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ABSTRACT
Motivation: Many new methods have recently been proposed for
detecting epistatic interactions in GWAS data. There is however no
in-depth independent comparison of these methods yet.
Results: Five recent methods—TEAM, BOOST, SNPHarvester,
SNPRuler, and Screen and Clean (SC)—are evaluated here in
terms of power, type-1 error rate, scalability, and completeness.
In terms of power, TEAM performs best on data with main effect
and BOOST performs best on data without main effect. In terms
of type-1 error rate, TEAM and BOOST have higher type-1 error
rates than SNPRuler and SNPHarvester. SC does not control type-
1 error rate well. In terms of scalability, we tested the five methods
using a dataset with 100,000 SNPs on a 64-bit Ubuntu system,
with Intel (R) Xeon(R) CPU 2.66GHz, 16G memory. TEAM takes
∼36 days to finish and SNPRuler reports heap allocation problems.
BOOST scales up to 100,000 SNPs and the cost is much lower
than that of TEAM. SC and SNPHarvester are the most scalable.
In terms of completeness, we study how frequently the pruning
techniques employed by these methods incorrectly prune away the
most significant epistatic interactions. We find that, on average, 20%
of datasets without main effect and 60% of datasets with main effect
are pruned incorrectly by BOOST, SNPRuler, and SNPHarvester.
Availability: The software for the five methods tested are
available from the URLs below. TEAM: http://csbio.
unc.edu/epistasis/download.php. BOOST: http:
//bioinformatics.ust.hk/BOOST.html. SNPHarvester:
http://bioinformatics.ust.hk/SNPHarvester.html.
SNPRuler: http://bioinformatics.ust.hk/SNPRuler.
zip. Screen and Clean: http://wpicr.wpic.pitt.edu/
WPICCompGen/.
Contact: wangyue@nus.edu.sg

1 INTRODUCTION
A genome-wide association study (GWAS) examines the association
between phenotypes and genotypes in a study group. The
first exciting finding was on age-related macular degeneration
(AMD) (Klein, 2005), which uncovers a disease allele (tyrosine-
histidine polymorphism) with an effect size of 4.6 in ∼100,000
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single-nucleotide polymorphisms (SNPs). Since then, over 600
GWAS’s have been conducted for 150 diseases and traits; and∼800
associated SNPs have been reported. The methodologies of these
studies are similar: A quality control criteria is first defined to filter
the genotype data; then the remaining genotypes are each tested
for association with the disease phenotypes. Finally, the significant
SNPs are reported after multiple-testing correction. Most of these
GWAS’s could only identify disease alleles with moderate effect
size. Thus, single SNP association studies could explain very limited
heritability of these diseases (Emahazion et al., 2001).

Consequently, researchers have started exploring multi-SNP
interactions in the hope of discovering more significant associations.
Multi-SNP interactions are also called “epistatic interactions”.
This term originated from Bateson’s definition of epistasis one
hundred years ago (Bateson, 1909). It was defined as the change
of segregation ratio and the interaction of genes. However, in the
current literature, there is a debate on the exact definition of epistasis
(Phillips, 1998, 2008). Our paper focuses on evaluating epistatic
interaction detection methods in their computational aspect and all
the experiments are based on simulation data. Thus, we consider
epistatic interactions as the statistically significant associations of
k-SNP interaction (k ≥ 2) with phenotypes.

There are mainly two types of epistatic interaction detection
methods: model-based methods and model-free methods. In
general, model-based methods (Wu et al., 2009; Yang et al.,
2009; Wan et al., 2010a; Wu et al., 2010) predefine a statistical
model between phenotypes and genotypes; then they fit the data
to the model; and finally they output the significant SNPs. They
work well for only a small number of important and filtered
candidate SNPs; but they often fail when the number of SNPs
grows to hundreds of thousands. To make model-based methods
more efficient, researchers have proposed a variety of heuristic
and filtering techniques. For example, Wan et al. (2010a) develop
an upper bound of the likelihood ratio test statistic for two-locus
epistatic interaction to prune the search space and a boolean
transformation of data to make collection of contingency table
information faster. As another example, Wu et al. (2010) devise
a two-stage analysis so that the overall analysis is more efficient.
As a third example, Yang et al. (2009) use a stochastic search to
identify only 40-50 (set by the user) groups of candidate epistatic
interactions for follow-up model-fitting analysis.
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In contrast, model-free methods (Ritchie et al., 2001; Wan et al.,
2010b; Zhang et al., 2010) have no prior assumption on the data and
the model. Given the genotype data, these methods only examine the
test statistic of each possible epistatic interaction with phenotypes.
Zhang et al. (2010) propose a minimum spanning tree (MST)
structure to represent the data; by traversing this MST, exhaustive
search of every epistatic interaction is an order faster than that
of brute-force search. Wan et al. (2010b) connect the epistatic
interactions with predictive rules and use a rule mining strategy to
find epistatic interactions.

