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Introduction
Cancer is a ubiquitous problem for multicellular species (1) 

and a leading cause of death in humans (2). Every multicellu-
lar body is a cooperative cellular system, with cells suppress-
ing replication (3), dividing labor (4), sharing resources (5), 
regulating cell death (6) and taking care of the extracellular 
environment (1). However, cooperative systems are suscep-
tible to cheaters, which emerge as cancers in multicellular  
organisms (7). Because cancer cells can outcompete normal 
cells with respect to replication, survival, resource use, and 
other cellular behaviors, natural selection within the body can 
favor cancer cells via somatic evolution.

Cancer has been a strong selective pressure on multicellu-
lar organisms and mechanisms for cancer suppression likely 
co-evolved along with the evolution of multicellularity (8, 9). 
Despite this persistent selective pressure of cancer, species 
vary in their investment in cancer defenses across the tree of 

1Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State 
University, Tempe, Arizona. 2University of Arizona Cancer Center, Tucson, 
Arizona. 3University of Arizona College of Medicine, Tucson, Arizona. 
4Department of Pediatrics and Huntsman Cancer Institute, University 
of Utah, Salt Lake City, Utah. 5Department of Psychology, Arizona State 
University, Tempe, Arizona. 6Genomic Sciences Graduate Program, North 
Carolina State University, Raleigh, North Carolina. 7Institute of Aquatic 
Ecology, Centre for Ecological Research, Debrecen, Hungary. 8Evolutionary 
Ecology Group, Hungarian Department of Biology and Ecology, Babeş-
Bolyai University, Cluj-Napoca, Romania. 9LIENSs, UMR 7266 CNRS-La 
Rochelle Université, La Rochelle, France. 10North Carolina State College 
of Veterinary Medicine, Raleigh, North Carolina. 11Exotic Species Cancer 
Research Alliance, North Carolina State College of Veterinary Medicine, 
Raleigh, North Carolina. 12Wildlife Health Services, Zoological Society of 
London, London, United Kingdom. 13Translational Research Program 
and Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, 
Washington. 14Department of Epidemiology, University of Washington,  
Seattle, Washington. 15Centre for Evolution and Cancer, Institute of Cancer 
Research, London, United Kingdom. 16The North Carolina Zoo, Asheboro, 

life. Sir Richard Peto predicted in 1977 that the risk of can-
cer should scale with the number of cells in an organism and 
the length of its lifespan (10, 11). This prediction is based on 
the fact that tumors evolve from single cells, partially due to 
the accumulation of somatic mutations over time (10). His 
observation that cancer risk does not appear to increase with 
increases in body mass and longevity across species (10), a 
phenomenon known as “Peto’s paradox,” launched the field 
of comparative oncology (12).

Early work in comparative oncology found that birds, and 
to a lesser extent reptiles, develop fewer neoplasms than mam-
mals (13–15). While single case studies have been reported 
(16), it has been difficult to estimate true neoplasia prevalence 
in these taxa. In 2015, we published neoplasia prevalence esti-
mates in 37 mammal species and reported support for Peto’s 
paradox, that is, bigger, longer lived species do not get more 
cancer (17). Follow up studies have supported Peto’s paradox 
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and demonstrated the ubiquity of cancer across mammals 
(18, 19). A recent study of 131 species of mammals with at 
least five necropsies per species, found no relationship be-
tween body mass and neoplasia prevalence, though they did 
observe an increase in both neoplasia and malignancy preva-
lence in 25 species of amphibians and 71 species of squamates 
(bioRxiv 2022.07.12.499088). Our study of 110,148 animals 
across 191 species of mammals found no relationship be-
tween body mass and death due to cancer (18). Other studies 
have applied the same logic of Peto’s paradox to the study of 
cancer rates in different human organs. Organs with more 
stem cells and more cell divisions should get more cancer 
than organs with fewer cell divisions (20–23).

The extensive variation in cancer risk across vertebrates 
provides a unique opportunity to identify species with ex-
ceptional cancer resistance that can lead to new discoveries 
of cancer resistance mechanisms outside the traditional hu-
man and murine studies. Additionally, the discovery of can-
cer vulnerable species could lead to new insights into cancer 
syndromes as well as provide spontaneous “natural” animal 
models of disease that can help us gain a better understand-
ing of various types of cancer and their treatments. Here we 
present a large, curated database of tetrapod veterinary nec-
ropsy records, including 16,049 individual animals across 292 
species of animals, encompassing reptiles, birds, amphibians, 
and mammals. Because necropsies typically are recorded as 
having “neoplasia,” which includes both benign and malig-
nant tumors, we developed a terminology dictionary to dis-
tinguish benign from malignant neoplasms in the necropsy 
reports. We calculate and analyze both neoplasia prevalence 
as well as malignancy (cancer) prevalence. Only a subset of  
benign neoplasms evolve into cancers over a lifetime, so neo-
plasia prevalence is always greater than or equal to malignancy 
prevalence. We also tested for age bias in the animals that died 
with neoplasms or cancers. To test for general mechanisms 
of cancer suppression, we tested for an association with DNA 
damage response or somatic mutation rate and neoplasia.

We think of the cancer prevalence in a species as the  
interaction of the species’ susceptibility to cancer with its  
environmental exposures. The cancer prevalence of a species 
is an aspect of its phenotype, with clear fitness relevance. We  
investigated how that phenotype evolved across the tree of life. 
Traditional models of phenotype evolution include a model 
of neutral evolution [Brownian motion (24, 25)], early diversi-
fication followed by neutral evolution [Early Burst (26)], and 
periods of rapid change on particular branches followed by 
stabilizing selection around new “optimal” phenotypes [The 
Ornstein–Uhlenbeck model (27–29)]. We tested these three 
models to determine that best fit the neoplasm prevalence 
and malignancy prevalence phenotypes across the tree of life.

