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Abstract
For decades, the prediction of bank failure has been a popular topic in credit risk and banking
studies. Statistical and machine learning methods have been working well in predicting the
probability of bankruptcy for different time horizons prior to the failure. In recent years,
bank efficiency has attracted much interest from academic circles, where low productivity or
efficiency in banks has been regarded as a potential reason for failure. It is generally believed
that low efficiency implies low-quality management of the organisation, which may lead
to bad performance in the competitive financial markets. Previous papers linking efficiency
measures calculated by Data Envelopment Analysis (DEA) to bank failure prediction have
been limited to cross sectional analyses. A dynamic analysis with the updated samples is
therefore recommended for bankruptcy prediction. This paper proposes a nonparametric
method, Malmquist DEAwithWorst Practice Frontier, to dynamically assess the bankruptcy
risk of banks overmultiple periods. A total sample of 4426US banks over a period of 15 years
(2002–2016), covering the subprime financial crisis, is used to empirically test the model. A
static model is used as the benchmark, and we introduce more extensions for comparisons of
predictive performance. Results of the comparisons and robustness tests show thatMalmquist
DEA is a useful tool not only for estimating productivity growth but also to give earlywarnings
of the potential collapse of banks. The extended DEAmodels with various reference sets and
orientations also show strong predictive power.
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1 Introduction

Financial institutions such as banks are key players in a country’s financial system. Reducing
and controlling the systemic risk which can possibly spread from problematic banks to other
solvent banks is one of the main duties of regulators (Schulte &Winkler, 2019). Regulations
on banks, such as the BASELAccord, are used across the globe to ensure banking operations
are functional and stable. However, in certain downturns, such as a financial crisis, banks that
find themselves under increasing pressure may fail for various reasons. In the last financial
crisis in 2008, the entire financial sectors, including the banking industry, suffered great
losses and many banks became insolvent during the recession which followed (De Haas
& Van Horen, 2013). This greatly impacted the global economy and the stability of many
countries’ financial systems.

In much the same way that the predicting of corporate bankruptcy has been well discussed
in business and credit risk literature (see reviews in Veganzones and Severin (2020)), the
prediction of bank failure has also been well documented in banking and finance studies.
Various statistical and intelligent algorithms have been proposed to classify failed banks
and non-failed banks, for example, Discriminant Analysis (Meyer & Pifer, 1970), Logistic
Regression (Martin, 1977), the Cox Proportional Hazard model (Lane et al., 1986), Neural
Networks (Tam, 1991), Trait Recognition models (Kolari et al., 2002), Probit model (Canbas
et al., 2005), Support Vector Machines (Boyacioglu et al., 2009), with these models being
comprehensively reviewed by Altman and Saunders (1997), Ravi Kumar and Ravi (2007),
and Demyanyk and Hasan (2010). Many of the models are already successfully being used
as Early Warning Systems (EWS) to give signals of possible bank failure and thus prevent
potential crises for the market.

A bank’s efficiencymay be judged by different factors such as cost, profit, or management,
and there is much literature available which discusses the relationship between efficiency and
bankruptcy. As Berger and Humphrey (1997) commented, management quality should be
positively related to efficiency and banks should logically show signs of low efficiency rates
prior to failure. Barr et al. (1993) found that the efficiency of failed banks is significantly
lower than that of healthy banks in the years prior to their eventual failure. Barr et al. (1994)
later became the first to use data envelopment analysis (DEA) as a non-parametric method
to predict bank failure. Costs and profits are two important aspects that banks need to take
into consideration when making efficiency analyses. Cost efficiency is used to measure costs
under the condition of the same output. The idea behind profit efficiency is to measure
revenue streams. Assaf et al. (2019) investigated the effect of efficiency on the survival and
profitability of banks in normal periods (i.e., non-recession periods) and found that cost
efficiency plays a vital role, while profit efficiency has only a limited effect.

In the wider scope of corporate bankruptcy prediction, DEA is a popular method and has
been tested in many different contexts, examples being Premachandra et al. (2009), Yeh et al.
(2010), Psillaki et al. (2010), Premachandra et al. (2011) and Li et al. (2014). Some analysts
have used DEA as a direct algorithm to assign a score to each Decision Making Unit (DMU)
(Cielen et al., 2004; Min & Lee, 2008; Paradi et al., 2004; Shetty et al., 2012). Paradi et al.
(2004) proposed a new frontier construction method in DEA and used a layered technique to
predict bankruptcy. Their basic idea of ‘Worst Practice Frontier’ (WPF) is to put inefficient
DMUs at the frontier, and they thus discovered that the combination of layeredBest andWorst
Practice Frontier DEAmodels yielded impressive classification accuracy. Given the fact that
bank efficiency performance, as calculated by DEA, is evaluated over several time periods
(Casu et al., 2004; Portela & Thanassoulis, 2010;Wheelock &Wilson, 2009). Li et al. (2017)
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were therefore able to extend corporate failure prediction into dynamic assessment, using
Malmquist DEA and hazardmodels to classify failed and non-failed companies over multiple
periods. The results showed that the financial distress hazard model could be enhanced when
combined with the dynamic DEA scores.

This paper proposes a nonparametric approach to dynamically predict bank failure using
mutative datasets with mutative scores under the Malmquist DEA framework. The efficiency
of bank peers over multiple periods allows for the detection of early signals of potential bank
insolvency with a robust predictive power. This paper also makes some valuable comparisons
with static traditional DEA models and some extended dynamic models. The paired t-test
results of evaluation indicators show that the model we proposed, Malmquist DEA with
WPF and global reference, has better predictive power than the static models and other
extended models. Given that the empirical results use data from 4426 US banks from 2002
to 2016—a period which covered the last subprime crisis—we argue that this work offers
valuable insights for stakeholders and regulators on how to react to the global depression
which has now been triggered by the COVID-19 pandemic, where credit risk will increase
and banks may fail.

The rest of the paper is organised as follows. We summarize the literature related to
bank efficiency analysis and bank failure prediction in Sect. 2. Section 3 introduces the
methodology and shows the research design. Section 4 includes the data description and
variable selection. We present the comparison analysis and robust test in Sect. 5. Section 6
concludes our work, and we discuss future implications at the end.

2 Literature review

2.1 Bank failure prediction

The prediction of bank failure has a long history in the study of banking and finance, starting
with Meyer and Pifer (1970), who input 32 financial measures and four types of variations
into Linear Discriminant Analysis (LDA), which was introduced by Altman (1968), and
found that only 10 out of 160 variables were significant in distinguishing between good
and bad banks. They also established some criteria for bankruptcy prediction, crucially, to
let the data speak for itself, instead of building on mere conjecture. Later, Martin (1977)
proved that the linear discriminant function is a special case of the logistic function when
multivariate normal distribution is met, thus becoming the first to apply Logistic Regression
(LR) to bank failure prediction. Logistic Regression has thus become the most widely used
method in firm and bank bankruptcy prediction (Imbierowicz &Rauch, 2014; Jin et al., 2011;
Lanine & Vennet, 2006; West, 1985). Canbas et al. (2005) considered LDA, Logit and Probit
models together in amulti-level analytical framework. They employed aPrincipalComponent
Analysis (PCA) on 12 financial ratios, and extracted three factors to detect problems in 40
commercial Turkish banks. Other than LDA, Logit and Probit, Survival Analysis is another
statistical method common in bankruptcy prediction. It models the duration time to failure
which can be affected by many deterministic variables, including Time-Varying Covariates,
such as macroeconomic factors. Applications of bank failure prediction can be found in Lane
et al. (1986), Henebry (1996), DeYoung (2003) and González et al. (2021), who all used Cox
Proportional Hazard models to predict the probability of failure, given a bank could survive
until a certain point.
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Statistical models are typical parametric methods, where the relationships between
explanatory variables and the target variable are specified, while nonparametric methods
cannot provide specific statistical parameters. In Meyer and Pifer (1970), the four types of
variation of a financial variable were calculated through the interactions of its values for
the six years leading up to the year of the study. However, a more popular, modern way of
introducing interaction into analysis is to consider the interactions of different variables. Trait
recognition (TR) is one such nonparametric approach that measures all possible interactions
between variables. It tracks the traits which exist in complex interactions between predic-
tive variables (Lanine & Vennet, 2006). Kolari et al. (2002) and Lanine and Vennet (2006)
compared TR with the Logit model, and both concluded that TR outperformed Logistic
Regression in the prediction of bank failure for the holdout sample.