Our evaluation study of epistatic interaction detection methods
is different from earlier studies such as Motsinger-Reif et al.
(2008a), Motsinger-Reif et al. (2008b) and Sucheston et al. (2010).
Firstly, Motsinger-Reif et al. (2008b) compare only approaches
based on neural networks while our selected methods cover
both data mining and statistical methods. Secondly, Motsinger-
Reif et al. (2008a) evaluate multifactor dimensionality reduction
(MDR) (Ritchie et al., 2001), grammatical evolution neural
networks (GENN) (Motsinger-Reif et al., 2006), focused interaction
testing framework (FITF) (Millstein et al., 2006), random forests
(RF) (Breiman, 2001), and logistic regression (LR) (Hosmer and
Lemeshow, 2000) methods. They show that MDR is superior
in all settings. After two years of advancement, most methods
selected in this paper have demonstrated that their performance is
better than that of MDR; we therefore omit discussing methods
mentioned in Motsinger-Reif et al. (2008a). Thirdly, Sucheston
et al. (2010) compare AMBIENCE (Chanda et al., 2008) with
MDR, restricted partitioning method (RPM) (Culverhouse, 2007)
and logistic regression. They conclude that the performance of
AMBIENCE is equivalent to that of logistic regression for two-locus
models and better than that of RPM and MDR. However, according
to Wan et al. (2010a), the performance of BOOST is better than
that of PLINK (Purcell et al., 2007), which uses a pure logistic
regression model. Therefore we omit the evaluation of AMBIENCE
and RPM in our study. Lastly, Wan et al. (2010b) and Yang et al.
(2009) have shown that their overall performance is much better
than that of BEAM (Zhang and Liu, 2007). We thus omit BEAM.

In this paper, we give an independent empirical comparison
of five methods for detecting epistatic interactions—namely,
TEAM (Zhang et al., 2010), BOOST (Wan et al., 2010a),
SNPRuler (Wan et al., 2010b), SNPHarvester (Yang et al., 2009),
and Screen and Clean (Wu et al., 2010)—to help users better
understand which method is more suitable for their data, which
method is good for detecting epistatic interactions with and without
main effect, and which method is scalable to larger datasets. We also
analyze why combining several of these methods cannot enhance
power. Their basic characteristics are given in Table 1.

Table 1. Summary of the features of the five methods: BOOST (B), TEAM
(T), SNPRuler (SR), SNPHarvester (SH), Screen and Clean (SC)

B T SR SH SC
Exhaustive Search ×

√
× × ×

Logit Model Assumed
√

× ×
√ √

Multi-Stage × × × ×
√

Permutation Test ×
√

× × ×
Bonferroni correction

√
×

√ √ √

Programming language C C++ Java Java R

The organization of this paper is as follows. We first formulation
the problem in Section 2. Then we briefly introduce each of the
five methods in Section 3. We describe how the evaluation data is
simulated in Section 4 and the detailed setting of each experiment
in Section 5. After that, we present the results under each setting in
Section 6. Finally, we discuss the performance of each method and
provide advice to users in Section 7.

2 PROBLEM FORMULATION
In a typical GWAS, researchers collect two types of data: genotype
data that encodes the genetic information of each individual,
and phenotype data that measures the quantitative traits of each
individual. Here, we consider only bi-allelic SNPs. The allele that
occurs more frequently is called the major allele, denoted as A. The
allele that occurs less frequently is called the minor allele, denoted
as a. The two alleles form three genotypes—AA, Aa and aa—and
they are encoded as 0, 1 and 2 in raw data. For phenotype data, we
consider the binary form (0 for control and 1 for case). With minor
modification, current methods can handle other types of phenotype
data, e.g., by discretizing a continuous phenotype.