Results
Variation in Cancer Prevalence across Clades

We found evidence of neoplastic disease in necropsies 
across all analyzed taxonomic clades (Fig. 1A–D). For all verte-
brates, the median prevalence of neoplasia at death was 4.89% 
(range = 0%–62.86%) and median malignancy prevalence was 
3.20% (range = 0%–40.95%). Mammals had the most neoplasia 

at death with a median of 12% (range = 0%–63%) and median 
malignancy prevalence of 7% (range = 0%–41%). Sauropsids, 
which includes Aves and Squamata, followed with a median 
neoplasia prevalence of 4% (range = 0%–39%) and median 
malignancy prevalence of 1.6% (range = 0%–35%). Lastly, am-
phibians had a median neoplasia prevalence of 1.2% (range = 
0%–46%) and median malignancy prevalence of 0% (range = 
0%–33%; Fig. 2A and B). The ranking of prevalence by clade 
is consistent with previous studies (13, 15). In Fig. 2, we have 
shown Aves and Squamata separately, but because reptiles are 
not a monophyletic clade, we have grouped reptiles with birds 
in the Sauropsida clade for the purposes of further analyses. 
Despite a lower mean prevalence for both benign and malig-
nant tumors, sauropsids and amphibians show a wide range 
of neoplastic disease burden across species. There is a small 
but highly statistically significant correlation between the 
prevalence of benign neoplasms and the prevalence of ma-
lignant neoplasms across species (r = 0.34; P < 0.0001; Sup-
plementary Fig. S1). Supplementary Tables S1 and S2 list the 
species with the highest and lowest neoplasia and malignancy 
prevalences, as well as the proportion of neoplasms that are 
malignant. Among the vertebrates with the highest preva-
lence of neoplasia, 63% of ferrets (Mustela putorius) died with 
a neoplasm (45% of which was lymphoma), 56% of opossums 
(Didelphis marsupialis) died with a neoplasm (46% of which 
was in the lung), and 45% of four-toed hedgehogs (Atelerix  
albiventris) died with a neoplasm (42% of which was in the ali-
mentary tract; Supplementary Table S3).

Life History Analyses of Neoplasia and Malignancy 
Prevalence

Evolutionary life history theory provides a framework for 
understanding the tradeoffs governing species’ survival and 
reproduction (30, 31). Life history theory can be used to ex-
plain how species level traits shape organismal cancer risk 
based on trade-offs between investment in somatic mainte-
nance (e.g., cancer suppression) and reproduction or growth. 
Several smaller studies have shown that specific life history 
traits, such as litter size, can help explain some of the vari-
ation in neoplasia prevalence in animals managed under  
human care (19). In this study, we tested for the relationship 
between 14 life history traits and two dependent variables:  
(i) neoplasia prevalence and (ii) malignancy prevalence (Sup-
plementary Figs. S2–S39). We implemented both univariate 
and multivariate models. To control for phylogenetic related-
ness, we used a phylogenetic regression model (pglsSEyPagel, 
available on GitHub). Because each species had a different 
number of necropsies, ranging from 20 to 477, we weighted 
species data points by the number of necropsies in our dataset.

In our univariate analyses, we found a significant positive 
relationship between body mass and neoplasia prevalence 
[2.1% neoplasia per Log10(g), P = 0.007] across all vertebrates 
but no significant relationship between body mass and malig-
nancy prevalence (0.65% malignancy per Log10g, P = 0.287; 
Fig. 3A and B). These results are in contrast to three of the  
four previous studies (bioRxiv 2022.07.12.499088; refs. 17–19) 
published on body mass and cancer prevalence in animals. We 
also found a significant positive relationship between neopla-
sia prevalence and maximum longevity (0.01% neoplasia per  
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Figure 1.  A, Vertebrate species represented in our database overlaid upon the entire vertebrate phylogeny. Neoplasia and malignancy preva-
lence across (B) mammals, (continued on following page) 

Log10 months, P = 0.02; 0.005% malignancy per Log10 months,  
P = 0.276; Fig. 3C and D). Lastly, we found animals with 
longer gestation times also get fewer malignancies (N = 151 
species, −5.3% neoplasia per Log10 months, P = 0.1, −5.65% 
malignancies per Log10 months, P = 0.02; Fig. 3E and F).

Given that the life history traits, such as adult body mass, 
maximum longevity, and gestation time are all positively cor-
related (Supplementary Fig. S40), we implemented multivariate 

models that control for multiple life history factors. These 
multivariate models contained all significant predictors of 
neoplasia or malignancy prevalence (adult mass, maximum 
longevity, and gestation time). We found that both adult body 
mass (2.9% neoplasia per Log10g, P = 0.01) and gestation time 
(−18.6% neoplasia per Log10 month P = 0.0001) provide inde-
pendent information for estimating neoplasia prevalence but 
not longevity (P = 0.12; Supplementary Fig. S41).
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Because gestation time and body mass are correlated  
(r = 0.71; Supplementary Fig. S40) but have the opposite re-
lationship to neoplasia and malignancy prevalence, we tested 
a two-variable model and found that when controlling for 
adult mass [3.8% neoplasia per Log10(g), P = 0.0006], gestation 
time had a significant negative relationship with neoplasia 
prevalence [−15.8% neoplasia per Log10 months, P = 0.0002; 
R2 = 0.20] and vice versa. When controlling for gestation 
time, adult body mass had a significant positive relationship  
with malignancy prevalence [1.9% malignancies per Log10(g), 
P = 0.02], and when controlling for adult mass, gestation time 

also predicts malignancy prevalence (−12% malignancies 
per Log10 months of gestation, P = 0.0002).Body mass and 
gestation time were still statistically significant predictors 
(adjusted P < 0.05) of neoplasia and malignancy prevalence 
after a 5% false discovery rate correction for multiple testing 
(Supplementary Fig. S41).

We validated our results by implementing phylogenetic bi-
nomial regressions (bioRxiv 2022.07.12.499088) on records 
that include the age of the animal (N = 3,022 mammals). 
All the above statistically significant relationships remain 
significant at P < 0.05 level using binomial regressions 
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Figure 1. (Continued) (C) sauropsids (Aves, Squamata, Testudines, and Crocodylia), and (D) amphibians. Silhouetted species indicate that zero 
neoplasms were reported in our data.
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Figure 2.  Distributions of (A) neoplasia (Kruskal–Wallis test: P = 2.906 × 10−12) and (B) malignancy (Kruskal–Wallis test: P = 6.519 × 10−11) prevalences 
are different across four clades, Amphibia, Mammalia, Aves, and Squamata. Dots show the estimated species neoplasia prevalence and bars show the 
median for the clade. Neoplasia and malignancy prevalence for species were calculated by the proportion of the reported lesions among the total number 
of necropsies for that species. N indicates the number of necropsies in each clade.

