t ≤ v} ∀ v.

Consequently, the value under strategy S is smaller than the value under S∗:

sup
τ

ES[max
a

E[u(a, ω) | Fτ ]] = sup
v

E [U(Bv0−v, v)− c(φv)]

≤ sup
v

E [U(Bv0−v, v)− c(φ∗v)]

= sup
τ

ES∗
[max

a
E[u(a, ω) | Fτ ]].

(4)

We also have a simple converse result:

Lemma 8. Fixing Σ, α and the payoff function u(·). Suppose an information acquisition

strategy is optimal for all cost functions c(·), then it is uniformly optimal.

Proof. Take an arbitrary time t and consider the cost function with c(τ) = 0 for τ ≤ t and

c(τ) very large for τ > t. Then the agent’s optimal stopping rule is to stop exactly at time

t. Since his information acquisition strategy is optimal for this cost function, the induced

cumulated attention vector must achieve t-optimality. Varying t yields the result.

A.3 Uniqueness of Optimal Information Acquisition

By Lemma 7, whenever a uniformly optimal strategy exists, it is the optimal information

strategy regardless of the form of u(·) and c(·). As we show in later appendices, Assumptions

2 and 3 guarantee existence. The results in Theorems 1 and 2 thus characterize the uniformly

optimal strategy.

Without further assumptions on u and c, there could exist other optimal information

acquisition strategies. For example, consider the cost function c(·) used in the proof of

Lemma 8. Under this cost function, the agent always stops at some fixed time τ . Hence

any strategy that achieves the τ -optimal vector n(τ) gives the same, maximal amount of

information about ω at the stopping time. All such strategies are optimal for this problem,

and we cannot identify the attention allocation at any particular instant before τ . Uniform

optimality, in particular t-optimality for t < τ , is not necessary for optimal information

acquisition here.

Nonetheless, such counterexamples are non-generic. A careful inspection of the proof

of Lemma 7 suggests that whenever c(τ) is strictly increasing in τ , an attention allocation
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strategy S does as well as the uniformly optimal strategy S∗ if and only if the following

holds:

For every v > 0 such that the agent stops with positive density at posterior variance v

under S, the posterior variances under S decrease to v at the same time as under S∗.

That is, we require φv = φ∗v whenever the posterior variance v is realized under the

stopping rule.

We now introduce an assumption on the agent’s stopping rule:

Assumption 5. Given any attention allocation strategy S, any history of signal realizations

up to time t such that the agent has not stopped, and any t′ > t, there exists a positive

measure of continuation histories such that the agent optimally stops in the interval (t, t′].

To see how this condition implies S = S∗ up to the stopping time, let us suppose for

contradiction that after some history, the strategy S deviates from uniform optimality. Then,

along this history, the posterior variances under S in the interval (t, t′] are strictly larger than

under S∗ (for some t′ slightly bigger than t). By assumption, the agent stops in this interval

with positive probability. Thus we can take any posterior variance v achieved in this interval,

and deduce that v is reached slower under S than under S∗. As discussed above, this is

sufficient to show that S performs strictly worse than S∗.

In summary, we have the following result:

Proposition 3. Suppose the waiting cost c(·) is strictly increasing, and Assumption 5 is

satisfied. Then, any optimal information acquisition strategy coincides with the uniformly

optimal strategy at every history where the agent has not stopped.

We note that although Assumption 5 is stated in terms of the endogenous stopping rule,

it is satisfied in any problem where the agent always stops to take some action when he has

an extremely high (or low) expectation about ω. This is in turn guaranteed if extreme values

of ω agree on the optimal action, and if the marginal cost of waiting is bounded away from

zero. These conditions on the primitives are rather weak, and are satisfied in most natural

applications of the model (e.g., binary choice with constant marginal waiting cost).

B Proof of Theorem 1

Define cov1, cov2 as in the statement of Theorem 1:

cov1 = α1Σ11 + α2Σ21; cov2 = α1Σ12 + α2Σ22.
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Further define xi = αi det(Σ) to ease notation.

Given a cumulated attention vector q, let Q be a shorthand for the diagonal matrix

diag(q). Then by direct computation, we have

γ : =
(
Σ−1 +Q

)−1 · α

=
(
Σ−1 · (I + ΣQ)

)−1 · α

= (I + ΣQ)−1 · Σ · α

= (I + ΣQ)−1 ·

(
cov1

cov2

)

=
1

det(I + ΣQ)

(
1 + q2Σ22 −q2Σ12

−q1Σ21 1 + q1Σ11

)
·

(
cov1

cov2

)

=
1

det(I + ΣQ)

(
x1q2 + cov1

x2q1 + cov2

)
.

By Lemma 5, this implies the marginal values of the two sources are given by:

∂1V (q1, q2) =
−(x1q2 + cov1)2

det2(I + ΣQ)
,

∂2V (q1, q2) =
−(x2q1 + cov2)2

det2(I + ΣQ)
.

(5)

Note that Assumption 2 translates into cov1 + cov2 ≥ 0. Under this assumption, we will

characterize the t-optimal vector (n1(t), n2(t)) and show it is increasing over time. Without

loss assume cov1 ≥ cov2, then cov1 is non-negative. Let t∗1 = cov1−cov2
x2

. Then when q1+q2 ≤ t∗1

we always have

x1q2 + cov1 ≥ cov1 ≥ x2q1 + cov2,

since x1q2 ≥ 0 and x2q1 ≤ x2(q1 + q2) ≤ x2t
∗
1 = cov1 − cov2. We also have

x1q2 + cov1 ≥ −(x2q1 + cov2),

since x1q2, x2q1 ≥ 0 and by assumption cov1 + cov2 ≥ 0. Thus, (5) implies that ∂1V (q1, q2) ≤
∂2V (q1, q2) at such attention vectors q. So for any budget of attention t ≤ t∗1, putting all

attention to source 1 minimizes the posterior variance function V . That is, n(t) = (t, 0) for

t ≤ t∗1.

For t > t∗1, observe that (5) implies ∂1V (0, t) < ∂2V (0, t) as well as ∂1V (t, 0) > ∂2V (t, 0).

Thus the t-optimal vector n(t) is interior (i.e., n1(t) and n2(t) are both strictly positive). The
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first-order condition ∂1V = ∂2V , together with (5) and the budget constraint n1(t)+n2(t) = t,

yields the solution

n(t) =

(
x1t+ cov1 − cov2

x1 + x2

,
x2t− cov1 + cov2

x1 + x2

)
.

Hence n(t) is indeed increasing in t. The instantaneous attention allocations β(t) are the

time-derivatives of n(t), and they are easily seen to be described by Theorem 1. In partic-

ular, the long-run attention allocation to source i is xi
x1+x2

, which simplifies to αi
α1+α2

. This

completes the proof.

B.1 Counterexample

The following example illustrates how and why Theorem 1 might fail:

Example 5. There are two unknown attributes with prior distribution(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
10 −3

−3 1

))
.

The agent wants to learn θ1 + 4θ2.

Given q1 units of attention devoted to learning θ1, and q2 devoted to θ2, the agent’s

posterior variance about ω is given by (2). Simplifying, we have

V (q1, q2) =
2 + 16q1 + q2

(1 + q1)(10 + q2)− 9
.

The t-optimal cumulated attention vectors n(t) (see Section 5) are defined to minimize

V (q1, q2) subject to q1, q2 ≥ 0 and the budget constraint q1 + q2 ≤ t.

These vectors do not evolve monotonically: Initially, the marginal value of learning θ1

exceeds that of learning θ2, since the agent has greater prior uncertainty about θ1 (even

accounting for the difference in payoff weights). Thus at all times t ≤ 1/4, the t-optimal

vector is (t, 0), and the agent learns only about attribute 1.

After a quarter-unit of time devoted to learning θ1, the agent’s posterior covariance

matrix becomes

(
20/7 −6/7

−6/7 5/14

)
. Note that the two sources have equal marginal values

at t = 1/4, since ω = θ1 + 4θ2 is independent of θ1 + θ2 (see Footnote 16).36 However, to

36The key difference between this counterexample and Example 3 is that here ω is independent of the sum

θ1 + θ2, rather than the difference θ1 − θ2. Although both cases imply equal marginal values, it turns out

that independence between ω and θ1 − θ2 is necessary for n(t) to be monotonic. To this end, Assumptions

2 and 3 essentially rule out the other possibility that ω is independent of θ1 + θ2.
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maintain equal marginal values at future instants, it is actually optimal to take attention

away from attribute 1 and re-distribute it to attribute 2. Specifically, at all times t ∈ (1/4, 1]

the t-optimal vector is given by n(t) =
(−t+1

3
, 4t−1

3

)
, and the optimal cumulated attention

toward attribute 1 is decreasing in this interval.37

This failure of monotonicity occurs because at t = 1/4, the two sources of information

strongly substitute one another—by Lemma 5 in the appendix, the cross-partial ∂12V =

96/343 > 0, suggesting that the marginal value of either source (as measured by reduction in

the posterior variance V ) is lower after having learned from the other source. Consequently,

there does not exist a uniformly optimal strategy in this example (Lemma 3). Hence the

optimal information acquisition strategy varies according to when the agent expects to stop,

and Theorem 1 cannot hold independently of the payoff criterion (Lemma 8).