The goal of each method is to identify k-SNP (k ≥ 2) epistatic
interactions significantly associated with the phenotype. Thus, each
method outputs a list of epistatic interactions, each involving up to k
SNPs (usually k is set to 2) and is accompanied by its P-value after
correction for multiple testing.

There are two challenges. First, if we constrain k to be 1, then
the number of statistical tests is equal to the number of SNPs in a
dataset. When k increases by 1, the number of tests grows by n-
fold (n is the number of SNPs in a dataset). Thus, the total number
of tests grows quickly as k increases, resulting in the inability of
current methods to test all the combinations. For example, to study a
moderate size of 500,000 SNPs, we can test only two-locus epistatic
interactions if we use the EPISNP program (Ma et al., 2008) on a
2.66GHz single processor, as it may take 1.2 years to finish all the
tests. Therefore, heavy computation cost is one of the challenges for
current methods (Wang et al., 2011). Second, since a huge number
of possible combinations are tested, a large proportion of significant
associations are expected to be false positives. Thus, reducing the
number of false positives while retaining power is another challenge.

3 METHODS
3.1 SNPRuler
SNPRuler (Wan et al., 2010b), MDR (Ritchie et al., 2001), and a
few other pattern-based methods (Li et al., 2006; Long et al., 2009)
adopt data mining approaches for detecting epistatic interactions.
These methods do not assume a model-fitting procedure but use
some filtering methods to reduce the number of SNP combinations
to be tested. SNPRuler (Wan et al., 2010b) is a rule-based approach
motivated by the fact that each epistatic interaction induces a set of
rules. For example, SNP1 ∧ SNP2⇒ Disease contains 9 rules, they
are SNP1 = i ∧ SNP2 = j ⇒ Disease, i, j ∈ {0, 1, 2}. In the
paper, the quality of a rule is given by its χ2 test value. We define
SNP1 ∧ SNP2 ⇒ Disease as a SNP-level epistatic interaction and
SNP1 = i ∧ SNP2 = j ⇒ Disease, i, j ∈ {0, 1, 2} as allele-
level epistatic interactions. To identify epistatic interactions that are
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significant, SNPRuler traverses a set enumeration tree where the
nodes of the tree are the genotypes of the SNPs, the leaves of the tree
are the phenotypes, and the path from the root to a leaf is an allele-
level epistatic interaction. Exhaustive tree traversal is theoretically
possible but practically impossible due to the explosive number
of combinations as the tree grows. Therefore, the authors propose
an upper bound on the χ2 test statistic to prune the search space.
After the search procedure, a post-processing step is used to get
and rank SNP-level interactions. There are two hidden problems in
this work. First, the upper bound they derived from the χ2 formula
is not a true upper bound and does not possess the anti-monotone
property (Agrawal and Srikant, 1994). Although it helps prune
a large search space, it also prunes many true-positive epistatic
interactions. Second, the upper bound is based on the assumption
that the number of cases should be larger than or equal to that of
controls in a dataset; otherwise, the upper bound does not hold. This
assumption is inconvenient since the number of controls is larger
than that of cases in most GWAS datasets.

3.2 SNPHarvester
SNPHarvester (Yang et al., 2009) is a stochastic search algorithm
to identify epistatic interactions. It consists of two steps: a filtering
and a model-fitting step. The filtering step is to identify m (40–
50) significant SNP groups for the subsequent model-fitting step. In
the filtering step, it first removes significant single SNPs according
to their χ2 test values, because this method is only interested in
epistatic interactions that have weak marginal effect but significant
joint effect. Then it randomly picks k SNPs. These form an active
set S = {SNP1, SNP2, ..., SNPk}. The rest of the SNPs form
a candidate set Sc. After all these preparations are done, the nested
PathSeeker algorithm is called to swap SNPi ∈ S with SNPj ∈
Sc to get the group with the highest χ2 test value. A total of k(n−k)
combinations need to be tested to identify such a group. After this,
the identified group is removed from the n SNPs. The next iteration
continues to select k SNPs to form an active set and the remaining
n− 2k SNPs form a candidate set. The same procedure is repeated
again. The complexity to identify m groups is O(knm), which is
affordable even when there are > 100, 000 SNPs. In the second
step, each of the m significant groups is fitted into the L2 penalized
logistic regression model; see (Park and Hastie, 2008) for details.