(Supplementary Table S4). In addition, binomial regressions 
reveal a significant positive relationship in mammals between 
body mass and neoplasia [OR = 9.5% neoplasia per Log10(g),  
P = 0.012 but P = 0.06 with PGLS], as well as malignancy 
prevalence [OR = 1.5% malignancy per Log10(g), P = 0.015 but  
P = 0.458 with PGLS; Supplementary Figs. S16 and S17]. 
Within mammals the relationship between longevity and 
neoplasia prevalence (OR = −0.50 neoplasia per Log10 month 
lifespan, P = 0.14) or malignancy prevalence (OR = 0.21 ma-
lignancy per Log10 month lifespan, P = 0.57) were not statis-
tically significant. Within mammals, analyses of adult body 
mass and gestation time together showed the same relation-
ships as all vertebrates [OR = −18% neoplasia and −15% malig-
nancy per Log10 months of gestation, P = 0.036 and P < 10−10; 
3.4% neoplasia and 2.6% malignancy per Log10(g) of adult 
body mass, P = 0.017 and 0.0066, respectively, with PGLS; 
Supplementary Figs. S38 and S39]. The positive relationship 
between body mass and neoplasia/malignancy prevalence 
were even stronger with binomial regressions [OR = 14% 
neoplasia and 14% malignancy per Log10(g) adult body mass,  
P = 0.002 and P = 0.0035]. Similarly, the binomial regression 
revealed gestation time had a significant negative relation-
ship with neoplasia/malignancy prevalence (OR = −44% neo-
plasia and −48% malignancy per Log10 months of gestation, 
P = 0.0009 and 0.001).

Overall, we found no evidence of a relationship between 
litter or clutch size and neoplasia prevalence (Supplementary 
Figs. S2 and S3). However, when we restrict the analysis 
to mammals, litter size is positively associated with both 
neoplasia and malignancy prevalence (neoplasia: P = 0.02,  
R2 = 0.07; malignancy: P = 0.03, R2 = 0.11; Supplementary Figs. 
S19 and S20), supporting our earlier analysis of 37 mammals 
from the San Diego Zoo (19). In birds, larger clutch size is 
also associated with higher neoplasia and malignancy preva-
lence (32). We also found that time to sexual maturity, growth 
rate, and basal metabolic rates (which were only available for 
mammals) were not significant predictors of neoplasia or  
malignancy prevalence (Supplementary Figs. S7–S10, S13, 

S14, S23, and S24). In addition to calculating the prevalence 
of neoplasms and malignancies, we also calculated the pro-
portion of neoplasms that were malignant, which for some 
neoplasms is a measure of the likelihood that a benign neo-
plasm transforms into a malignant one. We found no statisti-
cally significant relationships between any of those life history 
factors and the proportion of neoplasms that were malignant 
(Supplementary Figs. S42–S53).

DNA Damage Response and Somatic Mutation Rates
DNA damage response is an important anticancer mecha-

nism. Accurate repair of damaged DNA or clearance of dam-
aged cells through apoptosis ensures that mutations capable 
of driving tumorigenesis do not persist or accumulate. For 
example, we previously reported that increased apoptosis in 
response to DNA damage in elephant cells was associated 
with low cancer mortality (17). To determine if DNA dam-
age response is a general mechanism of cancer defense across 
species, we measured the ability of primary fibroblasts from 
15 species to respond to DNA damage (Fig. 4A; Supplemen-
tary Figs. S54–S68). DNA damage response was assessed by 
measuring cell cycle arrest, which halts cell division until 
damage is repaired, and apoptosis, which kills cells that can-
not be repaired. (17, 33). We hypothesized that animals with 
less neoplasia and malignancy would respond more robustly 
to DNA damage. Cell cycle arrest in response to increasing 
doses of ionizing radiation and apoptosis in response to in-
creasing doses of a chemotherapeutic drug (doxorubicin) was 
measured over time. We observed variability in DNA damage 
response across the species that we tested and this variabil-
ity was not associated with neoplasia or malignancy (Fig. 4A; 
Supplementary Figs S54–S68), although cell cycle arrest in re-
sponse to 10 Gy radiation trended toward an association with 
neoplasia prevalence (Fig. 4A).

Perhaps the most important role of DNA damage response 
is the suppression of somatic mutation accumulation, because 
mutations drive tumor formation and cancer progression 
(22, 34, 35). Therefore, we hypothesized that lower somatic 
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mutation rates across species would correlate with lower 
cancer prevalence. We obtained previously reported somatic 
mutation rates from nine species in our dataset and tested 
for a correlation with neoplasia prevalence (36). Mutation 
rates had been estimated based on dividing the number of 
mutations detected in DNA sequencing of single colonic 
crypts by the age of the animal (36). We discovered a positive 
association between somatic mutation rates and neoplasia 
prevalence and that species with fewer somatic mutations 
also developed less neoplasia (Fig. 4B; PGLS P = 0.0059). We 
also observed a similar trend for somatic mutation rates and 
malignancy prevalence but it was not statistically significant 
(Supplementary Fig. S69, PGLS P = 0.087).

Age at Death with Cancer in Animals
Age is the single biggest risk factor for the development of 

cancer in humans (37). Most mechanisms of somatic main-
tenance, including immune cell surveillance, DNA damage 
response, and telomere shortening, decrease in efficacy as we 
age (38–42). To test if observed neoplasms in animals under 
human care may be due to the animals living beyond their 
natural lifespans, we plotted the age of the animals with neo-
plasia at death, compared to the animals that died without 
neoplasms, scaled by their average lifespan (Fig. 5A–F). The 
vast majority of animal deaths with neoplasia diagnoses occur 
before the average lifespan in most animals. Only amphibians 
seem to be developing more neoplasms as they live past their 
normal lifespan under human care (Fig. 5C). The distribution 
of tumor diagnoses across lifespan in these three clades also 
demonstrates that cancer is not limited to a disease solely of 
extended lifespan, and in sauropsids, neoplasia is not particu-
larly a disease of old age (Fig. 5B).