Neural Networks, another classical nonparametric method, frequently appears in the lit-
erature related to bank failure prediction. It was first introduced into the field by Tam (1991),
who investigated its performance on 59 pairs of failed and non-failed banks. The performance
of Neural Networks was compared to a group of other common algorithms, including LDA,
LR, k-Nearest Neighbor and Decision Tree, and promising results were found. Neural Net-
works was then developed with many alterations and adjustments to improve its predictive
accuracy (Alam et al., 2000; Boyacioglu et al., 2009; Tam & Kiang, 1992).

2.2 Bank efficiency analysis

DEA is a mathematical programming approach used to calculate the relative efficiency of
DMUs, given that eachof themutilise a number of inputs to produce various favorable outputs.
DEA can identify a group of efficient units lying on the efficient frontier as reference points
for other units to be compared with. In this way, the performance or productivity of DMUs
can be evaluated through the efficiency shown byDEAmodels.Many studies employDEA to
analyze bank performance compared to their peers (Mahmoudabadi & Emrouznejad, 2019;
Ouenniche & Carrales, 2018; Yang, 2014). There are also some studies combining other
methods to measure banks’ efficiency, such as DEA with network analysis (Antunes et al.,
2021; Tan et al., 2021), or bootstrap methods (Dia et al., 2020) etc.. Stochastic Frontier
Analysis (SFA), as a parametric production efficiency frontier analysis tool, is also widely
used to evaluate the operating efficiency of banks (Ngo & Tripe, 2017). SFA can also be used
to measure bank failure, for instance in Sanchez González et al. (2020), who applied the SFA
and Bayesian approach to commercial banks in the USA to estimate the effect of inefficiency
on bank failure. Unlike parametric productivity analytical tools such as SFA, since DEA is
a nonparametric method, it is more advantageous than SFA in terms of the free distribution
of variables and multiple outputs, though it is SFA which has attracted more interest in the
investigation of bank performance (Behr, 2010; Casu et al., 2004; Lampe & Hilgers, 2015).

In a similar way that corporate efficiency is involved in bankruptcy prediction (Avkiran
& Cai, 2014; Cielen et al., 2004; Mousavi & Ouenniche, 2018; Ouenniche & Tone, 2017;
Premachandra et al., 2011; Psillaki et al., 2010), bank efficiency has also been found to be
helpful in detecting potential bank failure. Barr et al. (1994) first proposed the use of DEA
as a nonparametric tool to imply management quality and so to detect in advance those
insolvent banks with significantly lower efficiency scores than solvent banks. Wheelock
and Wilson (1995) interpreted the inefficiency calculated by DEA to be a cause of bank
failure, and concluded that technically inefficient banks were more likely to fail than efficient
ones. Brockett et al. (1997) suggested that DEA be used as an EWS to identify bad banks
from good ones, and were therefore able to generate overall ratings based on the CAMEL
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criteria (Capital, Assets, Management, Equity, Liquidity). Avkiran and Cai (2014) used a
non-oriented DEA super-SBM model to flag the bank holding companies, and the results
supported both the DEA’s discriminant and predictive power. Scholars also compared the
DEA method with the Logit model in failure prediction performance, and proved that DEA
has higher estimation accuracy (Premachandra et al., 2009; Sanchez González et al., 2020).

When banks are observed over multiple time periods, their performance can be evaluated
not only in cross sections with their peers, but they can also be compared to themselves over
previous years in a time series. Malmquist DEA is one such model that can fulfil this task
(Cooper et al., 2006). Many authors have documented empirical studies on banks regarding
their performance dynamics and productivity growth over time (Casu et al., 2004; Kao &
Liu, 2014; Sturm & Williams, 2004; Wheelock & Wilson, 2009). The literature related to
bank failure prediction is shown in Table 1 that most of the literature is written from the
perspective of static research, and that there has been no research which directly predicts
bank failure by employing a multi-period DEA in a dynamic analysis of bank efficiency. This
paper extends the application of the DEA to failure prediction, and proposes a nonparametric
method to classify failed/non-failed banks directly and dynamically. Dynamic efficiency
score is a potential early warning indicator to assess bank performance, and we introduce its
methodology in the next section.

3 Methodology

3.1 DEA andMalmquist DEA

Previous papers linking efficiency measures calculated by DEA to bank failure prediction
have been limited to cross-sectional analysis. A dynamic analysis under different macroe-
conomic conditions is thus recommended in this paper for better bankruptcy prediction. We
propose a nonparametric method, Malmquist DEA with Worst Practice Frontier, to assess
the bankruptcy risk of banks over multiple periods.

In a production process, productivity or efficiency is usually defined as the weighted
outputs divided by the weighted inputs:

θj = uT y j
vT x j

=

q∑

r=1
ur yr j

m∑

i=1
vi xi j

, j = 1, 2, . . . , n (1)

where xi j (i = 1, . . . ,m) and yr j (r = 1, . . . , q) are the inputs and outputs for the j th DMU
to be evaluated; m and q are the numbers of inputs and outputs; vi (i = 1, . . . ,m) and
ur (r = 1, . . . , q) are their respective weights.

DEA is an optimising technique to identify the most efficient DMUs, which form the
efficient frontier, and the relative efficiency of other DMUs is measured by the distance to the
reference points on the frontier. Suppose there are n DMUs, a Slacks-Based Measure (SBM)
model (Tone, 2001) under Variable Returns to Scale (VRS) conditions can give feasible
solutions, and their input-oriented and output-oriented programming questions are written
as:
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Table 1 Summary of literature in bank failure prediction

Literature Sample Method Style

Martin (1977) US banks LR Static

West (1985) US banks Factor Analysis, LR Static

Lane et al. (1986) US banks HM Static

Tam (1991) US banks NN, LR, DA, K-NN, DT Static

Tam and Kiang (1992) US banks DA, LR, k-NN, NN, DT Static

Barr et al. (1994) US banks DEA Static

Wheelock and Wilson (1995) US banks DEA, HM Static

Barr and Siems (1997) US banks DEA Static

Bell (1997) US banks NN, LR Static

Olmeda and Fernández (1997) Spanish banks NN, LR, DT, DA, etc Static

Alam et al. (2000) US banks NN, Fuzzy Clustering Static

Swicegood and Clark (2001) US banks DA, NN Static

Kolari et al. (2002) US banks TR, LR Static

Luo (2003) US banks DEA Static

Kao and Liu (2004) Taiwan banks DEA Static

Canbas et al. (2005) Turkish banks DA, LR, Probit Static

Lanine and Vennet (2006) Russian banks LR, TR Static

Halling and Hayden (2008) Austrian banks HM, LR Dynamic

Celik and Karatepe (2007) Turkish banks NN Static

Kick and Koetter (2007) German banks LR Static

Davis and Karim (2008) UK banks LR, DT Static

Ravi and Pramodh (2008) Spanish banks NN Static

Zhao et al. (2009) US banks LR, DT, NN, k-NN Static

Boyacioglu et al. (2009) Turkish banks NN, SVM, K-means, DA, LR Static

Tsionas and Papadakis (2010) Greek banks DEA Static

Reynaud (2010) Turkish bank DEA,SFA Static

Fiordelisi and Mare (2013) Italish banks HM Static

Zaghdoudi (2013) Tunisian banks LR Static

Erdogan (2013) Turkish banks SVM Static

Avkiran and Cai (2014) UAE banks DEA Static

Wanke et al. (2015) Brazilian banks DEA Dynamic

Almanidis and Sickles (2016) US banks SFA, HM Static

Pagratis et al. (2017) Greek banks DEA Static

Othman and Asutay (2018) Islamic banks DA, LR, Probit Static

Halteh et al. (2018) Islamic banks DT, Gradient Boosting, RF Static

Shrivastava et al. (2020) Indian banks SVM Static

Manthoulis et al. (2020) US banks SVM, LR, Rusboost, etc Dynamic

Shrivastava et al. (2020) Indian banks Lasso, Boosting Static

Filippopoulou et al. (2020) European banks LR Static

Pham and Ho (2021) US banks Adaboost, XGboost, Gradient boosting Static

González et al. (2021) US banks Bayesian approach, HM, SFA Static

NN Neural Network, LR Logistic regression or Logit,DADiscriminant Analysis,KNN K-nearest neighbour,DT Decision Tree,
TR Trait Recognition,HM Hazard model, SVM Support Vector Machine, SFA Stochastic Frontier Analysis, RF Random Forest
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VRS-Input-SBM:

min ρ = 1 − 1

m

m∑

i=1

s−
i /xti0

s.t . Xtλ + s− = xt0
Ytλ ≥ yt0
eλ = 1

λ ≥ 0, s− ≥ 0

(2)