3.3 Screen and Clean
The Screen and Clean method (Wu et al., 2010) uses a two-stage
analysis; datasets from stage 1 for the screening and datasets from
stage 2 for the cleaning. In the screening stage, it only considers tag
SNPs and marginal significant SNPs. These SNPs are first fitted into
the main effect lasso logistic regression model

g(E[Y |X]) = β0 +

N∑
j=1

βjXj

where Xj is the encoded genotype value 0, 1 or 2, Y is the encoded
phenotype value 0 or 1. This model first identifies a set of SNPs
whose coefficients satisfy βj 6= 0, j ∈ {1,2,...,n}; then it obtains the
least square estimates β̂k, k ∈ {1,2,...,n} of these SNPs. To test the
significance of each regression coefficient, the t-test statistic value is

calculated. Only the significant SNPs and their corresponding two-
SNP combinations enter the interaction model

g(E[Y |X]) = β0 +

N∑
j=1

βjXj +
∑

i<j;i,j=1,...,N

βijXiXj .

A similar procedure applies to interaction model fitting. After this
stage, the “surviving” SNP pairs go to the second cleaning stage for
controlling type-1 error. T-test is used again to remove SNP pairs
whose significance level is lower than a user specified threshold.

3.4 BOOST
BOOST (Wan et al., 2010a) contributes to the epistatic detection
problem in two aspects. Firstly, it provides a new boolean
representation of the data. By transforming the data representation
to the boolean type, BOOST uses established methods (Wegner,
1960) of logic operations to collect contingency table information,
which is very efficient. Secondly, it proposes an upper bound
for the likelihood ratio test statistic to prune insignificant epistatic
interactions. The likelihood ratio test is originally based on the
deviance of difference between the full logistic regression model

log
P (Y = 1|Xl1 = i,Xl2 = j)

P (Y = 2|Xl1 = i,Xl2 = j)
= β0+β

Xl1
i +β

Xl2
j +β

Xl1
Xl2

ij ,

Xl1 and Xl2 are genotype variables, i, j ∈ {0,1,2}, and the main
logistic regression model

log
P (Y = 1|Xl1 = i,Xl2 = j)

P (Y = 2|Xl1 = i,Xl2 = j)
= β0 + β

Xl1
i + β

Xl2
j .

We denote the log likelihood of the full model under maximum
likelihood estimate (MLE) as L̂F , the log likelihood of the main
model under MLE as L̂M , the log likelihood of log-linear saturated
model as L̂S , and the homogeneous model as L̂H . The likelihood
ratio statistic between the main model and the full model is
−2(L̂M − L̂F ). The log-linear homogeneous association model
corresponds to the main logistic regression model and the log-
linear saturated model corresponds to the full logistic regression
model (Agresti, 2002). This leads to an upper bound for the
two log-linear models: −2(L̂S − L̂H). Matsuda (2000) uses
Kirkwood Superposition Approximation to get a lower bound of
the homogeneous association model (L̂KSA ≤ L̂H ). Therefore,
the upper bound of the likelihood is established (L̂S − L̂H ≤
L̂S − L̂KSA). This upper bound is tight and most nonsignificant
interactions can be pruned. Its GPU version GBOOST (Yung et al.,
2011) provides 40-fold speedup compared with that of BOOST.

3.5 TEAM
TEAM (Zhang et al., 2010) is an exhaustive algorithm to detect two-
locus epistatic interactions in GWAS. It controls false positives by
using permutation test. Permutation test is generally more accurate
at finding the cut-off p-value threshold than direct adjustment
methods like Bonferroni correction Benjamini and Hochberg
(1995), but at a much higher cost. TEAM needs to compute the
contingency table for every pair of SNPs on all the permutations
to calculate p-values, which is very expensive. To reduce the
computation cost, the authors observe that if two SNPs have the
same genotype values on many individuals, then the computation
of their contingency tables can be shared by considering only
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those individuals with different values. TEAM uses a Minimum
Spanning Tree (MST), where nodes are SNPs and the weight of
edges is the number of individuals with different values on the two
SNPs, to maximize the sharing of contingency table computation.
As the construction of MST can be costly, TEAM constructs an
approximate MST instead. The performance of TEAM is faster
than the brute-force approach by an order of magnitude. As TEAM
does not presume any statistical model, it is applicable to any test
statistic—e.g., χ2 test, exact likelihood ratio test, and entropy-based
test—based purely on contingency table information.