Evolution of Cancer Suppression and 
Susceptibility

Comparative phylogenetics provides a wealth of computa-
tional tools to model species’ trait evolution across a phylog-
eny (24). To explore how cancer susceptibility evolved across 
the tree of life (Fig. 6A–C), we fit three of the most common 
phenotype evolution models (Ornstein–Uhlenbeck, Brown-
ian Motion, and Early Burst) to neoplasia prevalence as a  
continuous trait. We found that a model of stabilizing selec-
tion on neoplasia prevalence (Ornstein–Uhlenbeck) fits the 
distribution of neoplasia prevalence the best (Supplementary 
Table S5). Malignancy prevalence evolution is also best ex-
plained by the Ornstein–Uhlenbeck model of sudden shifts 
followed by stasis in the phenotype.

Discussion
We estimated cancer prevalence across a wide range of 

tetrapod species that includes mammals, amphibians, rep-
tiles, and birds. Importantly and contrary to previous stud-
ies, our analyses highlight limitations to Peto’s paradox, by 
showing that large animals do tend to get somewhat more 
neoplasms and malignancies when compared with smaller 
animals. The observation that larger animals tend to get 
more cancer was only apparent when we used a binomial  

regression or controlled for the fact that animals with lon-
ger gestation times tend to get both fewer neoplasms and 
fewer cancers. Previous studies, including ours, likely missed 
this relationship because it has a small effect; most previ-
ous studies involved fewer species and they did not control 
for gestation time (bioRxiv 2022.07.12.499088; refs. 18, 19). 
Large animals only get slightly more cancer than small ani-
mals. Whether or not they get as much cancer as one would 
expect from their body size and longevity depends on the 
model one uses to predict cancer prevalence as a function of 
body mass (43–45).

A previous study on 191 mammal species found that lon-
ger gestation lengths protect against cancer mortality (46). 
Our findings also show that longer gestation periods predict 
neoplasia and cancer prevalence across animals, with species 
that have longer gestation periods exhibiting lower rates of 
malignancy. There are multiple hypotheses to explain the 
link between gestation length and cancer risk. First, from a 
life history perspective, animals with longer gestation lengths 
may be “growing slow” to invest more resources toward somatic 
maintenance during fetal development, including cell cycle 
regulation and differentiation, thereby reducing their vul-
nerability to cancer. Notably, some of the species reported 
to get very little cancer, such as Cetacea (e.g., dolphins and 
whales) and Chiroptera (e.g., bats), are also exceptions to the 
typical relationship between gestation length and body size 
(bioRxiv 2023.10.22.563491). This uncoupling of life history 
traits could help explain the observed link between cancer risk 
and gestation length in our study. Additionally, this “slow 
growth” during fetal development may also prevent “jackpot” 
somatic mutations in gestation, which expand to large clones 
through the process of development and can significantly 
contribute to the risk of progressing to cancer later in life  
(47, 48). Another consideration is that species with longer 
gestation lengths may have reduced genomic conflict. Addi-
tionally, mammals with long gestations typically have sin-
gleton births (bioRxiv 2023.10.22.563491). Long gestation 
periods with one offspring allow for more effective maternal– 
fetal communication and regulation, reducing conflicts be-
tween maternal and paternal alleles that can lead to cellular 
dysregulation and cancer (49). Lastly, it may be the case that 
hormonal exposures during pregnancy help protect against 
cancer in the mothers, as we see for some forms of cancer in 
humans (50, 51). This last hypothesis could be tested by ex-
amining the relationship between gestation time and cancer 
in females versus males, across species.

Cancer prevalence across species varies greatly. Here we 
have used a large collection of species, and expanded our 
analyses beyond mammals (17–19), to test for patterns in 
cancer prevalence. We only include species with at least 20 
necropsies (median 35), compared with 10 individuals per 
species in our original study (17), and weighted species more 
in our regression analyses if their cancer prevalence estimate 
is more accurate because it is based on more necropsies. In 
a similar study by Bulls and colleagues, they also found a 
positive relationship between body size with both neoplasia 
and malignancy prevalence in amphibians and squamates 
when restricting their data to species with at least five nec-
ropsies (bioRxiv 2022.07.12.499088). Further, a reanalysis 
of cancer mortality data from Vincze and colleagues (18)  
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Figure 3.  Significant life history factors associated with neoplasia and malignancy prevalence. A, Larger organisms have a higher neoplasia 
prevalence than smaller organisms (2.1% neoplasia per Log10g adult body mass, P = 0.007, R2 = 0.26, λ = 0.46). B, Larger organisms may have a 
higher malignancy prevalence than smaller organisms but it is not statistically significant when we do not control for gestation time (0.65% malignancies 
per Log10g adult body mass, P = 0.29, R2 = 0.28, λ = 0.61). C, Longer lived organisms have more neoplasia (0.01% neoplasia per Log10 month lifespan,  
P = 0.02, R2 = 0.19, λ = 0.34). (continued on following page) 

across 189 species found that larger animals were more likely 
to die due to cancer than smaller mammals [3% cancer mor-
tality per Log10(g), P < 0.001]. Using a binomial regression, 
both our data and from Bulls and colleagues found a neg-
ative relationship between neoplasia and longevity, but 
this relationship is nonsignificant in our dataset (bioRxiv 
2022.07.12.499088).

The fact that neoplasia prevalence seems to evolve by sud-
den shifts followed by stabilizing selection (the Ornstein–
Uhlenbeck model of phenotypic evolution) is consistent with 
life history theory predictions that investment in somatic 
maintenance should be under selection in specific ecological 
conditions (30), rather than drifting neutrally consistent with 
random Brownian motion. We hypothesize from these results 
that changes in cancer suppression may be due to large–if 
rare–changes in genomic architecture and/or their ecology 
that changes the tradeoffs with cancer suppression. These ap-
parent changes in the investment in –cancer suppression may 

help pinpoint the mechanisms of cancer suppression adapta-
tions in those lineages. Some of the variation in cancer preva-
lence may be noise, due to estimating cancer prevalence from 
tens of individuals. However, much of that variation comes 
from the vast diversity of species across amphibians, reptiles, 
birds, and mammals. We have explained only a small portion 
(∼20%) of the variation in species vulnerability and suppres-
sion of cancer. There is clearly more to be discovered.

