Predictive Models for Healthcare Analytics

A Case on Retrospective Clinical Study

Mengling 'Mornin' Feng <u>mfeng@mit.edu</u> <u>mornin@gmail.com</u>

Learning Objectives

- * After the lecture, students should be able to:
 - * Define what are predictive models
 - * Apply appropriate metrics to assess the performance of predictive models
 - * Explain some basic predictive models, such as logistic regression, decision tree, neural network etc
 - * Conduct retrospective clinical studies with appropriate predictive models
 - * Interpret results from predictive models
 - * Understand the future trend of predictive models

VS

VS

VS

Assessment of Predictive Models

	Predicted Yes	Predicted No
True Yes	a True Position (TP)	b False Negative (FN)
True No	C False Positive (FP)	d True Negative (TN)

	Predicted Yes	Predicted No
True Yes	True Position (VP)	b False Negative (FN)
True No	C False Positive (FP)	d True Negative (TN)

	Predicted Yes	Predicted No
True Yes	True Position (VP)	b False Negative
True No	C False Positive (FP)	d True Negative (TN)

	Predicted Yes	Predicted No
True Yes	True Position (VP)	b False Negative
True No	C False Positive	d True Negative (TN)

	Predicted Yes	Predicted No
True Yes	True Position (VP)	b False Negative
True No	C False Positive	d True Negative (TM)

* Confusion Matrix

	Predicted Yes	Predicted No
True Yes	True Position (VP)	b False Negative
True No	C False Positive	d True Negative (100)

* Accuracy = Correct Predictions / All Predictions = (a+d)/(a+b+c+d)

Prediction Threshold

Limitations of Accuracy

- * Hard to interpret
 - * Is 90% accuracy good?
 - * Is 20% accuracy bad?
 - * It depends! (on the base rate)
- * Assume equal costs/weights on errors
 - * Again it depends on the problem and applications
 - * E.q.

* Error weights (costs)

* Error weights (costs)

	Predicted Yes	Predicted No
True Yes	a, Wa True Position (TP)	b, wb False Negative (FN)
True No	C, Wc False Positive (FP)	d, w _d True Negative (TN)

* Error weights (costs)

	Predicted Yes	Predicted No
True Yes	a, Wa True Position (TP)	b, w _b False Negative (FN)
True No	C, Wc False Positive (FP)	d, wd True Negative (TN)

* Error Costs = w_b*b + w_c*c

Error cost

Error cost

* Lift

- * Commonly used in targeted marketing
- * Not interested in the entire population
- * How much more accurate the model is compared to random guessing when we predicted x% to be true

$$\frac{a/(a+b)}{(a+c)/(a+b+c+d)}$$

* Lift

- * Commonly used in targeted marketing
- * Not interested in the entire population
- * How much more accurate the model is compared to random guessing when we predicted x% to be true

	Predicted Yes	Predicted No
True Yes	a	b
True No	C	d

$$\frac{a/(a+b)}{(a+c)/(a+b+c+d)}$$

* Lift

- * Commonly used in targeted marketing
- * Not interested in the entire population
- * How much more accurate the model is compared to random guessing when we predicted x% to be true

	Predicted Yes	Predicted No
True Yes	a	b
True No	C	d

* Given a threshold, Lift =
$$\frac{a/(a+b)}{(a+c)/(a+b+c+d)}$$

Lift

* Precision, Recall, F-measure & Breakeven-Point

 $\frac{2*(precision*recall)}{precision+recall}$

* Precision, Recall, F-measure & Breakeven-Point

	Predicted Yes	Predicted No
True Yes	a	b
True No	C	d

 $\frac{2*(precision*recall)}{precision+recall}$

* Precision, Recall, F-measure & Breakeven-Point

	Predicted Yes	Predicted No
True Yes	a	b
True No	C	d

- * **Precision** = Pr(True|Predicted True) = a/(a+c)
- * Recall = Pr(Predicted True|True) = a/(a+b)
- * **F-measure** = $\frac{2*(precision*recall)}{precision+recall}$
- * Breakeven Point: Precision = Recall

Precision & Recall

* Sensitivity, Specificity and ROC

* Sensitivity, Specificity and ROC

	Predicted Yes	Predicted No
True Yes	a	b
True No	C	d

* Sensitivity, Specificity and ROC

	Predicted Yes	Predicted No
True Yes	a	b
True No	C	d

- * Sensitivity = Pr(Predicted True|True) = a/(a+b)
- * Specificity = Pr(Predicted False|False) = d/(c+d)
- * Receiver Operator Characteristic (ROC) Curve
 - * Sensitivity vs (1-Specificity)

ROC curve

Assessment for Training

- * Training and Testing Datasets
- * n-Fold Cross-Validation
- * Jackknife
- * Bootstrapping

Applications of Predictive Models

Applications

- * Outcome Predictions
 - * Mortality, long-term outcome & quality of life
 - * Quality assessment, decision support, cost-effectiveness
- * Clinical event predictions
 - * Early or timely intervention
 - * Adverse effect/risk assessment
 - * Treatment response
- * Evidence generation: clinical studies

Case Study: Value of Echocardiogram for Critical Care Patients

The Question

- * Whether Echocardiogram independently contribute to the improvement of critical care patients' outcomes?
 - * Outcome: 28 days mortality
 - * Patient cohort: MICU and SICU
- * Data: the MIMIC data
- * How?

Causal Inference with Predictive Model

Uni-variate Study

Co-founding Factors

- * Demographics or admission info
 - * Age, Gender, Weight, BMI, Service Unit, Severity at admission, Day of Admission, Hour of Admission
- * Co-morbidity (chronic) conditions
 - * CHF, Afib, Liver, Renal, COPD, Stroke, Cancer
- * Vital Signs
 - * Blood pressure, Heart Rate, Respiration Rate, Temptation, Oxygen Saturation
- * Lab tests:
 - * WBC, HGB, Creatinine, etc

Causal Inference with Predictive Model

Multi-variate Study

Causal Inference with Predictive Model

Propensity Score Study

Propensity Score Based Study

- * Step 1: Build the predictive model to estimate the likelihood of intervention
- * Step 2: Assess the performance of the predictive model
- * Step 3: Match up patients based on the predicted Propensity Score
- * Step 4: Evaluate the balancing after matching
- * Step 5: Compare the matched cohort

Estimation of Propensity Score with Gradient Boosting Model (GBM)

- * Gradient Boosting Model (GBM)
 - * An ensemble learning model based on decision tress

29

Echo

Non-echo

Ensemble Learning

Ensemble Learning

Propensity Score Study with Gradient Boosting Model (GBM)

What is Trending in Machine Learning

Deep Learning

What is Deep Learning?

https://www.youtube.com/watch?v=bHvf7Tagt18

What is Neural Network?

https://www.youtube.com/watch?v=DG5-UyRBQD4

https://www.youtube.com/watch?v=qv6UVOQoF44

36