4 DATA SIMULATION
We simulate different types of datasets to evaluate the power, type-1
error rate, and scalability of each method.

4.1 Power
For each setting in both data with and without main effect below,
100 datasets are generated. In each dataset, we embed one ground-
truth epistatic interaction. Power is defined as the fraction of the 100
datasets on which the top prediction matches the ground-truth.

Data with main effect The embedded epistatic interaction
demonstrates both main effect and interaction effect. There are at
least fifty different models that satisfy the constraints for two-locus
epistatic interactions (Li and Reich, 2000). We consider the three
commonly used models (Marchini et al., 2005) given in Figure 1.
We simulate the data based on these three models. For each model,
we try two different minor allele frequencies (MAF) at 0.2 and
0.5, and three different main effect values at 0.2, 0.3 and 0.5;
thus giving a total of six different settings. These values represent
the low and high value for each parameter. We use 2,000 samples
and 1,000 SNPs for each dataset, as per previous works. These
datasets are available from http://compbio.ddns.comp.
nus.edu.sg/˜wangyue/.

Data without main effect This type of epistatic interaction
demonstrates weak main effect but strong interaction effect.
Finding such type of epistatic interactions is a challenging “dark
area” which many methods fail to explore. We use data from
Dartmouth Medical School. The website, http://discovery.
dartmouth.edu/epistatic_data, provides 70 models,
composed of combinations of the following parameter values. (1)
Two MAF settings of 0.2 and 0.4. (2) Seven heritability settings of
0.4, 0.3, 0.2, 0.1, 0.05, 0.025 and 0.01. (3) Five different penetrance
tables. Each model is simulated using four sample sizes of 200, 400,
800 and 1,600. The number of SNPs is 1,000 for each dataset.

4.2 Type-1 error rate
We simulate 1,000 datasets without embedding any epistatic
interaction, each with 2,000 samples and 1,000 SNPs. The MAF
of each SNP is uniformly distributed in [0.05, 0.5]. Type-1 error
rate of the methods is defined as the proportion of the 1000 datasets
on which the significance level of the top prediction satisfies the
user-specified threshold.

4.3 Scalability
To test the scalability, we use datasets with 100, 1,000, 10,000 and
100,000 SNPs. Each of the 4 datasets has 2,000 samples.

5 EXPERIMENTAL SETTING
All the experiments are conducted on a 64-bit Ubuntu system, with
Intel (R) Xeon(R) CPU 2.66GHz, 16G memory.

SNPRuler provides a Java program. The heap size is set to
-Xmx7000M, giving the maximum memory for the program to use.
The maximum number of rules is set as 50,000. The rule length is set
to 2 since we focus on two-locus epistatic interactions. The pruning
threshold is set as 0, to test as many combinations as possible.

SNPHarvester also provides a Java program; it has two running
modes. One is the “Threshold-Based” mode, where the user
indicates the threshold significance level and the program outputs all
results whose significance level is lower than the threshold. Another
is the “Top-K Based” mode, where the program outputs the top K
most significant results regardless of their significance level. The
“Top-K Based” mode is used for our analysis.

TEAM provides a C++ program which consists of two sub
programs: (1) to test all combinations and record the corresponding
test statistic value and (2) to get the SNP pairs according to the user-
specified False Discovery Rate (FDR). We use the default setting of
other parameters and set the FDR value to 1.

BOOST provides a C program that only runs on Windows system.
To let all programs run on the same hardware configuration, we use
the Wine program (http://www.wine.org) which allows us
to run a Windows program on a Unix system. There is no setting for
BOOST; the output is the list of results whose likelihood ratio test
statistic values are higher than 30 with 4 degrees of freedom.

Screen and Clean provides an R program; it has 4 running
strategies, among which we choose the “Kitchen Sink”. We set the
P-value threshold to 0.1 and the number of pairs to be tested to 100.