Peto’s paradox is based on the expectation that large, 
long-lived animals should get more cancer because they have 
more cells that divide for a longer amount of time, increas-
ing the likelihood that cancer will arise (10, 12). Compara-
tive oncology studies have used body mass as a proxy for the 
number of cells in an animal (bioRxiv 2022.07.12.499088; 
refs. 18, 19, 44). This is reasonable because cell sizes vary lit-
tle across animals, with the exception of adipocytes (52, 53). 
Future studies might benefit from more rigorous measures 
and modeling of cell numbers (as well as turnover rates and 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-24-0573/3512041/cd-24-0573.pdf by Arizona State U

niversity user on 24 O
ctober 2024

http://AACRJournals.org


RESEARCH ARTICLECancer across Vertebrates

XXX 2024 CANCER DISCOVERY | OF9

stem cell numbers) across species. Although adult body mass 
is positively correlated with both neoplasia and malignancy 
prevalence, partially resolving Peto’s paradox, the effect size is 
larger for neoplasia (2.1% neoplasia per Log10g) than for ma-
lignancies (1.9% malignancies per Log10g), when controlling 
for gestation time. Without controlling for gestation time, 
the association between adult body mass and malignancy 
prevalence is not strong enough to be statistically significant. 
To be precise, Peto’s paradox only relates to cancers, not be-
nign neoplasms, so the stronger relationship between body 
mass and neoplasia prevalence does not resolve the paradox.

There may be several explanations for the stronger associa-
tion of body mass with neoplasia prevalence than malignancy 
prevalence. The simplest is that malignancies are less com-
mon than neoplasms, which include both benign and malig-
nant neoplasms. This reduces the statistical power and the 
expected size of the effects. However, the blunted relationship 
between body mass and malignancy prevalence may also be 

due to natural selection acting to evolve mechanisms to sup-
press malignant transformation. Cancer suppression mecha-
nisms are likely under stronger selection among these larger 
and longer lived organisms because it was critical to suppress 
cancer for longer in order for these organisms to successfully 
reproduce. Thus, we might expect a relatively constant can-
cer rate across species with more cancer suppression mecha-
nisms in large, long-lived organisms (7, 17, 54–58) and fewer 
in small, short-lived organisms.

Further, there are at least four transitions in neoplastic 
progression that natural selection might alter to increase 
the survivability of cancer in a species: (i) initiation of a neo-
plasm, (ii) transformation of that neoplasm into malignancy 
(i.e., invasion through the basement membrane), (iii) metas-
tasis, and (iv) death caused by the cancer. Our data relate to the 
first two transitions. Specifically, we quantify the prevalence of 
neoplasms in a species, the prevalence of malignant neoplasms, 
and the proportion of neoplasms detected that are malignant.  
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However, the selective pressure of cancer is ultimately due 
to its effects on mortality and so quantifying the prevalence 
of cancer as a cause of death is also important for evolution-
ary studies of comparative oncology (18). The discrepancy 
between our earlier analysis of a different data set of 191 
mammal species, which found no relationship between body 
mass and cancer mortality, and our current results may be at-
tributed to at least three differences: (i) here we analyze cancer 
prevalence, not cancer mortality, (ii) our current results are 
based on all vertebrates, not just mammals, and (iii) in our 
previous analyses, we separately analyzed the chance that a 
species had non-zero cancer mortality and then tested for a 
relationship between log body mass and cancer mortality in 
species with non-zero cancer mortality, so that the species 
with very low cancer mortality (zero in that sample) were ex-
cluded from the second analysis.

To test for general mechanisms of cancer defense across 
species, we included cross-species functional assays high-
lighted in Fig. 4A. Our results demonstrate variation in the 
fibroblast response to radiation and chemotherapy induced 
DNA damage. Here we provide the first test of association 
between DNA damage response and cancer prevalence across 
species. While response to DNA damage was not a signifi-
cant predictor of neoplasia or malignancy prevalence after 4 

or 10 grays radiation, the trend follows our hypothesis that 
sensitivity to DNA damage may be one mechanism of cancer 
suppression (17). As we continue to accumulate DNA damage 
response data across more species and more individuals from 
each species, future studies may reveal a clear relationship. 
On the other hand, the variation in DNA damage response 
may suggest that different species evolved unique mecha-
nisms of cancer suppression and, in some cases, they do not 
require enhanced DNA damage response. For example, some 
species may rely more on enhanced mechanisms of immune 
surveillance, thereby eliminating a relationship between DNA 
damage response measurements and neoplasia or malignancy 
prevalence.

However, related to DNA damage response, we did find a 
connection between somatic mutation rates (36) and neoplasia 
prevalence (Fig. 4B). This result is consistent with the known 
importance of somatic mutations in carcinogenesis (21–23, 35, 
59–61). Even with only nine species in our analysis, a strong 
relationship between somatic mutation rate and neoplasia 
prevalence was apparent. This relationship should be vali-
dated with the addition of both more somatic mutation rate 
data and more cancer prevalence data. Furthermore, future 
research should determine what mechanisms evolved in some 
species to suppress the accumulation of somatic mutations.  
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Figure 5.  The density distribution of ages at death in animals with neoplasia vs. non-neoplasia, adjusted for each species’ lifespan as specified in 
PanTHERIA. While the distributions of ages at death are different between necropsies showing neoplasia vs. those that do not (two-sample Kolmogorov– 
Smirnov test: (A and B) Mammals: D = 0.11, P = 1.81 × 10−6; (C and D) Sauropsids: D = 0.18; P = 4.48 × 10−8; (E and F) Amphibians: D = 0.5, P = 0.011);  
we found few neoplasms that could be explained by an organism living an extraordinarily long time in captivity, except in amphibians. We only had 
seven amphibians with a malignancy at death, one of which lived past its normal lifespan, so the shape of the distribution in F is noisy.
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Potential mechanisms include prevention of DNA damage, 
accurate repair of DNA damage, death of damaged cells, or 
use of high fidelity DNA polymerases (17, 62–64).

Insights from Comparative Oncology for Human 
Cancers

Species with a high prevalence of particular cancers may 
help to generate targeted studies to elucidate the biological 
basis of those cancers, help draw informative parallels to  
particular cancer syndromes in humans, and serve as more 
realistic models for studying those cancers (65). For instance, 
46% of the malignant tumors diagnosed in the opossum  
(Didelphis marsupialis) were lung adenocarcinomas (Supple-
mental Table S7), which is a leading cause of human cancer 
mortality in the United States (66). Forty-five percent of the 
cancers in four-toed hedgehogs (Atelerix albiventris) were gas-
trointestinal cancers, mostly oral squamous cell carcinomas 
(67). They may hold insights for oral cancer. Forty-two per-
cent of cancers in ferrets (Mustela putorius) were lymphomas, 
which may make them a good animal model for that disease. 
These spontaneous cancers may be more similar to human 
cancers compared to those that develop in genetically engi-
neered mouse models, though that remains to be tested.

