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EXECUTIVE SUMMARY  

The goal of this document is to present and analyse Distributed Energy Resources (DER) device 

models along with the relevant processes required to define and formalise their control and 

response capabilities towards defining their flexibility capacity in demand response 

programmes. The DER models are divided into: demand, storage and generation.  

Demand models refer to residential loads with significant capacity to affect the building-level 

energy demand and provide flexibility as well as support the indoor environment optimisation 

in terms of comfort and health preservation. To this end, Heating, Ventilation and Air Condition 

(HVAC) and lighting have been identified as the most suitable loads. The FLEXCoop DER 

load models contain the mathematical formulas for the calculation of electric demand 

(consumption) of each DER type as a function of dynamic (input data) and static (configuration) 

parameters affecting DER operation. A training period, gathering data from the physical devices 

is required towards the extraction of the configuration parameters. The FLEXCoop load 

modelling framework will allow for continuous calibration of the respective DER models in 

order to account for efficient and effective dynamic adaptation to potential shifts in the 

“behaviour” of the corresponding physical entities (seasonal patterns, device performance 

degradation, etc).  

Storage models refer to stationary Energy Storage Systems (ESS) and Vehicle-as-ESS. Vehicle-

as-ESS basically means, that electrical vehicle batteries are used in a very similar manner, as 

stationary batteries. Therefore, it provides the same services such as: integration of renewable 

generation, grid services such as voltage and frequency control, supply emergency backup 

power, peak shaving and valley filling, to give some examples. First, the stationary system is 

described (incorporating both economic and thermodynamic parameters) and aligned with 

FLEXCoop business scenarios. Then, additional model variables are introduced, in order to 

consider peculiarities of the electric vehicles. 

The generation forecasting models presented in the document aim to describe the behaviour of 

small generators available in the FLEXCoop pilot dwellings and in the portfolio of energy 

cooperatives. For the pilot dwellings that we have currently identified only residential Photo 

Voltaics (PVs) are available. Thus, we have chosen to analyse only PV generation forecasting 

in the deliverable. However, if during the project implementation, wind generation units 

identified and need to be incorporated in the overall FLEXCoop solution demonstration, the 

proposed algorithms will appropriately be adapted to fulfil this additional requirement. The 

models can be applied to provide short and very short-term forecasting of PV generation in an 

automatic and effective way, both in terms of performance and computational resources.  
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 INTRODUCTION 

For energy systems to become “smart” and “intelligent”, meaning that they are able to react on 

signals from the surrounding systems, one of the most critical aspects is to have efficient and 

accurate models for modelling and forecasting. Both models for load (e.g. light and heating), 

storage (e.g. batteries) and generation (e.g. Photo Voltaic (PV) and wind generation) are 

important, naturally, depending on which components are in the particular system. In the 

FLEXCoop project the focus is on single-family dwellings and in the report models and 

modelling techniques, which will be applied in the operation of the pilot sites, are presented. 

Naturally, the models presented here are not yet fitted and tuned for the particular FLEXCoop 

pilot sites, however the basic concepts and approaches are described in detail and their 

applicability are shown in examples using relevant data from other sources. 

A short introduction and literature review for each of the application contexts: load, storage and 

generation, are included in the respective sections. 

The report starts by setting the scene, first by presenting the objectives in Section 2 and in 

Section 3 an overview of how the different models and data flows in the FLEXCoop setup will 

interact is given. In Section 4 the load models are presented, in detail both of lighting and 

heating, and in Section 5 the storage models to be applied are described, they cover both the 

use of stationary and Electrical Vehicle (EV) batteries. In Section 6 the techniques for 

generation forecasting are presented. The emphasis is on a  detailed description of how to 

include Numerical Weather Predictions (NWPs) as inputs to statistical forecast models and how 

the models can be setup in a generic way. As previous explained the focus is on solar 

forecasting, however the same algorithms can be applied for other types of generation. Finally, 

in Section 7 the conclusions are drawn. 
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 CONCEPT AND DELIVERABLE OBJECTIVES 

 

The deliverable D3.1 on hand “Models of DER Devices and associated Forecasting 

Algorithms”, presents the Distributed Energy Resource (DER) load, generation and storage 

models came as a result of the respective task T3.1 “DER Modelling and Forecasting 

Algorithms”. As defined in the Description of Work (DoW), this task thoroughly analyses and 

develops the DER models and the relevant forecasting algorithms that are needed towards 

finally enabling decision-making optimisation (for the flexibility that needs to be activated) on 

the aggregator side.  The DER models examined include:  

 Load models and more specifically lighting and Heating, Ventilation and Air Condition 

(HVAC) load models 

 Storage models including batteries and Electrical Vehicles (EVs) 

 Generation forecasting found till now in the pilot dwellings namely residential PV 

systems 

The work-package objective that has been covered is: To further improve and enrich existing 

DER models allowing the representation and quantification of control and response capabilities 

and flexibility capacity of a wide range of DERs involved in the FLEXCoop project, while 

facilitating DER forecasting and aggregation operations on the basis of more robust and 

accurate models. 
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 DEPENDENCIES ON OTHER TASKS – MODELS AND DATA FLOWS 

The aim of this section is twofold: 

 To present the dependencies of this task on other tasks of the Work Package 3 (WP3). This 

will guide us throughout the project development to know exactly what is going to be 

developed in each task and how this is related with the other tasks and the overall scope of 

the project;  

 To describe briefly the different models that are going to be developed in the WP3 and 

conceptually illustrate the sequence that are going to be used towards finally extracting the 

context-aware demand flexibility profiles of the residential prosumers examined in the 

project . As the project progresses, this will be used to link the different models towards 

providing the FLEXCoop holistic context-aware flexibility profiling framework.  

During the development of the WP3, we identified the need to clearly define what we should 

expect from each task and how the work performed in this task impacts the work that needs to 

be done in the other tasks to ensure that all of them can be well combined without any logical 

or technical gaps. Indeed, the different tasks of the WP3 are all somehow correlated (as 

illustrated in Figure 1) and only a continuous loop feedback process will result on the 

construction of robust demand flexibility modelling and forecasting algorithms that could be 

smoothly incorporated in the FLEXCoop holistic context-aware flexibility profiling 

mechanism.    

 

Figure 1: Dependencies of T3.1 on other tasks of the WP3 

As already mentioned, T3.1 deals with DER models including load (lighting and HVAC), 

generation (PV) and storage (batteries, EVs) assets and it is the subject of this deliverable. The 

overall objective of FLEXCoop, however, is not the models per se but to provide holistic 

context-aware demand flexibility profiles that will be continuously updated based on real-time 

energy data. To this end, as it is deduced from Figure 1, the DER load models developed in 
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T3.1 and analysed herein, will be combined with the occupancy models and comfort profiles 

(visual and thermal) that are currently developed in the T3.2. The latter will provide the 

illuminance and temperature boundaries that will be taken into account to ensure that each 

individual pilot user will always remain in his/her comfort zone (concerning preferred 

illuminance and temperature).  

To provide context-aware demand flexibility profiles, the DER HVAC models will also need 

to be combined with the thermal inertia models that are currently constructed in the T3.3. By 

the term thermal inertia model, we refer to the dynamic thermal modelling of buildings that will 

define thermal mass/inertia of individual spaces within each specific pilot dwelling. The 

occupancy and thermal comfort profiles combined with the thermal inertia model of a building 

space will be used to translate environmental/context conditions and building characteristics to 

the heat demand required to maintain the indoor temperature in between the user’s thermal 

comfort boundaries (temperature limits identified through thermal comfort profiles). Then, the 

DER HVAC models will be used to correlate the required heat demand with the electric energy 

consumption of the HVAC system and thus the flexibility that can be offered. The latter requires 

also an estimation of a baseline consumption as this will be further analysed in T3.2 (in Figure 

2, the term “flexibility models” incorporates also the models needed for baselining).  

The case of DER lighting devices is more straightforward and the DER model (this includes a 

space luminance model as it will be explained in more detailed below) combined with the 

occupancy models and visual comfort profiles can estimate the required electric power and thus 

the flexibility that can be offered. This is further elaborated in the DER lighting model in the 

Section 4.4.1.  

The sequence of the DER load models as they will be used in FLEXCoop integrated solution 

along with the main input/output data and how these will flow among the different FLEXCoop 

models are schematically shown in Figure 2.  

Similarly, in Figure 3, the sequence of the DER EV models presented and analysed in this 

deliverable along with the main input/output data and how these will flow among the different 

FLEXCoop EV models are shown. As it is deduced from Figure 1 and Figure 3, the T3.1 needs 

to be combined with the T3.4 towards extracting personalised EV flexibility that will enable 

the integration of electro mobility in the FLEXCoop DR optimisation functions.  

Finally, considering the DER generation modelling, the models presented herein for improved 

forecasting and analysis of generation DERs at the local and district level can be directly used 

by the FLEXCoop optimisation framework allowing the deployment of highly efficient DR 

strategies in specific business cases, as for example those focusing on maximisation of variable 

renewable energy sources output absorption (self-consumption).  



HORIZON 2020 –773909 - FLEXCoop  D3.1 – Models of DER Devices and 

associated Forecasting Algorithms  

WP3 – Demand Flexibility Modelling and Forecasting  FLEXCoop Consortium Page 12 of 63 

Occupancy  
Models

Visual 
Comfort 
Models

Profile /  
Illuminance 
Boundaries

Profile /  
Temperature 
Boundaries

Profile /
Hot water 

preferences

Short term 
occupancy 
prediction

DER 
Lighting 
Models

DER 
HVAC 

Models

Required 
Power

Flexibility Models

Thermal 
Inertia 
Models

Heat 
Demand

DER 
DHW 

Models

Thermal 
Inertia 
Models

Heat 
Demand

Context-aware  
Demand Flexibility

Thermal 
Comfort 
Models

DHW 
Comfort 
Models

 

Figure 2: FLEXCoop models sequence towards extracting context-aware demand flexibility1  

                                                 

1 The colors in the flowchart are aligned with the ones of the Figure 1 indicating the Task where each model is 

developed. Where no alignment exists (blue filled objects), this means that the respective data and/or models 

are extracted combining the work performed in more than one tasks.   
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Figure 3: Models sequence and data flow among them towards extracting EV flexibility2 

                                                 

2 The colors in the flowchart are aligned with the ones of the Figure 1 indicating the Task where each model is 

developed.  
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 LOAD MODELLING 

In recent years, interest in load modelling has considerably increased because it has been proven 

to significantly influence power system analysis, planning and control. Thus, the need for 

developing new load models or updating existing ones towards serving the needs of the 

continuously changing power systems in Europe and worldwide is imperative [1]. Load models 

often fail to incorporate socio-technical factors as well to address how, specifically, occupants 

consume energy in their homes; in real-time; based on their individual preferences [2]. To this 

end, multidisciplinary and dynamic approaches should be adopted to enhance energy efficiency 

without compromising comfort and individual needs and preferences.  

To this end, load modelling has been the subject of many modern studies as a prerequisite for 

the mitigation of high renewable integration, as demand-side management enabler leveraging 

the increasing penetration of smart metering devices in the current energy systems. However, 

there is a need to systematically review existing load modelling techniques and suggest future 

research directions to meet the growing interests from industry and academia. To this end, in 

the following section, we will present a brief description of load models and parameter 

identification methods found in the literature, before the FLEXCoop approach and the 

respective DER load models to be presented and analysed. The literature review is primarily 

based on a recently published article by Ammar Arif et al. in the IEEE Transactions on Smart 

Grids [1].  