VRS-output-SBM:

min ρ = 1

1+ 1
q

q∑

i=1
s+
r /ytr0

s.t . Xtλ ≤ xt0
Ytλ − s+ = yt0
eλ = 1

λ ≥ 0, s+ ≥ 0

(3)

where DMU0 with inputs and outputs vector (x0, y0) is the bank to be evaluated; X and Y
are the matrices of inputs and outputs of the banking group; s− and s+ are vectors of slacks;
λ is a non-negative vector and

∑n
j=1 λ j = 1; e is a column vector of ones with dimension

of n × 1.
If the constraint condition eλ = 1 is deleted, the efficiency score is calculated under the

assumption of Constant Returns to Scale (CRS). In order to adapt to a situation where there
are negative values in both input and output sides, Sharp et al. (2007) further developed the
SBM model, which is called modified-SBM (MSBM) and only adapt to the VRS condition.
The MSBM model is obtained as follows:

VRS-input-MSBM:

min ρ = 1 − 1

m

m∑

i=1

s−
i /Ri0

s.t . Xλ + s− = x0

Yλ ≥ y0

eλ = 1

λ ≥ 0, s− ≥ 0

Ri0 = xi0 − min(xi )

(4)
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VRS-output-MSBM:

min ρ = 1

1+ 1
q

q∑

i=1
s+
r /Rr0

s.t . Xλ ≤ x0

Yλ − s+ = y0

eλ = 1

λ ≥ 0, s+ ≥ 0

Rr0 = max(yr ) − yr0

(5)

In a single period, suppose θ t0(x
t
0, y

t
0) is the optimal solution to Problem (4) or (5). If

DMU0 is observed over two continuous periods t and t+1, the optimal solutions within each
period are denoted by θ t0(x

t
0, y

t
0) and θ t+1

0 (xt+1
0 , yt+1

0 ), and then clearly Problem (4) and (5)
in period t + 1 become:

VRS-input-MSBM:

min ρ = 1 − 1

m

m∑

i=1

s−
i /Rt+1

i0

s.t . Xt+1λ + s− = xt+1
0

Yt+1λ ≥ yt+1
0

eλ = 1

λ ≥ 0, s− ≥ 0

Rt+1
i0 = xt+1

i0 − min(xt+1
i )

(6)

VRS-output-MSBM:

min ρ = 1

1+ 1
q

q∑

i=1
s+
r /Rt+1

r0

s.t . Xt+1λ ≤ xt+1
0

Yt+1λ − s+ = yt+1
0

eλ = 1

λ ≥ 0, s+ ≥ 0

Rt+1
r0 = max(yt+1

r ) − yt+1
r0

(7)

This is a simple shift of inputs and outputs from period t to period t + 1, where the
reciprocal efficiency θ t0(x

t+1
0 , yt+1

0 ) or θ t+1
0 (xt0, y

t
0) are the optimal solutions to Problem (4)

and (6) for input orientation, with the reference set being formed by DMUs in period t or in
period t + 1 as follows:
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Table 2 Number of observations in the dataset

Number of banks Number of observations in
Panel

Year Failed Active Total Panel Total

2002 0 4426 4426

2003 0 4426 4426 2002–2003 8852

2004 1 4425 4426 2002–2004 13,277

2005 1 4424 4425 2002–2005 17,701

2006 1 4423 4424 2002–2006 22,124

2007 3 4420 4423 2002–2007 26,544

2008 12 4408 4420 2002–2008 30,952

2009 60 4348 4408 2002–2009 35,300

2010 87 4261 4348 2002–2010 39,561

2011 43 4218 4261 2002–2011 43,779

2012 29 4189 4218 2002–2012 47,968

2013 13 4176 4189 2002–2013 52,144

2014 5 4171 4176 2002–2014 56,315

2015 6 4165 4171 2002–2015 60,480

2016 4 4161 4165 2002–2016 64,641

min θ t0(x
t+1
0 , yt+1

0 ) = 1 − 1

m

m∑

i=1

s−
i /Rt

i0

s.t . Xtλ + s− = x t+1
0

Ytλ ≥ yt+1
0

eλ = 1

λ ≥ 0, s− ≥ 0

Rt
i0 = xt+1

i0 − min(xti )

(8)

min θ t+1
0 (xt0, y

t
0) = 1 − 1

m

m∑

i=1

s−
i /Rt+1

i0

s.t . Xt+1λ + s− = xt0

Yt+1λ ≥ yt0
eλ = 1

λ ≥ 0, s− ≥ 0

Rt+1
i0 = xti0 − min(xt+1

i )

(9)
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Table 5 Regression results

Logit regression Rare event logit
regression

Worst practice
Frontier DEA

Best practice
Frontier DEA

Coef St. Err Coef St. Err

Component 1 0.523*** 0.025 0.522*** 0.061 Output Input

Component 2 − 0.540*** 0.015 − 0.538*** 0.034 Input Output

Component 3 0.100*** 0.031 0.103*** 0.063 Output Input

Component 4 0.505*** 0.035 0.504*** 0.078 Output Input

Component 5 − 0.561*** 0.047 − 0.558*** 0.146 Input Output

Component 6 0.259*** 0.024 0.259*** 0.039 Output Input

Constant − 6.342*** 0.096 − 6.332*** 0.201 − −

Table 6 Robust test results

Independent variable: growth of NPLs

(1) (2) (3) (4)

Variables POLS FE FE FE

Component 1 5.675*** 11.260*** 3.740*** 11.482***

(0.288) (0.547) (0.354) (0.758)

Component 2 − 4.355*** − 6.728*** − 3.369*** − 4.127***

(0.367) (0.507) (0.362) (0.503)

Component 3 1.597*** 0.802* 0.577 1.348***

(0.363) (0.472) (0.367) (0.513)

Component 4 10.727*** 10.073*** 5.308*** 13.051***

(0.451) (0.689) (0.763) (1.404)

Component 5 − 6.279*** − 4.480*** − 4.031*** − 6.431***

(0.480) (0.865) (0.570) (0.970)

Component 6 0.494 0.202 0.341 1.727*

(0.541) (0.942) (0.509) (0.904)

Constant 34.458*** 34.449*** 27.294*** 12.973***

(0.639) (0.034) (2.731) (3.229)

Observations 60,480 60,480 60,480 60,480

R-squared 0.024 0.027 0.037

Number of id 4426 4426 4426

Entity FE YES YES

Time FE YES YES

Robust standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1
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Table 7 Mean score results of the dynamic model

Year Active Failed Mean Diff
t-test

Wilcoxon rank
test (Z)

Obs Score Obs Score

2002–2003 8322 0.830 530 0.850 − 0.020*** − 13.427***

2002–2004 12,483 0.841 794 0.857 − 0.017*** − 14.922***

2002–2005 16,644 0.828 1057 0.846 − 0.018*** − 22.514***

2002–2006 20,805 0.829 1319 0.847 − 0.018*** − 23.451***

2002–2007 24,966 0.832 1578 0.853 − 0.021*** − 27.394***

2002–2008 29,127 0.816 1825 0.836 − 0.020*** − 29.191***

2002–2009 33,288 0.810 2012 0.831 − 0.021*** − 30.309***

2002–2010 37,449 0.804 2112 0.838 − 0.034*** − 29.171***

2002–2011 41,610 0.808 2169 0.839 − 0.031*** − 23.763***

2002–2012 45,771 0.805 2197 0.835 − 0.030*** − 17.843***

2002–2013 49,932 0.802 2212 0.832 − 0.030*** − 12.806***

2002–2014 54,093 0.801 2222 0.826 − 0.025*** − 10.135***

2002–2015 58,254 0.800 2226 0.819 − 0.019*** − 5.567***

‘Score’ is the efficiency score under the global reference framework
***p < 0.01, **p < 0.05, *p < 0.1

