Predictive Models for Healthcare Analytics A Case on Retrospective Clinical Study Mengling 'Mornin' Feng <u>mfeng@mit.edu</u> <u>mornin@gmail.com</u> ## Learning Objectives - * After the lecture, students should be able to: - * Define what are predictive models - * Apply appropriate metrics to assess the performance of predictive models - * Explain some basic predictive models, such as logistic regression, decision tree, neural network etc - * Conduct retrospective clinical studies with appropriate predictive models - * Interpret results from predictive models - * Understand the future trend of predictive models VS VS VS # Assessment of Predictive Models | | Predicted Yes | Predicted No | |----------|-----------------------------|------------------------------| | True Yes | a True Position (TP) | b False Negative (FN) | | True No | C
False Positive (FP) | d
True Negative (TN) | | | Predicted Yes | Predicted No | |----------|------------------------------|------------------------------| | True Yes | True Position (VP) | b False Negative (FN) | | True No | C False Positive (FP) | d
True Negative (TN) | | | Predicted Yes | Predicted No | |----------|-----------------------|-------------------------| | True Yes | True Position (VP) | b False Negative | | True No | C False Positive (FP) | d
True Negative (TN) | | | Predicted Yes | Predicted No | |----------|---------------------|-------------------------| | True Yes | True Position (VP) | b
False Negative | | True No | C
False Positive | d
True Negative (TN) | | | Predicted Yes | Predicted No | |----------|---------------------|-------------------------| | True Yes | True Position (VP) | b
False Negative | | True No | C
False Positive | d
True Negative (TM) | * Confusion Matrix | | Predicted Yes | Predicted No | |----------|---------------------|--------------------------| | True Yes | True Position (VP) | b
False Negative | | True No | C
False Positive | d
True Negative (100) | * Accuracy = Correct Predictions / All Predictions = (a+d)/(a+b+c+d) ## Prediction Threshold ## Limitations of Accuracy - * Hard to interpret - * Is 90% accuracy good? - * Is 20% accuracy bad? - * It depends! (on the base rate) - * Assume equal costs/weights on errors - * Again it depends on the problem and applications - * E.q. * Error weights (costs) * Error weights (costs) | | Predicted Yes | Predicted No | |----------|---------------------------------|--------------------------------------| | True Yes | a, Wa True Position (TP) | b, wb False Negative (FN) | | True No | C, Wc False Positive (FP) | d, w _d True Negative (TN) | * Error weights (costs) | | Predicted Yes | Predicted No | |----------|---------------------------------|---------------------------------------| | True Yes | a, Wa True Position (TP) | b, w _b False Negative (FN) | | True No | C, Wc False Positive (FP) | d, wd True Negative (TN) | * Error Costs = w_b*b + w_c*c ## Error cost ## Error cost #### * Lift - * Commonly used in targeted marketing - * Not interested in the entire population - * How much more accurate the model is compared to random guessing when we predicted x% to be true $$\frac{a/(a+b)}{(a+c)/(a+b+c+d)}$$ #### * Lift - * Commonly used in targeted marketing - * Not interested in the entire population - * How much more accurate the model is compared to random guessing when we predicted x% to be true | | Predicted Yes | Predicted No | |----------|---------------|--------------| | True Yes | a | b | | True No | C | d | $$\frac{a/(a+b)}{(a+c)/(a+b+c+d)}$$ #### * Lift - * Commonly used in targeted marketing - * Not interested in the entire population - * How much more accurate the model is compared to random guessing when we predicted x% to be true | | Predicted Yes | Predicted No | |----------|---------------|--------------| | True Yes | a | b | | True No | C | d | * Given a threshold, Lift = $$\frac{a/(a+b)}{(a+c)/(a+b+c+d)}$$ ### Lift * Precision, Recall, F-measure & Breakeven-Point $\frac{2*(precision*recall)}{precision+recall}$ * Precision, Recall, F-measure & Breakeven-Point | | Predicted Yes | Predicted No | |----------|---------------|--------------| | True Yes | a | b | | True No | C | d | $\frac{2*(precision*recall)}{precision+recall}$ * Precision, Recall, F-measure & Breakeven-Point | | Predicted Yes | Predicted No | |----------|---------------|--------------| | True Yes | a | b | | True No | C | d | - * **Precision** = Pr(True|Predicted True) = a/(a+c) - * Recall = Pr(Predicted True|True) = a/(a+b) - * **F-measure** = $\frac{2*(precision*recall)}{precision+recall}$ - * Breakeven Point: Precision = Recall ## Precision & Recall * Sensitivity, Specificity and ROC * Sensitivity, Specificity and ROC | | Predicted Yes | Predicted No | |----------|---------------|--------------| | True Yes | a | b | | True No | C | d | * Sensitivity, Specificity and ROC | | Predicted Yes | Predicted No | |----------|---------------|--------------| | True Yes | a | b | | True No | C | d | - * Sensitivity = Pr(Predicted True|True) = a/(a+b) - * Specificity = Pr(Predicted False|False) = d/(c+d) - * Receiver Operator Characteristic (ROC) Curve - * Sensitivity vs (1-Specificity) ## ROC curve ## Assessment for Training - * Training and Testing Datasets - * n-Fold Cross-Validation - * Jackknife - * Bootstrapping # Applications of Predictive Models ## Applications - * Outcome Predictions - * Mortality, long-term outcome & quality of life - * Quality assessment, decision support, cost-effectiveness - * Clinical event predictions - * Early or timely intervention - * Adverse effect/risk assessment - * Treatment response - * Evidence generation: clinical studies # Case Study: Value of Echocardiogram for Critical Care Patients ## The Question - * Whether Echocardiogram independently contribute to the improvement of critical care patients' outcomes? - * Outcome: 28 days mortality - * Patient cohort: MICU and SICU - * Data: the MIMIC data - * How? # Causal Inference with Predictive Model Uni-variate Study # Co-founding Factors - * Demographics or admission info - * Age, Gender, Weight, BMI, Service Unit, Severity at admission, Day of Admission, Hour of Admission - * Co-morbidity (chronic) conditions - * CHF, Afib, Liver, Renal, COPD, Stroke, Cancer - * Vital Signs - * Blood pressure, Heart Rate, Respiration Rate, Temptation, Oxygen Saturation - * Lab tests: - * WBC, HGB, Creatinine, etc # Causal Inference with Predictive Model Multi-variate Study # Causal Inference with Predictive Model Propensity Score Study ## Propensity Score Based Study - * Step 1: Build the predictive model to estimate the likelihood of intervention - * Step 2: Assess the performance of the predictive model - * Step 3: Match up patients based on the predicted Propensity Score - * Step 4: Evaluate the balancing after matching - * Step 5: Compare the matched cohort # Estimation of Propensity Score with Gradient Boosting Model (GBM) - * Gradient Boosting Model (GBM) - * An ensemble learning model based on decision tress 29 Echo Non-echo # Ensemble Learning ## Ensemble Learning # Propensity Score Study with Gradient Boosting Model (GBM) # What is Trending in Machine Learning Deep Learning # What is Deep Learning? https://www.youtube.com/watch?v=bHvf7Tagt18 ## What is Neural Network? https://www.youtube.com/watch?v=DG5-UyRBQD4 https://www.youtube.com/watch?v=qv6UVOQoF44 36