B.2 Necessity of Assumption 2

We show here that the assumption cov1 + cov2 ≥ 0 is also necessary for the existence of a

uniformly optimal strategy. The result generalizes Example 5 above.

Proposition 4. Suppose Assumption 2 is violated. Then a uniformly optimal strategy does

not exist.

Proof. Suppose that cov1 + cov2 < 0. First note that one of cov1, cov2 is positive, because

α1cov1 + α2cov2 = α′Σα > 0. So without loss we can assume cov2 > 0 > −cov2 > cov1.

Moreover, from α1cov1 + α2cov2 > 0 we obtain α2 > α1 and hence x2 > x1. Below we

characterize the t-optimal attention vector n(t):

1. If t ≤ −(cov1+cov2)
x2

, then x1q2 + cov1 is negative and has larger absolute value than

x2q1 + cov2 (which is positive) whenever q1 + q2 = t. By (5), this means ∂1V (q1, q2) ≤
∂2V (q1, q2), and so n(t) = (t, 0). In words, with a very small budget, it is optimal to

devote all attention to source 1.

2. If −(cov1+cov2)
x2

< t < −(cov1+cov2)
x1

, then ∂1V (0, t) < ∂2V (0, t) and ∂1V (t, 0) > ∂2V (t, 0).

These imply that n(t) is interior, and the first-order condition yields

x1n2(t) + cov1 = −(x2n1(t) + cov2),

where we use the fact that for t in this range, x1q2 + cov1 is always negative. Together

with n1(t) + n2(t) = t, we can solve that n(t) = (−x1t−cov1−cov2
x2−x1 , x2t+cov1+cov2

x2−x1 ).

37Subsequently, at times t ∈ (1, 3], the t-optimal vector is n(t) = (0, t), allocating all attention to attribute

2. Finally, at times t ≥ 3, n(t) =
(
t−3
5 , 4t+3

5

)
, allocating attention proportional to α.

38



3. If −(cov1+cov2)
x1

≤ t ≤ cov2−cov1
x1

, then (x2q1 +cov2)2−(x1q2 +cov1)2 = (cov2−cov1−x1q2 +

x2q1)·(cov1+cov2+x1q2+x2q1) ≥ 0 whenever q1+q2 = t. Thus ∂1V (q1, q2) ≥ ∂2V (q1, q2),

implying that the t-optimal attention vector should be n(t) = (0, t).

4. Finally, if t > cov2−cov1
x1

, then it holds that ∂1V (0, t) < ∂2(0, t) and ∂1V (t, 0) > ∂2(t, 0).

So n(t) is interior and satisfies the first-order condition

x1n2(t) + cov1 = x2n1(t) + cov2,

since both terms are now positive. This together with n1(t) + n2(t) = t yields the

solution n(t) = (x1t+cov1−cov2
x1+x2

, x2t−cov1+cov2
x1+x2

) and completes the analysis.

Note that in Case 2 above, as t increases in the range, n1(t) actually decreases. This proves

that a uniformly optimal strategy does not exist.

C An Algorithm for Finding the Optimal Information

Acquisition Strategy when K > 2

The next appendix provides a detailed proof of Theorem 2. Here we give an outline and

show how the times tk and sets Bk defined in Theorem 2 can be found recursively. Set Q0

to be the K ×K matrix of zeros, and t0 = 0. For each stage k ≥ 1:

1. (Computation of the observation set Bk.) Define the K × 1 vector γk = (Σ−1 +

Qk−1)−1 · α where Σ is the prior covariance matrix, and α is the weight vector. The

set of attributes that the agent attends to in stage k is

Bk = argmaxi |γki |.

These are the sources whose marginal reduction of posterior variance is highest (see

Lemma 5).

2. (Computation of the constant attention allocation in stage k.) If |Bk| > k

then stage k is degenerate, and we proceed to stage k + 1 with Qk = Qk−1. Otherwise

we can re-order the attributes so that the k attributes in Bk are the first k attributes.

In an abuse of notation, let Σ be the covariance matrix for the re-ordered attribute

vector θ. Define ΣTL to be the k × k top-left submatrix of Σ and ΣTR to be the

k × (K − k) top-right block. Finally let

αk = (ΣTL)−1 · (ΣTL, ΣTR) · α
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be a k × 1 vector. The agent’s optimal attention allocation in stage k is proportional

to αk; that is,

βki =

{
αki /

∑
i α

k
i if i ≤ k

0 otherwise

As the agent acquires information in this mixture during stage k, the marginal values

of learning about different attributes in Bk remain the same, and strictly higher than

learning about any attribute outside of the set.

3. (Computation of the next time tk.) For arbitrary t, define

Qk(t) := Qk−1 + (t− tk−1) · diag(βk).

Let tk be the smallest t > tk−1 such that the coordinates maximizing (Σ−1 +Qk(t))−1 ·α
are a strict superset of Bk.

38 At this time, the marginal value of some attribute(s)

outside of Bk equalizes the attributes in Bk, and stage k + 1 commences, with Qk =

Qk(tk).

D Proof of Theorem 2

D.1 Weaker Assumption

Given Lemma 7, it is sufficient to show that the t-optimal vector n(t) is weakly increasing

in t, and that its time-derivative is locally constant as described in the theorem. We will in

fact prove the same result under the following weaker assumption:

Assumption 6. The inverse of the prior covariance matrix Σ−1 is diagonally-dominant.

That is,

[Σ−1]ii ≥
∑
j 6=i

|[Σ−1]ij| ∀1 ≤ i ≤ K.

38This smallest time can be computed as follows. For each j > k, consider the following (polynomial)

equation in t: (
e′j · (Σ−1 +Qk(t))−1 · α

)2
=
(
e′1 · (Σ−1 +Qk(t))−1 · α

)2
.

Any solution t > tk−1 is a time at which source j would have the same marginal value as sources 1, . . . , k.

Such a solution t necessarily exists, since at t = tk−1 the LHS is smaller by assumption, while at t =∞ the

LHS is bigger as the RHS is 0.

Let s(j) be the smallest solution to the above equation, for each fixed j > k. Then tk := minj>k s(j) is

the earliest time after tk−1 such that the sources having the greatest marginal value are a strict superset of

the first k sources.
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This is implied by Assumption 3 via the following lemma.

Lemma 9. Suppose the prior covariance matrix Σ satisfies Assumption 3, then its inverse

matrix satisfies [Σ−1]ii ≥ (K − 1) · |[Σ−1]ij| for all i 6= j, and is thus diagonally-dominant.

Proof. By symmetry, we can focus on i = 1. Let sj = [Σ−1]1j for 1 ≤ j ≤ K, and without

loss assume s2 has the greatest absolute value among s2, . . . , sK . It suffices to show s1 ≥
(K − 1)|s2|.

From Σ−1 · Σ = I we have
∑K

j=1[Σ−1]1j · Σj2 = 0. Thus
∑K

j=1 sj · Σ2j = 0 because

Σj2 = Σ2j. Rearranging yields

|s1 · Σ21| = |s2 · Σ22 +
∑
j>2

sj · Σ2j| ≥ |s2 · Σ22| −
∑
j>2

|sj · Σ2j| ≥ |s2 · Σ22| −
∑
i>2

|s2 · Σ22|
2K − 3

,

where the last inequality uses |sj| ≤ |s2| and |Σ2j| ≤ 1
2K−3

|Σ22| for j > 2. The above

inequality simplifies to

|s1 · Σ21| ≥
K − 1

2K − 3
· |s2 · Σ22|.

And since Σ21 ≤ 1
2K−3

|Σ22|, we conclude that |s1| ≥ (K − 1)|s2| as desired. Note that

s1 = [Σ−1]11 is necessarily positive, thus s1 ≥ (K − 1)|s2|.

D.2 Technical Property of γ

The following technical lemma will be repeatedly used.

Lemma 10. Suppose Σ−1 is diagonally-dominant. Given an arbitrary attention vector q,

define γ as in Lemma 5 and denote by B the set of indices i such that |γi| is maximized.

Then γi is the same positive number for every i ∈ B.