And for output orientation, Problems (5) and (7) are rewritten accordingly, as:

min θ t0(x
t+1
0 , yt+1

0 ) = 1

1+ 1
q

q∑

i=1
s+
r /Rt

r0

s.t . Xtλ ≤ xt+1
0

Ytλ − s+ = yt+1
0

eλ = 1

λ ≥ 0, s+ ≥ 0

Rt
r0 = max(ytr ) − yt+1

r0

(10)

min θ t+1
0 (xt0, y

t
0) = 1

1+ 1
q

q∑

i=1
s+
r /Rt+1

r0

s.t . Xt+1λ ≤ xt0

Yt+1λ − s+ = yt0
eλ = 1

λ ≥ 0, s+ ≥ 0

Rt+1
r0 = max(yt+1

r ) − ytr0

(11)

The Malmquist Production Index or MI is a measure of comparing the efficiency of two
periods. According to Caves et al. (1982) and Färe et al. (1992), theMI under CRS conditions
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from period t to period t + 1, can be defined as

Mt+1
t =

√
√
√
√θ t0(x

t+1
0 , yt+1

0 )

θ t0(x
t
0, y

t
0)

· θ t+1
0 (xt+1

0 , yt+1
0 )

θ t+1
0 (xt0, y

t
0)

(12)

Färe et al. (1992) decomposed this formula into efficiency change and technical change.
A technical change greater than 1 means that the production frontier has moved forward and
production efficiency therefore increases. When this formula is based on CRS, the efficiency
change can be further decomposed. Ray and Desli (1997) proposed an alternative method
in VRS and CRS. They decomposed Mt+1

t into technical change (TECH), pure efficiency
change (PEFFCH) and scale efficiency change (SCH) with VRS. If θ t0(x

t
0, y

t
0|V ) indicates

the efficiency score under VRS and θ t0(x
t
0, y

t
0|C) indicates the efficiency score under CRS,

the decomposition can be expressed in the following form:

M(xt+1, yt+1, xt , yt ) = T ECH × PEFFCH × SCH (13)

T ECH =
√
√
√
√ θ t0(x

t
0, y

t
0|V )

θ t+1
0 (xt0, y

t
0|V )

θ t0(x
t+1
0 , yt+1

0 |V )

θ t+1
0 (xt+1

0 , yt+1
0 |V )

(14)

PEFFCH = θ t+1
0 (xt+1

0 , yt+1
0 |V )

θ t0(x
t
0, y

t
0|V )

(15)

SCH =
√
√
√
√ St0(x

t+1
0 , yt+1

0 )

St0(x
t
0, y

t
0)

St+1
0 (xt+1

0 , yt+1
0 )

St+1
0 (xt0, y

t
0)

(16)

St0(x
t
0, y

t
0) = θ t0(x

t
0, y

t
0|C)

θ t0(x
t
0, y

t
0|V )

(17)

If Eq. (14) multiplies Eq. (15), we can obtain the MI under VRS. In other words, the CRS
MI can be decomposed into a VRSMI and a scale component (Färe et al., 1998) in Eqs. (18)
and (19):

M(xt+1, yt+1, xt , yt ) = M(xt+1, yt+1, xt , yt |V ) × SCH (18)

M(xt+1, yt+1, xt , yt |V ) = PEFCH × T ECH (19)

When DMUs are observed over multiple periods 1, 2, · · · , T , we can calculate any effi-
ciency θba at period a (a = 1, 2, · · · , T )with reference to another period b (b = 1, 2, · · · , T )

where a ≥ b. For the model we proposed in the context of bankruptcy prediction, we have a
priori information from year 1 to year c and, based on the data of c years, we are therefore
able to make predictions on what is happening in year c + l, depending on how many years
in advance we want to give early warnings (l being the number of years of early warnings).
In this sense, we expect the efficiency score to be measured as precisely as possible. In the
dynamic model we propose, rather than comparing units for one period, we are able to cal-
culate the dynamic DEA scores with reference to the efficient frontier formed by the most
efficient units which exist over the entire period from year 1 to c, which is referred to as the
‘global reference’ (Pastor & Lovell, 2005).
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3.2 Research design

In the case of bank failure prediction, we have banks’ financial ratio information for T
years. In order to evaluate the predictive performance of our proposed model, we run the
DEA model based on data in years [1, t] (t = 1, 2, · · · , c) first in a global sense, and we
then predict failure in terms of specific years [t + 1, t + l] (t = 1, 2, · · · , T − l) with the
modelling window moving along with the increase of t. As time goes by, dynamic efficiency
scores incorporate more information, since additional data is added to the global reference
set. Predictive accuracy is evaluated on different panels with varying time gaps of early
warnings. In order to test whether our dynamic panel DEA model has a more robust and
reliable predictive power than the static model, we set up the traditional DEA model as the
benchmark model, which is built on data for the current year. In Sect. 5, we also attempt
various extensions and robustness tests to explore optimal Malmquist DEA on our ‘moving
datasets’. The research framework is illustrated in Fig. 1.

Since 1985, DEA has been applied to evaluate the efficiency of banks, and this method
has become popular throughout the banking industry. This paper employs simple DEA as
a benchmark, since we expect to be able to identify those banks which are likely to fail in
advance, while they are still running concurrent to other, healthy banks.

A bank’s annual reports and balance sheets reflect their real operations and profitability,
which are the key indicators of its stability. Conventionally, the values in a bank’s balance
sheet can be further converted into financial ratios, as either input or output variables in DEA.
Starting from Beaver (1966), financial ratios have dominated bankruptcy prediction models
for decades (Lane et al., 1986; Lanine & Vennet, 2006; Martin, 1977) and they have also
been used as inputs and outputs in DEA models in previous literature (Cielen et al., 2004;

Fig. 1 Research design
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Fig. 2 VRS best & worst practice frontier. The dots represent active banks and the crosses represent failed ones

Min & Lee, 2008; Premachandra et al., 2011). However, the inclusion of financial ratios may
raise the issue of negative values, which cause efficiency to be incorrectly measured in DEA
models. To tackle this, we follow Sharp et al. (2007) and employ the Modified-SBM model
(Problem (6) and (7)), which allows negative values to exist on both the input and output
sides of DEA.

In termsof the various applications ofDEA inbankruptcyprediction, other than calculating
the efficiency in terms of best practice, Paradi et al. (2004) suggested an alternative application
to calculate a bank’s inefficiency, by referring to a ‘Worst Practice Frontier’. Intuitively, a Best
Practice Frontier DEA identifies the most efficient units on the frontier, whereas the Worst
Practice Frontier DEA identifies the most inefficient units on the frontier (as illustrated in
Fig. 2). This can be done by simply switching the sides of inputs and outputs and solving
problems (7), (10) and (11). This modelling setting is Malmquist DEA with VRS-Output-
MSBM and Worst Practice Frontier.

4 Data and variable selection

4.1 Sample description

Orbis Bank Focus is one of BvD’s products which includes information pertaining to over
135,000 banks across the world, and so it is used as our data source. In this paper, US
banks from 2002 to 2016 are selected as the sample in our analysis. The homogeneity of
the DMUs is an important assumption in DEA theory, because they should be comparable
as peers. As Dyson et al. (2001) suggested, DMUs (in this study, banks) should firstly be
engaged in similar activities and produce similar products; they should secondly employ
similar resources in production; and thirdly act in a similar market environment. For banks,
the former two conditions can be easily met, however international banks are not comparable
in the DEA framework. We decide that only savings banks and commercial banks in the US
should be chosen as the samples, because the conditions in retail banking and their market
environment are similar, and a considerable number of failed banks are needed to effectively
test the models.
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Fig. 3 Frequency of bank failures in the period 2002–2016

During the recent subprime and financial crises, many US banks suffered great losses and
eventually filed for bankruptcy, were held in receivership by other organisations or simply
remained in liquidation. Thus, bankruptcy, liquidation and receivership are the three failure
events being considered in this research. 368 US failed banks have been observed over the
periods 2002 to 2019, while 5068 US banks have survived over the same period. The active
banks remain in the models set up each year for all time periods, whereas observations of the
failed banks are removed from the sample upon filing for bankruptcy. It is in this way that
the model for each year was set up based on balanced panel data. In our dataset, the sample
consists of 4426 banks, of which 265 banks encountered one of the aforementioned failure
events in the period from 2002 to 2016. The distribution of bank failures during the period
2002 to 2016 is presented in Fig. 3. Table 2 describes the number of banks and observations
for each year.