BOOST filters out epistatic interactions with test statistic values
less than 30 with 4 degrees of freedom. This corresponds to 0.1

AA Aa aa

BB a a(1+θ) a(1+θ)2

Bb a(1+θ) a(1+θ)2 a(1+θ)3

bb a(1+θ)2 a(1+θ)3 a(1+θ)4

Model 1: two-locus multiplicative

disease effect between and within loci

AA Aa aa

BB a A a

Bb a a(1+θ) a(1+θ)2

Bb a a(1+θ)2 a(1+θ)4

Model 2: two-locus multiplicative  

disease effect between loci

AA Aa aa

BB a a a

Bb a a(1+θ) a(1+θ)

bb a a(1+θ) a(1+θ)

Model 3: two-locus threshold effect

Fig. 1. Illustraion of three main models. For the two-locus problem, suppose the baseline odds of getting a disease is α, and having the disease allele (a or b)
increases the odds by 1 + θ. A person with genotype Aa or Bb has an α(1 + θ) odds of getting a disease, while one with genotype aa or bb has an odds of
α(1 + θ)2. Model 1 means the final odds is multiplied by the odds of two loci. Model 2 requires both of the loci to contain at least one disease allele before
the odds can be multiplied within and between loci. For Model 3, the odds is kept the same if both loci contain the disease allele.
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Fig. 2. Power comparison under three main effect models. Each model has two MAF settings and three λ settings which control the main effect of the ground-
truth SNP. For each model, we generate 100 datasets. For each dataset, the sample size is 2,000 (1,000 cases and 1,000 controls) and the number of SNPs is
1,000. Abbreviations of the methods are: T (TEAM), B (BOOST), SR (SNPRuler), SH (SNPHarvester) and SC (Screen and Clean). The p-value for one-way
ANOVA test is 0. 0009.

Fig. 3. Power comparison under 70 models without main effect. For each model, we simulate data using four different sample sizes. These sizes simulate the
study design from small scale to large scale. Abbreviations of the methods are: T (TEAM), B (BOOST), SR (SNPRuler), and SH (SNPHarvester).

significance level. For fair comparison, we add a post-processing
step to filter output with P-values higher than 0.1 for other methods.

6 EXPERIMENT RESULTS
6.1 Model with main effect
The results here are obtained by using data generated in the first
part of Section 4.1. Figure 2 shows that in each setting, TEAM
outperforms all other methods. For the other four methods, different
model settings lead to different rankings. For example, in Model 1
with λ=0.3, SNPRuler is second; in Model 2 with λ=0.5, Screen
and Clean is second. The different performance of TEAM and
BOOST is due to a key difference in defining the interaction
effect. TEAM uses the χ2 test to measure the significance of
two-locus interactions and thus makes no assumption about the
data. BOOST uses a log likelihood ratio test to get the deviance
difference between the log likelihood of the log-linear homogeneous
association model and log-linear saturated model. BOOST performs
well when the interaction terms contribute significantly to the
model. However, when single SNP association terms fit the model
well and interaction terms do not contribute significantly, BOOST
may not be able to detect the ground-truth. This type of epistatic
interactions is often referred as “statistical epistasis” (Cordell, 2002)
and is widely accepted by the statistical community. SNPRuler is
not an exhaustive method, but the test used is the same as that of
TEAM. We set the pruning threshold to 0; thus it explores as many
epistatic interactions as possible. Compared to TEAM, this method
potentially misses true-positives. The result of SNPHarvester is
expected as its randomization technique makes it difficult to perform
better than exhaustive search. Screen and Clean performs poorly,
due to its numerous filtering steps in the two-stage design. In the
screening step, before the main-effect lasso procedure starts, it

includes only marginally significant and tag SNPs. After that, it still
only considers n (set by the user) pairs of SNPs instead of all the
possible pairs to continue the interaction model fitting procedure. In
the cleaning step, the filtering test is applied to only a small number
of SNP pairs, resulting in little power to detect the ground-truth.

All five methods perform best on Model 1 compared to
Model 2 and Model 3. This is because of the multiplicative effect
between and within the two loci, making the epistatic interaction
effect stronger and easier to detect. Model 2 only considers the
multiplicative effect between two loci; the power to detect epistatic
interactions drops obviously for all methods. The interaction effect
of Model 3 is even weaker than Model 2, leading to the lowest
power in all methods. It is also noted that the higher the main effect
of the model, the easier it is for each method to detect epistatic
interactions. However, SNPRuler and SNPHarvester do not follow
this pattern because, when the main effect of the ground-truth pair is
large, these two methods prune such main effect SNPs at the filtering
stage. This leads to the missing detection of ground-truth.