Proof. We use Q to denote diag(q). Since (Σ−1 +Q)−1α = γ, we equivalently have

α = (Σ−1 +Q)γ.

Suppose for contradiction that γi ≤ 0 for some i ∈ B. Using the above vector equality for

the i-th coordinate, we have

0 < αi =
K∑
j=1

[Σ−1 +Q]ij · γj.

Rearranging, we then have

[Σ−1 +Q]ii · (−γi) <
∑
j 6=i

[Σ−1 +Q]ij · γj ≤
∑
j 6=i

|[Σ−1 +Q]ij| · |γj|,
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which is impossible because −γi = |γj| for each j 6= i and [Σ−1 + Q]ii ≥
∑

j 6=i |[Σ−1 + Q]ij|.
Thus γi is positive for i ∈ B. The result that these γi are the same follows from the definition

that their absolute values are maximal.

D.3 The Last Stage

To prove Theorem 2 under Assumption 6, we first consider those times t when each of the

K sources has been sampled. The following lemma shows that after any such time, it is

optimal to maintain a constant attention allocation proportional to α

Lemma 11. Suppose Σ−1 is diagonally-dominant. If at some time t, the t-optimal vector

satisfies ∂1V (n(t)) = · · · = ∂KV (n(t)), then the t-optimal vector at each time t ≥ t is given

by

n(t) = n(t) +
t

α1 + · · ·+ αK
· α.39

Proof. Consider increasing n(t) by a vector proportional to α. If we can show the equalities

∂1V = · · · = ∂KV are preserved, then the resulting cumulated attention vector must be

t-optimal. This is because for the convex function V , a vector q minimizes V (q) subject to

qi ≥ 0 and
∑

i qi = t if and only if it satisfies the KKT first-order conditions.

We check the equalities ∂1V = · · · = ∂KV by computing the marginal changes of each

∂iV when the attention vector q = n(t) increases in the direction of α. Denoting diag(q) by

Q to save notation, this marginal change equals

δi :=
K∑
j=1

∂ijV · αj = 2
K∑
j=1

γiγj
[
(Σ−1 +Q)−1

]
ij
· αj

by Lemma 5. Applying Lemma 10, we have γ1 = · · · = γK . Thus the above simplifies to

δi = 2γ2
1

K∑
j=1

[
(Σ−1 +Q)−1

]
ij
· αj = 2γ2

1γi = 2γ3
1 .

Hence ∂1V = · · · = ∂KV continues to hold, completing the proof.

D.4 Earlier Stages

In general, we need to show that even when the agent is choosing from a subset of the

sources, the t-optimal vector n(t) is still increasing over time. This is guaranteed by the

39That is, ni(t) = ni(t) + t
α1+···+αK

· αi for each i.
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following lemma, which says that the agent optimally attends to those sources that maximize

the marginal reduction of V , until a new source becomes another maximizer. For ease of

exposition we state the lemma under a slightly stronger assumption that Σ−1 is strictly

diagonally-dominant. Later we will discuss how the lemma should be modified without this

strictness.

Lemma 12. Suppose Σ−1 is strictly diagonally-dominant. Choose any time t and denote

B = argmini ∂iV (n(t)) = argmaxi |γi|.

Then there exists β ∈ ∆K−1 supported on B and t > t such that n(t) = n(t) + (t− t) · β at

times t ∈ [t, t].

The vector β depends only on Σ, α and B. The time t is the earliest time after t at which

argmini ∂iV (n(t)) is a strict superset of B. When |B| = K, it holds that t = ∞ and β is

proportional to α, as given by Lemma 11.

Proof. Without loss we assume B = {1, . . . , k} with 1 ≤ k < K. Let q = n(t) and define γ

as before. By Lemma 10, γi is the same positive number for i ≤ k. Moreover, t-optimality

implies that qj = 0 whenever j > k. Otherwise the posterior variance could be reduced by

decreasing qj and increasing q1, as source 1 has strictly higher marginal value than source j.

We now use a trick to deduce the current lemma from the previous Lemma 11. Specif-

ically, given the prior covariance matrix Σ, we can choose another basis of the attributes

θ1, . . . , θk, θ̂k+1, . . . , θ̂K with two properties:

1. each θ̂j (j > k) is a linear combination of the original attributes θ1, θ2, . . . , θK ;

2. Cov[θi, θ̂j] = 0 for all i ≤ k < j, where the covariance is computed according to the

prior belief Σ.

Denote by θ̃ the vector (θ1, . . . , θk)
′, and by θ̂ the vector (θ̂k+1, . . . , θ̂K)′. The payoff-relevant

state ω = α′ · θ can thus be rewritten as α̃′ · θ̃ + α̂′ · θ̂ for some constant coefficient vectors

α̃ ∈ Rk and α̂ ∈ RK−k. Using property 2 above, we can solve for α̃ from Σ, α and B:

α̃ = (ΣTL)−1 · (ΣTL, ΣTR) · α (6)

where ΣTL represents the k×k top-left submatrix of Σ and ΣTR is the k× (K−k) top-right

block.

With this transformation, we have reduced the original problem with K sources to a

smaller problem with only the first k sources. To see why this reduction is valid, recall that
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sampling sources 1 ∼ k only provides information about θ̃, which is orthogonal to θ̂ according

to the prior. So as long as the agent has only looked at the first k sources, the transformed

attributes continue to satisfy property 2 above (zero covariances) under any posterior belief.

It follows that the posterior variance about ω is simply the variance about α̃′ · θ̃ plus the

variance about α̂′ · θ̂. Since the latter uncertainty cannot be reduced, the agent’s objective

(at those times when only the first k sources are attended to) is equivalent to minimizing

the posterior variance about α̃′ · θ̃.
Thus, in this smaller problem, the prior covariance matrix is ΣTL and the payoff weights

are α̃. Assuming that α̃ has strictly positive coordinates, we can then apply Lemma 11: As

long as the agent attends to the first k sources proportional to α̃, ∂1V = · · · = ∂kV continues

to hold.40 Moreover, at q = n(t), the definition of the set B implies that these k partial

derivatives are smaller (more negative) than the rest. By continuity, the same comparison

holds until some time t > t. Thus, when t ∈ [t, t], the cumulated attention vector (under this

strategy) still satisfies the first-order condition B = argmin1≤i≤K ∂iV and qj = 0 for j /∈ B.

Since V is convex, this must be the t-optimal vector as desired.

It remains to prove that α̃i is positive for 1 ≤ i ≤ k. To this end, define Q̃ =

diag(q1, . . . , qk) to be the k × k top-left submatrix of Q, and

γ̃ = ((ΣTL)−1 + Q̃)−1 · α̃. (7)

We will show that γ̃ is just the first k coordinates of γ. Indeed, observe that ((ΣTL)−1 +Q̃)−1

is also the k × k top-left submatrix of (Σ−1 +Q)−1.41 Using (6) and (7), we have

γ̃ = [(Σ−1 +Q)−1]TL · (ΣTL)−1 · (ΣTL, ΣTR) · α

= [(Σ−1 +Q)−1]TL · (α1, . . . , αk)
′ + [(Σ−1 +Q)−1]TL · (ΣTL)−1 · ΣTR · (αk+1, . . . , αK)′.

On the other hand, from γ = (Σ−1 +Q)−1 · α we have

(γ1, . . . , γk)
′ =
(
[(Σ−1 +Q)−1]TL, [(Σ−1 +Q)−1]TR

)
· α

= [(Σ−1 +Q)−1]TL · (α1, . . . , αk)
′ + [(Σ−1 +Q)−1]TR · (αk+1, . . . , αK)′.

Comparing the above two formulas, γ̃ is the first k coordinates of γ so long as

[(Σ−1 +Q)−1]TL · (ΣTL)−1 · ΣTR = [(Σ−1 +Q)−1]TR,

40To be rigorous, the conclusion should be about the function Ṽ (q1, . . . , qk), which is the posterior variance

about α̃′θ̃ in the smaller problem. But as discussed, this differs from V (q1, . . . , qk, 0, . . . , 0) by a constant.
41This holds because (Σ−1 + Q)−1 = Q−1 − Q−1(Q−1 + Σ)−1Q−1. Note that Q−1 is a block matrix:

its k × k top-left block is Q̃−1, and its k × (K − k) top-right block is zeros (its bottom-right block can be

seen as the diagonal matrix with infinities). So the top-left block of Q−1 − Q−1(Q−1 + Σ)Q−1 is simply

Q̃−1−Q̃−1[(Q−1+Σ)−1]TLQ̃
−1, which in turn is equal to Q̃−1−Q̃−1(Q̃−1+ΣTL)−1Q̃−1 = ((ΣTL)−1+Q̃)−1.
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which indeed holds.42

Hence γ̃i = γi for 1 ≤ i ≤ k, and it is the same positive number by Lemma 10. Rewriting

(7) as α̃ = ((ΣTL)−1 + Q̃) · γ̃, we see that α̃i is proportional to the i-th row sum of the

matrix (ΣTL)−1 + Q̃, which is just the row sum of (ΣTL)−1 plus qi. A theorem of Carlson and

Markham (1979) says that if Σ−1 is (strictly) diagonally-dominant, then so is (ΣTL)−1 for

any principal submatrix ΣTL. Consequently the row sums of (ΣTL)−1 are all strictly positive,

implying that α̃i > 0.

