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Learning Objectives

* After the lecture, students should be able to:
* Define what are predictive models

* Apply appropriate metrics to assess the performance of
predictive models

* Explain some basic predictive models, such as logistic
regression, decision tree, neural network etc

* Conduct retrospective clinical studies with appropriate
predictive models

* Interpret results from predictive models

* Understand the future trend of predictive models
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Classification (Supervised Learning)
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Assessment of Classification Models

¥ Confusion Matrix

Predicted Yes

Predicted No

True Yes

a
True Positio

b
False Negative

True No

C
False Positive

d
‘True Negative

* Accuracy = Correct Predictions / All Predictions

= (a+d)/(a+b+c+d)
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Limitations of Accuracy

* Hard to interpret
* Is 90% accuracy good?
* Is 20% accuracy bad?
* It depends! (on the base rate)
* Assume equal costs/weights on errors
* Again it depends on the problem and applications

* E.q.
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Predicted Yes Predicted No

True Yes True Position (TP) | False Negative (FIN)
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Assessment of Classification Models

* Error weights (costs)

Predicted Yes Predicted No

True Yes True Position (TP) | False Negative (FN)
C, WC d’ Wd
True No False Positive (FP) | True Negative (TIN)

x Error Costs = wi,*b + w.*C
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Assessment of Classification Models

* Lift
* Commonly used in targeted marketing
* Not interested in the entire population

* How much more accurate the model is compared to random
guessing when we predicted x% to be true
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Assessment of Classification Models

* Lift
* Commonly used in targeted marketing
* Not interested in the entire population

* How much more accurate the model is compared to random
guessing when we predicted x% to be true

Predicted Yes Predicted No
True Yes a b
True No C d
* (Given a threshold, Lift = allatb)

(a+c)/(a+b+c+d)
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Assessment of Classification Models

* Precision, Recall, F-measure & Breakeven-Point
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Assessment of Classification Models

* Precision, Recall, F-measure & Breakeven-Point

Predicted Yes Predicted No

True Yes a b

True No C d

¥ Precision = Pr(TruelPredicted True) = a/(a+c)

* Recall = Pr(Predicted TruelTrue) = a/(a+b)

2 *(precision * recall)

* F-measure = —
precision + recall

* Breakeven Point: Precision = Recall
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Assessment of Classification Models
* Sensitivity, Specificity and ROC
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Assessment of Classification Models
* Sensitivity, Specificity and ROC

Predicted Yes Predicted No

True Yes a b

True No C d

* Sensitivity = Pr(Predicted TruelTrue) = a/(a+b)
* Specificity = Pr(Predicted FalselFalse) = d/(c+d)
* Receiver Operator Characteristic (ROC) Curve

* Sensitivity vs (1-Specificity)
16



ROC curve
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Assessment for lraining

* Training and Testing Datasets
* n-Fold Cross-Validation

* Jackknife

* Bootstrapping

18



Applications of Predictive
Models



Applications

* Outcome Predictions

* Mortality, long-term outcome & quality of life

* Quality assessment, decision support, cost-eftectiveness
* Clinical event predictions

* Early or timely intervention

* Adverse eftect/risk assessment

* ‘Ireatment response

* Evidence generation: clinical studies

20



Case Study:
Value of Echocardiogram for Critical
Care Patients

o Echocardiogram

Patient bes on Somoupht Heart Elciode patches

Ded on loh sxde mOoves lransducer atiached o chest
on pabent's chest (kv EXG)

National Heart, Lung, and Blood Institute
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T'he Question

* Whether Echocardiogram independently contribute to the
improvement of critical care patients’ outcomes?

¥ Outcome: 28 days mortality

* Patient cohort: MICU and SICU
* Data: the MIMIC data

* How?

22



Causal Inference with

Predictive Model

Uni-variate Study



Co-founding Factors

* Demographics or admission info

* Age, Gender, Weight, BMI, Service Unit, Severity at admission,
Day of Admission, Hour of Admission

* Co-morbidity (chronic) conditions
* CHEFE, Afib, Liver, Renal, COPD, Stroke, Cancer
* Vital Signs

* Blood pressure, Heart Rate, Respiration Rate, Temptation, Oxygen
Saturation

* Lab tests:

* WBC, HGB, Creatinine, etc
24



Causal Inference with

Predictive Model

Multi-variate Study



Causal Inference with

Predictive Model

Propensity Score Study



Propensity Score Based Study

* Step 1: Build the predictive model to estimate the likelihood
of intervention

* Step 2: Assess the performance of the predictive model

* Step 3: Match up patients based on the predicted
Propensity Score

* Step 4: Evaluate the balancing after matching

* Step §: Compare the matched cohort

o



Estimation of Propensity Score with

Gradient Boosting Model (GBM)

* Gradient Boosting Model (GBM)

¥ An ensemble learning model based on decision
tress

28
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Ensemble Learning



Ensemble Learning

Classifiers

Combine Classifications

Output 0
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Propensity Score Study with
Gradient Boosting Model (GBM)



What 1s ITrending in

Machine Learning

Deep Learning
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What 1s Deep Learning?

https://www.youtube.com/watch?v=bHvt7Tagt18

34


https://www.youtube.com/watch?v=bHvf7Tagt18

What 1s Neural Network?

https://www.youtube.com/watch?v=DG35-UyRBQD4
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