There is an exciting opportunity to discover cancer suppres-
sion mechanisms in species with few to no observed neoplasms 
and in species that seem to prevent benign neoplasms from pro-
gressing to malignancy (Fig. 1). For example, the paucity of neo-
plasms in dolphins and porpoises may result from having large, 
long-lived cetacean ancestors that were under strong selection to 
suppress cancer (54). Our earlier analysis of cancer gene evolu-
tion in cetaceans found evidence of positive selection in a large 
number of tumor suppressor genes and proto-oncogenes (54).

We previously found that animals that live longer than 
would be expected for their body size, like bats, tend to have 
more copies of tumor suppressor genes (68). In support of 

these observations, we found nine bats, with an average lifes-
pan of 16 years, have low neoplasia prevalence. We had hoped 
to discover species that are able to prevent malignant trans-
formation by finding species that get a fair number of benign 
neoplasms but few to no malignant neoplasms. The common 
paradigm in understanding the evolution of cancer suppres-
sion emphasizes the importance of protecting against tumor 
initiation. However, mechanisms that suppress malignant 
transformation could be similarly important in maintaining 
an organism’s fitness. Unfortunately, only a few species in our 
data set fit that description. The species with the lowest pro-
portion of malignant to benign neoplasms was the common 
squirrel monkey (Saimiri sciureus), with only 12% of their tu-
mors being malignant.

Challenges for Comparative Oncology
There are a number of potential sources of bias in compar-

ative oncology data. Similar to humans, there are likely both 
intrinsic genetic predispositions and extrinsic environmental 
exposures that play a role in cancer initiation and develop-
ment in animals in our study. The diverse range of species in 
our data poses challenges in generalizing explanations for 
cancer trends. Understanding the etiology for the cancer- 
prone species is a major next step and can help reduce some 
of these biases.

Some species could live longer in zoological institutions, 
thereby unmasking a vulnerability to cancer at an age that 
they would be unlikely to attain in the wild. For example, an 
extended lifespan in managed care may be an explanation 
for the high prevalence in some species, especially for short-
lived species that tend to benefit more from living in zoos 
(69). For two species that had some of the highest reported 
neoplasms in our study, Virginia opossums and domestic 
hedgehogs, the etiology of their cancers is unknown (70, 71). 
However, if extended lifespan were the only factor, we would 
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not expect to see such a high prevalence of the same diagnoses  
(e.g., squamous cell carcinoma of the oral cavity in hedgehogs 
and pulmonary adenocarcinoma in opossums), suggesting 
there could be other components such as a genetic predispo-
sition, viruses, or submission bias. Further, we would expect 
the effects of extended lifespan to only impact a small sub-
set of animals with high predation in the wild. Supporting 
our conclusions, Fig. 5 shows that the neoplasms were diag-
nosed prior to average lifespan in most cases, suggesting that 
extended lifespan due to managed care is not a large factor 
in these data. In fact, one unexpected finding was that neo-
plasms appear in birds and reptiles at relatively young ages,  
although some birds such as chickens are known to be prone to 
virally induced cancers when they are young (72). In our data, 
sauropsids and amphibians, but not mammals, sometimes 
substantially out-live their estimated lifespans (Fig. 5A–F).  
These results may be due to differences in how lifespans 
have been estimated for mammals versus non-mammals.

We hypothesized the highest cancer rates in our dataset 
might be due to a particular viral etiology or environmen-
tal mismatch, especially if it is a single specific cancer type. 
Our data comes from species living in artificial conditions 
of managed populations, sometimes called an evolutionary 
mismatch (73). These animals were generally protected from 
predators, provided with veterinary care, had different diets 
and exercise from their wild counterparts, many lived in an 
urban environment, and interacted with different species 
and microbes than a free-ranging animal. Novel conditions 
could contribute to cancer risk for some species that would 
normally not be exposed to such conditions in the wild. 
However, when we excluded species with the highest neopla-
sia or malignancy prevalences, the statistical significance of 
our results did not change (Supplementary Fig. S70). It is 
striking to us that four of the species with the lowest prev-
alence of neoplasms in our data set, the gray squirrel, the 
common dormouse, the striped grass mouse, and the com-
mon field vole are all from wild, urban populations. These 
necropsies come from the London Zoo that has a policy 
of performing a necropsy on any animal they recover that 
dies on its grounds, not just the animals under its care. This 
is a hint that cancer may well be less common in the wild,  
although this observation may be dependent on the species 
and their wildlife habitat (74).

Infections or exposures to viruses can explain the high can-
cer prevalence among certain species. For example, lymphoma 
in koalas has been linked to viral infections (75). In our study, 
lymphomas were common in ferrets, however an infectious 
etiology was not documented. There is some speculation that 
retroviruses are linked to lymphoma in ferrets (76). However, 
infections are often identified or suspected by veterinarians 
during physical examinations and postmortem analyses. His-
topathology would identify lesions that are suggestive of viral 
origin and infections would be confirmed through PCR anal-
yses, so it is unlikely that infections alone are driving these 
high rates of cancer in ferrets. We cannot completely dismiss 
the possibility of a genetic predisposition contributing to 
the high prevalence of cancer in these cases. Future research 
should focus on species with both a high cancer incidence and 
a significant proportion of cases stemming from a single diag-
nosis to investigate potential genetic predispositions.

To reduce potential sampling bias, we restricted our data 
to Association of Zoos and Aquariums (AZA)–accredited 
institutions, which are encouraged to necropsy all animals 
that pass away under their care. However, if the “gross” cause 
of death was obvious for an animal, an institution may not 
have submitted the animal’s samples for histopathology and 
would not be included in our data collection. Similarly, if a 
particular type of neoplasia is difficult to detect in a necropsy 
(including some leukemias and intracerebral tumors) or was 
only present at a microscopic level, it may have been under-
counted. Ninety-four percent of our necropsies were evalu-
ated by a single pathology laboratory, limiting the potential 
for bias in diagnosis due to using different laboratories.