D.5 Completing the Proof

We now apply Lemma 12 repeatedly to prove Theorem 2. Continuing to assume strict

diagonal dominance, we can apply Lemma 12 with t = 0 and deduce that up to some

time t1 = t > 0, t-optimality can be achieved by a constant attention strategy supported

on B1 = argmin1≤i≤K ∂iV (0). Applying Lemma 12 again with t = t1, we know that the

agent can maintain t-optimality from time t1 to some time t2 with a constant attention

strategy supported on B2 = argmin1≤i≤K ∂iV (n(t1)). So on and so forth. Since the sets

∅ = B0, B1, B2, . . . are nested by construction, we eventually have Bm = {1, . . . , K} for

some m, and consequently tm =∞.

Note that Bl+1 − Bl need not be a singleton for each l (i.e., two sources can simultane-

ously become new minimizers of ∂iV ). Thus m can be smaller than K, and the nested sets

B1, . . . , Bm and increasing times t1, . . . , tm do not necessarily satisfy the conclusion of The-

orem 2. However, this is easy to resolve by including “redundant” times. Formally, we set

tk = tl for any k satisfying |Bl| ≤ k < |Bl+1|. We also choose B1, . . . , BK such that Bk+1−Bk

is a singleton for each k, and Bk = Bl whenever k = |Bl|. The nested sets B1, . . . , BK and

weakly increasing times t1, . . . , tK then satisfy the conclusions of Theorem 2. This completes

the characterization under the assumption that Σ−1 is strictly diagonally-dominant.

42Consider the identity (Σ−1 +Q)−1 · (Σ−1 +Q) = IK . The top-right block of the product is zeros, so by

block matrix multiplication we have

[(Σ−1 +Q)−1]TL · (Σ−1 +Q)TR = −[(Σ−1 +Q)−1]TR · (Σ−1 +Q)BR.

Next consider the identity Σ · (Σ−1 +Q) = IK + Σ(Q). The top-right block is again zeros, and we similarly

deduce

ΣTL · (Σ−1 +Q)TR = −ΣTR · (Σ−1 +Q)BR.

These two equalities together yield the desired result.
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D.6 Weak Diagonal Dominance and Zero Weights

Here we demonstrate how to prove Theorem 1 assuming only that Σ−1 is weakly diagonally-

dominant. The difficulty that arises with this change is that in the proof of Lemma 12, we

cannot conclude that the optimal attention allocation has strictly positive coordinates on

B. Thus the agent does not necessarily mix over all of the sources that maximize marginal

reduction of variance.

This might lead to the failure of Theorem 2 for two reasons: First, it is possible that the

agent optimally divides attention across a subset of the sources that he has paid attention to

in the past, which would violate the requirement of nested observation sets. Second, when a

new source achieves maximal marginal value, the agent might (not attend to it and) use a

different mixture over the sources previously sampled, which would violate the requirement

of constant attention allocation for a given observation set.

We now show that neither occurs in our setting. In response to the first concern above,

note that we can still follow the proof of Lemma 12 to deduce that the optimal instantaneous

attention α̃i given to a source i ∈ argminj ∂jV (t) is proportional to the i-th row sum of

(ΣTL)−1 plus qi. Since (ΣTL)−1 is weakly diagonally-dominant, its row sums are weakly

positive. Thus α̃i > 0 whenever qi > 0. In words, any source that has received attention in

the past will be allocated strictly positive attention at every future instant.

To address the second concern, consider two times t̃ < t̂ with

argmin
j

∂jV (n(t̃)) ( argmin
j

∂jV (n(t̂)).

Reordering the attributes, we assume without loss that at time t̃ the first k̃ sources have the

highest marginal value, whereas at time t̂ this set expands to the first k̂ > k̃ sources. Let

α̃ ∈ Rk̃ and α̂ ∈ Rk̂ be the optimal attentions associated with these subsets, as given by (6).

We want to show that if α̂ is supported on the same set of sources as α̃—i.e., more sources

maximize the marginal value, but the observation set is unchanged—then α̂ in fact coincides

with α̃ on their support. Indeed, by definition of α̂ (going back to the proof of Lemma 12)

we can write

ω =
k̂∑
i=1

α̂iθi + residual term orthogonal to θ1, . . . , θk̂.

If α̂ has the same support as α̃, then the above implies

ω =
k̃∑
i=1

α̂iθi + residual term orthogonal to θ1, . . . , θk̃,
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where we use the fact that any term orthogonal to the first k̂ attributes is clearly orthogonal

to the first k̃ attributes. This last representation of ω reduces to the definition of α̃. Hence

α̂i = α̃i for 1 ≤ i ≤ k̃, as we desire to prove.

We mention that our proof of Theorem 2 (and Theorem 1) extends without change to

cases where some payoff weights are zero, rather than strictly positive. In fact, because any

source with zero weight receives no attention in the long run, it never receives any attention

under the optimal strategy in environments where our characterization applies.43 Thus these

sources can be simply dropped from the model without affecting our results.

D.7 Tightness of 1
2K−3

Finally, we provide an example to show that the constant 1
2K−3

in Assumption 3 is tight for

the existence of a uniformly optimal strategy.

Proposition 5. For any ρ > 1
2K−3

, there exists a prior covariance matrix Σ satisfying

|Σij| ≤ ρ ·Σii for all i 6= j, as well as some weight vector α, such that uniform optimality is

unachievable.

Proof. Let Σ have diagonal entries 1 and off-diagonal entries −ρ, with ρ > 1
2K−3

. We also

choose α2 = · · · = αK = 1, and α1 equal to a small positive number.

For this problem, we will show that the t-optimal vector n(t) is not monotonic over time,

which implies the result via Lemma 3. Note that the last K − 1 sources have symmetric

prior and symmetric payoff weights. Thus, the posterior variance function V (q1, q2, . . . , qK)

is symmetric in its last K − 1 arguments. This implies that the t-optimal vector n(t) must

satisfy n2(t) = · · · = nK(t); otherwise its permutations would have the same posterior

variance, contradicting uniqueness of n(t).

Minimizing the posterior variance at time t thus simplifies to the following problem:

(n1, n2) ∈ argmin
q1,q2≥0, q1+(K−1)q2=t

V (q1, q2, . . . , q2).

That is, the agent optimally divides attention between source 1 and the remaining sources,

which always receive equal attention.

The posterior belief of such an agent can be derived by Bayesian updating on the following

K normal signals: θ1 +N
(

0, 1
q1

)
and θi +N

(
0, 1

q2

)
for 2 ≤ i ≤ K. We can show that in

43It may receive finite attention when our assumptions are violated.
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terms of predicting the payoff-relevant state α1θ1 +
∑

i>1 θi, the agent’s belief is the same as

if he had observed just two signals: θ1 +N
(

0, 1
q1

)
, and 1

K−1

∑
i>1 θi +N

(
0, 1

(K−1)q2

)
.44

Given this equivalence, we can relate t-optimal vectors in this problem with K sources

to t-optimal vectors in a smaller problem with just two sources. Specifically, define θ∗1 = θ1,

θ∗2 = 1
K−1

∑
i>1 θi, α

∗
1 = α1, α∗2 = K − 1. Then the payoff-relevant state can be rewritten as

ω = α∗1 · θ∗1 + α∗2 · θ∗2.

The discussion in the preceding paragraph shows that the posterior variance function V ∗ in

this K = 2 problem satisfies

V ∗(q1, q2) = V

(
q1,

q2

K − 1
, . . . ,

q2

K − 1

)
,

because on both sides the posterior variance is derived assuming that the agent had observed

the two signals θ1 +N
(

0, 1
q1

)
and 1

K−1

∑
i>1 θi +N

(
0, 1

(K−1)q2

)
. Hence, t-optimality in this

smaller problem is equivalent to t-optimality in the original problem.

In this smaller problem, the prior covariance matrix Σ∗ about (θ∗1, θ
∗
2) is

Σ∗ =

(
1 −ρ
−ρ 1−(K−2)ρ

K−1

)
.

