
 Javascript Introduction
javaScript: The Programming Language of the Web

INTRODUCTION

One of the hardest things to learn in programming is not the syntax,

but how to apply it to solve real world problems. I want you to start

thinking like a programmer — this generally involves looking at

descriptions of what your program needs to do, working out what code

is needed to achieve those things, and how to make them work

together.

These labs are designed to give you experience with programming

syntax and practice. The more you build stu� with code, the better

you’ll get at it. I can’t promise that you’ll develop “programmer brain”

in �ve minutes, but you’ll have many opportunities to practice thinking

like an ‘entrepreneurial programmer’ throughout the course.

In this lab, you’ll be introduced to the process of writing code across a

variety of environments, and a healthy dose of basic Javascript

concepts and syntax.

You’ll use your text editor (VSCode)to write the JavaScript code.

You’ll use a Web Browser (then eventually your own computer) to

execute your project code.

JAVASCRIPT VALUES

In order to make useful programs, we must be able to take the billions

of bits in our computer, and separate them in a way that allows us to

create values .

30;

Christian Grewell Follow

Feb 6 · 9 min read

•

•

JavaScript makes the web interactive

https://medium.com/@magicxtian?source=post_header_lockup
https://medium.com/@magicxtian

That’s a value (it’s also an expression which we’ll get to later). If you try

and run this in an environment, you’ll get nothing, well not exactly

nothing. The node runtime environment created this value (a number,

30) for maybe a 1/10,000,000th of a second. Then it was gone.

Let’s make the computer work for us. Open up your browser (or VIM if

you are a hacker), type console.log(10);

console.log(10);
//10

console.log(9.123456);
//9.123456

The �rst console.log returns a number. The second also returns a

number. Unlike many other programming languages, JavaScript does

not de�ne di�erent types of numbers, like integers, short, long,

�oating-point etc.

Try this:

console.log(9999999999999999);

Javascript uses 64 bits (0/1 pairs) to store numbers. This is a huge

number, ²⁶⁴. How big is that? Well, we’re coding now, can you make the

computer do this for you?

. . .

you just wrote your �rst JavaScript code!

CHALLENGE #1: make a program to calculate 2^26
you can Google this if you want!

note: I've added some blank space before the solution so
that you can choose not to peek.

--solution below (don't peak!)--

SOLUTION:
console.log(2*
2*
2*2*2*2*2*2*2*2*2*2);

console.log(Math.pow(2, 64)); //better way...

Actually, that’s not exactly the maximum value possible. It’s actually,

it’s closer to 9 quadrillion when you factor in the extra bit to denote

negative or positive, and the bits needed to store the location of the

decimal point. This is called a signed number, speci�cally, if we’re not

talking about decimals, but integers (whole numbers). Then the actual

number is only:

9,223,372,036,854,775,807

That’s 9 quadrillion, still a big number.

ARITHMETIC IN JAVASCRIPT

Let’s do some simple arithmetic in JavaScript.

console.log(20 + 15 * 4);

console.log((20 + 15) * 4);

Javascript has the following obvious operators :

Addition (+)

Subtraction (—)

Multiplication (*)

Division (/)

In addition, it has a few others, speci�cally the modulus operator,

which returns a remainder:

console.log(101 % 100);

STRINGS

Another value type in Javascript is the string value. There are a few

di�erent ways to write them (one is especially powerful, you’ll see).

1.

2.

•

•

•

•

"I love dumplings" -- double quotes

'I love dumplings' -- single quotes

`I love dumplings` -- backticks

If we write a simple program to log our favorite food console.log(`I

love dumplings.`); we get the result: I love dumplings.

$node dumplings.js

I love dumplings

but I also love

tabs!

How could we make the computer output the text as formatted above?

The Escape Character \

Javascript has something called an escape character that tells the

program you’d like to do things like start a new line, or add a tab.