If cancers regularly regress prior to death, we would under-
estimate cancer prevalence in those species. However, cancer 
regression without treatment is exceedingly rare in veterinary 
experience and has only been consistently reported in a few 
species: melanoma in pigs (77) and benign histiocytoma in 
dogs (78, 79).

The functional assays also had some limitations. Currently, 
the most available cell type from animals is fibroblasts, and 
as more cell lines become available in the future, it will be 
important to test DNA damage response in other cell types. 
Additionally, with more sample availability in the future,  
important biological factors can be controlled for, like age 
and sex. The data analyzed here represent the first attempts 
to determine if mechanisms of cancer suppression are shared 
across species, and our data suggests that suppression of  
somatic mutations may be a common defense mechanism.

The Future of Comparative Oncology
In the future, it will be important to collect additional data  

to validate our discoveries of species with particularly low and 
high cancer prevalence, such as those highlighted in Fig. 1.  
Several life history traits, such as basal metabolic rate (BMR), 
may explain cancer risk but with BMR measured in only a few 
species, we lacked statistical power to detect a relationship with 
neoplasia or malignancy prevalence. Here we have dramatically 
expanded the amount of data on cancer prevalence in non- 
human animals, but the accumulation of data must continue 
if we are to match the robustness seen in human cancer epide-
miology. In particular, much could be learned from analyzing 
the age-incidence curves of cancer (18, 80) but that would  
require significantly more individuals for each species.

There is a large gap in comparative oncology data on wild 
animals. Gathering data from free-ranging populations is 
challenging, as it is difficult to detect cancer due to the an-
imals decomposing or being eaten before they can be nec-
ropsied. Additionally, accurate age estimates are much more 
difficult to obtain in wild populations compared to those 
managed by humans. However, wild animal populations would 
greatly enhance the field of comparative oncology by validat-
ing species that have low cancer prevalence and testing for 
evolutionary mismatches for animals in captivity.

Conclusion
Cancer is a problem of multicellularity (1). While we found 

a relationship between both body mass and gestation time 
with cancer prevalence, we are just beginning to discover 
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patterns of cancer susceptibility and cancer defenses across 
species. It is likely species evolved a variety of mechanisms to 
suppress cancer. The discovery of particular species with 
extremely low neoplasia prevalence provides opportunities 
to elucidate cancer suppression mechanisms that are com-
patible with life and reproductive success. Investigation of 
species with extreme vulnerability to a particular cancer may 
also help us understand those cancers as well as human syn-
dromes that predispose to those cancers. We hope to learn 
from nature how to better prevent cancer in both humans and 
non-human animals.

Methods
Analysis of Veterinary Necropsy Records

We collected necropsy records with permission from 99 zoologi-
cal institutions, aquariums, and other facilities that house animals 
under managed care. Gross necropsies had all been conducted by vet-
erinarians who specialize in nondomestic species and neoplasia was 
identified histologically by board-certified veterinary pathologists. 
Ninety-four percent of the histopathology from the necropsies in our 
dataset was evaluated by a single pathology laboratory, the others 
were evaluated by just two other pathology laboratories. Cases where 
suspect neoplasms were not examined histologically were excluded 
from the dataset. We used a terminology dictionary (Supplementary 
Table S6) to distinguish benign from malignant neoplasms based on 
the diagnoses in the necropsy reports. We excluded neonatal records 
to reduce bias from high levels of neonate and infant mortality that is 
common in many species. Because only common names were record-
ed for most records, we developed a tool, kestrel, to translate common 
names into scientific names which is available at https://pkg.go.dev/
github.com/icwells/kestrel.

All of the institutions that provided prior approval for the use of 
their data in these analyses are AZA accredited. AZA accreditation en-
courages the institution to perform a necropsy on all animals that 
die under their care to determine cause of death and to monitor mor-
bidity and mortality of each species. Furthermore, each institution 
had Institutional Animal Care and Use Committee approval with 
the Exotic Species Cancer Research Alliance and the Arizona Cancer 
and Evolution Center for the use of their deceased animal’s records 
of animals with neoplasia for use in this study. Previous analyses 
included both necropsies for animals diagnosed with neoplasia and 
animals that were still alive (18). In this study, we restricted our anal-
yses to only necropsies—for both cancer and non-cancer diagnosed 
animals—because alive animals may have undetected cancer or might 
be eventually diagnosed with cancer, thus skewing estimates in cancer 
prevalence.

Comparative Phylogenetic Methods in Comparative Oncology
Interspecies comparisons must account for the shared ancestry and 

the constraint of natural selection on species’ traits before a determi-
nant of any correlations can be made. For the life history models of 
neoplasia and malignancy prevalence, the R programming packages  
(RRID:SCR_001905) “phytools” (81), “ape” (82), and “caper” (83) 
were all used for phylogenetic comparisons and the handling of phy-
logenetic data. To accomplish this, we wrote the function pglsSEyPagel  
which is built upon phytool’s pglsSEy (phylogenetic generalized 
least squares for uncertainty in Y). pglsSEyPagel expands upon the 
pglsSEy function by adding the estimate of Pagel’s lambda (84) to the 
regression, rather than assuming it is fixed at 1 (i.e., Brownian mo-
tion). Because malignancy and neoplasia prevalences are constrained 
to the unit interval and many are close to zero, we transformed the 
prevalence with the standard arcsine-square root but that did not 

change the statistical significance for any of our analyses. We have 
reported the untransformed regressions for ease of interpretation 
(Supplementary Fig. S71). Compar.gee is another method from the 
“ape” package that utilizes phylogenetic input but uses a General-
ized Estimating Equation to carry out binomial regressions (bioRxiv 
2022.07.12.499088) that take into account the sample size for each 
species. The P values for malignancy and neoplasia prevalence varied 
minimally when univariate tests for body mass, longevity, and gesta-
tion length were conducted. We did see larger coefficients with the 
results from this model (see Supplementary Table S4).