In particular, since ρ > 1
2K−3

, Σ∗21 +Σ∗22 is negative. Thus if α∗1 = α1 is sufficiently small, this

K = 2 problem violates Assumption 2. By Proposition 4, we conclude that the t-optimal

cumulated attention vectors are not monotonic over time. The same holds for the original

problem, completing the proof.

E Proof of Proposition 1

E.1 Proof Outline

As discussed in the main text, we only need to prove that each source receives infinite

attention (Lemma 1) and that Theorem 2 applies at any posterior belief after each source is

44This can be proved by directly computing the posterior covariance matrix. Alternatively, note that the

signal 1
K−1

∑
i>1 θi+N

(
0, 1

(K−1)q2

)
is the average of theK−1 signals θi+N

(
0, 1

q2

)
for 2 ≤ i ≤ K considered

initially , so it contains weakly less information. However, it is sufficient for learning ω = α1θ1 +
∑
i>1 θi

for the following reason: 1) it is sufficient for learning
∑
i>1 θi, and 2) conditional on this sum, the original

K − 1 signals θi + N
(

0, 1
q2

)
only provide information about the differences θi − θj (with i, j > 1). These

differences are independent from θ1 conditional on
∑
i>1 θi (they are in fact independent from both), so the

extra information does not affect the belief about θ1 conditional on
∑
i>1 θi.
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sufficiently sampled. The latter is easy: Observe that the agent’s posterior precision matrix

is given by Σ−1 + Q, where Q is the diagonal matrix with entries q1, . . . , qK . As qi →∞ to

each i, clearly the matrix Σ−1 +Q is diagonally-dominant. So the conclusion of Theorem 2

holds.45

It remains to prove Lemma 1. This is in turn implied by the following lemma:

Lemma 13. Fix Σ and α. Given any q ∈ R+, there exists q ∈ R+ such that the cumulated

attention vectors q(t) under the optimal strategy have the following property: Whenever

qi(t) < q for some source i, it holds that qj(t) ≤ q for every source i.

Taking the contrapositive, this result says that whenever a source j has received attention

more than q, then each source i has received attention at least q. Since there necessarily

exists such a source j as t→∞, the consequence is that all sources must eventually receive

cumulated attention ≥ q. This lemma thus implies Lemma 1.

We now sketch how we prove the above lemma. First it is clear that the result for any q

follows from the result for any larger q. So we will assume q is large (to be formalized later).

We will then prove the result by choosing q even larger (also determined later). Suppose for

contradiction that after some history, the cumulated attention vector satisfies qi(t0) < q and

qj(t0) > q. By relabeling the signals, we can assume that

q1(t0), . . . , qk(t0) < q ≤ qk+1(t0), . . . , qK−1(t0); qK(t0) > q.

That is, the cumulated attention devoted to each of the first k sources is “deficient,” whereas

source K has received “excessive” attention. We can further assume that source K continues

to receive positive attention in some interval (t0, t0 + ε]; otherwise we can replace t0 by an

earlier time without changing these conditions.

Our proof method will be to construct a profitable deviation strategy (of how to allocation

attention) following this history, so that optimality is violated. Thanks to the main theorem

of Greenshtein (1996), any deviation strategy is profitable so long as it decreases the posterior

variance about ω at all future times. Given a deviation strategy, let q̃(t) denote the induced

cumulated attention vector, which is distinguished from q(t). Then the deviation is profitable

whenever the following inequality holds:46

V (q̃(t)) ≤ V (q(t)), ∀t ≥ t0.
45This argument shows that Assumption 6 is satisfied when each qi is large. It can be shown that in fact,

the stronger Assumption 3 is also satisfied if we take qi even larger (i.e. Lemma 2 holds).
46Such a deviation is strictly profitable if in addition V (q̃(t)) < V (q(t)) holds strictly for t ∈ (t0, t0 + ε],

which is verified below.
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E.2 The Deviation

We now construct such a deviation. Take any time T ≥ t0, there are three cases:

(a) Suppose that the original strategy S devotes positive attention to source K at time

T . Then under the deviation strategy, the agent diverts this attention (evenly) toward

those sources i with q̃i(T ) < q.47 If no such source exists, the deviation strategy devotes

the same amount of attention to source K.

(b) Suppose that the original strategy devotes attention to some source in k+1, . . . , K−1.

Then the deviation strategy devotes the same attention to this source.

(c) Suppose that the original strategy devotes attention to source i ≤ k. If q̃i(T ) < q

or q̃i(T ) = qi(t), then the deviation strategy also observes source i. Otherwise we

have q̃i(T ) = q > qi(T ), and in this case the deviation strategy diverts this amount of

attention to source K instead.

To interpret, the deviation strategy starts to deviate at time t0, when some source K has

been observed too often compared to some other sources 1, . . . , k. Following that history, the

deviation refrains from observing source K and instead devotes attention to sources 1, . . . , k,

until all of these “deficient” sources are no longer deficient, after which the deviation strategy

agrees with the original strategy in the amount of attention allocated to source i.

E.3 Four Kinds of Sources

Our end goal is to show that at any time T ≥ t0, either q̃(T ) = q(T ), or V (q̃(T )) <

V (q(T )). This will show that the deviation is profitable. But to do that, we first provide

a categorization of the different sources and their cumulated attention vectors (under the

deviation strategy versus the original strategy).

1. For sources i ∈ I1 ⊂ {1, . . . , k}, we have qi < q̃i < q (henceforth we fix T and use qi to

denote qi(T )). By construction, these sources have received equal attention diverted

from source K, under the deviation strategy. So for some x > 0 it holds that

q̃i = qi + x, ∀i ∈ I1.

47Formally, when the time derivative of qK(T ) is positive, we set the time derivative of q̃K(T ) to be zero,

and compensate it by increasing the time derivatives of q̃i(T ) for those signals i insufficiently observed.
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2. For sources i ∈ I2 ⊂ {1, . . . , k}, we have qi < q̃i = q. These are the sources that

have reached the target level q under the deviation strategy, but not under the original

strategy. Let xi denote the difference q̃i − qi, then by construction we have xi ≤ x,

which is defined above.

3. For sources i ∈ I3, we have qi = q̃i ≥ q. These include the sources k+1, . . . , K−1, which

the deviation strategy does not affect. Also included are those sources in 1, . . . , k that

have reached cumulated attention q under both the original and deviation strategies.

4. Finally source K is the only source with qi > q̃i. In fact we have

qK − q̃K =
∑
i<K

(q̃i − qi) = |I1| · x+
∑
i∈I2

xi.

Suppose q̃ 6= q, then either I1 or I2 is non-empty. We will use this characterization to

show V (q̃) < V (q).

E.4 Comparison of Posterior Variances

The following technical lemma is needed, and we prove it at the end:

Lemma 14. There exists a positive constant CH depending only on Σ and α, such that for

all q1, . . . , qK ≥ 0,

∂iV (q) ≥ −CH
q2
i

, ∀1 ≤ i ≤ K.

Moreover, there exists another positive constant CL such that the following holds when q is

large:

If q1, . . . , qK ≥ q, then

∂iV (q) ≤ −CL
q2
i

, ∀1 ≤ i ≤ K.

And if some qi < q, then there exists j such that

qj < q and ∂jV (q) ≤ −CL
q2

.

To prove V (q̃) < V (q), first consider the case that I1 (defined in the previous subsection)

is the empty set. Let j ∈ I2 be the source that maximizes xj = q̃j − qj. We then have

V (q̃) = V (q̃j, q̃−j) ≤ V (qj, q̃−j)+(q̃j−qj)·∂jV (q̃) ≤ V (qj, q̃−j)−
xj · CL
q2

≤ V (q1, . . . , qK−1, q̃K)−xj · CL
q2

.

(8)
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The first inequality uses the convexity of V . The second inequality uses the second part of

Lemma 14 (which applies because q̃i ≥ q for all i when I1 is empty), as well as q̃j = q (since

j ∈ I2). The last inequality uses the monotonicity of V and q̃i ≥ qi for all but the last source.

On the other hand, we also have

V (q) ≥ V (q1, . . . , qK−1, q̃K)+(qK−q̃K)·∂KV (q1, . . . , qK−1, q̃K) ≥ V (q1, . . . , qK−1, q̃K)−(K − 1)xj · CH
(q̃K)2

,

(9)

where the first inequality is by convexity, and the second uses the first part of Lemma 14

and qK − q̃K =
∑

i∈I2 xi ≤ (K − 1)xj by our choice of j.

Recall that q̃K ≥ q. Thus whenever q is much larger compared to q, the above inequalities

(8) and (9) imply that V (q̃) < V (q), as we desire to show.