6.2 Model without main effect
The results here are obtained using data generated in the latter
part of Section 4.1. Screen and Clean is applicable only to data
with main effect; thus we omit it here. Figure 3 gives an overall
picture of the performance of the methods for each sample size,
while Figure 4 gives the details. The median power of BOOST is
the highest followed by TEAM. The performance of SNPRuler is
close to that of an exhaustive method (TEAM) but is at a lower
computational cost. BOOST performs the best in each setting and
TEAM second; but the difference is not as obvious as that in data
with main effect. SNPHarvester performs relatively poorly for each
sample size. All methods perform well when heritability is high;
when heritability reduces to 0.001, all methods have little power.
Lescai and Franceschi (2010) point out in their study of neurological
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Fig. 4. Detailed results of four methods on data without main effect. In particular, for models with heritability 0.001, MAF 0.2 and sample size 200, the results
of these datasets were not reported previously; all four methods have zero power on them. This shows the limitations of purely statistical methods. The p-value
for one-way ANOVA test is 0. 0997.

cancers that low heritability caused by phenocopy level (PE) is the
main reason for the methods to lose power. We also notice that
increasing the sample size helps all these methods to improve their
power in each heritability setting.

When we evaluate the four methods on data without main effect,
we use all datasets that are publicly available. They include 70
models and 4 different sample sizes for each model. Part of these
datasets are also used in BOOST, SNPRuler and SNPHarvester.
BOOST does not include the results of 70 models for 200 samples.
SNPRuler and SNPHarvester merely show results of 60 models and
each model with 400 samples. Our reported results are consistent
with previous reported results and are complementary to them.
In particular, for those models with 0.001 heritability, 0.2 MAF
and 200 samples, the results of these datasets were not reported
previously; and all four methods have zero power (see Figure 4).
This shows the limitations of purely statistical methods.

6.3 Scalability
We apply all methods to datasets with 100, 1,000, 10,000, and
100,000 SNPs. From Table 2, BOOST is the fastest under the first
three settings. This is due to its fast Boolean operation to collect
contingency tables and upper-bound-pruning technique. When the
SNP size grows to 100,000, it is much slower than the two non-
exhaustive methods SNPHarvester and Screen and Clean. TEAM is
the slowest in all settings for two reasons. First, the overall running
time is only an order faster than that of a brute-force approach.
Second, the permutation procedure makes it even more expensive,

Table 2. Running time comparison of the five methods. Abbreviations of the
methods are: SR (SNPRuler), SH (SNPHarvester), SC (Screen and Clean).

# SNPs TEAM BOOST SR SH SC
100 58.23s 0.16s 2.43s 2.29s 7.39s

1,000 353.20s 2.47s 21.73s 22.33s 55.48s
10,000 7,406.29s 156.16s 1,097.65s 224.24s 626.96s

100,000 ∼36 days 15,010.42s NA 6,616.65s 5,858.34s

although traversing MST helps reduce the cost. SNPRuler cannot
execute on the dataset with 100,000 SNPs because we get the “out
of memory” error, even though we have set the heap size to 12.8G
for the Java virtual machine, which is the maximum on our PC.
SNPHarvester and Screen and Clean only identify a fixed number
of candidate epistatic interactions, and then fit them to a statistical
model for follow-up analysis. Thus, their scalability is much better
than the other three methods when SNP size grows.

6.4 Type-1 error
We define the type-1 error rate of a method as the proportion
of datasets that the method reports the existence of significant
epistatic interactions, out of the 1,000 datasets in which no epistatic
interactions are actually embedded. The significance level is set to
0.05 after Bonferroni correction. The type-1 error rate for TEAM
is 0.018, BOOST is 0.065, and SNPRuler and SNPHarvester both
are 0.003. TEAM and BOOST have higher power thus higher
type-1 error rates are reasonable. Screen and Clean has problems
controlling type-1 error, as its type-1 error rate is as high as 0.86.

