Examining children’s preference for phonetically manipulated brand names across two English accent groups

Stacey Baxter a,⁎, Tina M. Lowrey b

a Newcastle Business School, The University of Newcastle, Callaghan, NSW 2308, Australia
b HEC Paris, Department of Marketing, 1 rue de la Libération, 78351 Jouy-en-Josas Cedex, France

1. Introduction

In recent years phonetic symbolism has received increased attention in the marketing literature (e.g., Baxter and Lowrey, 2011; Klink and Athaide, 2012; Kuehnl and Mantau, 2013; Lowrey and Shrum, 2007; Shrum et al., 2012). Marketing scholars are interested in the potential for phonetic symbolism principles to enhance international branding, examining effects across languages (Kuehnl and Mantau, 2013; Shrum et al. 2012). This research aims to replicate and extend Shrum et al. (2012) by examining phonetic symbolism effects from an alternate cross-cultural perspective, across accent groups. Furthermore, we examine cross-cultural phonetic symbolism effects in the context of children, who are continuing to develop phonological awareness (Fowler, 1991).

While there are thousands of languages spoken through the world, the number of regional accents, with their own phonological structure, is far greater (Labov, Ash and Boberg 2006). As phonetic symbolism rests on the notion that phonemes (sounds) convey meaning (Sapir, 1929), we suggest that accent may impact the presence or nature of this phenomenon.

This research seeks to investigate children’s preferences for phonetically manipulated brand names across two contrasting English accent groups: Southern American and Australian. A comparison of Southern American and Australian English monophthongs (refer to Fig. 1) reveals a number of differences in vowel pronunciation. Fig. 1 shows the more forward position of the tongue when pronouncing i (as in heat) and e (as in head) in Australian English when compared to Southern American English. Conversely, a backwards movement is evident for the pronunciation of (as in bird), (as in foot) and o (as in north). While a substantial difference, such as the complete reversal of front-back vowel distinction is not apparent, it is suggested that accent could impact phonetic symbolism effects. We suggest that individuals (overall) would perceive a word containing the back vowel sound (as in foot) as larger than a word containing the front vowel sound (as in bid). However, we also would expect that natural speakers of Australian English would perceive a word containing the back vowel sound as larger (due to the back position of the tongue) when compared to natural speakers of Southern American English.

2. Method

Data collection was carried out across two countries whose primary language is English. Consistent with Shrum et al. (2012), a between-subjects experimental design was employed, whereby participants were asked to indicate their preference between five brand name pairs that differed only on vowel sound (for example, Illy/Illly) for a single test product (car) manipulated on size (small–large).

For both Experiments 1a (Southern Midland America) and 1b (Eastern Australia) consent was sought from both the parent and the child prior to participation. Experimental materials were administered individually and all materials were read out loud to participants (by a native speaker of the local form of the English language) to ensure phonemes were presented as intended. A total of 76 children participated in Experiment 1a and 64 children participated in Experiment 1b. To ensure results were not impacted by manipulation errors, a decision was made to remove all participants who did not perceive the product in the way designed. As a result, 40 children were represented in Experiment 1a (28 male, 12 female; Mage = 9.00, SD = 2.00) and 42 children were represented in Experiment 1b (19 male, 23 female; Mage = 8.00, SD = 1.82).

⁎ Corresponding author.
E-mail addresses: stacey.baxter@newcastle.edu.au (S. Baxter), lowrey@hec.fr (T.M. Lowrey).
3. Front versus back sound effects

We expected that a brand name containing a front vowel sound would be preferred for a small car, while a brand name containing a back vowel sound would be preferred for a large car. We also expected these effects to be stronger within the Eastern Australian sample due to the relative positioning of the tongue when creating vowel sounds. Consistent with Shrum et al. (2012), continuous dependent variables were created that represented the proportion of front and back vowel sounds selected. A 2 (size: small vs large) × 2 (accent: Southern American vs Eastern Australian) ANOVA was conducted with vowel sound as the dependent variable.

As expected, a significant main effect was observed with regards to product size ($F(1, 78) = 18.54, p = .000$) but not accent ($F(1, 78) = .47, p = .496$). Results showed that children had a greater preference for brand names containing back vowel sounds, as opposed to front vowel sounds for the large car (69% vs 31%, refer to Fig. 2). A significant interaction effect was observed between accent and size of the product ($F(1, 78) = 4.13, p = .045$). Results indicate children prefer a brand name containing a back vowel sound when the product is large, with this preference strengthened when children are natural speakers of Australian English (graphically represented in Fig. 3). These findings are consistent with expectations given both the formation of monophthongs in Australian English and the front versus back vowel distinction discussed within the psycholinguistic literature.

3.1. Front versus back sound effects: age comparisons

Due to children forming the context of this research, it is expected that there will be a linear relationship between age and presence of phonetic symbolism effects. A median split on age was performed. A dichotomous variable was created to represent younger children (5–8 years of age) and older children (9–12 years of age). Two, 2 (size) × 2 (accent) ANOVAs were conducted with vowel sound as the dependent variable within each age category. For children five to eight years of age, no significant effects were observed ($p > .05$, Fig. 4 illustrates the main effect for product size). For older children, a significant main effect was observed with respect to product size ($F(1, 37) = 31.72, p = .000$). Brand names including a back vowel sound were preferred over those containing a front vowel sound for the large car (80% versus 20%, refer to Fig. 5). A significant interaction effect was also observed between accent and product size ($F(1, 37) = 5.65, p = .023$). Consistent with overall results, older children were found to prefer a brand name containing a back vowel sound when the product is large, with this preference strengthened when children are natural speakers of Australian English.

4. Discussion

This research forms the basis for understanding the impact of accent on phonetic symbolism effects. While findings demonstrate that accent can impact the nature of the phenomena, it does not eliminate its presence, with expected phonetic symbolism effects remaining across accents with differing phonological structures. Consistent with Shrum et al. (2012), findings demonstrate that individuals, across geographic
bounds, display a preference for brand names that contain vowel sounds that connote product attributes. This study also highlighted the potential impact of phonological development on the presence of phonetic symbolism. Results of this research suggest that phonetic symbolism effects cannot be demonstrated until children are approximately nine years of age. Whilst we would expect that the phonetic symbolism effects demonstrated within the eldest age group would reflect the wider community, it is suggested that further research be undertaken to confirm this assumption. This research leads to the conclusion that phonetic symbolism can be an important tool for marketers wishing to develop meaningful brand names that will be communicated across accent bounds (with differing phonological structures) — even when their target markets are children.

References