4.1. Load Modelling Approaches – Literature review 

Considering that FLEXCoop aims at utilising the aggregated flexibility provided by residential 

consumers, in what follows we will limit our analysis to the description of the models found in 

the literature that approximate the behaviour of Low Voltage (LV) residential loads. Therefore, 

from this point forward, by using the term “loads” we will strictly refer to LV residential loads. 

In general, there are two approaches commonly used in modelling residential energy 

consumption [2]:  

 the top-down approach that treats the loads as an energy sink and is not concerned with 

individual end-uses. The strength of this approach is that it only needs aggregated data that 

are commonly and easily available. However, its strength is also its weakness because it does 

not take into account the individual end-users, consumers’ comfort and preferences. Thus, it 

is inappropriate for the establishment of a holistic human-centric framework, which is the 

key target aim of the FLEXCoop project; 

 the bottom-up approach that identifies the contribution of each end-use towards 

aggregating energy consumption. Input data that are commonly used in such models include: 

dwelling characteristics, indoor and outdoor environmental conditions, occupancy patterns, 

specific equipment used, etc. This approach can accommodate user preferences and 

individual energy consumption; thus, it is in line with the FLEXCoop objective, which 

focuses primarily on the consumer himself/herself, his/her needs, comfort and preferences. 

Both statistical (e.g. regression, conditional demand analysis, neural network) and 

engineering (e.g. distributions, archetypes, sample) methods are used in the literature for the 

bottom-up modelling of the energy consumption of individual end-users [2]. The detailed 

description of these models is out of the scope of this deliverable and thus, they are not 

further analysed. More detailed information, however, can be found in [2].  
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The most important strength of the bottom-up statistical models, from the FLEXCoop point 

of view, is that they encompass occupant behaviour. This fact played a decisive role in the 

design of the FLEXCoop DER load models presented below.  

    

4.2. Load Model Parameter Identification – Literature Review 

There are two basic methods that are most frequently used for the identification of the load 

model parameters [1]. Both of them can be used in a bottom-up approach modelling, described 

in the previous section. 

 The component-based approach needs the following datasets in order to be structured: (i) 

the models of individual components and (ii) the composition of the individual components, 

meaning the percentage of load consumed in each component. This approach requires 

accurate and comprehensive load composition information that is frequently very hard to 

obtain. Additionally, its low adaptability to new loads makes it impractical for a holistic 

framework like the one that FLEXCoop introduces.   

 The measurement-based approach is implemented in four (4) phases: (i) obtain 

measurement data; (ii) select a load model structure (e.g. polynomial); (iii) estimate model 

parameters; (iv) validate the load model. This approach can be used to reflect real-time 

dynamic load behaviours and thus, it could be a favourable solution to be adopted in 

FLEXCoop. Among others, least-square methods have been widely used for the 

identification of model parameters in the frame of the measurement-based approach. This is 

adopted also in FLEXCoop and thus, it is further detailed below.  

 

4.3. The FLEXCoop Load Modelling Approach 

Having presented an overview of the different approaches used for the modelling of the 

residential loads, we now proceed to the identification of the specific FLEXCoop requirements 

that should be satisfied by the DER load modelling. This section is of high importance because 

it presents all the information that have practically guided us in the selection of the most 

appropriate approaches and relevant models towards achieving the overall FLEXCoop scope 

[3]:  

“To provide innovative services that will be featured by non-intrusiveness, comfort and well-

being preservation and non-violation of each individual prosumer daily schedule”. 

Thus, in this section, we will present the proposed FLEXCoop DER load device models along 

with the relevant processes required to define and formalise their control and response 

capabilities towards defining their flexibility capacity in DR programmes. The scope of the 

FLEXCoop load modelling is to establish a holistic approach that takes into account demand 

capabilities to participate in various DR strategies. The DER load models will subsequently be 

combined with user comfort profiles (as they will be defined in task T3.2) to produce energy 

demand models. The enhanced robust and dynamic energy demand models will incorporate the 

comfort flexibility of users (e.g. comfortable ambient condition ranges) leading eventually to a 

model/profile of the energy demand flexibility for the specific load. For instance, tolerable 

temperature variations in the building can be translated into energy demand flexibility of the 

HVAC system. The holistic context-aware flexibility profiling models will also be delivered in 

the task T3.2.The FLEXCoop DER load models correlate mathematically with the electric 



HORIZON 2020 –773909 - FLEXCoop  D3.1 – Models of DER Devices and 

associated Forecasting Algorithms  

WP3 – Demand Flexibility Modelling and Forecasting  FLEXCoop Consortium Page 16 of 63 

demand of each DER type to various parameters including the existing (indoor/outdoor) 

environmental conditions and the operational data of DER load devices. The proposed models 

are described in detail in the following subsections. All of the DER load models have been 

constructed in a way that ensures the fulfilment of FLEXCoop objectives and business 

requirements. More specifically, the models should: 

 refer to residential loads with significant capacity to affect the building-level energy demand 

and provide flexibility as well as support the indoor environment optimisation in terms of 

comfort and health preservation. To this end, Heating, Ventilation and Air Condition 

(HVAC) and lighting have been identified as the most suitable loads and thus are further 

elaborated below; 

 encompass occupant behaviour; 

 be based on simple mathematical formulas that can approximate load behaviours 

minimising complexity to the degree possible; 

 provide relatively reliable results enabling the accurate forecasting of DR potential and 

demand flexibility in the short and very short term. Short-term forecasting will cover the 24h 

ahead and will deliver predicted values in periods of 1h. Very short-term forecasting will 

cover periods from 4 hours ahead to, even, 1 hour prior to a DR event to enable decision 

making optimization (for the flexibility that needs to be activated) on the aggregator side; 

 be beneficial for the consumers in both financial and comfort terms ensuring their 

sustainable participation in automated DR strategies on the basis of aggregated flexibility 

utilisation; 

From the above requirements combined with the description provided in 4.1 and 4.2, it is easily 

deduced that FLEXCoop business and technical requirements will be satisfied through the use 

of bottom-up statistical models combined with a measurement-based approach for the 

learning process. The learning process is actually the process of identifying each model’s 

parameters. This is further elaborated in each DER model type analysed below i.e. lighting and 

HVAC. Although the learning process will be common for the models of the same type of DER 

loads, the model parameters that will be extracted through this process will be uniquely 

identified for each specific pilot dwelling during the implementation and deployment of the 

FLEXCoop solution. Furthermore, the FLEXCoop modelling framework will allow for 

continuous calibration of the respective DER models in order to account for efficient and 

effective dynamic adaptation to potential shifts in the “behaviour” of the corresponding 

physical entities (seasonal patterns, device performance degradation, etc).  

 

FLEXCoop Load Models 

As already mentioned, the FLEXCoop DER load models contain the mathematical formulas 

for the calculation of electric demand (consumption) of each DER type as a function of dynamic 

(input data) and static (configuration) parameters affecting DER operation.  

A training period, gathering data from the physical devices is required towards the extraction 

of the modelling parameters. By having defined these parameters following a learning process: 

1) model parameters can be periodically updated by taking into account recent data and 

2) enhanced real-time DER instances can be provided (by considering the input and 

configuration parameters, as defined in the following sections), further facilitating the DER 

operation simulation under different environmental/contextual conditions. 
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In the following subsections, we detail the lighting and HVAC models along with the respective 

input, output and configuration parameters. The DER models presented below were constructed 

respecting all the FLEXCoop requirements defined above.  

4.4. Lighting Devices 

4.4.1. DER model 

An important aspect that is exploited in FLEXCoop considering lighting devices is that the 

dimming level and energy consumption in lighting systems is directly correlated without any 

delays or memory effects. This enables the immediate and controllable modification of the 

energy consumption of a lighting system. 

Herein, we assume a simplified case where a lighting device or a number of lighting devices 

are installed in a room with common control. Then, the light device model can be defined as: 

“power consumption as a function of status and dimming level”. Therefore, the learning model 

is based on the definition of the average consumption values for the different device status 

(on/off) and dimming levels (0-100%).  

The lighting device instantaneous power consumption can be approximated by the following 

mathematical formula: 

𝑃𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟 ∙ 𝑆𝑡𝑎𝑡𝑢𝑠 ∙ 𝐷𝑖𝑚𝑚𝑖𝑛𝑔𝑙𝑒𝑣𝑒𝑙 →  
(1)  

𝑃𝑜𝑢𝑡𝑝𝑢𝑡 = {
0,          𝑤ℎ𝑒𝑛 𝑆𝑡𝑎𝑡𝑢𝑠 = 0 (𝑂𝑓𝑓)

𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟 ∙ 𝐷𝑖𝑚𝑚𝑖𝑛𝑔𝑙𝑒𝑣𝑒𝑙 , 𝑤ℎ𝑒𝑛 𝑆𝑡𝑎𝑡𝑢𝑠 = 1 (𝑂𝑛)
 

 

Where 𝑷𝒐𝒖𝒕𝒑𝒖𝒕 is the light load consumption and 𝑵𝒐𝒎𝒊𝒏𝒂𝒍𝑷𝒐𝒘𝒆𝒓 is the nominal power of the 

lighting system. 𝑵𝒐𝒎𝒊𝒏𝒂𝒍𝑷𝒐𝒘𝒆𝒓 is the configuration parameter in this equation and is extracted 

through a measurement-based learning process that is described below. A regression analysis 

can be performed to correlate input (dimming level and device status) and output (consumption) 

values towards identifying the configuration factor (𝑵𝒐𝒎𝒊𝒏𝒂𝒍𝑷𝒐𝒘𝒆𝒓).  

 “In statistical modelling, regression analysis is a set of statistical processes for estimating the 

relationships among variables. It includes many techniques for modelling and analysing several 

variables, when the focus is on the relationship between a dependent variable and one or more 

independent variables (or 'predictors'). More specifically, regression analysis helps one understand how 

the typical value of the dependent variable (or 'criterion variable') changes when any one of the 

independent variables is varied, while the other independent variables are held fixed.” 

Wikipedia [4] 

Linear regression is a basic and commonly used type of predictive analysis. It attempts to model 

the relationship between two variables by fitting a linear equation to observed data. One 

variable is considered to be an explanatory variable, and the other is considered to be a 

dependent variable. A linear regression line has an equation of the form 𝒀 = 𝒂 ∙ 𝑿 + 𝒃, where 

X is the explanatory variable and Y is the dependent variable. The slope of the line is 𝒂, and 𝒃 

is the intercept (the value of 𝒀 when 𝑿 =0). 
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The most common method for fitting a regression line is the method of least-squares. This 

method calculates the best-fitting line for the observed data by minimizing the sum of the 

squares of the vertical deviations from each data point to the line (if a point lies on the fitted 

line exactly, then its vertical deviation is 0). Therefore, given a random sample from the 

population, we estimate the population parameters and obtain the sample linear regression 

model. 

Once a regression model has been fit to a group of data, examination of the residuals (the 

deviations from the fitted line to the observed values) allows the modeller to investigate the 

validity of assumption that a linear relationship exists. Plotting the residuals on the y-axis 

against the explanatory variable on the x-axis reveals any possible non-linear relationship 

among the variables.  

For the lighting devices, the slope parameter 𝒂 is the 𝑵𝒐𝒎𝒊𝒏𝒂𝒍𝑷𝒐𝒘𝒆𝒓 factor, as it is deduced 

from equation (1) in case of the status device being on (i.e. 𝑺𝒕𝒂𝒕𝒖𝒔 = 𝟏). In general, for a LED 

luminaire light (which we expect to be the case for the FLEXCoop pilot end users), there is a 

fairly linear dependence between the luminaire input power and the emitted visible light 

(luminous flux measured in lumens – lm)[5]. Furthermore, the amount of luminous flux falling 

on a surface due to an isotropic light source is directly proportional to the intensity of the light 

source. Thus, again a linear regression analysis can be a relatively good approximation and it 

can be performed at an initial stage. If significant non-linearities are observed, the model will 

be re-constructed accordingly. However, we expect that a linear behaviour could provide results 

accurate enough for its incorporation to the FLEXCoop holistic context-aware profiling 

mechanism.    