It is clear from Fig. 3 that the occurrence of bank failure remained at a relatively low level
before 2008, whereas shortly after the start of the crisis in 2008, many US banks collapsed. In
particular, we can see that the impact of the financial crisis on the banking sector had a lagged
effect, with the number of failed banks reaching its peak in 2010. In this paper, data related
to banks from 2002 to 2016 have been selected as the sample in our analysis since there are
no failed banks in the period 2017–2019. The financial ratios from 2002 to 2015 have been
used in the model to calculate the dynamic relative efficiency scores, and the information as
to which banks carried a bankruptcy label in the years 2004 to 2016 has been used to verify
the overall predictive performance. Due to missing data on key variables, our final sample
consists of 4161 active banks and 265 failed banks.

4.2 Variable selection

Efficiency calculated using DEA is sensitive to the selection of inputs and outputs, and there
have been various types of selections used in the past literature. Berger and Humphrey (1997)
proposed both the production and the intermediation approaches in selecting variables for
bank efficiency studies. In the first approach, banks use labor and capital to provide loans
and deposit services, whereas in the second approach, banks serve as intermediaries between
borrowers and lenders. However, while neither approach is perfect, the selection of inputs
and outputs is nevertheless very flexible, where generally deposits are used as inputs (Amin
& Ibn Boamah, 2020; Razipour-GhalehJough et al., 2021) and loans are used as outputs
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(Lartey et al., 2021), but there are also examples where deposits are used as outputs (Maudos
et al., 2002) or both inputs and outputs (Li et al., 2021).

In bank efficiency analyses, it has also been popular to use financial ratios, examples being
Isik and Uygur (2021) and Mohtashami and Ghiasvand (2020). Premachandra et al. (2009)
gave a tip as to how best to choose financial ratios as inputs or outputs of DEA, so that the
larger ratio value which could lead to bankruptcy be used as an input, or vice versa (if the
model is in the Best Practice format). More specifically, Halkos and Salamouris (2004) used
no inputs at all, instead only using ratios as outputs in their banking DEA model. We have
chosen financial ratios as either the input or output variables in our work, and we solve the
negative ratio value by applying MSBM (Sharp et al. 2007),giving us a result which is both
translation invariant and units invariant.

According to the aforementionedCAMELprinciple, 40major financial ratios are extracted
from the database, which can be grouped into five categories: capital, asset quality, manage-
ment, earning and liquidity. However, the ratios related to management have more than 90%
missing values and thus cannot be included in our research. The variables with over 20%
missing values for the other four categories have also been deleted. 21 ratios are ultimately
retained, and the full definitions are shown in the Appendix. We winsorize the continuous
variables at the 1% and 99% levels, because the DEA efficiency frontier can be affected
dramatically by outliers. The descriptive statistics of selected variables is shown in Table 3.
The mean difference test and the Wilcoxon rank test show that the financial ratios we choose
have significant differences between the active group and failed group at the 1% confidence
level.

Since some of the ratios are in the same category, this may present a multi-collinearity
problem. In addition, DEA optimisation becomes very complex when given a large number
of input/output variables. Based on the above two considerations, we reduce the dimensions
of the variables by Principal Components Analysis (PCA). PCA is a common statistical
method which compresses information pertaining to all variables into several factors, thus
maintaining information within an acceptable attribution. Its main idea is to establish a
new multi-dimensional coordinate plane, then to project the most variable information onto
the axis, on the condition that the number of axes is fewer than the number of variables.
Examples of a PCA integrated DEA can be found in Štefko et al. (2021), Liang et al. (2009),
Premachandra et al. (2009), Adler and Yazhemsky (2010), etc.. It has been shown that PCA
can improve the discriminant power of the overall analysis (Adler & Yazhemsky, 2010). In
general, the components with an eigenvalue of more than 1 are considered suitable to be
included in the transformed factor. The first six components are chosen to fit into our model,
and the cumulative proportion is up to 78.91%. The sample is appropriate for PCA if the
KMO statistic is higher than 0.7. Our KMO statistic and the eigenvalue results are shown in
the following Table 4 and Fig. 4.

In order to identify DEA inputs and outputs from the six components, logistic regression
is applied to the sample. Much literatures such as Manthoulis et al. (2020) and Canbas et al.
(2005) argue that bank failure can be detected by early warnings up to 3 years in advance.
Thus, the dependent variable in regression is whether a bank has failed or not within a
period of three years. We use both logistic regression and rare event logistic regression to
determine the inputs/outputs, the latter of these models having been widely used in failure
event studies (Eling & Jia, 2018; King & Zeng, 2001).We construct aWorst Practice Frontier
DEA following the ideas of Cielen et al. (2004) and Premachandra et al. (2009), wherein
variables negatively associated with the possibility of bank failure are determined as inputs,
and those positively associated with failure are determined as outputs. In Table 5, the six
components are all significant (p-value < 0.01) in the prediction of bank failure. In the ‘Worst
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Fig. 4 The scree plot of PCA results

Practice’, the DMUs with the worst performance are put on the frontier and thus have large
relative inefficiency scores. As such, Components 2 and 5 are therefore input variables in the
Worst Practice Frontier DEAmodels, and outputs in the Best Practice Frontier DEAmodels.
Components 1, 3, 4 and 6 are outputs for the Worst Practice or inputs for the Best Practice.
The results of both practices will be compared in the next section.

To verify the judgement of the inputs and outputs selection and its relevance to bank
failure, we l implement panel regressions for robustness tests. The non-performing loan ratio
(NPL) has a close positive correlation with failure within the banking industry. Indeed, a
dramatic increase in non-performing loans is the main reason for a bank’s failure (Jin et al.,
2011; Liu & Ngo, 2014). We therefore make the first group of robust tests by using the
growth rate of NPLs as the proxy of the active/failed dummy variables to construct the panel
regressions of Pooled OLS (POLS) and Fixed Effect (FE) models. The robust test results are
shown in Table 6, where the signs of coefficients are not varied.

5 Results

5.1 Dynamic DEA score

The software package ‘MaxDEA X’ is used to calculate efficiency scores in our analysis,
which contains many extensions of DEA and computes the data rapidly. The relative inef-
ficiency for each DMU (i.e. each bank) can be calculated in the context of the MSBM and
its global reference. The models are built dynamically each time when the information for a
new year is added to the framework. In Year 2016, there are only 4 failed banks. Since then,
no failed banks are observed so that we cannot further validate the predictive performance
of our model. We therefore only present the results until 2015. Table 7 shows the dynamic
mean scores of active and failed banks from 2003 to 2015, where all the relative efficiency
scores pass the significant t-test and Wilcoxon rank test at the 1% confidence level. The sign
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of the mean difference is also consistent with the economic intuition, i.e. the failed banks
have higher relative inefficiencies under the Worst Practice Frontier DEA framework.

Table 8 shows the statistical t-test and Wilcoxon rank test of both the pure efficiency
change (PEFFCH) and technical change (TC), obtained after the decomposition of the VRS
Malmquist index with global reference as Eq. (19). We find that the MI is a good indicator
to help discriminate between two types of banks. Compared to the MI, PEFFCH and TECH
present no difference between the healthy and failed banks for most years studied in this
sample. Thus, we can conclude that PEFFCH and TECH have poor discriminative ability
and the decomposition of MI is not helpful in failure prediction.