Next we consider the case where I1 is non-empty. By the third part of Lemma 14, we

can choose j ∈ I1 such that ∂jV (q̃) ≤ −CL
q2

. Then, similar to (8) we have

V (q̃) ≤ V (q1, . . . , qK−1, q̃K)− x · CL
q2

,

with x replacing the role of xj. Likewise, we have the following analogue of (9):

V (q) ≥ V (q1, . . . , qK−1, q̃K)− (K − 1)x · CH
(q̃K)2

,

where we used qK − q̃K = |I1| · x+
∑

i∈I2 xi ≤ (K − 1)x.

Hence we are once again able to deduce V (q̃) < V (q) so long as q̃K ≥ q is much larger

than q. This completes the proof of Proposition 1 modulo Lemma 14.

E.5 Proof of Lemma 14

In light of Lemma 5, the key will be to estimate the size of the different coordinates of

γ = (Σ−1 +Q)−1 · α.

For the first part, note that the matrix norm of the posterior covariance matrix (Σ−1 +

Q)−1 is bounded above (by the norm of the prior covariance matrix Σ). Thus for any possible

q, the vector γ is bounded. We now write

α = (Σ−1 +Q) · γ.

Comparing the i-th coordinate on both sides, we have αi = e′i · Σ−1 · γ + qiγi. This then

implies that the product qiγi is bounded across different possible q. Since ∂iV (q) = −γ2
i , the

first part of Lemma 14 is proved.
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For the second part, we use the matrix identity

(Σ−1 +Q)−1 = Q−1 −Q−1 · (Σ +Q−1)−1 ·Q−1.

So γi = e′i · (Σ−1 + Q)−1 · α = αi
qi
− 1

qi
· e′i · (Σ + Q−1)−1 · Q−1 · α. If q1, . . . , qK are all large,

then the term being subtracted is at most αi
2qi

, because the matrix norm of (Σ + Q−1)−1 is

bounded above and the norm of Q−1 is small. Thus γi ≥ αi
2qi

, implying that ∂iV ≤ −α2
i

4q2i
. The

second part of the lemma holds for CL = mini
α2
i

4
.

For the third part, let q1, . . . , qm < q ≤ qm+1, . . . , qK . Suppose for the sake of contradic-

tion that ∂iV (q) > −CL
q2

for each 1 ≤ i ≤ m, with CL defined above. Then |γi| < αi
2q
< αi

2qi
for

1 ≤ i ≤ m. Thus, αi − qiγi > αi
2

. We now rewrite α = (Σ−1 +Q) · γ as

Σ · (α−Qγ) = γ.

Since the i-th coordinate of α − Qγ is simply αi − qiγi, we deduce that the vector norm of

α−Qγ is bounded away from zero. So the above identity suggests that the norm of γ is also

bounded away from zero. However, for 1 ≤ i ≤ m we have |γi| < αi
2q

by hypothesis, and for

i > m we know from the first part that |γi| ≤
√
CH
qi
≤
√
CH
q

. Hence the norm of γ is in fact

close to zero when q is large. This leads to a contradiction and completes the proof.

F Supplementary Material to Section 6

We consider here a binary choice problem that generalizes both Section 6.1 and 6.2. Suppose

the agent’s prior belief is(
θ1

θ2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
,

and the observed diffusion processes Xi evolve as

dX t
i = βi(t)θidt+ ζi

√
βi(t)Bti .

As in Section 6.2, ζi > 0 represents the noise level of source i.

Using the same transformation as in Section 6.2, we have that the payoff-relevant state

is ζ1θ̃1 + ζ2θ̃2, and the agent’s prior covariance matrix over (θ̃1, θ̃2) is

Σ̃ =

(
σ2
1

ζ21

ρσ1σ2
ζ1ζ2

ρσ1σ2
ζ1ζ2

σ2
2

ζ22

)
.
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Assumption 2 for this transformed problem requires

σ1(σ1 + ρσ2)

ζ1

+
σ2(σ2 + ρσ1)

ζ2

≥ 0,

which is guaranteed if σ1 = σ2 or ρ ≥ 0 or ζ1 = ζ2.

If the above inequality holds, then the characterization in Theorem 1 applies to this

problem, and we obtain:

Corollary 9. Suppose
σ1(σ1 + ρσ2)

ζ1

≥
∣∣∣∣σ2(σ2 + ρσ1)

ζ2

∣∣∣∣ .
The agent’s optimal information acquisition strategy (β1(t), β2(t)) in the binary choice prob-

lem consists of two stages:

• Stage 1: At all times

t ≤ t∗1 =
σ1(σ1 + ρσ2)ζ1ζ2 − σ2(σ2 + ρσ1)ζ2

1

σ2
1σ

2
2(1− ρ2)

,

the agent optimally allocates all attention to source 1.

• Stage 2: At times t > t∗1, the agent optimally allocates his attention in the constant

fraction
(

ζ1
ζ1+ζ2

, ζ2
ζ1+ζ2

)
.

We calculate t∗1 according to the definition in Theorem 1, as follows:

t∗1 =
ζ1Σ̃11 + ζ2Σ̃12 − ζ1Σ̃21 − ζ2Σ̃22

ζ2 · det(Σ̃)

=

(
σ1(σ1 + ρσ2)

ζ1

− σ2(σ2 + ρσ1)

ζ2

)/(
ζ2 ·

σ2
1σ

2
2(1− ρ2)

ζ2
1ζ

2
2

)
=
σ1(σ1 + ρσ2)ζ1ζ2 − σ2(σ2 + ρσ1)ζ2

1

σ2
1σ

2
2(1− ρ2)

.

G Proof of Proposition 2

Once ζ1, ζ2 are chosen, we can follow the analysis in Appendix F to transform the problem

into our main model. Given the assumption that σ1 + ρσ2 and σ2 + ρσ1 are both positive,

Assumption 2 is satisfied. Thus the reader’s optimal attention allocation is characterized by
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Corollary 9. In particular, if t∗1 ≥ 0 ≥ t∗2, then in equilibrium source 1 is chosen exclusively

until time t∗1, after which the reader mixes in the fraction ( ζ1
ζ1+ζ2

, ζ2
ζ1+ζ2

). Source 1’s payoff is

U1(ζ1, ζ2) =

∫ t∗1

0

re−rt dt+

∫ ∞
t∗1

re−rt
ζ1

ζ1 + ζ2

dt

= 1− e−rt∗1 · ζ2

ζ1 + ζ2

,

while source 2’s payoff is

U2(ζ1, ζ2) =

∫ ∞
t∗1

re−rt
ζ2

ζ1 + ζ2

dt = e−rt
∗
1 · ζ2

ζ1 + ζ2

.

To derive a candidate equilibrium, we set ∂U1(ζ1,ζ2)
∂ζ1

and ∂U2(ζ1,ζ2)
∂ζ2

to zero and solve for

ζ1, ζ2. Specifically, from Corollary 9 we have

t∗1 =
σ1(σ1 + ρσ2)ζ1ζ2 − σ2(σ2 + ρσ1)ζ2

1

σ2
1σ

2
2(1− ρ2)

.

It follows that

∂t∗1
∂ζ1

=
σ1(σ1 + ρσ2)ζ2 − 2σ2(σ2 + ρσ1)ζ1

σ2
1σ

2
2(1− ρ2)

; (10)

∂t∗1
∂ζ2

=
σ1(σ1 + ρσ2)ζ1

σ2
1σ

2
2(1− ρ2)

. (11)

We then have

∂U1(ζ1, ζ2)

∂ζ1

= re−rt
∗
1 · ∂t

∗
1

∂ζ1

· ζ2

ζ1 + ζ2

− e−rt∗1 · −ζ2

(ζ1 + ζ2)2

= e−rt
∗
1 · ζ2

(ζ1 + ζ2)2
·
(
r · ∂t

∗
1

∂ζ1

· (ζ1 + ζ2) + 1

)
.

(12)

So U1(ζ1,ζ2)
∂ζ1

= 0 if and only if

r · ∂t
∗
1

∂ζ1

· (ζ1 + ζ2) = −1.

Substituting in the expression for
∂t∗1
∂ζ1

from (10), this implies

− r · [σ1(σ1 + ρσ2)ζ2 − 2σ2(σ2 + ρσ1)ζ1] · (ζ1 + ζ2) = σ2
1σ

2
2(1− ρ2). (13)

Similarly we have

∂U2(ζ1, ζ2)

∂ζ2

= −re−rt∗1 · ∂t
∗
1

∂ζ2

· ζ2

ζ1 + ζ2

+ e−rt
∗
1 · ζ1

(ζ1 + ζ2)2

= e−rt
∗
1 · 1

(ζ1 + ζ2)2

(
−r · ∂t

∗
1

∂ζ2

· ζ2(ζ1 + ζ2) + ζ1

)
.

