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Learning Objectives
After the lecture, students should be able to:

Define what are predictive models

Apply appropriate metrics to assess the performance of 
predictive models

Explain some basic predictive models, such as logistic 
regression, decision tree, neural network etc

Conduct retrospective clinical studies with appropriate 
predictive models

Interpret results from predictive models

Understand the future trend of predictive models
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What are Predictive Models?
To predict or to guess
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Classification (Supervised Learning)
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Assessment of  Predictive 
Models
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Assessment of  Classification Models

7
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Assessment of  Classification Models
Confusion Matrix

Predicted Yes Predicted No

True Yes
a 

True Position (TP)
b 

False Negative (FN)

True No
c 

False Positive (FP)
d 

True Negative (TN)
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Assessment of  Classification Models
Confusion Matrix

Predicted Yes Predicted No

True Yes
a 

True Position (TP)
b 

False Negative (FN)

True No
c 

False Positive (FP)
d 

True Negative (TN)

Accuracy = Correct Predictions / All Predictions  
                 = (a+d)/(a+b+c+d)
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Prediction Threshold
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Limitations of  Accuracy
Hard to interpret

Is 90% accuracy good?

Is 20% accuracy bad?

It depends! (on the base rate)

Assume equal costs/weights on errors

Again it depends on the problem and applications

E.q.

9



Assessment of  Classification Models
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Assessment of  Classification Models
Error weights (costs)
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Assessment of  Classification Models
Error weights (costs)

Predicted Yes Predicted No

True Yes
a, wa 

True Position (TP)
b,wb 

False Negative (FN)

True No
c, wc 

False Positive (FP)
d, wd 

True Negative (TN)
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Assessment of  Classification Models
Error weights (costs)

Predicted Yes Predicted No

True Yes
a, wa 

True Position (TP)
b,wb 

False Negative (FN)

True No
c, wc 

False Positive (FP)
d, wd 

True Negative (TN)

Error Costs = wb*b + wc*c
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Error cost
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Error cost
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Assessment of  Classification Models
Lift 

Commonly used in targeted marketing
Not interested in the entire population
How much more accurate the model is compared to random 
guessing when we predicted x% to be true

a / (a + b)
(a + c) / (a + b + c + d)
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Assessment of  Classification Models
Lift 

Commonly used in targeted marketing
Not interested in the entire population
How much more accurate the model is compared to random 
guessing when we predicted x% to be true

Predicted Yes Predicted No

True Yes a b
True No c d

Given a threshold, Lift =  a / (a + b)
(a + c) / (a + b + c + d)
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Lift
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Assessment of  Classification Models
Precision, Recall, F-measure & Breakeven-Point

2*(precision*recall)
precision + recall
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Assessment of  Classification Models
Precision, Recall, F-measure & Breakeven-Point

Predicted Yes Predicted No

True Yes a b
True No c d

Precision = Pr(True|Predicted True) = a/(a+c)

Recall = Pr(Predicted True|True) = a/(a+b)

F-measure =

Breakeven Point: Precision = Recall

2*(precision*recall)
precision + recall
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Precision & Recall
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Assessment of  Classification Models
Sensitivity, Specificity and ROC
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Predicted Yes Predicted No

True Yes a b
True No c d
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Assessment of  Classification Models
Sensitivity, Specificity and ROC

Predicted Yes Predicted No

True Yes a b
True No c d

Sensitivity = Pr(Predicted True|True) = a/(a+b) 

Specificity = Pr(Predicted False|False) = d/(c+d)

Receiver Operator Characteristic (ROC) Curve

Sensitivity vs (1-Specificity)
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ROC curve
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Assessment for Training

Training and Testing Datasets

n-Fold Cross-Validation

Jackknife

Bootstrapping

18



Applications of  Predictive 
Models
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Applications
Outcome Predictions

Mortality, long-term outcome & quality of life

Quality assessment, decision support, cost-effectiveness

Clinical event predictions

Early or timely intervention

Adverse effect/risk assessment

Treatment response

Evidence generation: clinical studies
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Case Study: 
Value of  Echocardiogram for Critical 

Care Patients 
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The Question

Whether Echocardiogram independently contribute to the 
improvement of critical care patients’ outcomes?

Outcome: 28 days mortality

Patient cohort: MICU and SICU

Data: the MIMIC data

How?
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Causal Inference with 
Predictive Model

Uni-variate Study
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Co-founding Factors
Demographics or admission info

Age, Gender, Weight, BMI, Service Unit, Severity at admission, 
Day of Admission, Hour of Admission

Co-morbidity (chronic) conditions

CHF, Afib, Liver, Renal, COPD, Stroke, Cancer

Vital Signs

Blood pressure, Heart Rate, Respiration Rate, Temptation, Oxygen 
Saturation

Lab tests:

WBC, HGB, Creatinine, etc
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Causal Inference with 
Predictive Model

Multi-variate Study
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Causal Inference with 
Predictive Model

Propensity Score Study
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Propensity Score Based Study

Step 1: Build the predictive model to estimate the likelihood 
of intervention

Step 2: Assess the performance of the predictive model

Step 3: Match up patients based on the predicted 
Propensity Score

Step 4: Evaluate the balancing after matching

Step 5: Compare the matched cohort
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Estimation of  Propensity Score with 
Gradient Boosting Model (GBM)

Gradient Boosting Model (GBM)

An ensemble learning model based on decision 
tress 

28



Decision Tress for Classification

Echo Non-echo
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Decision Tress for Classification

Age <=79

Echo Non-echo
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Decision Tress for Classification

Age <=79

HR<=98

Echo Non-echo
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Decision Tress for Classification

Age <=79

HR<=98

HR<=82

Echo Non-echo
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Decision Tress for Classification

30



Ensemble Learning
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Ensemble Learning
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Propensity Score Study with 
Gradient Boosting Model (GBM)
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What is Trending in 
Machine Learning

Deep Learning
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What is Deep Learning?

https://www.youtube.com/watch?v=bHvf7Tagt18
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What is Neural Network?

https://www.youtube.com/watch?v=DG5-UyRBQD4

35

https://www.youtube.com/watch?v=DG5-UyRBQD4


Success Stories
https://www.youtube.com/watch?v=qv6UVOQ0F44
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