Nonlinear Dielectric d-Tensor

For second-order nonlinear susceptibilities in the Cartesian coordinate system:

$$P_{i}^{NL} = \sum_{j,k} \varepsilon_{0} \chi_{i,j,k}^{(2)} E_{j} E_{k}$$

$\chi_{i,j,k}^{(2)}$ in general has 27 independent coefficients (3x3x3=27 for a 3 dimensional tensor). Taking into account the permutation symmetry condition, the order of E_{j} and E_{k} in equation $P_{i}^{NL} = \sum_{j,k} \varepsilon_{0} \chi_{i,j,k}^{(2)} E_{j} E_{k}$ is not important (i.e. $\chi_{i,j,k}^{(2)} = \chi_{i,k,j}^{(2)}$); the number of independent coefficients will be reduced to 18. For convenience, we can define a two dimensional (6x3) nonlinear dielectric tensor, commonly known as Kleinman d-tensor:

$$\begin{pmatrix}
 P_{x} \\
 P_{y} \\
 P_{z}
\end{pmatrix} = \varepsilon_{0} \begin{pmatrix}
 d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\
 d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\
 d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36}
\end{pmatrix} \begin{pmatrix}
 E_{x}^2 \\
 E_{y}^2 \\
 E_{z}^2 \\
 E_{x} E_{y} E_{z} \\
 2E_{y} E_{x} E_{z} \\
 2E_{y} E_{z} E_{x}
\end{pmatrix}$$

One obvious advantage of d-tensor format is that the full tensor can be written in a two-dimensional matrix; otherwise it would be difficult to express a three-dimensional tensor on a paper. With d-tensor, one can derive the strength of nonlinear interacting process in a dielectric medium under electrical field (E).

In practical situation, depending on the crystal class, many tensor components actually can be reduced to zero for crystal structure symmetry reason. For example, the d-tensor of LiNbO$_3$ (which is triangular 3m crystal class) can be expressed as

$$\begin{pmatrix}
 P_{x} \\
 P_{y} \\
 P_{z}
\end{pmatrix} = \varepsilon_{0} \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 \\
 -d_{22} & 0 & 0 & d_{31} & 0 & 0 \\
 d_{31} & d_{31} & d_{33} & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
 E_{x}^2 \\
 E_{y}^2 \\
 E_{z}^2 \\
 E_{x} E_{y} E_{z} \\
 2E_{y} E_{x} E_{z} \\
 2E_{y} E_{z} E_{x}
\end{pmatrix}$$
Where the nonlinear d coefficient is $d_{22} = 2.59 \text{ pm/V}$, $d_{31} = 4.85 \text{ pm/V}$, and $d_{33} = 25.3 \text{ pm/V}$. Thus, in the case of LiNbO$_3$, when input fundamental wave $E_z(\omega)$ interacts with nonlinear dielectric medium along the selected z-axis through largest nonlinearity d_{33}, the induced polarization P_z can be expressed as

$$
\begin{pmatrix}
P_x \\
P_y \\
P_z
\end{pmatrix} = \varepsilon_0 \begin{pmatrix}
0 & 0 & 0 & 0 & d_{31} & -d_{22} \\
-d_{22} & d_{22} & 0 & d_{31} & 0 & 0 \\
d_{31} & d_{31} & d_{33} & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
E_z^2 \\
0 \\
0 \\
d_{33} E_z^2
\end{pmatrix} = \varepsilon_0 \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix},
$$

or simply as $P_z(2\omega) = \varepsilon_0 d_{33} E_z(\omega)^2$.

In QPM wave mixing process, the effective d_{eff} will have a QPM reduction factor of $2/\pi$ in the d-tensor along the selected crystal orientation, i.e. $d_{eff} = \frac{2}{\pi} d$.