In Malmquist DEA, by taking the global reference, the relative efficiencies of each bank
can be compared not only in a cross-sectional dimension, but also in a time series. For
example, Bank A (Trust Company Bank) and Bank B (The Woodbury Banking Company)
are two banks that failed in 2016. Their inefficiency score in 2015 along with the average
scores for all healthy banks are shown in Fig. 5. As we can see, when a bank is faced with
the risk of failure, their inefficiency scores gradually increase over time. This score can thus
effectively reveal early warning signs of imminent risk. In the Worst Practice Frontier, the
higher the score, the more inefficient the bank. In 2015, Bank A has a score of 1 in year
2015, indicating that it was the most inefficient among all, and it did indeed fail. Further,
a significant difference can be found between the healthy and failing banks. For example,
Bank B had been less efficient than healthy banks since the subprime crisis, and it eventually
failed in 2016. In the Best Practice model, if the score of a bank is declining, it may suffer
some financial distress before its eventual liquidation.

The above pattern implies that those collapsed banks are likely to show an increase in
their inefficiency and larger efficiency scores prior to their actual failure, which highlights
the importance that both the bank’s management and supervisors recognize the early signs of
potential risks by monitoring any decrease in operating efficiency. For nearly half a century,
bank efficiency has attracted constant academic interest, and now, in the aftermath of several
financial crises we are learning that low productivity or efficiency in banks should be regarded
as a potential core reason of eventual failure. It is commonly believed that low efficiency
implies low quality management of the organisation, which could lead to an entity’s bad
performance in the ferociously competitive financial markets.

5.2 Comparison with the static model

In this section, we use the traditional static model as the benchmark for comparison with our
proposed model. Since the dynamic DEA models require at least two periods, we start the
analysis from year 2003 and the dataset is then updated every year. In the dynamic model, the
global reference set is formed with all observations in the dataset while in the static model,
the reference set consists of only samples of the current year. In Table 9, the active and failed
banks’ scores of the static traditional model, built on the 13 cross-sectional datasets, have
all passed the t-test and Wilcoxon rank test (1% confidence level). The difference between
the static model and the dynamic models lies in whether the information of previous periods
is taken into account when calculating the scores for each year. The dynamic DEA collect
incremental information as the years go by, while the dataset of the static model only contains
the data information of the current year in question. Figure 6 describes Tables 7 and 9, where
the relative inefficiency scores in the dynamic model present a downward trend from 2003
to 2015 with some minor fluctuations, while the scores of the static model are up and down,

123



Annals of Operations Research (2022) 315:279–315 299

Ta
bl
e
8
M
I
re
su
lts

of
th
e
dy

na
m
ic
m
od

el

Y
ea
r

A
ct
iv
e
(m

ea
n)

Fa
ile

d
(m

ea
n)

M
ea
n
D
if
f.
t-
te
st

W
ilc

ox
on

ra
nk

te
st
(Z
)

O
bs

M
I

PE
FF

C
H

T
E
C
H

O
bs

M
I

PE
FF

C
H

T
E
C
H

M
I

PE
FF

C
H

T
E
C
H

M
I

PE
FF

C
H

T
E
C
H

20
03

83
22

0.
97

9
1.
00

3
0.
97

7
53

0
0.
97

2
0.
99

4
0.
97

8
0.
00

7*
**

0.
00

9*
**

−
0.
00

2*
*

4.
46

1*
**

4.
98

7*
**

−
3.
06

0*
**

20
04

12
,4
83

0.
98

5
0.
99

9
0.
98

7
79

4
0.
98

3
0.
99

4
0.
99

0
0.
00

2*
0.
00

5*
**

−
0.
00

3*
**

0.
17

8
3.
95

1*
**

−
4.
69

**
*

20
05

16
,6
44

0.
99

5
0.
99

1
1.
00

5
10

57
0.
99

7
0.
99

2
1.
00

5
−

0.
00

2*
**

−
0.
00

2*
−

0.
00

1
−

3.
89

1*
**

−
2.
40

4*
*

−
1.
50

9

20
06

20
,8
05

1.
00

2
1.
00

6
0.
99

7
13

19
1.
00

8
1.
01

0
0.
99

9
−

0.
00

6*
**

−
0.
00

4*
**

−
0.
00

2*
−

6.
50

7*
**

−
2.
73

5*
**

−
3.
17

6*
**

20
07

24
,9
66

1.
00

4
0.
98

5
1.
02

2
15

78
1.
01

0
0.
99

4
1.
01

9
−

0.
00

6*
**

−
0.
00

8*
**

0.
00

3*
*

−
9.
86

7*
**

−
5.
04

5*
**

−
0.
44

3

20
08

29
,1
27

1.
00

0
0.
98

9
1.
01

5
18

25
1.
00

6
0.
99

4
1.
01

6
−

0.
00

6*
**

−
0.
00

5*
**

−
0.
00

1
−

10
.3
00

**
*

−
1.
90

8*
−

2.
87

4*
**

20
09

33
,2
88

0.
99

8
0.
99

7
1.
00

4
20

12
1.
00

3
1.
00

0
1.
00

5
−

0.
00

5*
**

−
0.
00

3*
−

0.
00

2
−

6.
78

1*
**

0.
19

0
−

3.
96

9*
**

20
10

37
,4
49

0.
99

7
0.
98

7
1.
01

6
21

12
1.
00

7
0.
99

9
1.
01

3
−

0.
01

0*
**

−
0.
01

2*
**

0.
00

3
−

10
.1
78

**
*

−
3.
30

3*
**

−
0.
01

4

20
11

41
,6
10

0.
99

6
1.
00

8
0.
99

6
21

69
1.
00

6
1.
01

1
0.
99

9
−

0.
00

9*
**

−
0.
00

4
−

0.
00

3
−

8.
35

7*
**

−
1.
33

9
−

0.
27

9

20
12

45
,7
71

0.
99

6
1.
00

7
0.
99

6
21

97
1.
00

3
1.
01

3
0.
99

5
−

0.
00

7*
**

−
0.
00

6
0.
00

1
−

4.
98

7*
**

−
2.
05

3*
*

0.
63

3

20
13

49
,9
32

0.
99

6
1.
00

2
1.
00

0
22

12
1.
00

3
1.
00

6
1.
00

2
−

0.
00

7*
**

−
0.
00

3
−

0.
00

2
−

3.
55

5*
**

−
1.
27

2
0.
12

8

20
14

54
,0
93

0.
99

6
1.
00

7
0.
99

5
22

22
1.
00

1
1.
01

1
0.
99

4
−

0.
00

5*
**

−
0.
00

5
0.
00

1
−

1.
98

2*
*

−
1.
01

1
0.
42

1

20
15

58
,2
54

0.
99

7
1.
00

5
0.
99

7
22

26
1.
00

5
1.
01

3
0.
99

8
−

0.
00

9*
**

−
0.
00

8
−

0.
00

1
−

1.
57

0
−

0.
86

1
0.
29

1

M
ax

1.
00

4
1.
00

8
1.
02

2
1.
01

0
1.
01

3
1.
01

9

M
ea
n

0.
97

9
0.
98

5
0.
97

7
0.
97

2
0.
99

2
0.
97

8

M
in

0.
99

5
0.
99

9
1.
00

1
1.
00

0
1.
00

2
1.
00

1

‘S
co
re
’
is
th
e
ef
fic

ie
nc
y
sc
or
e
un

de
r
th
e
gl
ob

al
re
fe
re
nc
e
fr
am

ew
or
k,

‘M
I’
is
th
e
V
R
S
M
al
m
qu

is
tI
nd

ex
,‘
T
E
C
H
’
an
d
’P
E
FF

C
H
’
ar
e
te
ch
ni
ca
lc
ha
ng

e
an
d
pu

re
ef
fic

ie
nc
y
ch
an
ge

ca
lc
ul
at
ed

by
th
e

E
qs
.[
14

]
an
d
[1
5]

se
pa
ra
te
ly

**
*p

<
0.
01

,*
*p

<
0.
05

,*
p
<
0.
1

123



300 Annals of Operations Research (2022) 315:279–315

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Sc
or

e

Year

Bank A Score Bank B Score Mean Score

Fig. 5 Comparison on the vertical and horizontal dimensions

Table 9 Mean score results of the static model

Year Active Failed Mean diff. t-test Wilcoxon rank test (Z)

Obs Score Obs Score

2003 4161 0.836 265 0.852 − 0.016*** − 6.866***

2004 4161 0.831 264 0.845 − 0.015*** − 8.795***

2005 4161 0.809 263 0.837 − 0.028*** − 14.260***

2006 4161 0.850 262 0.887 − 0.037*** − 15.561***

2007 4161 0.770 259 0.826 − 0.056*** − 16.558***

2008 4161 0.766 247 0.811 − 0.045*** − 21.255***

2009 4161 0.804 187 0.843 − 0.040*** − 15.884***

2010 4161 0.731 100 0.834 − 0.103*** − 13.677***

2011 4161 0.859 57 0.918 − 0.060*** − 12.124***

2012 4161 0.859 28 0.944 − 0.085*** − 8.300***

2013 4161 0.820 15 0.890 − 0.070*** − 5.670***

2014 4161 0.873 10 0.954 − 0.081*** − 5.048***

2015 4161 0.850 4 0.955 − 0.105*** − 3.370***

Italicized cells are the maximum and minimum mean differences of the two models separately

which is obviously inconsistent. In this way, it is reasonable to state that the static model has
only a limited capacity to identify future failed banks.