Thus, by performing linear regression analysis, we can easily identify the slope parameters 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟. Having this configuration parameter defined, we can easily estimate 

consumption for different light device statuses and dimming levels. However, a fully 

automation process must take into account the real-time environmental conditions and user 

preferences, so it is critical to calibrate our model. To this end, it is necessary to identify the 

lighting devices’ impact on the illuminance measured by the relevant sensor(s) and associate 

this with the illuminance actually detected and experienced by the occupant(s). Of course, the 

latter may greatly vary amongst people because it is strongly defined by individual preferences 

including parameters that cannot be straightforwardly measured (e.g. psychological). To this 

end, this correlation should be considered in two steps:  

(i) Correlation of the lighting device (artificial light) impact on the measured illuminance 

value at the sensor with the respective impact at the illuminance value at a specific area 

in the house where the occupant exists (e.g. a defined zone at the workplace plane); 

(ii) Correlation of the illuminance value at a specific area in the house where the occupant 

exists with the illuminance preferred by the occupant. This is the subject of the task T3.2 

concerning comfort profiling and will be further described in the corresponding 

deliverable D3.2. 

The idea behind the calibration and configuration of the proposed model towards addressing 

these requirements is detailed in the sub-section below. 

4.4.2. DER model calibration and definition of daylight contribution  

As mentioned above, there are two aspects that should be covered (if we analyse further the 

step (i) presented above): 
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 Definition of artificial light / daylight impact on the illuminance measured by the installed 

sensor(s); 

 Definition of the relationship between the measured illuminance value at the light sensor(s) 

and the average illuminance value at a specific area where the occupant(s) stay(s). For 

simplicity reasons, we will consider one occupant in a room office in a specific zone of the 

workplace plane. However, we recognise the fact that depending on the type of the room 

and its actual use, another area may be more appropriate to be used for calibration purposes. 

This will be further examined after the selection of the final pilot end-users. 

Caicedo et al.[6] have proposed a framework for the disaggregation of illuminance levels on 

ambient luminance and luminance contribution from lighting devices towards providing a 

daylight-adaptive lighting control system. Based on this study, we present a simplified approach 

considering a lighting system in an indoor office, with N light sources and one luminance sensor 

at the ceiling. This is considered to be closer to the actual installation that we currently expect 

to deal with in the real FLEXCoop pilot users. This will be further evaluated after the pilot 

surveys in the selected pilot users and the equations presented below will be reconfigured 

accordingly ensuring the provision of accurate and reliable results that can fulfil the real-life 

needs. 

The average net illuminance 𝒘(𝒅, 𝒖) at the specific zone at a given time t, given that the lighting 

system is at dimming vector d (|𝒅| = 𝑫𝒊𝒎𝒎𝒊𝒏𝒈𝒍𝒆𝒗𝒆𝒍
3), may be written as:  

𝑤(𝑑, 𝑢) = ∑ 𝐻𝑛𝑑𝑛

𝑁

𝑛=1

+ 𝑢 

(2) 

Where ∑ 𝑯𝒏𝒅𝒏
𝑵
𝒏=𝟏  and 𝒖 is the illuminance contributions due to lighting system and daylight 

at the specific defined zone respectively, as shown in Figure 4. 𝑯𝒏 > 𝟎 is the illuminance 

contribution to the average on the defined zone when the nth light source is at maximum 

intensity, with all the other light sources turned off.  

 

                                                 

3 The 𝐷𝑖𝑚𝑚𝑖𝑛𝑔𝑙𝑒𝑣𝑒𝑙 that was defined in Section 4.4.1 is the magnitude of the dimming vector 𝑑 (i.e. 

𝐷𝑖𝑚𝑚𝑖𝑛𝑔𝑙𝑒𝑣𝑒𝑙 = |𝑑|) shown in Figure 4. 
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Figure 4: Average illuminance at a specific zone at the workspace plane due to artificial light 

and daylight (re-design of the figure provided in [6]) 

In most of the installation cases where light sensors are installed on the ceiling, illuminance 

values at specific zones cannot be measured; only illuminance measurements at the light sensor 

are available following the sensor installation as depicted in the illustration above (ceiling 

installation).  

Therefore, the measured illuminance at a light sensor in the ceiling is the net illuminance due 

to contributing light sources and daylight reflected from the objects (e.g. furniture) in the office. 

Denote 𝑬𝒏 the measured illuminance at the light sensor when the nth light source is at maximum 

intensity, in the absence of daylight. We assume that the illuminance scales linearly with the 

dimming level. This assumption holds well for practical light sources, e.g. LED light sources. 

The instantaneous net illuminance at the sensor at the ceiling, given that the lighting system is 

at dimming vector 𝒅 and under daylight, can then be written as:  

𝑰(𝒅, 𝒔) = ∑ 𝑬𝒏𝒅𝒏

𝑵

𝒏=𝟏

+ 𝒔 (3) 

 

Where ∑ 𝑬𝒏𝒅𝒏
𝑵
𝒏=𝟏  is the illuminance due to the lighting system and 𝒔 is the illuminance due to 

daylight measured at the sensor, as it is illustrated in Figure 5. 
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Figure 5: Illuminance contribution at the light sensor due to the artificial light (with absence 

of daylight) from light source n reflected from the defined zone (re-design of the figure 

provided in [6]) 

In practice, the 𝑬𝒏 values may be computed a priori in a calibration phase by turning on the 

light sources to the maximum intensity one at a time and measuring illuminance values at the 

light sensor in the absence of daylight. Further, we can relate the average illuminance values at 

the specific zone and illuminance values at the light sensor at a given time t by: 

∑ 𝐸𝑛𝑑𝑛

𝑁

𝑛=1

= ∑ 𝐺(𝑛)

𝑁

𝑛=1

𝐻𝑛𝑑𝑛 (4) 

𝑠 = 𝐺(0)𝑢 (5) 

Where 𝑮(𝒏) > 𝟎 is the illuminance contribution at the light sensor when the average 

illuminance at the defined zone due to the nth light source is at the maximum and 𝑮(𝟎) > 𝟎 is 

the illuminance contribution at the light sensor when the average illuminance at the defined 

zone due to daylight is 𝒖 (see Figure 6).  
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Figure 6: Illuminance contribution at the light sensor due to daylight (with absence of 

artificial light) reflected from the defined zone (re-design of the figure provided in [6]) 

Through analytics over historical data (illuminance values and dimming levels) the 𝑮(𝒏)𝑯𝒏 

factors are calculated for n=1, …, N. This is the 𝑪𝒐𝒆𝒇𝒏
= 𝑮(𝒏)𝑯𝒏 (practically equal to the 𝑬𝒏 

parameter) for each lighting device, presented in the model section above (equation (4)), 

expressing the impact context parameter of a specific lighting device on the measured 

illuminance level by the light sensor. Then, the external illuminance level impact at given time 

t is calculated by equation (3) as follows: 

𝒔 = 𝑰(𝒅, 𝒔) − ∑ 𝑪𝒐𝒆𝒇𝒏
𝒅𝒏

𝑵

𝒏=𝟏

 (3) 

This information can be exploited afterwards during the optimisation process towards obtaining 

the dimming vector that minimises the power consumption of the artificial lighting based on 

the net illuminance values measured by a light sensor. 

It should be pointed out at here that in FLEXCoop project, the illuminance sensor topology will 

be selected taking into account the specific topology of each pilot dwelling combined with the 

potential budget constraints implied by the project. For example, it is possible to install just one 

illuminance sensor in a fixed position, however appropriately selected to monitor specific 

spaces in each pilot dwelling. This may induce implications compared to a multiple sensor 

topology or sensors that are positioned in the comfort bubbles of the occupants. To this end, the 

calibration process described herein will be a dynamic process and the relevant parameters will 

be continuously updated based on user preferences/ profiling data. This, will allow us, even if 

we need to use simplified sensor topologies, to be able to account for daylight seasonal patterns 

as well as changes in space topology. 

4.4.3. DER model parameters 

Summing up, the FLEXCoop lighting DER model parameters are estimated by:  
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1) calculating the power profile as a function of status/dimming level of each different light 

device (equation (1)); 

2) estimating the 𝐶𝑜𝑒𝑓  or 𝐻𝑛 parameters of each lighting device i.e. contribution of each 

light (or group of lights) to the dedicated zone (comfort bubble). E.g. in a topology 

where the illuminance sensor will be placed inside an appropriately selected zone and 

not on the ceiling, the H parameter(s) can be easily extracted by a linear regression 

analysis as follows: 

𝑆𝑒𝑛𝑠𝑜𝑟𝑣𝑎𝑙𝑢𝑒 = ∑ 𝐻𝑛𝑑𝑛

𝑁

𝑛=1

 
 

 

These values can be easily calibrated for each specific lighting device by turning off all 

the lighting devices of the examined area except for the one whose H is going to be 

extracted, in the absence of daylight.  

3) estimating the daylight contribution to the dedicated zone (comfort bubble) illuminance 

levels.  

The table below summarises the lighting DER model parameters (input/ configuration/ output) 

presented above.  

Table 1: Light Device DER Model Parameters (defined per lighting device installed in the 

examined area) 

PARAMETER DESCRIPTION UNITS TYPE 

Configuration Parameters 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟 Nominal power of the lighting device W Float 

𝐶𝑜𝑒𝑓  

Impact of the lighting device on the 

illuminance value measured by the light 

sensor (for a sensor placed at the ceiling) 

Lux Float 

𝐻  

Illuminance contribution to the average on 

the defined zone when the specific light 

source is at maximum intensity (for a sensor 

placed at a dedicated zone), with all the 

other light sources turned off 

Lux Float 

Input Parameters 

𝐻𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 
Preferred illuminance value at a dedicated 

zone4 
Lux Float 

                                                 

4 This combines the actual illuminance level at the dedicated zone with the visual comfort profiles that are 

examined in the T3.2.   
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PARAMETER DESCRIPTION UNITS TYPE 

Output Parameters 

𝐷𝑖𝑚𝑚𝑖𝑛𝑔𝑙𝑒𝑣𝑒𝑙 
Percentage of the brightness provided by the 

lighting device 
% Float 

𝑃𝑜𝑢𝑡𝑝𝑢𝑡 

Estimated power consumption of the 

lighting device for the defined 

𝐷𝑖𝑚𝑚𝑖𝑛𝑔𝑙𝑒𝑣𝑒𝑙 

W Float 

 

4.5. HVAC Devices 

The load type with the highest potential for DR programs is electric powered HVAC. There are 

electric options that provide heating and cooling as well as heating-only and cooling-only 

options. A variety of heating and cooling technologies combined with different ventilation 

strategies are successfully being applied. Individual, centralised and district/collective solutions 

are encountered in Europe and worldwide. However, only the individual solutions fall into the 

FLEXCoop scope and thus, in what follows, we limit our analysis and modelling approach to 

individual electric HVAC solutions5. This may include air-to-air heat pump, air-to-water heat 

pumps, air conditioners (ductless mini-split units), electric resistance heaters, hybrid systems, 

electric boilers, etc.  