(14)
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So ∂U2(ζ1,ζ2)
∂ζ2

= 0 if and only if

r · ∂t
∗
1

∂ζ2

· ζ2(ζ1 + ζ2) = ζ1.

Substituting in (11), this implies

r · σ1(σ1 + ρσ2) · ζ2(ζ1 + ζ2) = σ2
1σ

2
2(1− ρ2). (15)

Comparing this with (13), we see that the RHS are equal, so the LHS should also be equal.

Simplifying, we obtain

σ1(σ1 + ρσ2)ζ2 = σ2(σ2 + ρσ1)ζ1.

Hence t∗1 = 0 in the candidate equilibrium. Additionally, the equilibrium noise levels ζ∗1 and

ζ∗2 are related via

ζ∗1 = σ1(σ1 + ρσ2)z

ζ∗2 = σ2(σ2 + ρσ1)z

for some z ≥ 0. Plugging these expressions into (15) we have that

z =

√
σ1σ2(1− ρ2)

r(σ1 + ρσ2)(σ2 + ρσ1)(σ2
1 + 2ρσ1σ2 + σ2

2)
.

Next, we will show this pair of ζ∗1 , ζ
∗
2 is an equilibrium. Since the formulae are symmetric,

we only check source 1 does not have an incentive to deviate to some ζ1 6= ζ∗1 . First consider

ζ1 < ζ∗1 . In this case source 1 is deviating to more precise information, which makes it

the source listened to in Stage 1. The change in profit
∂U1(ζ1,ζ∗2 )

∂ζ1
is still given by (12). In

particular, this derivative has the same sign as r · ∂t
∗
1

∂ζ1
· (ζ1 + ζ∗2 ) + 1, which in turn has the

same sign as

r · [σ1(σ1 + ρσ2)ζ∗2 − 2σ2(σ2 + ρσ1)ζ1] · (ζ1 + ζ∗2 ) + σ2
1σ

2
2(1− ρ2)

The way we solved for ζ∗1 , ζ
∗
2 ensures that the above expression equals 0 when ζ1 = ζ∗1 .

As ζ1 decreases, the term σ1(σ1 + ρσ2)ζ∗2 − 2σ2(σ2 + ρσ1)ζ1 in the brackets becomes less

negative (or positive). Since the other factor (ζ1 + ζ∗2 ) becomes smaller, the overall product

[σ1(σ1 + ρσ2)ζ∗2 − 2σ2(σ2 + ρσ1)ζ1] · (ζ1 + ζ∗2 ) also becomes less negative (or positive). We

thus know that for all ζ1 < ζ∗1 , ∂U1

∂ζ1
> 0. Hence source 1 strictly prefers ζ∗1 to any smaller ζ1.

If instead the deviation is to some bigger ζ1, then the consequence is that source 2 is now

listened to in Stage 1. In this case source 1’s payoff is not given by the above calculations.

Rather, it is

Ũ1(ζ1, ζ2) = e−rt
∗
2 · ζ1

ζ1 + ζ2

.
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We can show that
∂Ũ1(ζ1,ζ∗2 )

∂ζ1
has the same sign as −r · ∂t

∗
2

∂ζ1
· ζ1(ζ1 + ζ∗2 ) + ζ∗2 ; this is similar

to (14), except with subscripts flipped. Further plugging in the expression for t∗2, we obtain

that
∂Ũ1(ζ1,ζ∗2 )

∂ζ1
has the same sign as

−r · σ2(σ2 + ρσ1) · ζ1(ζ1 + ζ∗2 ) + σ2
1σ

2
2(1− ρ2).

Again, by construction the above expression equals 0 when ζ1 = ζ∗1 . As ζ1 increases, this

expression becomes negative and so
∂Ũ1(ζ1,ζ∗2 )

∂ζ1
< 0. Therefore source 1 also has no incentive

to deviate to higher noise.

This argument shows that (ζ∗1 , ζ
∗
2 ) is in fact a strict equilibrium, in the sense that ζ∗i is

the unique best response of source to ζ∗j . Since the game has constant sum of 1 (as total

attention is 1 at every moment), we conclude that (ζ∗1 , ζ
∗
2 ) is the unique equilibrium, pure or

mixed.

H Other Proofs for Section 7

H.1 Proof of Corollary 5

From Proposition 2, we have
ζ∗1
ζ∗2

=
σ1(σ1 + ρσ2)

σ2(σ2 + ρσ1)
,

which is independent of r. This proves Part (d). Subtracting 1 from both sides, we have

ζ∗1
ζ∗2
− 1 =

σ2
1 − σ2

2

σ2(σ2 + ρσ1)
.

The RHS is positive precisely when σ1 ≥ σ2. Thus we deduce that ζ∗1 ≥ ζ∗2 if and only if

σ1 ≥ σ2, as claimed in Part (a).

Moreover, if σ1 ≥ σ2, then as ρ increases the denominator σ2(σ2 + ρσ1) increases, which

implies that the fraction
σ2
1−σ2

2

σ2(σ2+ρσ1)
(on the RHS of the above display) decreases. Thus

ζ∗1
ζ∗2

decreases, and so does
ζ∗1

ζ∗1+ζ∗2
. Conversely, if σ1 ≤ σ2, then an increase in ρ leads to an increase

in source 1’s equilibrium attention
ζ∗1

ζ∗1+ζ∗2
. This proves Part (c).

Lastly we prove Part (b). It suffices to show that
ζ∗1
ζ∗2

= σ1(σ1+ρσ2)
σ2(σ2+ρσ1)

is increasing in σ1. Once

we do this, then by symmetry
ζ∗2
ζ∗1

is increasing in σ2, so that
ζ∗1
ζ∗2

is decreasing in σ2. We have

∂
(
σ1(σ1+ρσ2)
σ2(σ2+ρσ1)

)
∂σ1

=
ρσ2

1 + 2σ1σ2 + ρσ2
2

σ2(σ2 + ρσ1)2

The numerator is positive because it can be written as the sum of σ1(σ2 + ρσ1) and σ2(σ1 +

ρσ2), both of which are positive. This proves Part (b).

57



H.2 Proof of Corollary 6

From Proposition 2, we compute that

ζ∗1 + ζ∗2 =

√
σ1σ2(σ2

1 + 2ρσ1σ2 + σ2
2)(1− ρ2)

r(σ1 + ρσ2)(σ2 + ρσ1)
,

which immediately implies Part (a).

To prove Part (b), suppose σ1 ≥ σ2 and we will show that the RHS above is increasing

in σ1. Ignoring constants, we simply need to show the following expression is increasing in

σ1:
σ1(σ2

1 + 2ρσ1σ2 + σ2
2)

(σ1 + ρσ2)(σ2 + ρσ1)
.

Using σ2
1 + 2ρσ1σ2 + σ2

2 = σ1(σ1 + ρσ2) + σ2(σ2 + ρσ1), this expression simplifies to

σ2
1

σ2 + ρσ1

+
σ1σ2

σ1 + ρσ2

.

Its derivative with respect to σ1 can be computed as

ρσ2
1 + 2σ1σ2

(σ2 + ρσ1)2
+

ρσ2
2

(σ1 + ρσ2)2
.

If ρ ≥ 0, then both terms are positive and we are done. So suppose ρ < 0, in which case the

second term has a negative numerator. Note also that the second denominator (σ1 +ρσ2)2 is

bigger than the first denominator (σ2 + ρσ1)2 since σ1 ≥ σ2. We can thus replace the second

denominator with the first, and obtain the following inequality:

ρσ2
1 + 2σ1σ2

(σ2 + ρσ1)2
+

ρσ2
2

(σ1 + ρσ2)2
≥ ρσ2

1 + 2σ1σ2

(σ2 + ρσ1)2
+

ρσ2
2

(σ2 + ρσ1)2
=
ρσ2

1 + 2σ1σ2 + ρσ2
2

(σ2 + ρσ1)2
.

The numerator is positive since ρσ2
1 + 2σ1σ2 + ρσ2

2 = σ1(σ2 + ρσ1) + σ2(σ1 + ρσ2). Thus Part

(b) holds.

To prove Part (c), we need to show that

(σ2
1 + 2ρσ1σ2 + σ2

2)(1− ρ2)

(σ1 + ρσ2)(σ2 + ρσ1)

is decreasing in ρ. The derivative with respect to ρ is

[−2ρ(σ2
1 + 2ρσ1σ2 + σ2

2) + 2(1− ρ2)σ1σ2] · (σ1 + ρσ2)(σ2 + ρσ1)− (1− ρ2)(σ2
1 + 2ρσ1σ2 + σ2

2)2

(σ1 + ρσ2)2(σ2 + ρσ1)2
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We thus need to show

(1− ρ2)(σ2
1 + 2ρσ1σ2 + σ2

2)2 − 2(1− ρ2)σ1σ2(σ1 + ρσ2)(σ2 + ρσ1)

+ 2ρ(σ2
1 + 2ρσ1σ2 + σ2

2)(σ1 + ρσ2)(σ2 + ρσ1) ≥ 0.