\' single quote

\" double quote

\\ backslash

\n new line

\r carriage return

\t tab

\b backspace

\f form feed

If you want to add a new line in the middle of a string, you could write

something like console.log('I am a little teapot, short and

stout\nhere is my handle, here is my spout');

•

•

•

•

•

•

•

•

. . .

CHALLENGE #2: make a program to output the following text:

I love dumplings

but I also love

 tabs!

--solution below (don't peak!)--

SOLUTION:
console.log('I love dumplings\nbut I also love\n\ttabs');

The Backtick ``

Creating string values with backticks `hi!` come with more than a few

bene�ts. For one, you don’t need to use the escape character to

complete the challenge about. You can just write this with backticks

formatted as you’d like:

STRING INTERPOLATION + CONCATENATION

You can also perform arithmetic on string values. well, technically not

arithmetic, but you can add strings together:

console.log('my favorite' + 'cat' + 'is' + 'concat');
console.log('my favorite' + ' cat' + ' is' + ' con' + 'cat'
);

//my favoritecatisconcat
//my favorite cat is concat

Strings also have methods that you can call on to perform operations

on them.

. . .

CHALLENGE #3:
write a program that outputs a NUMBER value for the length
of the string 'abaracadabara'

start here: https://developer.mozilla.org/en-US/

--solution below--

SOLUTION:
console.log('abaracadabara'.length); //13

Back-tick quotes are very powerful, we’ve already seen how they can be

used to avoid having to use escape characters. They can also do

something called template literals and string interpolation

What happens when you run this code?

console.log(`half of 200 is ${200/2}`);

https://developer.mozilla.org/en-US/

The typeof Operator

The typeof operator returns a string indicating that tells us the type of

value

console.log(typeof 45);
//number

console.log(typeof ‘Bob Ross’)
//string

BOOLEANS

Booleans are for when you want to distinguish between two values. In

Javascript, these are true and false .

console.log(10 < 9);
//false

console.log(‘Bob Ross’ < ‘Ross Bob’);
//true

OPERATORS

< less than

> greater than

<= less than or equal

>= greater than or equal

=== equal to

!== not equal to

== truthy

!= falsey

And some logical operators:

&& and

|| or

! not

console.log(‘Bob Ross’ != ‘Bob Moss’);
//true

console.log(“5” == 5);
//true

The example above is because JS is extremely forgiving. It’s doing

something called type coercion, which is a fancy way of saying

JavaScript is trying to interpret what you really mean

console.log(“4” + 2);
//42

console.log(“4” * 2);
//8

console.log(true == 1);
//true

console.log(true === 1);
//false

console.log(‘5’ !== 5);
//true

This is why we say the two operators == and != are truthy and falsey

respectively. In general, if you don’t want accidental type coercion, you

should use === and !== , which will make sure to match on the

TYPEOF the value as well.

LOGICAL OPERATORS (and && or || and not !)

The and && operator will evaluate to true if all statements are true:

console.log(true && false);
//false

console.log(true && true);
//true

The or || operator will evaluate to true if one of the statements is true

console.log(true || false);
//true

console.log(false || false);
//false

The not ! operator will �ip the value that you give it

console.log(!true);
//false

console.log(!(1 === 2));
//true

The Ternary Operator

So far, we’ve been working with binary operators, they evaluate as

true or false . The third, and very useful operator, is the TERNARY

operator

console.log(true ? “Bears” : “Sharks”);
//Bears

console.log(false ? “Bears” : “Sharks”);
//Sharks

Syntax format: x ? y : z where x = what you want to evaluate, y

= the value or statement if true, and z the value or statement if

false.

The ternary operator evaluates a statement and if true, returns

whatever is after the ?, otherwise it returns whatever is after the :

console.log(true ? 2 + 2 : 4 + 4);
//4

EXPRESSIONS AND STATEMENTS

Expressions in Javascript are essentially sentence fragments. You can

add many expressions together to form a statement, just like you can

add sentence fragments together to form a sentence

!true;
//this is technically an expression. Not a good one, but and
expression.