A recently published report of the Stratego project [7] summarizes data considering the relative 

distribution of electrical heat demand in terms of heat pumps and other electric heating systems 

throughout the EU28 Member States. Based on this report [8], 82% of electrical heat demand 

of the residential sector in Netherlands comes from heat pumps. The corresponding percentage 

in Spain is 25%, much lower but still significant. These data6 combined with our survey and 

analysis performed so far (albeit still in progress) regarding the potential FLEXCoop pilot users 

led us to incorporate in our modelling the following electric powered HVAC systems: 

 Heat pumps (air-to-air and air-to-water) 

 Air conditioners (air/air ductless mini-split units) 

The main principles of operation, the assumptions that need to be made and the proposed 

models are detailed in the following sub-sections. 

Having these models, we will then need to develop new ones towards correlating the HVAC 

device status (mode, set-point) and environmental/contextual conditions (e.g. ambient 

temperature) to the heat demand and thus to the electrical energy consumed. However, this 

                                                 

5 Individual HVAC solution is considered the system that its control affects only one user or group of users living 

in the same dwelling. 

6 We only consider data for the Netherlands and Spain, because FLEXCoop pilot end-users are located in these 

countries.   
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requires also the thermal zone modelling that will be developed and analysed in the Task 3.3 as 

well as the comport profiling models that will be delivered in the Task 3.2. 

Heat pump Operating Principle 

In principle, the operation of most heat pumps is based on the vapor-compression cycle depicted 

in Figure 7, which exploits the physical properties of a volatile evaporating and condensing 

fluid (so-called refrigerant) and the heat stored or released during its phase change. The main 

components of a heat pump are: a compressor, an expansion valve and two heat exchangers 

namely the evaporator and the condenser (also shown in Figure 7).  

 

Figure 7: Vapour compression cycle 

In heating mode, the cycle starts with the liquid refrigerant exiting the condenser. Then, it passes 

through the expansion valve, which reduces its pressure. The low-pressure liquid passes 

through the evaporator absorbing heat from a source (e.g. outdoor air for the air sourced heat 

pumps that will be examined in FLEXCoop) and is evaporated. The low-temperature vapour is 

then compressed to a higher pressure raising its temperature (when passing through the 

compressor). On the discharge side of the compressor, the now hot and highly pressurized 

vapour passes through a heat exchanger, called condenser, until it condenses again (phase 

change because it rejects heat through a heat sink) into a high pressure and temperature liquid. 

It is critical that the refrigerant reaches a sufficiently high temperature when compressed to 

release heat through the condenser. The heat can be released inside the dedicated building either 

as warm air (air-to-air heat pump) or as hot water-filled radiators, underfloor heating and/or 

domestic hot water supply (air-to-water heat pumps).  

 

Air conditioner (ductless mini-split system) operating principle 

Ductless mini-split air-conditioners rely also on a vapour compression cycle (see Figure 7) to 

transfer heat, similar to conventional heat pumps. Their difference is found on the way the 

conditioned air is supplied to the home. Conventional split-system heat pumps have one indoor 
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coil in an air-handling unit and use forced-air distribution through ductwork to deliver 

conditioned air to various zones within a home. In contrast, ductless mini-splits connect one or 

more indoor coils (often referred to as “heads” or “fan coils”) to a single outdoor unit (i.e., the 

condenser), with each head having its own refrigerant loop. Conditioned air is provided directly 

to the rooms in which the heads are located, without the use of ductwork. Mini-split systems 

with more than one indoor head (sometimes referred to as “multi-split” systems) enable specific 

zones to be conditioned independently because each indoor unit has its own thermostat [9].  

 

4.5.1. HVAC DER model 

4.5.1.1. Heat pump DER model 

The modelling of a heat pump is primarily based on the estimation and relationship of electrical 

consumption and heat released to a dedicated thermal zone. The thermal zone definition is 

provided below.  

 “Thermal zone stands for independent parts of the building, characterized by the different usage made, 

HVAC or electrical facilities, with different criteria of usage or with independent indoor environmental 

control systems and management.” 

Green Energy Audit of Buildings [10] 

From the above definition, it is clearly deduced that the selection of thermal zones in the pilot 

sites  will strongly depend on the specific building characteristics, available equipment and 

usage patterns. An in-depth analysis will be performed in the end-users’ dwellings to define the 

most appropriate thermal zones. To do so, input from Task 3.3 on thermal modelling of 

buildings is also required. We will not get into more detail on this subject here because it is out-

of-the scope of the deliverable. However, a comprehensive analysis will be performed both in 

T3.3 and in the pilot survey in T7.1 that will be efficiently combined to ensure that reliable 

results, to the degree possible, will be obtained through the HVAC modelling proposed below. 

Of course, these models may be adapted, enhanced and/or re-configured as the project 

progresses to meet specific requirements identified throughout its implementation and 

deployment.  

The instantaneous efficiency or Coefficient Of Performance (COP) of a heat pump is defined 

as the ratio of the thermal power delivered to a thermal zone by the heat pump (𝑄̇ℎ𝑝) to the 

electrical power consumed (𝑃𝑒𝑙): 

COP =
Q̇ℎ𝑝

P𝑒𝑙
 

(6) 

A simplified illustration of electrical and heat flows taking place during heat pump operation is 

shown in Figure 8. More specifically, Q̇hp is the thermal power delivered to the thermal zone 

from the heat pump at the condenser side (see Figure 7), Pel is the electric power consumed by 

the heat pump and Q̇C is the thermal power extracted from the ambient air at the evaporator side 

(see Figure 7).  
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Figure 8: Heat pump model 

The estimation of the COP enables us to transform consumed electrical energy to supplied 

thermal energy of the heat pump and vice versa. A significant complication arises from the fact 

that, depending on the heat pump type, the supplied thermal power and COP depend on 

multitude parameters as for example the outlet medium temperature and the ambient 

temperature (for air sources). This can be expressed mathematically as follows: 

Q̇hp = f(Tamb, THP,out ) (7) 

COP~f(Tamb, THP,out ) (8) 

Where Tamb is the outdoor ambient temperature and THP,out is the output temperature of the 

heat pump’s transfer fluid. In the ideal case of zero losses and by using the efficiency definition 

from Carnot cycle: 

Pel = Q̇hp − Q̇C (9) 

𝐶𝑂𝑃𝐶𝑎𝑟𝑛𝑜𝑡 =
THP,out 

THP,out  − Tamb
 

(10) 

However, in real life the COP of a heat pump is much lower than the one predicted by the 

Carnot cycle. Many researchers have dealt with these issue and have estimated the actual COP 

of heat pumps based on detailed mathematical models [11], [12]. However, these models are 

very complex based on highly non-linear functions that in turn require high computational 

power to be solved. This is not aligned with the FLEXCoop requirements presented in Section 

4.3. An alternative has been proposed by other authors representing heat pumps by polynomial 

fitting of experimental results [13], [14]. This latter approach will be adopted also in 

FLEXCoop. The proposed polynomial functions and the assumptions standing behind them are 

described in the following paragraphs in different proposed scenarios.  

As indicated above, the COP is mainly a complex function of the output temperature THP,out 

and outdoor temperature Tamb. We can assume negligible secondary effects such as partial loads 

(i.e. effect of compressor frequency f on the P𝑒𝑙) and humidity, which indeed have only minor 

effects in COP compared to its dependency on the two temperature values defined above. 

Therefore, the approximation shown in equation (8) can be assumed accurate enough for the 

scope of the modelling required by the FLEXCoop project. 

Scenario A  
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According to POLIMI [15], it is possible to get a very good approximation of the COP by fitting 

a third order polynomial function to experimental data, as follows: 

COP = COP0 − a0THP,out + a1THP,out − a2THP,out
2 − a3THP,outTamb + a4Tamb

2

− a5Tamb
3 − a6THP,out

3  

(11) 

The COP0 is the reference value for the COP and ai are constant interpolating coefficients. These 

can be calculated using e.g. least square fitting, as presented in Section 4.4.1.  

Figure 9 presents a validation experiment on a reference heat pump performed by POLIMI [15]. 

The figure shows the interpolated COP in green and the measured COP in red with respect to 

the supply temperature THP,out and the environment temperature Tamb. 

 

Figure 9: Example estimated vs. actual COP of a reference heat pump using a third order 

polynomial to model the HP performance  

As clearly shown in Figure 9, there is a very good agreement between the estimated COP values 

and the experimental ones for the whole range of temperature examined. However, this 

approach will lead to a highly nonlinear formulation for the control optimization formulations 

that need to be performed later on. Thus, despite its proven accuracy, this approach will not be 

further examined in the project.  

 Scenario B  

In this scenario the dependency of the COP on Tamb and THP,out is taken into account by a 

quadratic fit in these two variables. In particular, the COP is represented by the following 2nd 

order polynomial function: 

COP = 𝐶𝑂𝑃0 + 𝑐1𝑇𝑎𝑚𝑏 + 𝑐2𝑇HP,out + 𝑐3𝑇HP,out
2 + 𝑐4𝑇amb

2 + 𝑐5𝑇𝑎𝑚𝑏𝑇HP,out (12) 

The COP0 is again the reference value for the COP and ci are the constant interpolating 

coefficients.  

This approach has been validated at standard and non-standard (analysis far from typical 

catalogue data) conditions by D. Carbonell et al. in [16]. In this work, the authors concluded 

that by fitting experimental data to a 2nd order polynomial equation (to obtain the constant 

interpolating coefficients of equation (12)), the model can predict actual measured COP. The 
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model provides very satisfactory results with error less than 5% at standard conditions and less 

than 15% at non-standard conditions, as illustrated in Figure 10. 

 

(a) 

 

(b) 

Figure 10: Numerical results of estimated COP compared with experimental results for: (a) 

standard and (b) non-standard conditions [16]. 

Scenario C  

This scenario simplifies further the heat pump model considering 𝑇HP,out as a constant. 

Although 𝑇HP,out is assumed as a constant, it can be updated for each new iteration towards 

providing more accurate results. Therefore, in this simplified scenario, COP can be expressed 

as COP~𝑓(𝑇HP,out ̅̅ ̅̅ ̅̅ ̅̅ ̅, Tamb). Tamb can further be assumed as a known value based on the 

predicted environmental temperature obtained from weather data. This way, COP is a known 

value for each time step, so that the optimization function that will need to be solved during 

optimisation process can be approximated by a linear function of 𝑄̇ℎ𝑝 considering that:  

Pel =
Q̇hp

𝐶𝑂𝑃(𝑇HP,out ̅̅ ̅̅ ̅̅ ̅̅ ̅, Tamb)
 (13) 

Scenario D  

This scenario neglects also the dependency of COP on the Tamb and thus, it is considered as a 

constant for the entire horizon (𝐶𝑂𝑃~𝐶𝑜𝑛𝑠𝑡). This results in a constant ratio of Q̇hp and Pel 

expressed as follows:  

Pel =
Q̇hp

𝐶𝑜𝑛𝑠𝑡
 (14) 

The constant value of COP can be found using equation (12) with the daily mean ambient Tamb 

and the corresponding steady state value for 𝑇HP,out [14]. 

It should be mentioned here that the overall objective of the HVAC modelling in FLEXCoop 

is to optimise the heat pump operation towards participating in FLEXCoop DR strategies 

respecting occupants’ thermal comfort. These may be conflicting and correlated objectives and 

the optimisation framework that will be developed as the project progresses (in the tasks T3.5 
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and T5.3) should assess the currently presented models towards utilising the most appropriate 

one that will result in an optimal solution based on the different requirements and constraints.  