Using σ2
1 + 2ρσ1σ2 + σ2

2 = σ1(σ1 + ρσ2) + σ2(σ2 + ρσ1), this inequality simplifies to(
(1 + ρ2)σ2

1 + 2ρσ1σ2

)
· (σ1 + ρσ2)2 +

(
(1 + ρ2)σ2

2 + 2ρσ1σ2

)
· (σ2 + ρσ1)2 ≥ 0.

We note that 1 + ρ2 ≥ 2|ρ|. Thus it suffices to show(
2|ρ|σ2

1 + 2ρσ1σ2

)
· (σ1 + ρσ2)2 +

(
2|ρ|σ2

2 + 2ρσ1σ2

)
· (σ2 + ρσ1)2 ≥ 0

If ρ ≥ 0, then both terms on the LHS are positive and we are done. Suppose ρ < 0, then

after taking out the common factor 2|ρ| it remains to show

(σ2
1 − σ1σ2) · (σ1 + ρσ2)2 + (σ2

2 − σ1σ2) · (σ2 + ρσ1)2 ≥ 0.

With a little algebra, this inequality is equivalent to

(σ1 − σ2)2 ·
(
σ2

1 + σ2
2 + (1 + 2ρ− ρ2)σ1σ2

)
≥ 0,

which indeed holds because σ2
1 + σ2

2 + (1 + 2ρ− ρ2)σ1σ2 ≥ σ2
1 + σ2

2 − 2σ1σ2 ≥ 0.

I Many Competing Information Providers

Here we demonstrate how the game in Section 7 generalizes to the case of K > 2 competing

information sources. The setup is similar: the reader seeks to learn θ1 + · · · + θK where

the noise level ζi about each θi is controlled by a separate information provider. We assume

the reader’s prior over these attributes is symmetric; specifically, each attribute has prior

variance 1 and each pair of attributes has prior covariance ρ for some ρ ∈ (−1, 1).48

Using the transformation θ̃i = θi
ζi

, we can reduce the reader’s information acquisition

problem to our main model with prior covariance matrix

Σ̃ =


1
ζ21

ρ
ζ1ζ2

. . . ρ
ζ1ζK

ρ
ζ1ζ2

1
ζ22

. . . ρ
ζ2ζK

. . . . . . . . . . . .
ρ

ζ1ζK

ρ
ζ2ζK

. . . 1
ζ2K

 .

48By scaling the attributes, it is straightforward to generalize to the case where prior variances are σ2 and

prior covariances are ρσ2. The upshot is that sources simply scale their noise levels by σ.
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and weight vector α̃ = (ζ1, . . . , ζK)′.

Although Σ̃ does not in general satisfy Assumption 3, it turns out that the optimal

attention allocations can still be characterized in the same way as Theorem 2, thanks to the

symmetry in this problem. Specifically, we have:

Lemma 15. Suppose ζ1 ≤ ζ2 ≤ · · · ≤ ζK. For 1 ≤ k ≤ K − 1, define

tk =
1

1− ρ

k∑
i=1

ζi(ζk+1 − ζi)

and define tK = +∞. Then for any k, the optimal attention allocation is constant at all

times t ∈ [tk−1, tk) and supported on the first k sources, where each source i ≤ k receives

attention proportional to its weight ζi.

Using this result, it is straightforward to solve for the symmetric pure strategy equilibrium

of the game. Indeed, suppose the other sources all choose ζ∗; then, source 1’s payoff when

choosing ζ1 ≤ ζ∗ is given by

1

r

(
1− (K − 1)ζ∗

ζ1 + (K − 1)ζ∗
· e

−rζ1(ζ
∗−ζ1)

(1−ρ)

)
.

Differentiating this w.r.t. ζ1 yields the first-order condition r·(ζ1+(K−1)ζ∗)·(2ζ1−ζ∗) ≤ 1−ρ
at ζ1 = ζ∗, so that ζ∗ ≤

√
1−ρ
Kr

.

On the other hand, by choosing ζ1 > ζ∗, source 1 gets

ζ1

ζ1 + (K − 1)ζ∗
· e

−r(K−1)ζ∗(ζ1−ζ
∗)

1−ρ .

Differentiating w.r.t. ζ1 yields another first-order condition r · ζ1 · (ζ1 + (K − 1)ζ∗) ≥ 1 − ρ
at ζ1 = ζ∗. Thus ζ∗ ≥

√
1−ρ
Kr

, showing such an equilibrium is unique.

Proof of Lemma 15. Fix any stage k and any time t ∈ [tk−1, tk) with tk defined in the lemma.

Then, according to the lemma, the t-optimal attention vector n(t) satisfies

ni(t) =
ζi(ζk − ζi)

1− ρ
+

ζi
ζ1 + · · ·+ ζk

· (t− tk−1), ∀1 ≤ i ≤ k (16)

and ni(t) = 0 for i > k. Conversely, if we can show this vector n(t) is indeed t-optimal, then

the lemma would follow.

Let q denote this attention vector for ease of exposition. To prove q minimizes the

posterior variance function, it is equivalent to check the first-order condition (noting that q

is supported on the first k sources):

∂1V (q) = · · · = ∂kV (q) < min
i>k

∂iV (q).

60



Using Lemma 5, it suffices to show

γ1 = · · · = γk ≥ γk+1 ≥ · · · ≥ γK > 0,

where as usual γ = (Σ̃+diag(q))−1·α̃. Observe that the prior covariance Σ̃ in the transformed

problem can be written as

Σ̃ = diag(ζ)−1 · Σ · diag(ζ)−1,

with Σ being the matrix having “1”s on the diagonal and “ρ” everywhere off the diagonal,

and ζ denoting the vector (ζ1, . . . , ζK)′ (with a slight abuse of notation). From the above

discussion, ζ is also the weight vector α̃.

Thus, we can compute the key γ vector as follows:

γ = (Σ̃−1 + diag(q))−1 · α̃

= (diag(ζ) · Σ−1 · diag(ζ) + diag(q))−1 · ζ

= (Σ−1 · diag(ζ) + diag(q/ζ))−1 · diag(ζ)−1 · ζ

= (Σ−1 · diag(ζ) + diag(q/ζ))−1 · 1,

where we use diag(q/ζ) to denote the diagonal matrix with entries q1/ζ1, . . . , qK/ζK .

We let M denote the matrix Σ−1 · diag(ζ) + diag(q/ζ). Then M · γ = 1, so that

K∑
j=1

Mij · γj = 1, ∀i. (17)

We will use these identities to show that each γj is positive and γ1 = · · · = γk are the largest

coordinates of γ.

In fact, observe that Σ−1 is the matrix with diagonal entries equal to a = 1+(K−2)ρ
(1−ρ)(1+(K−1)ρ)

and off-diagonal entries equal to b = −ρ
(1−ρ)(1+(K−1)ρ)

. Thus from M = Σ−1 ·diag(ζ)+diag(q/ζ)

we deduce

Mij = bζj + ((a− b)ζi +
qi
ζi

) · δj=i,

with δj=i representing the indicator function for the event j = i. Plugging this into (17), we

then obtain (
(a− b)ζi +

qi
ζi

)
· γi = 1−

K∑
j=1

bζjγj, ∀i.

Since the RHS is independent of i, we conclude that γ1, . . . , γK have the same sign and each

γi is inversely proportional to (a− b)ζi + qi
ζi

.

Now recall that γ = (Σ̃−1 + diag(q))−1 · α̃. So α̃′ · γ = α̃′ · (Σ̃−1 + diag(q))−1 · α̃, which is

positive since (Σ̃−1 + diag(q))−1 is a positive-definite matrix. It follows that the coordinates
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of γ cannot all be less than or equal to zero. By the preceding analysis, they must all be

positive. Finally, to show γ1, . . . , γk are equal and larger than the remaining coordinates, it

suffices to consider their inverses, which are proportional to (a − b)ζi + qi
ζi

. From (16) and

a− b = 1
1−ρ we indeed have

(a− b)ζi +
qi
ζi

=
1

1− ρ
· ζk +

t− tk−1

ζ1 + · · ·+ ζk
, ∀1 ≤ i ≤ k.

The RHS is the same for i ≤ k and smaller than (a − b)ζk+1 when t < tk. This completes

the proof that γ1 = · · · = γk ≥ γk+1 ≥ · · · ≥ γK . Lemma 15 follows.
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