BINDINGS / VARIABLES

The bread and butter of your programs, they give you the ability to grab

a hold of the bits in your computer and assign names to them.

The concept of bindings is the most important thing you can possibly

learn. In JavaScript, bindings are used to point to values — bits of 1s

and 0s that make up your program. You can create bindings to not just

to values, but to entire functions and objects in your program.

You create bindings in JavaScript using the let, const, or var expressions.

In general, avoid using the var keyword to create a binding.

In general, you use the const expression when you’re sure the value

won’t be reassigned. However, a mutable variable is often needed,

particularly as a counter when we need to loop through something.

But why should you use let instead of var for these situations, if

they both provide the basic mutability required of them?

let , is a signal that the binding may be reassigned, it also signals

that the variable will be used only in the block it’s de�ned in (we’ll
get to blocks when we talk about functions in the next lab), which

is not always the entire containing function.

confused? don’t worry, in general you are going to be just �ne using

const , and if you �nd the program has an error, you can switch to using

let , just avoid var , it’s not the future…

So, how can we create a binding?

let catWeight = 30; //we use let here because this cat needs
to lose weight

console.log(catWeight);
//30

This statement creates a binding called ‘catWeight’ and points it to a

location in memory with the following binary value: 00011110

const numberOfCats = 4;
console.log(catWeight * numberOfCats); //30 * 4)
//120

. . .

CHALLENGE 4: Now that we have two bindings, and we remember
string interpolation, we can use these to create output.

Log a message to the console that tells someone how many
cats they have, and tells them how many bags to bring,
assuming one bag can carry 10 kilos.

--solution below--

console.log(`You have ${numberOfCats} cats. You need
${(catWeight*numberOfCats)/10} bags to carry them all!`);

You can also change bindings, and point them to a new value

(including other bindings)

const numberOfCats = 10;

console.log(`You have ${numberOfCats} cats. You need
${(catWeight*numberOfCats)/10} bags to carry them all!`);

BINDINGS AND VALUES: THE RUNTIME
ENVIRONMENT

The environment that the program runs in also has a bunch of other

pre-de�ned bindings. console.log() is actually a pre-de�ned binding,

the console function has a method that returns whatever is in the log to

your screen.

Web browsers also have a few other pre-de�ned bindings, things that

help with showing prompts to a user, or responding to mouse clicks.

FUNCTIONS

We’ll get into functions in a lot of detail in the next lab, but for now,

know that they are a set of statements that perform tasks or calculates a

value. In order to use a function, you need to create one, or you can use

functions in your runtime environment (e.g., the browser that we’ve

been using so far)

You’ve already been using a JavaScript function, console.log :

There are a slew of built-in functions that come with your browser’s

JavaScript runtime, for example, try typing this:

prompt(‘what is the password?’);

. . .

COMMENTING

We can write JavaScript directly in the browser’s runtime environment. Hax!

The result of: prompt(‘what is the password?’);

So until now, we’ve just been rolling along writing some simple code,

making the computer do things and generally getting along �ne. You’ve

probably noticed during our live exercises that I’ve been commenting

some of the code in the following two ways.

// denotes a single line comment. These are good for when you have

something terse to say

The other type of comment is a multi-line comment. These are great for

big blocks of documentation or text that spans multiple lines.

/*
write your comment here
*/

It’s required to start with the comment with a /* and end the

comment with a */ otherwise the compiler will interpret your

comment as code!

PSUEDOCODE

Pseduocode is a helpful way to start a program. Essentially you use

plain English (or whatever language you’d like really) to outline what a

program will do, trying to stay as detailed as possible and true to syntax

forms.

//IF there is a bear and it is closer than 10 meters
 //IF we have bear spray
 //spray the bear
 //run
 ELSE IF it is a Brown or Grizzly Bear
 //play dead
 ELSE
 //raise your hands and shout
//ELSE
 //run away

