The Benefits of Drone Use in Evaluating the Building Enclosure

Tony B. Robinson, RRC, BECxP, LEED® AP, Associate
Eric E. Cicero, E.I., Certified Drone Pilot
History

- One of the first recorded uses was by Austrians in July 1849

- 1898 Spanish – American War when the U.S. military fitted a camera to a kite, producing one of the first aerial reconnaissance photographs
History

- The term “drone” originated from the British produced unmanned radio controlled aircraft in 1935 that were used as anti-aircraft practice targets.

- A Lightning Bug Drone was used during the Vietnam war, it was one of the first drones used for surveillance by the USAF.
History

- Whatever the size of the drone, they all perform the same functions:
 - Providing intelligence, surveillance, reconnaissance (ISR) via photographs and/or videos
How Does a (sUAS) Drone Work?

An unmanned aerial vehicle system has two main parts: drone itself and control system.

Majority of (sUAS) used by hobbyists or for commercial use have multi-rotors.

Multi-rotor drones are inherently unstable and require an on-board computer to stabilize flight.
How Does a (sUAS) Drone Work?

- Roll, pitch, yaw, and thrust can be changed by speeding up or slowing down
 - Roll – moves the UAS side to side
 - Pitch – moves the UAS forward or backwards
 - Yaw – changes the direction the UAS faces
FAA Regulations

- 2015 – FAA created regulations and rules for drone use due to safety concerns
- Ch 14 CFR – Part 107
- Certification was originally required for hobbyist and for commercial pilots (Pilot Certificate)
- As of 2017 certification is only required for commercial pilots
The rules for operating an unmanned aircraft.

<table>
<thead>
<tr>
<th></th>
<th>Fly for Fun</th>
<th>Fly for Commercial Use</th>
</tr>
</thead>
</table>
| **Pilot Requirements** | No pilot requirements | Must have Remote Pilot Airman Certificate
Must be at least 16 years old
Must pass TSA vetting |
| **Aircraft Requirements** | Must be less than 55 lbs. | Must be less than 55 lbs.
Must be registered if over 0.55 lbs. (online)
Must undergo pre-flight check to ensure UAS is in condition for safe operation |
| **Location Requirements** | 5 miles from airports without prior notification to airport and air traffic control | Class G airspace* |
| **Operating Rules** | Must ALWAYS yield right of way to manned aircraft
Must keep the aircraft in sight (visual line-of-sight)
Must follow community-based safety guidelines
Must notify airport and air traffic control tower before flying within 5 miles of an airport
Must NOT be physiologically impaired | Must keep the aircraft in sight (visual line-of-sight)*
Must fly under 400 feet (elevation)*
Must fly during the day*
Must fly at or below 100 mph*
Must yield right of way to manned aircraft*
Must NOT fly over people*
Must NOT fly from a moving vehicle*
Must NOT be physiologically impaired |
| **Example Applications** | Educational or recreational flying only | Flying for commercial use (e.g. providing aerial surveying or photography services)
Flying incidental to a business (e.g. doing roof inspections or real estate photography) |
| **Legal or Regulatory Basis** | Public Law 112-95, Section 336 – Special Rule for Model Aircraft
Commercial sUAS pilots typically operate in Class G Airspace

Class G airspace extends from the surface to the base of the overlying Class E airspace

A remote pilot will not need ATC authorization to operate in Class G airspace
Drone Capabilities

- Aerial photography
- Aerial Thermography
- Laser Scanning for As-Builts
- 3D Mapping
- Facade Condition Studies
- Allows Focus on Actual Issues
- Storm Damage Assessments
- Structure Inspections
Facade Inspection Methods

- Typically use ladders, lifts, hoists, rope access or swing staging
- These methods are time consuming and expensive
- The more complex the configuration, the more expensive
Binocular Inspection
Man Lift
Swing Staging
Rope Access Methods
Small Unmanned Aircraft Systems (sUAS) - Drones
Avoids Expensive Access Methods

- Allows access to hard to reach locations
- Up to 400 feet above the structure*
<table>
<thead>
<tr>
<th>Method</th>
<th>Average Costs for Evaluation Use</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binoculars</td>
<td>$135/hour</td>
<td>No ability to capture images observed for later use.</td>
</tr>
<tr>
<td>High Reach Equipment</td>
<td>$2,500/120’ lift per week (not including operator or engineer)</td>
<td>Costly, coordination with facility operations critical, potential for mechanical failure. Tremendous attention to safety.</td>
</tr>
<tr>
<td>Swing Stage</td>
<td>Initial installation $2,000 Relocate for each drop $1,200 (if on same building level) $1,000 per drop for operator and engineer</td>
<td>Costly, coordination with facility operations critical, Delay in observation due to mobilization and relocation of staging for each drop.</td>
</tr>
<tr>
<td>Helicopter</td>
<td>$1500 to $2000 per hour.</td>
<td>Weather and FAA Clearance</td>
</tr>
<tr>
<td>Drone</td>
<td>The average cost for drone survey is approximately $3,000-$4000 total (this includes pilot, engineer and report). Exact price may vary depending on your area and project details.</td>
<td>FAA Regulations, Battery Life, Weather (wind, rain, etc.)</td>
</tr>
</tbody>
</table>
Overall View of an Entire Site
Photos for Design and Renderings
Infrared Thermography for Moisture or Air Leakage
3D Modeling
Orthomosaic
Building Enclosure Evaluations
Building Enclosure Evaluations
Building Enclosure Evaluations
Building Enclosure Evaluations
Aerial Views for Measure Ups
Evaluation after a Major Weather Event

- FAA issued 137 authorizations to local, state and federal agencies for support to Hurricane Harvey Recovery
- Insurance, utility, and AE firms used drones to assess damage
Storm Damage Assessment

- Quickly assess damage to facilities
- Easy access
- Minimal safety issues
Additional Uses

- Amazon announced it was exploring using drones to deliver packages in 2014
- Exploration of delivering medicine
- Law Enforcement & Emergency Rescue
 - Used to deliver life jackets to flood victims
 - Use IR on Drones for Search & Rescue
 - Disaster Relief
- Real Estate Surveys
- Mining and Transportation – Site Assessments and Geological Mapping
- Used in Africa for Anti-Poaching Missions
- Agriculture – Crop Monitoring
Limitations

- sUAS should be considered a tool and not a solution to a problem
- Professionals are needed to analysis and interpret the data
- Visibility: drone must be in line of sight of the pilot
- Weather: cannot be flown in 20+ mph
Conclusion

“The Drone Age” is here to stay

- They inspect hard to reach places
- They can be deployed quickly
- They are popular – multiple uses
- Evaluating building enclosures can be performed annually at lower costs