6.5 Completeness
SNPRuler, SNPHarvester and BOOST use some pruning techniques
to speed up the search. Hence they have better scalability than
TEAM as shown in Table 2. The side effect of using pruning
techniques is the loss of power—the most significant SNP pairs may
be thrown away. To study the magnitude of this side effect, we pick
the most significant SNP pair on each dataset and study how many of
them are pruned. For each method, the most significant SNP pair is
the SNP pair with the lowest p-value calculated using the statistical
test used by the method. Thus, for BOOST, the most significant
SNP pair is the SNP pair with the lowest p-value calculated using
likelihood-ratio test. For the other two methods, the most significant
SNP pair is the SNP pair with the lowest p-value calculated using
chi-square test. BOOST prunes away the most significant SNP pair
on 4,195 out of the 26,860 datasets without main effect, and on
756 out of 1,698 datasets with main effect. Among these 4,195
datasets, the power of BOOST is 12.2% compared to 18.3% for
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Fig. 5. The completeness space for the four methods. As there are two
types of datasets and two types of test statistics, four venn diagrams are
drawn respectively. In Part (a), all three methods—TEAM, SNPRuler and
SNPHarvester—use χ2 test. TEAM’s outputs represent the 28,000 (20,320
+ 1,977 + 2,660+ 3,043) top significant SNP pairs in 28,000 datasets.
SNPHarvester can identify 22,297 (20,320+1977) of them. Among the
28,000 top SNP pairs, 20,320 of them can be identified by all three methods.
Parts (b), (c) and (d) follow similar explanations.

the corresponding exhaustive method. Figure 5 also shows that the
number of incorrectly pruned datasets of SNPRuler is smaller than
that of SNPHarvester for both types of data. Correspondingly, the
power of SNPRuler is higher than that of SNPHarvester.

7 DISCUSSION
The five methods all demonstrate respective utilities through the
experiments results above. No single method is simultaneously
the most powerful, the most scalable, and has the lowest type-
1 error rate in every setting. When users want powerful results
and are not concerned with computation cost, we recommend
using TEAM and BOOST. Compared with TEAM, BOOST uses
a model-fitting procedure. If the data fits the model well, the
result is usually good; otherwise, a model-free method may be the
alternative choice. When users expect moderate running time and
power, we recommend using SNPRuler. Its pruning technique helps
reduce running time albeit at the risk of losing power. If users are
conscious of computation cost and have to run very large datasets,
we recommend using SNPHarvester because it only identifies a
small number (40–50) of groups for the model-fitting procedure.

Our evaluations are based on simulation results. In a real study,
users usually have no idea of the “ground-truth” in the dataset.
Hence it may not be sufficient to rely only on one method to
obtain results. We suggest that, if time and computation resources
permit, users try both the recommended model-free (i.e., TEAM)
and model-fitting (i.e., BOOST) methods.

Fig. 6. The power space for the four methods on data with and without
main effect. In part (a), there are in total 1,800 datasets for 18 settings of
the simulated datasets, which corresponds to 1,800 ground-truth. Among
these ground-truth, only 800 of them can be detected by at least one of the
four methods, while the best method—TEAM—identifies 787 ground-truth
out of 800. This explains why using ensemble methods cannot outperform
TEAM. Similar observation is illustrated in Part (b).

It is tempting to consider taking a “majority vote” of the results
of two or more methods. For example, let every algorithm report
their top-3 predictions. A SNP pair receives k votes if it is reported
by k methods. We select the one with the highest vote as the final
prediction. When there is a tie, we choose the one with the lowest
P-value. Unfortunately, for both types of data tested, we find that
an ensemble using such a strategy cannot increase power over using
solely BOOST or TEAM. In Figure 6, we see that for data without
main effect, BOOST’s ground-truth predictions highly overlap with
the other three methods’, so any ensemble cannot contribute a
significant number of new ground-truth predictions. Specifically,
the proportion of BOOST’s ground-truth predictions that are not
predicted by the other three methods is 4.1%, while the proportion
of the other methods’ ground-truth predictions not predicted by
BOOST is 0.2%. Similarly, for data with main effect, no ensemble
can outperform TEAM.

Our evaluations above only focus on two-locus epistatic
interaction. Recently, Wang et al. (2010) and Liu et al. (2011)
provide a general model that can be extended to n-locus epistasis.
They also provide mathematical details of dissecting the χ2 test
into different epistatic components. For example, two-way epistatic
interaction can be partitioned into four epistatic components:
additive × additive, additive × dominant, dominant × additive and
dominant× dominant. This helps characterize epistatic interactions
in a more specific way and provides more physiological insights.
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