 

 

4.5.1.2. Air conditioner (ductless mini-split system) DER model 

Based on the operating principle described in the previous section, it is easily deduced that the 

modelling approach of the air conditioning system is akin to the model of a heat pump. The 

only difference between the two models is that the air condition system releases the heat / takes 

up the heat directly from the air, i.e. from the building model. The heat generated is dependent 

on the ambient and indoor room temperature based on a performance map look-up.  

Again, the model may be elaborated further to accommodate any requirements introduced by 

the optimisation framework that will be adopted. 

 

4.5.2. DER model calibration 

Each of the HVAC DER models that will be selected for use in the FLEXCoop demonstration 

purposes will be calibrated based on the exact equipment installed in the final pilot users, hence 

avoiding a “one-size-fit-all” solution that would yield non-negligible errors. Well-calibrated 

models will be provided to enable an accurate enough formulation of the HVAC systems found 

in pilot dwellings. The specific installation types will also be taken into account in the 

calibration process towards enabling the better representation of each specific HVAC system 

by the most appropriate DER model.  

4.5.3. DER model parameters 

The table below summarises the HVAC model parameters (input / configuration / output) 

presented above.  

Table 2: HVAC Device DER Model Parameters (defined per dedicated thermal zone) 

PARAMETER DESCRIPTION UNITS TYPE 

Configuration Parameters 

Constant interpolating 

parameters  

(Only for scenarios A, B 

and C) 

The constant parameters that need to be 

defined by fitting data to the 

polynomial functions defined in the 

different scenarios 

Vary depending 

on the constant 
Float 

COP  

(Only for the scenario D) 

Coefficient of performance of the 

HVAC system 
-- Float 

Input Parameters 
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PARAMETER DESCRIPTION UNITS TYPE 

Type 
Heat Pump, AC (ductless mini-split 

system)  
-- String 

Tamb Ambient Temperature K Float 

THP,out  

(Only for the scenarios 

A, B and C) 

Output temperature of the heat pump’s 

transfer fluid 
K Float 

Q̇hp 

Thermal power needed to be delivered 

to a thermal zone by the HVAC system  

(This value should be provided by the 

thermal zone modelling combined with 

comfort profiling, which are the 

subjects of the T3.3 and T3.2 

respectively) 

W Float 

Output Parameters 

COP  

(Only for the Scenarios A, 

B and C) 

Coefficient of performance of the 

HVAC system 

 

-- Float 

Pel 

Power that will be consumed by the 

HVAC system to cover the required 

heat demand 

W Float 
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 STORAGE MODELLING 

Electric energy storage devices are basic components in the smart grid framework – the electric 

system of the future. Following this idea, Energy Storage Systems (ESS) are important 

components in the FLEXCoop project. This importance can be derived from business scenarios 

analysed in the project (as identified in the D2.1). For the following business scenarios of the 

FLEXCoop project, ESS is essential for:  

2. Consumption optimization of cooperatives resources 

2. a. Self-consumption optimization of Distributed Energy Resources (DER) 

2. b. Consumption optimization of energy bought on wholesale market 

3. Participation into balancing and ancillary services 

4. Microgrid-as-a-Service 

In the FLEXCoop business scenarios, as in many other projects and applications, the ESS has 

typically two main missions: 

 Maximize self-consumption, of locally produced renewable energy (business model 

2.a). In this situation the ESS stores excess of renewable energy production (generation 

peaks) to be used in other moments. As described in the FLEXCoop business scenario: 

“The REScoop uses consumer flexibility to better match the patterns of the coop’s 

generation assets – owned by prosumers or owned by the cooperative as generator 

(VPP as a REScoop resource)” 

 Reduce customer electric energy bill optimising its energy consumption patterns 

(business model 2.b). In this situation the ESS stores electric energy to be used in 

periods of high energy prices. As described in the FLEXCoop business scenario: “The 

cooperatives use consumer flexibility to better match the anticipated prices on 

wholesale market – encouraging consumption at low hours and avoiding consumption 

at peak hours (use of dynamic prices, the cooperative may propose a cheaper tariff in 

exchange of accessing consumers flexibility)” 

Main benefits of both business models are better integration of RES and reduced energy bills. 

In the first case, integration of RES production is the main objective of optimisation, but in the 

end, this is done in order to maximise use of local resources and thus, reduce bills for imported 

energy. In the second case, reduction of energy bills is the main objective, without the need of 

having RES installed. Nevertheless, dynamic price signals are heavily influenced by RES 

generation in the grid. If the market mechanisms are working well, high RES generation will 

lead to lower electricity prices. Price fluctuations are larger, if system flexibility is lower. 

Therefore, if flexibility is introduced into the system, RES integration is improved [17]. 

FLEXCoop business scenarios are based on consumer flexibility, understood as the consumer 

ability to modify its consumption patterns to external signals: renewable production in 2.a and 

electric energy prices in 2.b. An important obstacle to use this flexibility is the reluctance of 

customers to adapt their habits to external signals. Some authors state that a solution could be 

to combine automatic control systems with a local ESS which can modulate demand patterns 

without any inconvenience for the customer [18].  
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Customer flexibility can also be used to provide balancing and ancillary services as proposed 

in business scenario 3. These services can be amplified using ESS. In fact, one of the primary 

sources of revenue for many energy storage projects built to date is providing ancillary service 

[19]. 

The last FLEXCoop business scenario (4) also has an important dependence on ESS. To 

become independent of the electric grid using renewable energy sources it is mandatory to use 

storage systems, in order to balance energy generation and consumption.  

ESS can be placed in customer facilities as standalone or grid-connected solution [18]. 

Currently, there are many producers and dealers of storage systems that commercialize systems 

that are becoming more secure, efficient and cheaper [19]. Some of these manufacturers (for 

example: KOKAM [20], ENPHASE [21], VARTA [22], TESLA [23], ENERSYS [24]) have 

specific products adapted for residential customers that can improve the flexibility of the 

electric consumers. Although the last example still relies on lead-acid batteries, many 

manufacturers offer solutions based on lithium ion technology. Market products have different 

values of power and energy capacity, adapted to residential customers with different 

consumption characteristics, starting from a 1.6 kW/3.6 kWh system. The main variables that 

determine the characteristics and use of an ESS are: 

 Rated energy capacity (EESS) – Amount of energy [kWh] that can be stored in the ESS. 

 Charging and discharging efficiency (ηcharge and ηdischarge) – Percentage [%] of the energy 

stored and taken back from the batteries from the total.  

 Max. discharging power (Pdischarge_max) – Maximum power [kW] that can be supplied by 

the storage system. 

 Max. charging power (Pcharge_max) – Maximum power [kW] that can be supplied to the 

storage system. 

 Minimum state of charge (SoCmin) – Percentage [%] of capacity or capacity [kWh] of 

the batteries under which the storage must not be used, in order to conserve its integrity 

and nominal parameters. 

 Maximum state of charge (SoCmax) – Percentage [%] of capacity or capacity [kWh] of 

the batteries over which the storage should not be used, in order to conserve its integrity 

and nominal parameters. 

 Lifetime (ncyc) – Time duration for which the storage keeps its parameters. This value 

can be measured in time [years] or charging-discharging cycles [cycles]. 

 Initial costs (CInv) – Costs of purchasing and installing the ESS, which typically have a 

power related [€/kW] and an energy related [€/kWh] component.  

 O&M costs (CO&M) – Operation and maintenance costs related to the use of the ESS 

[€/cycle or €/kWh]. 

 Charging and discharging efficiency of the power converter (ηpc_charge and ηpc_discharge) – 

Percentage [%] of the energy taken from the batteries and sent to the grid and vice versa. 

 Maximum charging and discharging power of the power converter (Ppc_charge_max and 

Ppc_discharge_max). Maximum and minimum active power [kW] of the power converter. If 

the converter can regulate the reactive power (Q(t)) it is expressed in terms of apparent 

power Spc_charge_max and Spc_discharge_max [kVA]. 

These variables and the State of Charge (SoC, amount of energy stored in the storage system 

as a part of the rated energy capacity and usually measured in kWh or as a percentage [%] of 
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the rated energy capacity of the batteries) are essential to describe the characteristics of the ESS 

in a model. There are many ESS modelling methodologies depending on the phenomena to be 

analysed or usage, as for example: ageing of the batteries, effect on power quality, sizing of a 

storage system, real-time operation.  

The modelling shown in the next two sections is developed to control/operate the ESS in real-

time. For this reason, these models will use physical/electrical variables (as rated energy 

capacity, efficiency or SoC for example) and economical/operative variables (as lifetime or 

initial and O&M costs). 

In the following sections, stationary ESS and Vehicle-as-ESS are distinguished. First, the 

stationary system is described, and then, additional model variables are introduced, in order to 

take into account peculiarities of the electric vehicle. 

5.1. DER Modelling 

5.1.1. Batteries, stationary systems 

For simplicity and because this is the most common application, the stationary ESS is described 

here as a battery energy system (BES), but the basic model can be applied also to a fuel cell or 

a redox flow battery.  

Apart from the battery, an ESS contains also other subsystems, as shown in Figure 11: battery 

management system (BMS), AC/DC power converter, electric protections and auxiliary 

systems, such as cooling or gas extractors if needed. All of these systems have to be included 

in the economic variables but only the power converter characteristics have to be included in 

the economic/operative variables. The importance of the converter in the model is due to its 

function: adapting AC current of the grid to DC current to be feed to the batteries and vice 

versa.  

 

Figure 11: Example of an ESS of a residential customer 

The proposed model has been developed to be used in optimization processes whose results are 

the operation set-points for an ESS. Figure 12 shows the power flows involved in the ESS model 

described below. 
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Figure 12: Power flows in the model of an ESS 

 

 𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶(𝑡) ≤ 𝑆𝑜𝐶𝑚𝑎𝑥  (15) 

The state of charge of the ESS batteries (SoC(t)) must be, along all the optimization period, 

equal or lower than the maximum state of charge (SoCmax) and equal o higher than the minimum 

state of charge (SoCmin). In most of the systems, SoCmax=EESS. 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1) + [𝑃(𝑡)𝑏𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑒 ∙ 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑃(𝑡)𝑏𝑎𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒/𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒]Δ𝑡 (16) 

The current state of charge of the ESS batteries, SoC(t), is equal to the previous one, SoC(t-1), 

plus the energy charged in the batteries and minus the energy discharged including the 

efficiency of the batteries.  

 0 ≤ 𝑃(𝑡)𝑏𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑒 ≤ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) ∗ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒_𝑚𝑎𝑥  (17) 

 0 ≤ 𝑃(𝑡)𝑏𝑎𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ≤ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) ∗ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑚𝑎𝑥  (18) 

When available, batteries charging and discharging power must be lower or equal to the 

maximum. availability(t) is 0 when the ESS is not available and 1 when it is available. 

 𝑃(𝑡)𝑏𝑎𝑡 = 𝑃(𝑡)𝑏𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑃(𝑡)𝑏𝑎𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  (19) 

 𝑃(𝑡)𝐸𝑆𝑆 = 𝑃(𝑡)𝑏𝑎𝑡 + 𝑃(𝑡)𝑝𝑐_𝑙𝑜𝑠𝑠𝑒𝑠  (20) 

 −𝑃𝑝𝑐_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑚𝑎𝑥 ≤ 𝑃(𝑡)𝐸𝑆𝑆 ≤ 𝑃𝑝𝑐_𝑐ℎ𝑎𝑟𝑔𝑒_𝑚𝑎𝑥  (21) 

ESS power must be between the limits of the power converter (Ppc_charge_max and Ppc_discharge_max) 

and the power that enters the ESS is equal to the addition of the battery power and the power 

converter losses. 
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If the power converter can regulate reactive power, for example to compensate the reactive 

power demand of the domestic loads, another equation has to be added to the model.  