We notice that the minimum and maximum mean differences between failed and active
banks (italic values in Tables 7 and 9) are filed in year 2004 and 2010 respectively. We show
their distributions of scores in Fig. 7. It is demonstrated that four distributions of scores
are compacted together in 2004, while the scores in 2010 show distinguished discrepancy.
After the financial crisis, the score gap between active and failed banks is enlarged. The
classification of good and bad banks would be easier if given such a cut-off.
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Fig. 6 Mean score results of the dynamic model and the Static Model

Fig. 7 The score distributions for years 2004 and 2010

We use AUC, accuracy, Type I error and Type II error rates to evaluate the predictive
power of dynamic and static models. The cut-off of the scores is obtained at the quantile cor-
responding to the ratio of failed observations to total observations. The AUC (Area under the
Receiver Operating Characteristic curve) is a common indicator to measure the discriminant
power for binary outcomes. Accuracy is used as a ratio to measure the correct predictions
over all observations. Type I error means that an active bank has been misclassified as having
failed, where a Type II error means that a failed bank has been misclassified as active. If one
model is superior to the other, it will have a higher AUC, accuracy, and lower type I error and
type II error rates. We evaluate the predictive ability of efficiency scores in the 1 to 5 years
before the bank’s eventual failure separately. Table 10 shows the detailed AUC value of 1 to
5 early warning years for both the dynamic and static models.

It can be seen in Table 11 that the paired t-tests of all measures are significant at the 1%
level, which means that the dynamic models show better results than their static counterpart.
The dynamic model runs on a continually updating dataset, which refines itself by increasing
its inclusion of effective active observations and the removal of all the observations of those
banks which have failed. Therefore, the efficiency scores of each year will change with
the updating of the reference set and the resultant change of the frontier. The ejecting of
failed observations allows us to construct a new frontier, to better identify those banks that
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Table 11 Paired t test of dynamic and static model

Metrics Early warning (years) 1 2 3 4 5

AUC Dynamic 0.960 0.919 0.911 0.891 0.888

Static 0.940 0.902 0.890 0.869 0.855

t 2.143 1.582 2.538 2.481 5.030

p-value 0.027 0.070 0.013 0.015 0.000

Accuracy Dynamic 99.392 98.920 98.355 97.712 97.078

Static 98.906 98.392 97.810 97.179 96.551

t 6.018 4.908 4.643 3.744 3.596

p-value 0.000 0.000 0.000 0.002 0.002

Type I error Dynamic 71.066 68.665 67.552 67.773 67.310

Static 86.629 83.479 81.279 80.346 79.104

t − 4.638 − 4.661 − 4.718 − 4.345 − 4.185

p-value 0.000 0.000 0.000 0.001 0.001

Type II error Dynamic 0.251 0.513 0.828 1.174 1.520

Static 0.330 0.644 0.989 1.358 1.710

t − 1.530 − 1.862 − 2.148 − 2.364 − 2.236

p-value 0.076 0.044 0.027 0.019 0.023

may undergo future crises. This dynamically updated method makes the evaluation of the
efficiency scores more stable and thus more completely reflect the current efficiency rates
of the banking system. In addition, the global reference DEA allows us to evaluate the
efficiency of banks over time. A continuous decrease in the inefficiency score indicates that
the bank’s operating conditions are rapidly deteriorating. In practice, the regulatory bodies
want to discover the signals of potential risks as early as possible, in order to issue advance
warnings. In previous studies, scholars verified the early warning time within a period of
3 years (Manthoulis et al., 2020). Here we validate the performance of early warnings for up
to five years. Naturally, as the window extends further into the future, the predictive power
of the efficiency scores decreases, but here too, the performance of the dynamic model is
generally still better than the static model. As we use different datasets in a combination of
various scenarios, there is no definitive statement to be made about the standard threshold of
the evaluation indicators. According to the suggestion of Hosmer Jr et al. (2013), the model is
to be considered acceptable when the AUC is over 0.7. In Fig. 8, we find that AUC values in
some dynamic models are less than 0.7 when measured from a period of 4 years in advance,
thus we confirm that the most effective early warning timespan is 3 years, according to our
models.

5.3 Crisis and non-crisis time window analysis

In this section, we set up two dynamic models, covering the periods of economic crisis and
non-crisis respectively.We also separate the period before crisis (2003 to 2007) and the period
during the crisis (2008 to 2012), both of which span a window of 5 years. In addition to the
changes in the time interval of the dynamic model, the global reference is still applied to
calculate the efficiency scores, with ‘failed banks’ staying in the model until they officially
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fail. Other settings remain the same as in the previous section. The results are shown in Table
12. The DEA efficiency score displays a better predictive power during periods of crisis than
non-crisis. The sharp changes in the observed values during the crisis prompted the updating
efficiency scores to become more discriminative, and the AUC to increase significantly. The
increase in the number of bad samples during the crisis also resulted in fewer Type I errors
and more Type II errors in the model compared to the periods of non-crisis. During crisis
periods, the prediction performance of the dynamic models is significantly better than the
static models at the mean level. In Table 12, during the period of non-crisis, although the
AUC of the dynamic model at the two-year warning margin is lower than that of the static
model, the difference is small, and the combined results of the AUC, Type I error and Type
II error still support the hypothesis that the dynamic model is better overall than the static
model.

5.4 Extensions of the dynamic DEAmodel

In the DEA framework, different settings will lead to different efficiency scores and relative
rankings. In this section, we will further study how orientations, reference sets and the
Worst/Best Practice Frontiers perform under our proposed dynamic framework, as illustrated
in Fig. 1 (including the Best Practice with Output-MSBM and global reference settings).
Model 1 and Model 2, then Model 4 and Model 5 make comparisons between the Worst
Practice and Best Practice models. Input-orientation and output-orientation are two options
available in the DEA framework (formulas are given in Sect. 3.1). The two orientation
models evaluate the efficiency of the DMU from the perspective of input or output directions
in terms of their respective impact on the efficiency scores and their rankings. Models 1–3
and 4–6 make comparisons between these two orientations. Reference sets are in fact where
the Production Possibility Sets (PPS) come from. We use two types of reference sets: fixed
reference and global reference, where the former takes a year of data as PPS, while the latter
takes DMUs of all years as its PPS, as shown in Table 13. Models 3 and 6 are designed with
a fixed reference using the sample for Year 2002. We therefore have a total of six models for
comparison, all of which are presented in Table 14.

We continue to use AUC as an indicator of predictive ability for early warnings for the
period of up to three years. The AUC depends on the rankings of scores. When the number
of active banks is much larger than that of failed banks, the value of AUC would be large or
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Table 13 Types of reference sets
Global (G) ReferenceG =

{(x1j , y1j )} ∪ {(x2j , y2j )} ∪ · · · ∪ {(xTj , yTj )}
Fixed (F) ReferenceF = {(x Fixed , yFixed )}

Table 14 Model specification

Model number Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Orientation (O/I) O O O I I I

Worst/Best Practice (W/B) W B W W B W

Reference (G/F) G G F G G F

close to 1, as found in Manthoulis et al. (2020). In order to eliminate the effect caused by the
sample size of failed banks, we add paired t-tests to compare the results.