In order to validate our pglsSEyPagel findings, we carried out a boot-
strap analysis. For each species, we randomly selected half of its indi-
vidual records to be aggregated at the species level. Each re-sample 
would then be regressed using pglsSEyPagel, testing for the relation-
ship between malignancy prevalence or neoplasia prevalence and the 
chosen life history variable. This iterative process was repeated 100 
times each for body mass, longevity, and gestation length. Addition-
ally, we controlled our pglsSEyPagel results by individual age for those 
which age records available, instead of depending upon longevity re-
cords from life history databases. Values did change but conclusions 
remained the same (see Supplementary Table S7).

Testing for Relationships with Life History Factors
We extracted data for maximum lifespan, adult body mass, basal 

metabolic rate, gestation length, litter size, time to sexual maturity, 
and growth rate from PanTHERIA, AnAge, and Amniote (85–87). 
We used a weighted phylogenetic regression to control for non- 
independence of phenotypes (e.g., neoplasia prevalence) in closely 
related species. We report the phylogenetic signal, lambda, for each 
analysis, along with the P value and R2. Due to the nature of the PGLS 
model, R2 is not a standard output. To report the fit of the model, 
we employed a pseudo R2 approach using the “rr2” R package. The 
function “R2” from the package can utilize phylogenetic relationships 
within the R2 calculation. A single phylogenetic tree encompassing 
the three clades was collected from timetree.org. We pruned the tree 
to the 292 species in our data set using the setdiff and keep.tip/drop.
tip functions in the APE R package. Estimates for neoplasia and 
malignancy prevalence are more accurate in species with more nec-
ropsies. To address the differences in number of necropsies and to 
limit the noise from prevalence estimates based on few individuals, 
we weighted the species data points by the square-root of the number 
of necropsies records we have. Our R code for all analyses and fig-
ures included in this manuscript is freely available at https://github.
com/zacharycompton/cancerAcrossVertebrates.git or at https:// 
codeocean.com/capsule/7079513/tree/v1. The key files are species- 
cancer-prevalence-data.csv along with the data-description-min20.txt 
file that provides the documentation for the meaning of each column 
in the data file. In addition, we only analyzed species for which we 
had at least 20 necropsy results [previous studies had used 10 (17) 
or 20 (18, 19) for the lower bound number of individuals]. The main 
pglsSEyPagel analyses were done with all species together, including 
mammals, sauropsids, and amphibians. In the analyses of litter size 
and gestation time, we also tested for a relationship with neoplasia 
prevalence in mammals alone. We carried out a total of 28 pglsSEyPagel 
analyses. To control for multiple testing, we used a false discovery  
rate of 5%.

DNA Damage Response Assays
Established, primary cells from mammals were obtained from 

San Diego Zoo Wildlife Alliance Frozen Zoo [capybara, Linnaeus’s 
(also called Linne’s) two-toed sloth, red-necked wallaby, rock hyrax, 
Rodrigues fruit bat, six-banded armadillo, southern white rhinoc-
eros, and Virginia opossum] or generated at Huntsman Cancer In-
stitute from tissues collected from four-toed hedgehog (also known 
as African pygmy hedgehog), ferret, domestic rabbit, leopard, Asian 
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elephant, and Cape hunting dog. Brown rat (Cell Applications)  
fibroblasts were obtained from the indicated commercial source. Ex-
periments were performed on cells passaged 20 or fewer times from 
initial establishment. San Diego Zoo Wildlife Alliance Frozen Zoo 
karyotypes all established primary cells to confirm species source. 
Experiments were initiated within 3 months of obtaining or gener-
ating cells and completed within 1 to 5 years. Cells routinely tested 
negative for mycoplasma as measured by MycoAlert Mycoplasma De-
tection Kit (Lonza). In order to include more species in our analysis 
of DNA damage response, we included species with a minimum of 10 
necropsies. Detailed information on primary donor demographics, 
passage numbers, and dates obtained can be found in Supplementary 
Table S8. Cells were seeded in 96-well plates at 2,000 cells per well 
in cell growth media and allowed to adhere overnight. The following 
day, doxorubicin was added at one of four concentrations [0 µmol/L 
(DMSO vehicle control), 0.11 µmol/L, 0.33 µmol/L, and 1 µmol/L]. 
Each condition was tested in triplicate in three separate experiments. 
Cell proliferation and apoptosis were measured by real-time fluores-
cence microscopy (IncuCyte, Sartorius) at 2-hour intervals for 3 days. 
Apoptosis was measured using a fluorescent cell death marker, An-
nexin V dye (Sartorius). Images were processed and analyzed using 
IncuCyte software. The number of dead or dying cells was identified 
by counting Annexin V positive cells. In addition, cell count overtime 
was calculated using IncuCyte cell-by-cell software. To measure re-
sponse to radiation-induced DNA damage, cells were irradiated with 
one of four doses: 0, 0.4, 2, and 10 Gy. Radiation dose was delivered 
using an RS-2000 X-Ray Irradiator (Radsource). Cells were then seed-
ed in 96-well plates in cell growth media containing Annexin V dye 
(Sartorius). Cells were imaged by real-time fluorescence microscopy 
(IncuCyte, Sartorius) at 2-hour intervals for 5 days. We estimated cell 
cycle arrest by normalizing the cell count of irradiated cells to un-
treated cells by dividing the area under the curve (AUC) of cell count 
over time for treated cells by the AUC of cell count over time for the 
untreated cells. We converted that number into a percentage that 
represents the percent of cell proliferation relative to untreated cells. 
We then tested if this normalized amount of cell growth was predic-
tive of neoplasia prevalence using the phylogenetically controlled  
pglsSEyPagel regression (Fig. 4A).

Somatic Mutation Rates
Cagan and colleagues (36) published somatic mutation rates  

(single base substitution per genome per year) for 16 species based on 
sequencing 208 individual colonic crypts from 56 animals from the 
London Zoo. They divided the number of somatic mutations, detected 
by whole-genome sequencing, by age (in years) of the individual at 
the time that the tissue was taken, to estimate the mutation rate per 
year. Nine of those species are in our dataset, allowing us to use a pgls 
regression to test for an association between mean somatic mutation 
rates and neoplasia prevalence.

Data Availability
All data and code are available at zacharycompton/cancer

AcrossVertebrates (gEithub.com) and https://codeocean.com/ 
capsule/7079513/tree/v1, with the exception of the ages of individual 
animals and the locations of their tumors, which are restricted due 
to privacy agreements with the contributing zoos. Access to that data 
may be granted with permissions of the zoos.
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