 𝑃(𝑡)𝐸𝑆𝑆
2 + 𝑄(𝑡)𝐸𝑆𝑆

2 ≤ 𝑆pc_charge_max
2 (22) 

 𝐶𝐸𝑆𝑆 =
𝐶𝐼𝑁𝑉+𝐶𝑂&𝑀

2 𝑛cyc 𝐸𝐸𝑆𝑆
(𝑃(𝑡)𝑏𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑃(𝑡)𝑏𝑎𝑡_𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) Δ𝑡 (23) 

Finally, the cost of using the ESS has to be modelled. Equation (23) shows the cost of using the 

ESS, derived from the wear each cycle charging/discharging produces to the ESS. 

To apply this model to a business scenario such as 2.b, besides the forecast of energy 

consumption in the residential loads and energy prices, only the ESS availability forecast, 

availability(t), is needed. For example, a maintenance process that disables the system should 

be reflected by this ESS availability forecast.  

5.1.2. EVs as ESS (V2G) 

Passenger cars are parked most of the time. In fact, some data show that cars are parked 90-

95% of the time, either at home, street lots, commercial areas or at work [27]. This fact, in 

addition to the increasing amount of electric vehicles (EV), has made that many researchers and 

institutions propose the Vehicle-to-Grid (V2G) capability of electric vehicles (EV acting as 

stationary batteries) as the next stage in the development of EV and its integration in the smart 

grids of the future [28].  

V2G [29] basically means, that EV batteries are used in a very similar manner, as stationary 

batteries. Therefore, it provides the same services such as: integration of renewable generation, 

grid services such as voltage and frequency control, supply emergency backup power, peak 

shaving and valley filling, to give some examples [28], [30], [31]. Therefore, EV batteries can 

be used as stationary ESS. In the following paragraphs, the differences of the V2G model 

comparted to the stationary ESS are described. 

Besides its functionalities as ESS, specific characteristics of its use as EV must be included in 

the model:  

 EV availability at the charging point (𝑉2𝐺_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(t)). 𝑉2𝐺_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(t)) is 

0 when the EV is not available as an ESS and 1 when it is available. 

 Minimum SoC at departures and minimum SoC when connected to the charging point.  

 EV consumption when operating as a vehicle (𝑃𝐸𝑉(𝑡)). 

Stationary ESS are available most of the time, only failures or maintenance tasks can put them 

out of service. In contrast, the availability of an electric vehicle at a charging point depends on 

the usage pattern of its drivers. Consequently, more effort has to be invested in the availability 

forecast of the EV as a storage system.  

The main purpose of an EV is transportation (people and objects) and not its use as ESS. 

Therefore, its usage and availability is subject to its use as a means of transport. For example, 

at expected departures, the EV batteries should have a pre-established SoC related to the trip to 

be carried out not to its use as ESS. Another example is that when connected to the charging 

point, the minimum SoC could be related to possible emergency trips and not to the minimum 
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advisable state of charge of the EV batteries. Consequently, the minimum SoC of an EV used 

as ESS is not the minimum SoC of the batteries, it is derived from its use as a vehicle and may 

vary along time.  

As seen in section 5.1.1, for an ESS there are only two power flows: charging and discharging 

batteries. In an EV, batteries have a third power flow: the energy supplied to the vehicle engines, 

while it is disconnected from the charging point. This characteristic has to be included in the 

model and in the needed forecasts.  

According to these specific characteristics, only small changes have to be done starting from 

the ESS model: the minimum SoC of the batteries varies with time in Equation (15) and the EV 

consumption when driving in Equation (16).  

 𝑆𝑜𝐶𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑜𝐶(𝑡) ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 (24) 

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1)

+ [𝑃𝑏𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) ∙ 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 −
𝑃𝑏𝑎𝑡_dis𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)

𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

− (1 − 𝑉2𝐺_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(t)) 𝑃𝐸𝑉(𝑡)] Δ𝑡 

(25) 

 

 

Figure 13: Power flows in the model of an EV acting as an ESS 

To apply such a model, besides the forecast of energy consumption of the residential loads and 

energy prices, other forecasts are needed: 

 EV availability at the charging point. 

 EV SoC at arrival to the charging point and EV power consumption (PEV) when 

operating as a vehicle.  

 EV minimum SoC when the EV is at the charging point. 

 Individual driving patterns, etc. 

However, all these parameters will be considered and examined in detail in the T3.4 regarding 

the provision of accurate and robust profiling of EV flexibility (definition of individual EVs 
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profiles). Thus, they will not be further analysed here because it is out of the scope of this 

deliverable.  

5.1.3. DER model parameters 

The table below summarises the storage model parameters (input/output) in previous sections.  

Table 3: Storage systems DER Model Parameters (defined per storage unit) 

PARAMETER DESCRIPTION UNITS TYPE 

Input Parameters 

EESS Rated energy capacity kWh (or Wh) Float 

ηcharge and ηdischarge Charging and discharging efficiency % Float 

Pcharge_max and 

Pdischarge_max 

Maximum charging and discharging 

power 
kW (or W) Float 

SoCmax and SoCmin 
Maximum and minimum state of 

charge 
% Float 

ncyc Lifetime Years of cycles Float 

CInv and CO&M 
Initial and Operations and 

Management (O&M) costs 

€/kW and €/cycle 

or €/kWh 
Float 

ηpc_charge and 

ηpc_discharge 

Charging and discharging efficiency 

of the power converter 
% Float 

Ppc_charge_max and 

Ppc_discharge_max 

(or Spc_charge_max and 

Spc_discharge_max) 

Maximum charging and discharging 

power of the power converter 

kW (or W) 

(kVAr or VAr) 
Float 

Previous SoC 
SoC of the ESS, previous to the 

optimization step 
% Float 

Availability Availably of the ESS to be used 1/0 Boolean 

PEV EV power consumption when driving kW (or W) Float 

Output Parameters 

SoC Objective SoC of the batteries % (or Wh) Float 

𝑃(𝑡)𝐸𝑆𝑆 and 𝑄(𝑡)𝐸𝑆𝑆  
Charge/discharge power and reactive 

power of the ESS 
W and VAr Float 

 

 

  



6 Generation forecasting

The aim of this section is to present a way to setup statistical models, which can be used for
generation forecasting, e.g. wind and solar power. They can be fitted using weather forecasts
as input – thus providing a setup for online forecasting. The general challenge is that weather
forecasts are used, which leads to "overlapping" time series. For example, in many settings
where hourly forecasts are needed, with a horizon up to 48 hours ahead, they must be updated
every hour with the latest weather forecasts as input. This gives rise to two challenges: First the
weather forecasts are not updated every hour, so we need ways to use the most recent weather
forecasts, and second we need to set this up in order to fit the models in a way, which is both
easy to use and effective, both in terms of forecast performance and computational resources. It
is further noted, that the models can easily be setup using the latest observations as input, thus
making them suitable for both very-short term (<6 hours) and short-term (2-3 days) forecasts.
The technique is first presented in a generic way and in the last part of this section examples
applying it for solar forecasting are presented.

6.1 Forecasting literature review

Time series modelling is one of the major tools which has been used quite extensively both
by engineering and scientific communities over last few decades to model the dynamic phe-
nomenon or systems. The main aim of the time series modelling is to develop or apply rigorous
statistical methods to capture the dynamical information present in the measured data. Time
series models study the past observations of a predictor variables (also known as the feature
variables of the time series) to develop an appropriate model which can describe the inherent
structure of the time series as well as predict the response variable. This developed model is
then finally used to make short or long term forecasts. Time series forecasting thus can be
termed as the act of predicting the future by understanding the past [32, 33]. Time series fore-
casting is of indispensable importance to numerous practical fields such as business, economics,
finance, science and engineering, etc. [34, 35] . Therefore, one must take proper care to identify
a model with proper structure adequate to describe the dynamics of the underlying time series.
Furthermore, an appropriate model estimation and validation criteria is of utmost importance
for time series forecasting. A lot of efforts have been put by researchers over many years for
the development of efficient model estimation algorithms to improve the forecasting accuracy.
As a result, a plethora of methods for time series forecasting models have been reported in the
literature.

6.1.1 Solar forecasting

Many approaches to solar power forecasting have been suggested during more than a decade.
Some of the first literature is from [36] who make sub-hourly forecasts by normalizing with a
clear sky model and using arima models. [37] use neural networks to make one-step predictions
of hourly values of global irradiance and compare these with linear time series models that work
by predicting clearness indexes. [38] use satellite images for horizons below 6 hours, and in
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[39] numerical weather predictions (NWPs) for longer horizons, as input to neural networks to
predict global irradiance. This is transformed into solar power by a simulation model of the PV
system. [40] investigate feed-forward neural networks for one-step predictions of hourly values
of global irradiance and compare these with seasonal auto-regressive models applied on solar
power directly. [41] use neural networks combined with wavelets to predict next day hourly
values of global irradiance. Different types of meteorological observations are used as input
to the models; among others the daily mean global irradiance and daily mean cloud cover of
the day to be forecasted. [42] use weather forecasts to predict hourly solar intensity as a proxy
for solar power generation. The study compares multiple regression techniques for generating
prediction models, including linear least squares and support vector machines using multiple
kernel functions. Furthermore, dimensionality reduction is explored using principal component
analysis. Similarly, [43] propose a model based on support vector machines for forecasting of
PV power, where multiple techniques for dimensionality reduction of the input variables are
exploited. These results clearly support the importance of proper feature and model selection.
The paper takes advantage of the automated feature selection of the gradient boosted regres-
sion trees. [44] propose the use of Artificial Neural Networks to forecast global radiation and
direct radiation using weather forecasts as predictors. A preliminary feature selection is per-
formed using a genetic algorithm and a gamma test. [45] fit several forecasting models, which
predict the hourly PV power generation for one and two hours ahead only using endogenous
variables. The methods studied in the paper are among others arima, k-nearest-neighbors and
neural networks optimized by genetic algorithms. Tree based models have also been applied
for probabilistic forecasting of solar power generation, e.g. [46] and [47] successfully apply
quantile regression forests to estimate quantiles of the PV power generation in order to produce
probabilistic forecasts.

6.1.2 Background of presented generation forecasting models

The forecasting approach described in this section are inspired by a setup used for forecasting
of heat load in district heating, as described in [48] and [49]. It is applied in different settings
for load forecasting by [50], [51], [52] and [53]. The approach has been further developed to
encompass the possibility to model many kind of functional relationships, both dynamics and
non-linear. Thus now provides a sound framework for online forecasting of generation in many
settings. More specifically, the setup can also be used to fit the models suggested by [50] and
extends even further, potentially also encompassing wind power forecast models presented by
[54] and [55].

6.1.3 Statistical model notation

The notation in this section is following [56] as far as possible.

Generally, in statistical notation uppercase Latin letters are used to denote random variables,
e.g. the simplest linear would model

Yt = β0 + β1ut + εt (26)
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where

• the output Yt is a random variable

• the input ut is an input

• the error is a random variable εt ∼ N(0, σ2) and independent and identically distributed
(i.i.d.) (thus also Greek letters are denoting random variables, however for them upper-
and lowercase are not distinguished)

• the parameters β0 and β1 are actually also random variables

The actual observations are denoted with small letters

yt (27)

and the predictions are

ŷt = β̂0 + β̂1ut (28)

where the hat ˆ indicates an estimated or predicted value.

Further, the realization of the error (εt) is the residual

ε̂t = et = yt − ŷt (29)

hence either denoted with a hat or with a lowercase Latin letter.