As shown in Table 15, the last three rows present the maximum, average and minimum
values of theAUC. The results show that from the average performance of annual predictions,
the dynamicmodel we originally proposed (Malmquist DEAwith global reference andWPF)
has the best overall predictive ability (mean AUC equals to 0.911), while the mean AUC
of Model 4, with the input-orientated DEA with global reference and WPF, is the lowest.
Comparing the results of Models 1–3 with those of Models 4–6, we see that no matter which
reference is used, the output-oriented models outperform the input-oriented models, since

Table 15 AUC in dynamic models

Year Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

2003 0.803 0.805 0.789 0.649 0.675 0.822

2004 0.786 0.834 0.769 0.763 0.873 0.814

2005 0.820 0.820 0.775 0.690 0.793 0.722

2006 0.817 0.784 0.814 0.798 0.744 0.804

2007 0.856 0.840 0.849 0.843 0.829 0.860

2008 0.929 0.909 0.932 0.924 0.920 0.943

2009 0.937 0.960 0.912 0.954 0.949 0.966

2010 0.973 0.970 0.940 0.820 0.957 0.927

2011 0.990 0.990 0.984 0.894 0.957 0.970

2012 0.986 0.972 0.993 0.891 0.935 0.986

2013 0.974 0.913 0.989 0.958 0.819 0.960

2014 0.983 0.988 0.993 0.972 0.843 0.973

2015 0.993 0.998 0.996 0.947 0.981 0.939

Max 0.993 0.998 0.996 0.972 0.981 0.986

Mean 0.911 0.906 0.903 0.854 0.867 0.899

Min 0.786 0.784 0.769 0.649 0.675 0.722
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Fig. 9 AUC analysis

output-oriented models have larger mean, maximum and minimum values. The difference
between these two orientations is the objective, which creates the different scores’ results and
rankings. Given a background objective of failure prediction, the scores of output orientation
models display a much better performance.Models 1–3 all reached the maximumAUC value
in 2015, while the input-oriented models do not show such a pattern. Figure 9 shows the AUC
comparisons for different aspects: Fig. 9a shows the AUC for the years from 2003 to 2015,
where the red points mark the mean values. Figure 9b shows the comparison between the
Worst and Best Practice Frontier models, where the dash-lines show the output-orientation,
while the dotted lines show the input-orientation. Figure 9c, d show the AUC results of input
and output orientation separately.

As explained previously, we use a paired t-test to verify whether there is a significant
difference in the predictive power between two models (Ling et al., 2003). In Table 16, it is
noticed that some pairs of AUCs show no significant difference, while Model 1 outperforms
many of others. Between the Worst and Best practices, there is little difference recorded.
However, in the Worst Practice Frontier, the model automatically places the most inefficient
cases on the frontier, which makes them easy to identify and therefore be used to generate an
early warning to the impending risks. After discussing the predictive capabilities of different
models under the framework of the dynamic update data set, we find that the output-oriented
Malmquist DEA with global reference andWPF is the one of the best predictive capabilities.
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Table 16 Paired t test of AUC

p-value Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Model 1 0

Model 2 0.477 0

Model 3 0.081 0.715 0

Model 5 0.003 0.010 0.004 0

Model 6 0.024 0.014 0.096 0.554 0

Model 7 0.021 0.490 0.672 0.006 0.117 0

Values in bold are significant at 5% level

6 Conclusions and implications

Previous literature linking efficiency calculated by DEA to bank failure has been limited to
cross sectional analyses. A dynamic analysis given regularly updated datasets is therefore
recommended for bankruptcy prediction. This paper proposes a nonparametric method based
on Malmquist DEA, and uses some extensions to dynamically assess the bankruptcy risk of
banks overmultiple periods. DEAmodels require no prior information about the relationships
between variables and the outcome, thoughwe do have to specify inputs and outputs for DEA.
By combining different settings, including slacks, output orientation, global reference and
WPF, we calculate the relative inefficiency scores for banks. This method shows a better
predictive performance than the static model and other extensions.

We can draw several conclusions based on these results. First, because a dynamic model
contains historical information, it generates robust and reliable scores to use as bank failure
signals. This score is comparable not only among bank peers (cross-sectional) but also for
individual banks over multiple periods (time series). This is the best-case scenario, the one
most conducive to the creation of an internal early warning system for banks and super-
vision agencies alike, which can further be used in stress testing. The regular updates to
the inefficiency score create a dynamic evaluation of a bank’s performance on a long-term
basis, so this dynamic model displays better predictive power than its static counterpart.
Second, the models with BPF and WPF have similar resolutions, and the two can form a
good mutual authentication, but the WPF in specific scenarios puts inefficient banks on the
frontiers, which is preferable since we are focusing on bankruptcy. Third, we demonstrate
that an output-orientated model has a better AUC performance than an input-orientated one
in terms of discriminating between good and bad banks. By making use of a global reference,
the extended models of the global reference take the worst or best DMUs to ever exist in
history to the frontier. When the time-period is sufficiently long, this relative efficiency may
become absolute efficiency. A general benchmark of this kind would be helpful for managers
and regulators to implement strategies and policies. The Malmquist DEA is a useful tool not
only to estimate productivity growth but also to predict bank failure. It is therefore of great
value in maintaining the overall stability of the financial system.

Practically speaking, our research also provides some implications for bank risk man-
agement and regulation. Our results indicate that banks with lower efficiency rates are more
likely to suffer distress or eventual collapse. The presence of low efficiency should raise the
awareness of the management team, and managers can thus react quickly to change their
operations and strategies. In the last few decades, there have been several financial crises to
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hit the financial system. Regulators can use the models we propose in this research and create
their own early warning signals of any potential crises within the banking industry. The Basel
Accord requires measures such as stress testing and the assessment of value-at-risk (VaR) in
banks. Though the DEA framework is nonparametric, the efficiencies can be incorporated
into a parametric model for further analysis. The Malmquist DEA model proposed in this
paper can provide a reliable method for predicting eventual bank failure, as well as a useful
guide for bank management and supervision in terms of early warning against risk.

Based on the current work there are several avenues for future research. First, we can
add super efficiency into future modelling, as Tan et al (2021) and Li et al (2017) have
done. Super efficiency can distinguish DUMs on the frontier and make them comparable,
which will increase the discriminatory power of models in the current context. Second,
since the banking industry is a network system where businesses are intersected, a dynamic
network DEAmodel, such as that proposed byWanke et al. (2015), could also be considered
for dynamic analysis. Further studies are therefore needed in the domain of bank failure
prediction.
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Table 17 Description of selected variables.

Category Variable Description Total Missing Missing%

Capital TETA Total equity/Total assets 73,799 7081 9.59

TCETA Tangible common
equity/Tangible assets

73,799 7081 9.59

Asset CLATA Customer loans &
advances/Total assets

73,799 7900 10.70

GrowthTAs Growth in total assets 73,799 8133 11.02

GGCLA Growth in gross customer loans
& advances

73,799 9012 12.21

GNCLA Growth in net customer loans &
advances

73,799 9011 12.21

ILGCLA Impaired loans/Gross customer
loans & advances

73,799 13,412 18.17

LLRGCLA Loan loss reserves/Gross
customer loans & advances

73,799 8062 10.92

Earning UILTE Unreserved impaired loans/Total
equity

73,799 8082 10.95

ROAE Return on average equity 73,799 8143 11.03

OPATE operating profit/average total
equity

73,799 8143 11.03

ROAA Return on average assets 73,799 8143 11.03

IIAIEA Interest income/average interest
earning assets

73,799 8203 11.12

IEAIBL Interest expense/average interest
bearing liabilities

73,799 8697 11.78

IILAGCLA Interest income on loans/Average
gross customer loans &
advances

73,799 8942 12.12

IECDACD Interest expense on customer
deposits/Average customer
deposits

73,799 8799 11.92

CAAR Cost to average asset ratio 73,799 8118 11.00

Liquidity LATA Liquid assets/Total assets 73,799 7096 9.62

LAASMTA Liquid assets including available
for sale & held to
maturity/Total assets

73,799 7096 9.62

LACTA Loans & advances to
customers/Total assets

73,799 7900 10.70

LACM1LAC Loans & advances to customers
maturing in < 1 year/Loans &
advances to customers

73,799 8014 10.86

GLACCD Gross loans & advances to
customers/Customer deposits

73,799 7958 10.78

LADSTF Liquid assets/Deposits &
short-term funding

73,799 7789 10.55
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