However, this is not always possible to keep this notation, firstly in physics uppercase Latin
letters are used, e.g.

• Gt is the global radiation (W m−2)

Matrices and vectors are marked with bold.

6.1.4 Indexing using t and k

In the present document all time series considered are equidistant sampled and the sampling
period is normalized to 1, hence the time t is simply an integer, which index the value of a
variable at t. The same goes for horizon k, which index a prediction k steps ahead in time.

Further, in the generic setup a forecast at each time t is calculated for each horizon k up to nk
ahead. To achieve a notation which can deal with overlapping time series, a two dimensional
index is needed. The most widespread notation is

ut+k|t (30)
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which means: the value of variable x, at time t + k, and conditional the information available
at time t. The bar conditional is indicated by the bar |.

Thus for k > 0 this is a forecast, usually an NWP of the input, however it can also be deter-
ministic input, e.g. a Fourier series, which is known ahead in time (in this case the conditional
notation (|) should not be kept).

For k ≤ 0 some ambiguity is also possible, since observations can be used

ut+k|t = uobs
t+k for k ≤ 0 (31)

however the NWP can also be used

ut+k|t = unwp
t+k|t for k ≤ 0 (32)

thus a value for the past time can come from an NWP, which was not available before time t.

These aspects will be more clear in later sections as it is explained how data is setup and updated
in online settings.

6.2 Forecast model input and output

Input, for which we have a forecast, e.g. NWP inputs, we set up, at time t, an input matrix for
the variable with name nm. It holds for each time t the latest available forecasts along the row

unm
t =

k0 k1 k2 . . . kxx horizon/time






unm
t0|t0

unm
t0+1|t0

unm
t0+2|t0

. . . unm
t0+nk|t0

t0

unm
t1|t1

unm
t1+1|t1

unm
t1+2|t1

. . . unm
t1+nk|t1

t1

...
...

...
...

...

unm
t−1|t−1 unm

t|t−1 unm
t+1|t−1 . . . unm

t−1+nk|t−1 t − 1

unm
t|t unm

t+1|t unm
t+2|t . . . unm

t+nk|t t

(33)

where

• t is the counter of time for equidistant time points and the sampling period is 1 (note that
it is not included in the matrix, it is simply the row number)

• t0 is the first available time point

• nk is the length of the forecasting horizon
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• The column names are indicated above the matrix, they are simply a k concatenated with
the value of k.

Hence, with a prediction horizon nk = 24, having data from time t = 1, then at time t = 100
we would have the following matrix

unm
t =

k0 k1 k2 . . . k24 horizon/time






unm
1|1 unm

2|1 unm
3|1 . . . unm

25|1 1

unm
2|2 unm

3|2 unm
4|2 . . . unm

26|2 2

...
...

...
...

...

unm
99|99 unm

100|99 unm
101|99 . . . unm

123|99 99

unm
100|100 unm

101|100 unm
102|100 . . . unm

124|100 100

(34)

This could for example be the forecasts of the global radiation

Gt =

k0 k1 k2 . . . kxx horizon/time






Gt0|t0
Gt0+1|t0

Gt0+2|t0
. . . Gt0+nk|t0

t0

Gt1|t1
Gt1+1|t1

Gt1+2|t1
. . . Gt1+nk|t1

t1

...
...

...
...

...

Gt−1|t−1 Gt|t−1 Gt+1|t−1 . . . Gt−1+nk|t−1 t − 1

Gt|t Gt+1|t Gt+2|t . . . Gt+nk|t t

(35)

All values where k ≥ 1 naturally have to be forecasts of the inputs, e.g. for the global radiation
these will come from an NWP. If there are local observations available of the input the past
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values can be taken from the observations

Gt =

k0 k1 k2 . . . kxx horizon/time






Gobs
t0|t0

Gnwp
t0+1|t0

Gnwp
t0+2|t0

. . . Gnwp
t0+nk|t0

t0

Gobs
t1|t1

Gnwp
t1+1|t1

Gnwp
t1+2|t1

. . . Gnwp
t1+nk|t1

t1

...
...

...
...

...

Gobs
t−1|t−1 Gnwp

t|t−1 Gnwp
t+1|t−1 . . . Gnwp

t−1+nk|t−1 t − 1

Gobs
t|t Gnwp

t+1|t Gnwp
t+2|t . . . Gnwp

t+nk|t t

(36)

Note, that in most cases there is a bias between the NWPs and local observations, thus a model
must be applied in a step before fitting the forecast models – such aspects are not dealt with in
this report.

6.2.1 Updating an NWP input matrix

One can choose either to update the input matrix in each time step or when a new NWP is
received.

6.3 Two-stage modelling procedure

In order to model non-linear functional relations between inputs and output a two-stage mod-
elling procedure is used. This is a widespread approach, see [57], since it allows to fit complex
models with robust and fast estimation techniques. First, in the transformation stage, some
function of the inputs, e.g. low-pass filtering, spline or Fourier basis, etc., can be applied (cf. f1
and f2 below in Equation (37)). Second, in the regression stage, a regression model is applied
to fit a function between the transformed inputs and the output – the parameters are fitted for
each horizon.

Lets go through it with a simple example, first the transformation stage

Intercept: µt+k|t = 1

Regressor 1: xnm1
t+k|t = f1(unm1

t ; θnm1) (37)

Regressor 2: xnm2
t+k|t = f2(unm2

t ; θnm1)

and then the regression stage

Yt+k|t = β0,kµt+k|t + β1,kxnm1
t+k|t + β2,kxnm2

t+k|t + εt+k|t (38)

Thus, this model has:
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• Intercept: µt+k|t

• Two inputs (matrices): unm1
t+k|t and unm1

t+k|t

• Output: Yt+k|t

• Transformation parameters (vectors): θnm1 and θnm2

• Regression parameters for each horizon k: β0,k, β1,k and β2,k

The regression parameters are estimated with a closed form scheme, most simple is a linear
least squares regression, however this can be extended to a recursive or local version, more on
this later. The transformation parameters must be estimated with some heuristic optimization.

6.3.1 Transformations stage

In the first stage the inputs are transformed with some function, mostly either a recursive func-
tion (filtering to model a dynamical system) or some basis function (splines or Fourier series
applied to model non-linear functions).

Filtering

When modelling the output of a (linear) dynamical system a “trick” is to apply a filter directly
on the input (instead of applying an armax model [56]).

The input time series is filtered with a transfer function

xt = H(B; a)ut (39)

where B is the backshift operator (see [33]) and a is a parameter. The simplest 1st order low-pass
with gain of 1 is

H(B; a) =
1 − a

1 − aB
(40)

thus

H(B; a)ut =
(1 − a)ut

1 − aut−1
(41)

thus we have a filter coefficient a between 0 and 1, which must be tuned to match the particular
time constant of the linear system.

Now, this is stated slightly simpler than in Equation (37), where a full input matrix is input to
the transformation function. In particular, such a filter can be applied in two ways, either along
the columns in ut, see the its definition in Equation (33, such that

xt+k|t =
(1 − a)ut+k|t

1 − aut−1+k|t−1
(42)
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or along the rows

xt+k|t =
(1 − a)ut+k|t
1 − aut+k−1|t

(43)

To illustrate the effect of low-pass filtering the plot the plot in Figure 14 shows the response to a
step function for different filter coefficients a. It is clearly seen that the responses are exponen-
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Figure 14: The response to a step function for different filter coefficients a.

tial functions with different time constants depending on the value of a, such that a higher value
results in a slower response. This filter is equivalent to a single resistor and capacitor system,
hence a first order auto-regressive (i.e. arx) model, with a stationary gain of 1. If needed higher
order filter can be selected for the pre-treatment of the data but a proper care must be taken.
Higher order filter may suppress some part of the dynamical information present in the data.

Base splines

A wide spread approach to model non-linear functional relations is to apply spline basis func-
tions [57]. The basic idea is to “resolve” a single input time series into several time series, which
levels depends on the input time series. Thereafter a linear combination of the time series (fitted
in the regression stage) results in a non-linear spline function of the input time series.

Thus, the spline basis function

xt = fbspline(ut; ndeg) (44)
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where ndeg is the degree of the piecewise polynomial function, hence a higher ndeg results in a
more “flexible” function. Note that xt is a vector, since the transformation results in ndeg vari-
able. The places where the piecewise polynomial meet are known as knots. The key property
of spline functions is that they and their derivatives may be continuous, depending on the mul-
tiplicities of the knots. The input is resolved with spline basis functions, e.g. for an input in the
interval [0, 1] the basis splines for ndeg = 4, as plotted in Figure 15. The vertical dashed hori-
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Figure 15: The basis splines for ndeg = 4 with an input in the interval [0, 1]. The vertical
dashed horizontal lines marks the knot points.

zontal lines marks the knot points (must be set in some way, usually set as equidistant quantiles
of values of ut).

An example is presented, where a non-linear function with some added noise is simulated (sim-
ply numbers generated with the computer). Using the generated observations the function can
be estimated using the basis functions. First a non-linear function with some added noise is
simulated

Yi =

{
u3

i + εi for ui ≤ 0
u3

i − 0.5 + εi for ui > 0
(45)

where ε ∼ N(0, 0.12) and independent and identically distributed (i.i.d.). A sample of 100
observations is simulated and spline basis functions of increasing degree is generated and used
as input to a linear regression model. The resulting spline functions modeled is seen in the plot
in Figure 16. It is clear that there is a balance between bias and variance: A too low degree
results in an under-fitted model (not able to “bend” enough), while a too high degree results
in an over-fitted model (bends to much). The degrees of freedom can be optimized using a
cross-validation approach.

Page 47 of 63



-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

x

y

Mean
Spline df. 3
Spline df. 6
Spline df. 9
Spline df. 12
Spline df. 15

Figure 16: Resulting spline functions from the model example in Equation (45).

Fourier series

In order to model periodic phenomena a linear combination of Fourier series is a very effec-
tive approach.

We use the notation

xt = ffs(ut; nhar) (46)

where nhar is the number of harmonic pairs included, hence xt is vector of length 2nhar, which
is then linearly combined in the regression stage. Exemplified with time as input ut = t (which
is often done when modelling period, e.g. diurnal or yearly phenomena)

[
sin

( 2π

tper
t
)

cos
( 2π

tper
t
)

sin
(2 · 2π

tper
t
)

cos
(2 · 2π

tper
t
)

(47)

. . . (48)

sin
(nhar2π

tper
t
)

cos
(nhar2π

tper
t
)]

(49)

An example of Fourier basis functions is plotted below in Figure 17 for nhar = 3, hence 3 pairs
of harmonics and a period tper = 1.
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Figure 17: Fourier basis functions for nhar = 3.

Combined transformations

It is perfectly possible to combine transformations to create models involving complicated func-
tions. E.g. first a low-pass filter and then a spline basis

xt = fbspline(H(B; a)ut; ndeg) (50)

or basis splines and which are then low-pass filtered

xt = fbspline(ut; ndeg) (51)

Thus in both cases the result is multiple variables (xt is a vector) and transformation parameters
are θ = [a, ndeg].

6.3.2 Regression stage

In the regression stage the coefficients are estimated for each horizon k. For a linear least
squares regression, this is written by

Yt+k|t = β0,k + β1,kxt+k|t + εt+k|t (52)

where

• Yt+k|t is a random variable (in total there will be t · nk of them at time t when first time
was t = 1)
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• ut+k|t is the input variable

• εt ∼ N(0, σ2) and i.i.d. is a random variable (again there will be t · nk of them at time t
when first time was t = 1)

• β0,k and β1,k are the parameters for horizon k

The model is fitted separately for each horizon k using only past data.

Regarding the normal assumption of the error, is not very important, since first of all the least
squares method ensures the best estimation of the conditional mean, which is often the wanted
and optimal point prediction, see [56]. Regarding the i.i.d. assumption of the errors, this should
be checked with the Auto-Correlation Function (ACF) for the one-step ahead residuals, as well
as the Cross-Correlation Function (CCF) between the one-step ahead residuals and the inputs,
as done by [51]. One of the basic problems is the selction of the optimal model from com-
peting linear regression models. One of the frequently used criteria for model selection is
cross-validation.

The k step predictions are

ŷt+k|t = β̂0,k + β̂1,kxt+k|t (53)

Note, that the hat is reserved for predictions and estimates calculated using the statistical model,
thus the hat is not on the inputs, which are however often predictions (NWPs). If models are
fitted in several stages, e.g. the inputs in the final model are actually first predicted using another
model, then the hat is removed on the inputs in the final model.

In the above model there are in total t · nk output (Y) random variables, as well as there are t · nk
error random variables.

Following regression methods are available:

• Least squares

• Recursive least squares (RLS)

however it is planned to also implement:

• Kernel regression (local fitting)

• Quantile regression (estimate quantiles)

The latter opens up the possibilities to calculate probabilistic forecasts (ref), as well as carry
out normalization and Copula transformations, which can be very useful for spatio-temporal
forecast models (see [58] and [59]).

One note is that when using a recursive update scheme, e.g. RLS, then the parameters are
changing over time, which will be indicated with a t on the parameters

Yt+k|t = β0,k,t + β1,k,txt+k|t + εt+k|t (54)
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6.3.3 Forecast model notation

In this section a suggestion on how to write full description of a forecast model is presented,
together with simplified notation. Note that some variables are noted in bold font indicating that
they are vectors.

Full notation of the transformation stage

Intercept: µt+k|t = 1 (55)

Periodic: xper
t+k|t = ffs(t; nhar) (56)

Part 1: xnm1
t+k|t = H(B; a)unm1

t+k|t (57)

Part 2: xnm23
t+k|t = fbspline(unm2

t+k ; ndeg)unm3
t+k|t (58)

Part 3: xnm4
t+k|t = unm4

t (59)

and the regression stage

Yt+k|t = β0,kµt+k|t + β1,kxper
t+k|t + β2,kxnm1

t+k|t + β3,kxnm23
t+k|t + εt+k|t (60)

The model inputs are:

• t is simply the time value

• unm1
t+k|t some forecast input (e.g. NWP variable)

• unm2
t+k some calculated value (e.g. time of day)

• unm3
t+k|t some forecast input (e.g. NWP variable)

• unm4
t some value known at time t (e.g. an observed variable)

The transformation parameters are

θ = (nhar, a, ndeg) (61)

which must be set or optimized (heuristically). In practice, in order to find a good set of param-
eters, different initialization can be tried along with different algorithms. The dimensionality
will be low (i.e. the number of transformation parameters will be few) for most types of gen-
eration forecasting, not more than 1 or 2 per input, in [51] the biggest model applied had 5.
From previous experience the Nelder-Mean simplex algorithm [60] works well and is very ro-
bust, other approaches such as genetic algorithms could useful, since they can also deal with
integers. It is left out of scope to deal more in detail with these aspects, since there are plenty
of free implementations which can be used.
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The regression coefficients are

βk =
[

β0,k β1,1,k β1,2,k · · · β1,2nhar,k β2,k β3,1,k β3,2,k . . . β3,ndeg,k β4,k

]
(62)

The full notation where a model is specified in all details can be cumbersome and thus it can
be simplified by writing it in a single equation. In all simplifications suggested below, it should
then be clearly stated, what is implicit or referenced to a full notation of the model.

The first suggested simplified form is

Yt+k|t = µk + f fs
k (t; nhar) + Hk(B; a)unm1

t+k|t + f bspline
k (unm2

t+k ; ndeg)unm3
t+k|t + βkunm4

t + εt+k|t
(63)

thus the transformation and regression stage is written implicitly.

To simplify this even more it is suggested to write

Y = µ + ffs(t; nhar) + H(B; a)unm1 + fbspline(unm2; ndeg)unm3 + βunm4 + ε (64)

hence removing also the parameters in the transformation functions are removed.

Finally, the most simplified notation suggested is

Y = µ + ffs(t) + H(B)unm1 + fbspline(unm2)unm3 + βunm4 + ε (65)

hence removing also the time and horizon indexing.

See the following section for use of the notation in a specific context.

6.4 Examples

Examples of applying the statistical forecasting models are presented: First for observed global
radiation and then for solar power for different PV-panel orientations.

6.4.1 Data

Data for the forecasting examples is taken from a data set collected in Sønderborg, Denmark. It
comprises Local climate observations and weather forecasts (NWPs). The climate observations
are measured at the local district heating plant. The NWPs are from the HIRLAM-S05 model
[61] and provided by the Danish Meteorological Institute. All times are in UTC and the time
stamp for average values are set to the end of the time interval.

The local climate observations are from a weather station at the district heating plant in Sønder-
borg, which is less than 10 kilometers from the houses. The data is resampled to hourly average
values and the following time series is used:

Global radiation:
{

Gobs
t ; t = 1, . . . , N

}
(66)
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where N = 21144 and the unit is W/m2. For a detailed analysis of the global radiation data
used, see [62].

The local climate observations are not used as input in the present examples, only the global
radiation is used as model output in the solar forecasting example presented later. They could
be setup and combined with the NWPs as described around Equation (36).

6.4.2 Transformation into solar power

Since measurements of solar power was not available for the location and period, then a trans-
formation of the observed global radiation into a the power output of a PV system is carried out.
The steps in the transformation are:

• Split the global radiation into a direct radiation and a diffuse signal using the method
presented by [63]

• Project the direct radiation from horizontal to a surface with a given slope and azimuth

• Add the projected direct and the horizontal diffuse radiation

Since this approach gives a somewhat too modified signal this is mixed with the global radiation
in the proportion 60% and 40% respectively. Finally, this multiplied with some constant to reach
the power level of a usual single family building PV-system.

The resulting solar power for PV panels pointing in different orientations are plotted with the
observed global radiation in Figure 18, both are normalized. The slope of the panels are in all
cases 45 degrees, as if they were mounted on a steep roof. It is clearly seen how the panel point-
ing towards East has a relatively higher output level in the morning and lower in the afternoon,
compared to the global radiation. And for the panel pointing towards West, it is opposite. While
the panel pointing South is higher in both the morning and the after noon, due to the tipping of
the plane compared to the horizontal plane on which the global radiation is measured.

6.4.3 Numerical weather predictions

The numerical weather predictions (NWPs) used for the forecasting are provided by the Danish
Meteorological Institute. The NWP model used is DMI-HIRLAM-S05, which has a 5 kilometer
grid and 40 vertical layers [61]. The NWPs consist of time series of hourly values for climate
variables, which are updated four times per day and have a 4 hour calculation delay (e.g. the
forecast starting at 00:00 is available at 04:00). Since a new two day forecast is calculated every
hour, then - in order to use the latest available information - every hour the latest available NWP
value for the k’th horizon at time t is picked as

Global radiation (W/m2): Gnwp
t+k|t

(67)
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Figure 18: The observed global radiation and solar power, both normalized. The upper plot for
a PV panel pointing towards East, the middle plot for a PV panel pointing towards south and
finally a PV panel pointing towards West. The period is the first week of April 2011.

This is setup as described in Section 6.2, similarly as for the global radiation in Equation (36),
only using purely NWPs (no local observations). Thus the input matrix Gt is formed and used
in the examples.

6.4.4 Solar forecasting

The forecast method can be used for solar forecasting, and in this section it is used to forecast
first the global radiation and then solar power for the three panel orientations presented above in
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Section 6.4.2. Forecast horizons from 1 to 36 hours are calculated. The algorithm uses the basis
splines to form a conditional parametric model, in which the functional relationship between
the NWPs of global radiation are conditional on the time of day.

The model is the same for all the four setups, but of course it is fitted using the output series,
just denoted by Y in the following. Model notation of the transformation stage

Global rad. input: xG
t+k|t = fbspline(t

day
t+k; ndeg = 5)Gnwp

t+k|t (68)

and the regression stage

Yt+k|t = β1,kxper
t+k|t + εt+k|t (69)

The model inputs are:

• tday
t+k the time of day, i.e. simply the hour in this case

• Gnwp
t+k|t the global radiation NWP

The regression is fitted using the recursive least squares scheme, which thus has the forgetting
factor parameter λ. It is optimized in an offline setting as described in [51].

Figure 19 shows different examples of the global radiation forecast. In the upper plot it is seen
how the k = 36 hours ahead forecasts match the observations for a 2 weeks period. Naturally,
it is not perfect, but it is clearly seen how the general pattern is very well modeled. The largest
errors occur when the NWP have large errors, hence much of the accuracy of the forecasts
depends on the quality of the NWPs.

In the middle plot it is seen how the forecasts, which are updated every hour using the latest
available NWPs, do change for particular time points. Thus, as new NWPs become available
the forecasts will use this new information. In general the NWPs of shorter horizon are better,
however it must be noted that some NWPs used for k = 1 hour forecasts are actually 10 hours
old, due to NWP calculation time (4 hours in this case) and the fact that the NWPs are only
updated every 6 hours. If the latest available observation is also used as an input (an auto-
regressive model part), then on shorter horizons the forecasts will become more accurate, as
demonstrated in for example [51].

In the lower plot of Figure 19 the k = 8 hours forecast is shown for the five day period. It can
be seen how there is pattern during the late morning hours, which tend to be lower than in the
afternoon, and how the model actually adapts to this pattern.

In Figure 20 the k = 1 hour and k = 36 hours forecasts are plotted for the solar power for PV
panels pointing in different orientations. It is clearly seen how the model adapts to the different
patterns of the signals, hence taking automatically into account, the different orientations of the
panels. Comparing the k = 36 hours forecasts to the same forecasts of global radiation (upper
plot of Figure 19), it is seen that the larger errors occur exactly at the same time points, simply
because the same NWPs are used and since the errors are propagating through the model.
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Figure 19: Upper plot: The observed solar radiations in black and the k = 36 hours solar
radiation forecast in red for the two first weeks of April 2011. Middle plot: All forecasts
calculated during 16. to 20. April. Lower plot: The k = 8 hours ahead forecast for the same
period as in the middle plot.
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Table 4: Solar power forecast parameters 

PARAMETER DESCRIPTION UNITS TYPE 

Input Parameters 

Gnwp Numerical weather predictions of 

global radiation 
W/m2 Float 

Psol Solar power observations W  Float 

Output Parameters 

Pfor,sol Solar power forecasts W Float 
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 CONCLUSION 

In this report the models of DERs, which are needed for operating the FLEXCoop pilot sites 

have been presented. The models cover lighting and HVAC loads, batteries and EVs, as well 

as PV generation. A detailed description of how to effectively use NWPs as model inputs have 

been given and of how to setup data-driven models, which can automatically and in a scalable 

way, adapt to the particular systems. Examples have been given of using the models and 

algorithms to represent the DERs and forecast the needed variables using the real world data, 

of course not yet from the pilot sites as they are not established yet, but from other similar 

systems. It is thereby shown that both load, storage and solar radiation can be modelled 

accurately and reliable forecast can be generated. Exactly how the models will be setup and 

tuned for the particular pilot sites depends on which DERs are present there, hence this will be 

a task which will on going during the remaining of the project. 
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